JP2009068318A - Converting method for long shaft void - Google Patents

Converting method for long shaft void Download PDF

Info

Publication number
JP2009068318A
JP2009068318A JP2007265926A JP2007265926A JP2009068318A JP 2009068318 A JP2009068318 A JP 2009068318A JP 2007265926 A JP2007265926 A JP 2007265926A JP 2007265926 A JP2007265926 A JP 2007265926A JP 2009068318 A JP2009068318 A JP 2009068318A
Authority
JP
Japan
Prior art keywords
concrete
air tube
void
slab
pulled out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007265926A
Other languages
Japanese (ja)
Inventor
Nobuhiro Sakaguchi
伸宏 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Spacer Co Ltd
Original Assignee
Kyoto Spacer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Spacer Co Ltd filed Critical Kyoto Spacer Co Ltd
Priority to JP2007265926A priority Critical patent/JP2009068318A/en
Publication of JP2009068318A publication Critical patent/JP2009068318A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that under the present circumstances a long shaft spiral pipe used as one of void members when constructing a void slab is, finally, embedded within the slab although it is expensive, which means it is left buried and accordingly a unit cost per square meter when constructing the void slab is increased. <P>SOLUTION: An outer periphery of a concrete-retaining air tube on the market is covered with poly-ethylene film, so as to impart lubricating property on the outer surface of the air tube. Accordingly, the air tube, which can easily be pulled out after the concrete is hardened even when the air tube is embedded in the concrete of the void slab, is used as a void member, and also it can be utilized for different purpose. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉄筋コンクリート造の建築物のボイドスラブに内設されるボイド用部材を施工する際の工法に関する。  The present invention relates to a method for constructing a void member installed in a void slab of a reinforced concrete building.

従前、ボイドスラブ用のボイド用部材としては球形又は箱形の発泡スチロール製のものと長軸円筒形の薄鋼板製(スパイラル管)のものがあるが、いずれもコンクリートに埋設され所謂、埋め殺しの状態で使用されている。  Conventionally, as a void slab member for a void slab, there are a spherical or box-shaped one made of styrene foam and a long-axis cylindrical thin steel plate (spiral tube), both of which are embedded in concrete, so-called buried state. Used in.

上述のごとくボイドスラブにおける現行のボイド用部材はいづれもコンクリート内に埋設されてしまうが、これらのボイド用部材は決して安価なものでなくむしろ高価なものなのでボイドスラブのm単価を押し上げている。また長軸円筒形のスパイラル管にあってはスラブの上端筋の配筋前に設置が成されているため上端筋の配筋作業に際して作業者の足場を悪化させ、作業効率及び安全性の観点から極めて大きな問題となっている。
したがってまず前者の課題を解決するためにはボイド用部材を転用可能なものに、かつ後者の課題を解決するためには上端筋の配筋作業後に設置できるような又は上端筋の配筋作業に際してその足場を悪化せしめることのないボイド用部材を使用する必要がある。
As described above, all of the current void members in the void slab are embedded in the concrete, but these void members are not inexpensive but rather expensive, which increases the m 2 unit price of the void slab. In addition, in the case of a long-axis cylindrical spiral tube, it is installed before the upper bar of the slab. It has become a very big problem.
Therefore, in order to solve the former problem, the void member can be diverted first, and in order to solve the latter problem, it can be installed after the upper bar reinforcement work or at the upper bar reinforcement work. It is necessary to use a void member that does not deteriorate the scaffold.

本発明者は鋭意研究した結果、市販のエアチューブに若干手を加えるだけで上述の課題即ち転用可能たらしめるとともに作業効率や安全性が確保される工法を発明した。
一般にスラブの大きさは短辺方向でも7〜8mあるのに対し、市販のエアチューブは長くても5m程度である。したがって例えばスラブのスパンが8mの場合は、長さ4mのエアチューブを両方向から設置する形態とする。打設時には圧縮空気による高い抗圧力を有するこのエアチューブをコンクリート固化後に抜気収縮せしめて引き抜き、転用して使用するのである。
しかしながら市販されているこのエアチューブは本来打継ぎ用コンクリート止めとして使用されているものなので比較的硬く剛性も大きいので容易には固化後のコンクリートから引き抜くことができない。そこでエアチューブの外周をポリエチレン等の表面が滑らかなフィルムで覆い、引き抜く際の抵抗を減らすのである。また作業効率や安全性に関しては鉄筋の配筋作業が終了してから初めてエアチューブに空気を入れるのでそれまではエアチューブは萎縮しており、作業者の足場を悪化させるようなことはない。
As a result of diligent research, the present inventor has invented a construction method in which the above-described problem, that is, diversion is possible, and work efficiency and safety are ensured by slightly modifying a commercially available air tube.
In general, the size of the slab is 7 to 8 m even in the short side direction, whereas a commercially available air tube is about 5 m at the longest. Therefore, for example, when the span of the slab is 8 m, an air tube having a length of 4 m is installed from both directions. At the time of placing, this air tube having a high coercive pressure due to compressed air is extracted and contracted after solidification of the concrete, and is used after diverting.
However, since this commercially available air tube is originally used as a concrete stopper for splicing, it is relatively hard and has high rigidity, so it cannot be easily pulled out from the solidified concrete. Therefore, the outer periphery of the air tube is covered with a film having a smooth surface such as polyethylene to reduce the resistance when it is pulled out. Regarding work efficiency and safety, since air is introduced into the air tube for the first time after the rebar reinforcement work is completed, the air tube is shrunk until then, and the operator's scaffolding is not deteriorated.

以下、本発明を図に従い、詳しく説明する。
図1は本発明による工法における作業の第一段階での状態の断面図である。ここで符号1はスラブの型枠たるコンパネ、符号2はスペーサー、符号3はスラブの下端筋、そして符号4は符号5のポリエチレンフィルムで覆われた該エアチューブであり、まだ空気を圧入してないので萎えている。したがってこの後の上端筋の配筋作業においても何ら支障は生じないのである。
図2は本工法における第二段階での状態の断面図である。ここで符号6は該スラブの上端筋であり、この上端筋の配筋作業の後、符号4のエアチューブは本図のごとく空気が圧入されて膨張する。
図3は生コンクリートを打設した後の断面図であり、ここで符号7はコンクリート、符号8はコンクリートが固化した後にエアチューブの空気を抜いてこれを引き抜くためのスペースである。このスペースは後日コンクリートが打設され最終的にボイドスラブが完成する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a sectional view showing a state in a first stage of work in the construction method according to the present invention. Here, reference numeral 1 is a control panel as a slab mold, reference numeral 2 is a spacer, reference numeral 3 is a lower end line of the slab, and reference numeral 4 is the air tube covered with a polyethylene film of reference numeral 5. I'm not so good. Therefore, there will be no trouble in the rearrangement work of the upper end muscle.
FIG. 2 is a cross-sectional view of the second stage of the construction method. Here, reference numeral 6 denotes an upper end bar of the slab. After the upper bar arrangement work, the air tube of the reference numeral 4 is inflated by being press-fitted as shown in the figure.
FIG. 3 is a cross-sectional view after placing the ready-mixed concrete. Here, reference numeral 7 denotes concrete, and reference numeral 8 denotes a space for extracting air from the air tube after the concrete is solidified. This space will be filled with concrete at a later date, and finally the void slab will be completed.

上述のごとくの本発明による工法でボイドスラブを施工すれば高価なボイド用部材を埋設により消失しなくて済む。即ちエアチューブの外周をポリエチレンのフィルムで覆うという簡簡単な作業でこれを転用できるのである。また上端筋の配筋作業が完了するまでの間はエアチューブは萎んでおり、従来のように円筒体が近接して並べられている訳ではないので作業者の足場も安全であり、作業効率も改善されるのである。  If the void slab is constructed by the method according to the present invention as described above, the expensive void member does not have to be lost by burying. That is, this can be diverted by a simple operation of covering the outer periphery of the air tube with a polyethylene film. In addition, the air tube is deflated until the upper bar reinforcement work is completed, and the cylinders are not lined up close to each other as before, so the operator's scaffolding is safe and work efficiency Is also improved.

エアチューブを抜気し、固化コンクリートから引き抜く際の抵抗は抜気することにより生じるコンクリートとエアチューブとの隙間、即ち空隙量に反比例することが明白なので、その観点から市販されているエアチューブのなかで最も細いが故に抵抗も大きい外径50φのもので実験を行った。
実験用の型枠の形状寸法は直方形で断面の幅200mm、同高さ200mmそして長さ4.2mとし、この上面を開放して水平に設置した。この状態の型枠内の断面中央部、即ちコンクリートの天端よりほぼ100mm下がったところに上述外径50φ、長さ4.0mのエアチューブをポリエチレンのフィルムで覆った上で打設した。ただしコンクリートが固化した後のエア抜き及び引き抜きの必要からエアチューブのエア栓側を100mmだけ型枠の外に露出させた。したがってコンクリート内にはエアチューブを3.9mだけ埋め込んだ。打設した日より1週間後、コンクリートが十分に固化したことを確認した上で該エアチューブの引き抜き作業を行った。
まず抜気しないでエアチューブの引き抜きを行ったが、全く動かなかった。次に抜気して引き抜いたところポリエチレンのフィルムはコンクリート内に残留したままでさほど力を入れなくとも簡単に引き出せた。即ちポリエチレンの持つ表面滑性による効果と本発明による工法が有用且つ有益であることが確認された。
It is clear that the resistance when the air tube is evacuated and pulled out from the solidified concrete is inversely proportional to the gap between the concrete and the air tube caused by evacuation, that is, the amount of air gap. The experiment was conducted with an outer diameter of 50φ, which is the thinnest and therefore has a large resistance.
The experimental formwork had a rectangular shape with a cross-sectional width of 200 mm, a height of 200 mm, and a length of 4.2 m, and the upper surface was opened and installed horizontally. The air tube having an outer diameter of 50φ and a length of 4.0 m was covered with a polyethylene film and placed at the center of the cross section in the mold in this state, that is, approximately 100 mm below the top of the concrete. However, the air plug side of the air tube was exposed to the outside of the mold by 100 mm from the necessity of air venting and drawing after the concrete solidified. Therefore, only 3.9m of air tube was embedded in the concrete. One week after the placement date, the air tube was pulled out after confirming that the concrete had solidified sufficiently.
First, the air tube was pulled out without venting, but it did not move at all. Next, when it was evacuated and pulled out, the polyethylene film remained in the concrete and could be pulled out without much effort. That is, it was confirmed that the effect of the surface slipperiness of polyethylene and the method according to the present invention are useful and beneficial.

本発明による工法の第一段階の断面図  Sectional view of the first stage of the method according to the present invention 本発明による工法の第二段階の断面図  Sectional view of the second stage of the method according to the present invention コンクリート打設後の断面図  Cross section after placing concrete

符号の説明Explanation of symbols

1, 型枠のコンパネ
2, スペーサー
3, ボイドスラブの下端筋
4, ポリエチレンフィルムで覆われたエアチューブ
5, ポリエチレンフィルム
6, ボイドスラブの上端筋
7, コンクリート
8, 引き抜きスペース
1. Formwork panel 2. Spacer 3. Lower end of void slab 4. Air tube covered with polyethylene film 5. Polyethylene film 6. Upper end of void slab 7. Concrete 8. Pull-out space

Claims (1)

本発明はボイドスラブを構築するための工法であって、従来のように長軸スパイラル管を埋設してしまうのではなく市販のエアチューブをボイド用部材として使用し、スラブのコンクリートが固化して後エアチューブ内の空気を抜気回収しこれを転用する工法である。
このエアチューブは本来コンクリート打ち継ぎ部のコンクリート止めに使用されているものであって、即ち過酷な状況下での使用に耐えられるよう硬質な素材で作られているためその長さも手伝って抜気しても容易には抜き取ることはできないので、本工法ではこのチューブの外面を表面滑性の高いポリエチレンのフィルムで覆うことで固化したコンクリートから簡単に抜き取れることを特徴とする工法。
The present invention is a method for constructing a void slab. Instead of embedding a long-axis spiral tube as in the prior art, a commercially available air tube is used as a void member, and the concrete of the slab is solidified. This is a method of extracting and recovering air from the air tube and diverting it.
This air tube is originally used to stop the concrete at the joint of the concrete, that is, it is made of a hard material so that it can withstand use under harsh conditions. However, it cannot be pulled out easily, so the construction method is characterized in that the outer surface of this tube can be easily pulled out from solidified concrete by covering it with a polyethylene film with high surface smoothness.
JP2007265926A 2007-09-12 2007-09-12 Converting method for long shaft void Pending JP2009068318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007265926A JP2009068318A (en) 2007-09-12 2007-09-12 Converting method for long shaft void

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007265926A JP2009068318A (en) 2007-09-12 2007-09-12 Converting method for long shaft void

Publications (1)

Publication Number Publication Date
JP2009068318A true JP2009068318A (en) 2009-04-02

Family

ID=40604863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007265926A Pending JP2009068318A (en) 2007-09-12 2007-09-12 Converting method for long shaft void

Country Status (1)

Country Link
JP (1) JP2009068318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140009962A (en) * 2010-06-28 2014-01-23 알베르토 알라르콘 가르시아 Lightweight slab or similar structural element which can receive equipment that is accessible and that can extend through the slab
KR101792528B1 (en) * 2016-04-19 2017-11-02 류지춘 Building Structures Construction method using Peanut type high-pressure tube and Building Structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140009962A (en) * 2010-06-28 2014-01-23 알베르토 알라르콘 가르시아 Lightweight slab or similar structural element which can receive equipment that is accessible and that can extend through the slab
KR101967432B1 (en) * 2010-06-28 2019-08-13 알베르토 알라르콘 가르시아 Lightweight slab or similar structural element which can receive equipment that is accessible and that can extend through the slab
KR101792528B1 (en) * 2016-04-19 2017-11-02 류지춘 Building Structures Construction method using Peanut type high-pressure tube and Building Structure

Similar Documents

Publication Publication Date Title
KR101457077B1 (en) Reformed concrete filled tube column structure
US8348555B2 (en) Formwork element for bounding a trench wall section, formwork part and method for producing a trench wall in the ground
CN111042185B (en) Construction method of basement raft foundation with tower crane foundation
CN104805870A (en) Construction method for first soil filling and then casting at settlement post-cast strip of top plate of basement
CN201128881Y (en) Preformed supporting structure in bent cap construction
JP6168361B2 (en) Mass concrete part placement method
CN110258605A (en) A kind of complex vertical cut-pff wall, production method and the template for pouring complex vertical cut-pff wall
JP2009068318A (en) Converting method for long shaft void
CN102865087B (en) Embedded grout pipe device in lining concrete of chamber and construction method
CN106978809A (en) A kind of construction method of casing off concrete protective reserved steel bar
KR20070119421A (en) Pier having precast concrete pipe and constructing method therefor
EP2935715B1 (en) Reinforced blockwork construction method
JP2006057265A (en) Shearing force reinforcing method, shearing force reinforcing structure, and shear reinforcing member
KR101457080B1 (en) Reformed concrete filled tube column structure
CN113445609B (en) Well chamber prefabricated by municipal rainwater and sewage and well chamber pipe orifice plugging construction method
CN105178322B (en) A kind of grouting construction method
CN205077480U (en) Double cannula bored concrete pile structure
CN102535684A (en) Plane external collapse preventive filling wall
JP2004278203A (en) Method of repairing liquid transportation facilities
JP2008038360A (en) Inducing joint structure and construction method
JP3697525B2 (en) Pipeline repair and rehabilitation method
JP2005139703A (en) Reinforcing construction method of existing concrete pile
KR102137200B1 (en) construction method of soil retaining wall using square steel pipe
CN206941523U (en) Slabstone connection wall
JP4212530B2 (en) Concrete joining method in reverse casting method