JP2009063334A - Inspection device - Google Patents

Inspection device Download PDF

Info

Publication number
JP2009063334A
JP2009063334A JP2007229616A JP2007229616A JP2009063334A JP 2009063334 A JP2009063334 A JP 2009063334A JP 2007229616 A JP2007229616 A JP 2007229616A JP 2007229616 A JP2007229616 A JP 2007229616A JP 2009063334 A JP2009063334 A JP 2009063334A
Authority
JP
Japan
Prior art keywords
sensor
capacitance
semiconductor wafer
measured
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007229616A
Other languages
Japanese (ja)
Inventor
Atsushi Kitamura
敦 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007229616A priority Critical patent/JP2009063334A/en
Publication of JP2009063334A publication Critical patent/JP2009063334A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection device capable of detecting a fine defect of a measuring object. <P>SOLUTION: The device includes a capacitive sensor 15 for measuring a capacitance of the measuring object (a resist film 12 provided on a semiconductor wafer 10), and a length measuring sensor 20 (a measuring light source 21, a light receiving part 22) for measuring a distance between the bottom surface of the measuring object and the capacitive sensor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は被測定物の静電容量を測定して検査する検査装置に関する。   The present invention relates to an inspection apparatus that measures and inspects the capacitance of an object to be measured.

静電容量を測定して被測定物を検査する装置として、例えば、絶縁体に保持された対向電極を被測定物のフィルムに接触させて、その接触時における静電容量からこのフィルムの膜厚を測定して検査する装置が知られている(特許文献1)。
実開昭58−86507号公報
As an apparatus for measuring the capacitance and inspecting the object to be measured, for example, the counter electrode held by an insulator is brought into contact with the film of the object to be measured, and the film thickness of the film is determined from the capacitance at the time of contact. An apparatus for measuring and inspecting is known (Patent Document 1).
Japanese Utility Model Publication No. 58-86507

上記測定装置は、被測定物(フィルム)自身の静電容量を測定して検査し、また対向電極と被測定物との間の距離を静電容量の変化で測定して検査するものである。   The measuring device measures and inspects the capacitance of the object to be measured (film) itself, and measures and inspects the distance between the counter electrode and the object to be measured by the change in capacitance. .

対向電極と被測定物との間の距離を静電容量によって測定して検査する場合には、被測定物の底面と対向電極との間の距離が変わらないことが前提となる。被測定物の表面と対向電極との間の距離のみが変化し、これを静電容量の変化として捉えることによって、被測定物の厚さの均一性や表面の高さ変化などを検査することができる。被測定物自身に反りやうねりがあり、被測定物の底面と対向電極との間の距離が変化する場合、測定した静電容量値からは被測定物の反りなどよるものかあるいは被測定物の厚さの変化によるものかは分からない。例えば、半導体ウェハ上に塗布したレジスト膜の膜厚の均一性を検査する場合において、半導体ウェハ自身に反りやうねりなどがあると、測定した静電容量の変化からは、半導体ウェハの反りなどによるものか、レジスト膜の膜厚の変化によるものかは分からない。通常、膜厚の変化は半導体ウェハ自身の反りやうねりに比して非常に小さく、膜厚の変化による静電容量の変化も、半導体ウェハ自身の反りやうねりによる静電容量の変化に比して非常に小さく、半導体ウェハ自身の反りやうねりによる静電容量の変化中に埋もれてしまう。   When the inspection is performed by measuring the distance between the counter electrode and the object to be measured by capacitance, it is assumed that the distance between the bottom surface of the object to be measured and the counter electrode does not change. Only the distance between the surface of the object to be measured and the counter electrode changes, and by capturing this as a change in capacitance, the thickness uniformity of the object to be measured and the change in height of the surface are inspected. Can do. If the measured object itself has warping or undulation, and the distance between the bottom surface of the measured object and the counter electrode changes, the measured capacitance value may be due to warpage of the measured object or the measured object. I don't know if this is due to a change in thickness. For example, when inspecting the uniformity of the thickness of a resist film applied on a semiconductor wafer, if the semiconductor wafer itself is warped or swelled, the measured change in capacitance causes the warpage of the semiconductor wafer. It is not known whether it is due to a change in the film thickness of the resist film. Normally, the change in film thickness is very small compared to the warpage and undulation of the semiconductor wafer itself, and the change in capacitance due to the change in film thickness is also compared to the change in capacitance due to the warpage and undulation of the semiconductor wafer itself. It is very small and buried in the capacitance change due to warpage and waviness of the semiconductor wafer itself.

すなわち、対向電極と被測定物との間の距離を静電容量によって測定して検査する装置では、被測定物の微小な欠陥を検出することが難しい課題があった。   That is, in the apparatus that measures and inspects the distance between the counter electrode and the object to be measured by the capacitance, there is a problem that it is difficult to detect a minute defect of the object to be measured.

本発明は上記事情に鑑みてなされたもので、被測定物の微小な欠陥を検出することが出来る検査装置及び同検査装置を備えた半導体検査装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an inspection apparatus capable of detecting a minute defect of an object to be measured and a semiconductor inspection apparatus including the inspection apparatus.

上記目的を達成する本発明の請求項1に記載の検査装置は、被測定物の静電容量を測定する静電容量センサと、前記被測定物の底面と前記静電容量センサとの間の距離を測定する測長センサと、を具備してなることを特徴とする。   The inspection apparatus according to claim 1 of the present invention that achieves the above object includes a capacitance sensor that measures the capacitance of a measurement object, and a gap between the bottom surface of the measurement object and the capacitance sensor. And a length measuring sensor for measuring the distance.

本発明の請求項2に記載の検査装置は、前記静電容量センサと前記被検査物の底面との間の距離が一定になるように、前記測長センサの測定結果に基づいて、前記静電容量センサ及び/又は前記被測定物を移動させる移動機構を備えることを特徴とする。   The inspection apparatus according to claim 2 of the present invention is based on the measurement result of the length measurement sensor so that the distance between the capacitance sensor and the bottom surface of the inspection object is constant. A moving mechanism for moving the capacitance sensor and / or the object to be measured is provided.

本発明の請求項3に記載の検査装置は、前記静電容量センサを前記被測定物上で走査させる走査機構を備えることを特徴とする。   According to a third aspect of the present invention, there is provided an inspection apparatus including a scanning mechanism that scans the capacitance sensor on the object to be measured.

本発明の請求項4に記載の検査装置は、前記移動機構が前記測長センサからの測定結果に基づいて前記静電容量センサを移動させる、圧電素子を備えてなることを特徴とする。   The inspection apparatus according to claim 4 of the present invention is characterized in that the moving mechanism includes a piezoelectric element that moves the capacitance sensor based on a measurement result from the length measurement sensor.

本発明の半導体検査装置は、半導体ウェハの表面を検査する装置であって、請求項1乃至4の何れか一項に記載の検査装置を備えてなることを特徴とする。   A semiconductor inspection apparatus of the present invention is an apparatus for inspecting the surface of a semiconductor wafer, and is characterized by comprising the inspection apparatus according to any one of claims 1 to 4.

本発明によれば、被測定物の微小な欠陥を検出することが出来る。   According to the present invention, a minute defect of an object to be measured can be detected.

以下本発明の検査装置の一実施形態について図1乃至図5を参照して説明する。   An embodiment of an inspection apparatus according to the present invention will be described below with reference to FIGS.

本発明の検査装置は静電容量により被測定物を検査する装置であり、図1は本発明の検査装置を半導体検査装置に適用した一実施形態を示す概略側面図である。   The inspection apparatus of the present invention is an apparatus for inspecting an object to be measured by capacitance, and FIG. 1 is a schematic side view showing an embodiment in which the inspection apparatus of the present invention is applied to a semiconductor inspection apparatus.

本実施形態の検査装置は、図1に示すように、被測定物である半導体ウェハ10上の測定対象部位の静電容量を測定する静電容量センサ15と半導体ウェハ10と静電容量センサ15との間の距離を測定する測長センサ20とを装備したセンサヘッド25と、測長センサ20の測定結果に基づいて静電容量センサ15と半導体ウェハ10との間の距離が一定になるようにセンサヘッド25を移動させる移動機構30と、センサヘッド25を半導体ウェハ10上で走査させる走査機構35と、検査装置全体の制御を行う制御部40とを備える。   As shown in FIG. 1, the inspection apparatus according to the present embodiment includes a capacitance sensor 15 that measures the capacitance of a measurement target portion on a semiconductor wafer 10 that is a measurement object, the semiconductor wafer 10, and the capacitance sensor 15. The distance between the capacitance sensor 15 and the semiconductor wafer 10 is made constant based on the measurement result of the length measurement sensor 20 and the sensor head 25 equipped with the length measurement sensor 20 that measures the distance between Are provided with a moving mechanism 30 for moving the sensor head 25, a scanning mechanism 35 for scanning the sensor head 25 on the semiconductor wafer 10, and a control unit 40 for controlling the entire inspection apparatus.

半導体ウェハ10は検査時に回転可能で且つ垂直方向に移動可能な検査ステージ11上に載置される。半導体ウェハ10の表面には被測定物としての例えば透明なレジスト膜12が塗布されており、本検査装置はこのレジスト膜12の膜厚の均一性を静電容量の測定によって検査するものである。検査ステージ11は、駆動装置13により駆動されるもので、この駆動装置13は制御部40により制御され、検査時に検査ステージ11を回転(図1の矢印A参照)させる。また、駆動装置13により検査ステージ11を垂直方向(図1の矢印B参照)に移動させることも出来る。   The semiconductor wafer 10 is mounted on an inspection stage 11 that can rotate during inspection and can move in the vertical direction. For example, a transparent resist film 12 as an object to be measured is applied to the surface of the semiconductor wafer 10, and this inspection apparatus inspects the uniformity of the film thickness of the resist film 12 by measuring capacitance. . The inspection stage 11 is driven by a driving device 13, and this driving device 13 is controlled by the control unit 40, and rotates the inspection stage 11 (see arrow A in FIG. 1) during inspection. Further, the inspection stage 11 can be moved in the vertical direction (see arrow B in FIG. 1) by the driving device 13.

静電容量センサ15は、被測定物のレジスト膜12と対向するように対向電極16(図2参照)を配置しており、この対向電極16と半導体ウェハ10との間に電源17から電圧を加えることによって、対向電極16とこれと対向する半導体ウェハ10の測定箇所10a(図4参照)との間の空間の静電容量、すなわちこの空間内に存在するレジスト膜12の静電容量が測定される。測定された静電容量値は制御部40に送られる。この静電容量値は、対向電極16とこれと対向する半導体ウェハ10の測定箇所10a上にあるレジスト膜12との間の距離に比例するので、測定箇所10aを変えて測定した複数の静電容量値からレジスト膜12の膜厚の均一性(膜厚変動)を検査することが出来る。   The capacitance sensor 15 has a counter electrode 16 (see FIG. 2) disposed so as to face the resist film 12 of the object to be measured, and a voltage is supplied from the power source 17 between the counter electrode 16 and the semiconductor wafer 10. In addition, the capacitance of the space between the counter electrode 16 and the measurement location 10a (see FIG. 4) of the semiconductor wafer 10 opposed thereto, that is, the capacitance of the resist film 12 existing in this space is measured. Is done. The measured capacitance value is sent to the control unit 40. Since this electrostatic capacitance value is proportional to the distance between the counter electrode 16 and the resist film 12 on the measurement location 10a of the semiconductor wafer 10 facing the counter electrode 16, a plurality of electrostatic capacitances measured by changing the measurement location 10a. The film thickness uniformity (film thickness variation) of the resist film 12 can be inspected from the capacitance value.

測長センサ20は、測長センサ20(センサヘッド25)と半導体ウェハ10との間の距離L(図2参照)を測定するもので、例えば図3に示すように、半導体ウェハ10に向けて測定光を照射する測定光源21と、この照射によってレジスト膜12と半導体ウェハ10との界面でありレジスト膜12の底面でもある半導体ウェハ10の表面で反射する反射光を受光する受光部22とを備える。反射光の受光部22での受光位置は、図3の実線22a、二点鎖線22b、二点鎖線22cに示すように、距離Lによって変化するので、この受光位置を求めることによって距離Lを測定することが出来る。二点鎖線22bは距離Lが実線22aで示す場合よりも長くなった場合を示し、二点鎖線22cは距離Lが実線22aで示す場合よりも短くなった場合を示す。受光部22の出力は制御部40に送られる。なお、半導体ウェハ10上のレジスト膜12の箇所に測定光を照射しても、レジスト膜12の底面で反射する反射光を受光すれば、レジスト膜12の底面は半導体ウェハ10の表面と見なせるので、測長センサ20(センサヘッド25)と半導体ウェハ10との間の距離L(図2参照)を測定することが出来る。   The length measuring sensor 20 measures a distance L (see FIG. 2) between the length measuring sensor 20 (sensor head 25) and the semiconductor wafer 10, and is directed toward the semiconductor wafer 10, for example, as shown in FIG. A measurement light source 21 that irradiates measurement light, and a light receiving unit 22 that receives reflected light reflected by the surface of the semiconductor wafer 10 that is the interface between the resist film 12 and the semiconductor wafer 10 and also the bottom surface of the resist film 12 due to the irradiation. Prepare. The light receiving position of the reflected light at the light receiving unit 22 varies depending on the distance L as shown by the solid line 22a, the two-dot chain line 22b, and the two-dot chain line 22c in FIG. 3, and the distance L is measured by obtaining this light receiving position. I can do it. An alternate long and two short dashes line 22b indicates a case where the distance L is longer than that indicated by the solid line 22a, and an alternate long and two short dashes line 22c indicates a case where the distance L is shorter than that indicated by the solid line 22a. The output of the light receiving unit 22 is sent to the control unit 40. Even if the measurement light is irradiated to the position of the resist film 12 on the semiconductor wafer 10, if the reflected light reflected by the bottom surface of the resist film 12 is received, the bottom surface of the resist film 12 can be regarded as the surface of the semiconductor wafer 10. The distance L (see FIG. 2) between the length measuring sensor 20 (sensor head 25) and the semiconductor wafer 10 can be measured.

測長センサ20は静電容量センサ15と共にセンサヘッド25に装備されていることから、測長センサ20の測定値である測長センサ20と半導体ウェハ10との間の距離Lは静電容量センサ15と半導体ウェハ10との間の距離を表すことにもなる。   Since the length measurement sensor 20 is mounted on the sensor head 25 together with the capacitance sensor 15, the distance L between the length measurement sensor 20 and the semiconductor wafer 10, which is a measurement value of the length measurement sensor 20, is a capacitance sensor. It also represents the distance between 15 and the semiconductor wafer 10.

移動機構30は、例えば圧電素子であるピエゾ素子を複数枚積層して構成され、受光部22の出力に基づいた制御部40からの駆動信号を入力してセンサヘッド25を垂直方向(図1、図2の矢印C参照)に移動させ、測長センサ20(静電容量センサ15)と半導体ウェハ10との間の距離Lを一定に維持するものである。移動機構30を構成するピエゾ素子は、応答周波数が例えば3KHzと大きく、半導体ウェハ10の反りやうねりなどによって静電容量センサ15と半導体ウェハ10との間の距離が変化してもこれに直ぐに追従し、センサヘッド25を垂直方向に移動させて静電容量センサ15と半導体ウェハ10との間の距離Lを一定に維持することが出来る。ピエゾ素子自体の変位量(センサヘッド25を垂直方向に移動させる距離)は僅かであるが、ピエゾ素子を複数枚積層することによりこの変位量を拡大することが出来、移動機構30はこれを利用している。なお、ピエゾ素子を複数枚積層する代わりに、ピエゾ素子とこのピエゾ素子の変位を拡大させる拡大機構とを組み合わせて移動機構30を構成するようにしてもよい。   The moving mechanism 30 is configured by laminating a plurality of piezoelectric elements, for example, piezoelectric elements, and inputs a drive signal from the control unit 40 based on the output of the light receiving unit 22 to move the sensor head 25 in the vertical direction (FIG. 1, FIG. The distance L between the length measuring sensor 20 (capacitance sensor 15) and the semiconductor wafer 10 is kept constant. The piezo element constituting the moving mechanism 30 has a large response frequency of, for example, 3 KHz, and immediately follows even if the distance between the capacitance sensor 15 and the semiconductor wafer 10 changes due to warpage or undulation of the semiconductor wafer 10. The distance L between the capacitance sensor 15 and the semiconductor wafer 10 can be kept constant by moving the sensor head 25 in the vertical direction. The displacement amount of the piezo element itself (the distance by which the sensor head 25 is moved in the vertical direction) is small, but this displacement amount can be increased by stacking a plurality of piezo elements, and the moving mechanism 30 uses this. is doing. Instead of laminating a plurality of piezo elements, the moving mechanism 30 may be configured by combining a piezo element and an enlarging mechanism that enlarges the displacement of the piezo element.

走査機構35は、センサヘッド25(静電容量センサ15)を半導体ウェハ10上で走査させるもので、例えばセンサヘッド25を支持する支持部36と、この支持部36を介してセンサヘッド25を半導体ウェハ10の径方向に案内する案内レール37と、制御部40からの駆動信号を入力して支持部36を案内レール37に沿って移動させる駆動部38とを備えてなる。図4に示すように、走査機構35でセンサヘッド25(静電容量センサ15)を半導体ウェハ10の径方向に移動させつつ、検査ステージ11を回転させることによって、センサヘッド25(静電容量センサ15)を半導体ウェハ10の略全面にわたって走査させることができる。具体的には、半導体ウェハ10上のレジスト膜12の全面と、該レジスト膜12が設けられていない半導体ウェハ10の外周部分(ERB(Edge Bead Removal)及び半導体ウェハ10のエッジ部分にセンサヘッド25(静電容量センサ15)を走査させることができる。   The scanning mechanism 35 scans the sensor head 25 (capacitance sensor 15) on the semiconductor wafer 10. For example, the scanning mechanism 35 supports the sensor head 25, and the sensor head 25 is a semiconductor through the support 36. A guide rail 37 that guides in the radial direction of the wafer 10 and a drive unit 38 that inputs a drive signal from the control unit 40 and moves the support unit 36 along the guide rail 37 are provided. As shown in FIG. 4, the sensor head 25 (capacitance sensor 15) is rotated by rotating the inspection stage 11 while moving the sensor head 25 (capacitance sensor 15) in the radial direction of the semiconductor wafer 10 by the scanning mechanism 35. 15) can be scanned over substantially the entire surface of the semiconductor wafer 10. Specifically, the sensor head 25 is formed on the entire surface of the resist film 12 on the semiconductor wafer 10 and on the outer peripheral portion (ERB (Edge Bead Removal) and the edge portion of the semiconductor wafer 10) where the resist film 12 is not provided. The (capacitance sensor 15) can be scanned.

制御部40は、上述したように、静電容量センサ15が測定した静電容量値を入力、また測長センサ20の受光部22の出力(距離Lの測定値)を入力し、距離Lが一定になるように移動機構30に駆動信号を出力し、また走査機構35の駆動部38と検査ステージ11の駆動装置13にそれぞれ駆動信号を出力するものである。制御部40は、また静電容量15が測定した静電容量値に基づいてレジスト膜12の膜厚の均一性求め、膜厚が予め設定した閾値を越えた場合に膜厚不良箇所を指摘したメッセージを不図示の表示装置に出力して表示させるものである。   As described above, the control unit 40 inputs the capacitance value measured by the capacitance sensor 15 and also inputs the output of the light receiving unit 22 of the length measurement sensor 20 (measured value of the distance L). A drive signal is output to the moving mechanism 30 so as to be constant, and a drive signal is output to the drive unit 38 of the scanning mechanism 35 and the drive device 13 of the inspection stage 11. The control unit 40 also obtains the uniformity of the film thickness of the resist film 12 based on the capacitance value measured by the capacitance 15 and points out a defective film thickness portion when the film thickness exceeds a preset threshold value. The message is output and displayed on a display device (not shown).

図5は制御部40の制御内容の一例を示すフローチャートである。   FIG. 5 is a flowchart showing an example of control contents of the control unit 40.

検査対象の半導体ウェハ10を検査ステージ11上に載置する。そしてステップS1で半導体ウェハ10の測定箇所10a(図4参照)を制御部40に入力すると、制御部40は走査機構35の駆動部38と検査ステージ11の駆動装置13にそれぞれ駆動信号を出力し、検査ステージ11により半導体ウェハ10を回転させる一方、走査機構35によりセンサヘッド25を半導体ウェハ10の測定箇所10a上に移動させて、センサヘッド25を測定箇所10a上に位置決めする。   A semiconductor wafer 10 to be inspected is placed on an inspection stage 11. When the measurement location 10a (see FIG. 4) of the semiconductor wafer 10 is input to the control unit 40 in step S1, the control unit 40 outputs drive signals to the drive unit 38 of the scanning mechanism 35 and the drive unit 13 of the inspection stage 11, respectively. While the semiconductor wafer 10 is rotated by the inspection stage 11, the sensor head 25 is moved onto the measurement location 10a of the semiconductor wafer 10 by the scanning mechanism 35 to position the sensor head 25 on the measurement location 10a.

ステップS2では、静電容量センサ15によって測定箇所10a上のレジスト膜12の静電容量を測定する。静電容量センサ15よって静電容量を測定する際には、測長センサ20によって測長センサ20と半導体ウェハ10との間の距離Lを測定しており、半導体ウェハ10の反りなどによって距離Lが変わったときは、直ちに移動機構30によりセンサヘッド25を移動させて距離Lを一定に維持している。したがって、静電容量センサ15は、半導体ウェハ10との距離が一定に維持され、測定した静電容量値は測定箇所10a上のレジスト膜12の膜厚に対応した値である。この静電容量値は、静電容量センサ15から制御部40に入力され、ステップS3で予め設定した閾値と比較され、閾値から外れた場合にはステップS4に移行し、閾値内の場合にはステップ5に移行する。   In step S2, the capacitance of the resist film 12 on the measurement location 10a is measured by the capacitance sensor 15. When the capacitance is measured by the capacitance sensor 15, the distance L between the length measurement sensor 20 and the semiconductor wafer 10 is measured by the length measurement sensor 20, and the distance L due to warpage of the semiconductor wafer 10 or the like. When is changed, the sensor head 25 is immediately moved by the moving mechanism 30 to keep the distance L constant. Therefore, the capacitance sensor 15 is kept at a constant distance from the semiconductor wafer 10, and the measured capacitance value is a value corresponding to the thickness of the resist film 12 on the measurement location 10a. This capacitance value is input from the capacitance sensor 15 to the control unit 40, and compared with a threshold value set in advance in step S3. If the capacitance value is outside the threshold value, the process proceeds to step S4. Move on to step 5.

ステップS4では、レジスト膜12の欠陥箇所を不図示の表示装置に表示させる。表示内容としては、例えば、半導体ウェハ10上の箇所と膜厚が閾値よりも厚いかあるいは薄いかを表示する。欠陥箇所が存在する半導体ウェハ10については、検査ステージ11から取り外し、レジスト膜12を除去する工程に送り、レジスト膜12の除去後、再度レジスト膜12を塗布してステップS1から再度検査するか、あるいは他の箇所についても検査を続行する場合にはステップS5に移行する。   In step S4, the defective part of the resist film 12 is displayed on a display device (not shown). As the display contents, for example, the location on the semiconductor wafer 10 and whether the film thickness is thicker or thinner than a threshold value are displayed. For the semiconductor wafer 10 in which a defective portion is present, it is removed from the inspection stage 11 and sent to the step of removing the resist film 12. Alternatively, when the inspection is continued for other locations, the process proceeds to step S5.

ステップS5では測定を続行するか否かが判断され、続行する場合にはステップS1に戻り、別の測定箇所10aにセンサヘッド25を位置決めして再度レジスト膜12の膜厚測定を行う。続行しない場合には測定を終了する。   In step S5, it is determined whether or not to continue the measurement. If so, the process returns to step S1, the sensor head 25 is positioned at another measurement location 10a, and the film thickness of the resist film 12 is measured again. If not continue, the measurement ends.

本実施形態の検査装置によれば、静電容量センサ15による静電容量の測定時には、測長センサ20で測長センサ20と半導体ウェハ10との間の距離を測定しており、半導体ウェハ10に反りやうねりがあっても移動機構30によって測長センサ20と半導体ウェハ10との間の距離Lを一定に維持している。このため、測長センサ20と共にセンサヘッド25に配置された静電容量センサ15と半導体ウェハ10との間の距離も一定に維持され、この結果、静電容量センサ15の出力である静電容量値はレジスト膜12の膜厚変動にのみに応じて変化し、半導体ウェハ10の反りなどに影響を受けることがない。したがって、レジスト膜12の膜厚の均一性を精度良く検査することが可能となる。   According to the inspection apparatus of the present embodiment, when measuring the capacitance by the capacitance sensor 15, the distance between the length measurement sensor 20 and the semiconductor wafer 10 is measured by the length measurement sensor 20. Even if there is warping or undulation, the distance L between the length measuring sensor 20 and the semiconductor wafer 10 is kept constant by the moving mechanism 30. For this reason, the distance between the capacitance sensor 15 disposed on the sensor head 25 together with the length measuring sensor 20 and the semiconductor wafer 10 is also maintained constant. As a result, the capacitance that is the output of the capacitance sensor 15 is maintained. The value changes only according to the film thickness variation of the resist film 12 and is not affected by the warp of the semiconductor wafer 10 or the like. Therefore, it is possible to accurately inspect the uniformity of the film thickness of the resist film 12.

また、上述したように、センサヘッド25に測長センサ20と静電容量センサ15とが一緒に固定配置されているので、測長センサ20の測定結果に基づいて移動機構30によってセンサヘッド25を移動して測長センサ20と半導体ウェハ10との間の距離Lを一定に維持すれば、同時に静電容量センサ15と半導体ウェハ10との間の距離も一定に維持される。   Further, as described above, since the length measuring sensor 20 and the capacitance sensor 15 are fixedly arranged together on the sensor head 25, the sensor head 25 is moved by the moving mechanism 30 based on the measurement result of the length measuring sensor 20. If the distance L between the length measuring sensor 20 and the semiconductor wafer 10 is kept constant by moving, the distance between the capacitance sensor 15 and the semiconductor wafer 10 is also kept constant at the same time.

また、移動機構30をピエゾ素子によって構成しているので、応答性に優れており、測長センサ20の距離Lの測定結果に基づいて直ちにセンサヘッド25(静電容量センサ15)を移動させることが出来る。   Further, since the moving mechanism 30 is constituted by a piezo element, the responsiveness is excellent, and the sensor head 25 (capacitance sensor 15) is immediately moved based on the measurement result of the distance L of the length measuring sensor 20. I can do it.

本発明の検査装置は上記実施形態に示したものに限定されるものではない。例えば測長センサ20と半導体ウェハ10との間の距離Lを一定に維持するのに移動機構30のみを駆動させてセンサヘッド25を移動させた場合を示したが、これに限定されず、半導体ウェハ10が載置されている検査ステージ11を駆動装置13によって垂直方向に移動させるか、あるいは移動機構30でセンサヘッド25を移動させると共に駆動装置13によって検査ステージ11を垂直方向に移動させて、測長センサ20と半導体ウェハ10との間の距離Lを一定に維持するようにしてもよい。   The inspection apparatus of the present invention is not limited to the one shown in the above embodiment. For example, although the case where only the moving mechanism 30 is driven and the sensor head 25 is moved to maintain the distance L between the length measuring sensor 20 and the semiconductor wafer 10 constant is shown, the present invention is not limited to this. The inspection stage 11 on which the wafer 10 is mounted is moved in the vertical direction by the driving device 13, or the sensor head 25 is moved by the moving mechanism 30 and the inspection stage 11 is moved in the vertical direction by the driving device 13. The distance L between the length measuring sensor 20 and the semiconductor wafer 10 may be kept constant.

また、測長センサ20の測定結果に基づいて移動機構30により測長センサ20(静電容量センサ15)と半導体ウェハ10との間の距離Lを一定に維持するようにしたが、必ずしも移動機構30により距離Lを一定に維持する必要はなく、例えば測長センサ20の測定結果で静電容量センサ15の静電容量値を補正するようにしてもよい。この場合、移動機構30は必要がなく、装置の簡素化を図ることが可能である。   Further, the distance L between the length measurement sensor 20 (capacitance sensor 15) and the semiconductor wafer 10 is kept constant by the movement mechanism 30 based on the measurement result of the length measurement sensor 20, but the movement mechanism is not necessarily limited. It is not necessary to maintain the distance L constant by 30. For example, the capacitance value of the capacitance sensor 15 may be corrected by the measurement result of the length measurement sensor 20. In this case, the moving mechanism 30 is not necessary, and the apparatus can be simplified.

また、測長センサ20として、受光部22での反射光の受光位置に基づいて測長センサ20と半導体ウェハ10との間の距離Lを測定するタイプのものを使用した場合を示したが、これに限定されるものではなく、例えば半導体ウェハ10の適宜箇所に位置測定用マークを設け、このマークを撮影する撮影装置のマーク結像位置(焦点位置)から距離Lを測定するようにしてもよい。   Further, as the length measuring sensor 20, a case where a type measuring the distance L between the length measuring sensor 20 and the semiconductor wafer 10 based on the light receiving position of the reflected light at the light receiving unit 22 is shown. However, the present invention is not limited to this. For example, a position measurement mark may be provided at an appropriate location on the semiconductor wafer 10 and the distance L may be measured from the mark image formation position (focal position) of a photographing apparatus that photographs the mark. Good.

また、静電容量センサ15と測長センサ20を別体で構成してセンサヘッド25に取り付けた場合を示しが、静電容量センサ15と測長センサ20を一体に構成してもよい。   Moreover, although the case where the capacitance sensor 15 and the length measurement sensor 20 are configured separately and attached to the sensor head 25 is shown, the capacitance sensor 15 and the length measurement sensor 20 may be configured integrally.

また、走査機構35としてセンサヘッド25を半導体ウェハ10の径方向(一軸方向)に移動させるように構成した場合を示したが、これに限定されず、例えばセンサヘッド25を一軸方向とこれと交差(直交)する他の軸方向とに移動させるように構成して、センサヘッド25を半導体ウェハ10上で蛇行するように走査させてもよい。   Moreover, although the case where the sensor head 25 is configured to move in the radial direction (uniaxial direction) of the semiconductor wafer 10 as the scanning mechanism 35 has been shown, the present invention is not limited to this, for example, the sensor head 25 intersects with the uniaxial direction. The sensor head 25 may be scanned so as to meander on the semiconductor wafer 10 so as to move in a direction perpendicular to the other axis.

また、上記実施形態では、本発明の検査装置を半導体ウェハ10上に設けたレジスト膜12の膜厚の均一性を検査する半導体検査装置に適用した場合を示したが、これに限定されず、例えば半導体ウェハ10のレジスト膜12の外側の外周部でリンスされている部分である、EBR(Edge Bead Removal)の箇所や、半導体ウェハ10のアペックス(???)やベベル部分を検査する半導体検査装置に適用することも出来る。また、半導体ウェハ10上に形成された回路パターンの検査装置にも適用することも出来る。   Moreover, in the said embodiment, although the case where the inspection apparatus of this invention was applied to the semiconductor inspection apparatus which test | inspects the uniformity of the film thickness of the resist film 12 provided on the semiconductor wafer 10 was shown, it is not limited to this, For example, a semiconductor inspection that inspects an EBR (Edge Bead Removal) portion, an apex (???), or a bevel portion of the semiconductor wafer 10 that is a portion rinsed at the outer peripheral portion of the resist film 12 on the semiconductor wafer 10. It can also be applied to a device. The present invention can also be applied to an inspection apparatus for circuit patterns formed on the semiconductor wafer 10.

本発明の検査装置を半導体検査装置に適用した一実施形態を示す概略側面図である。It is a schematic side view which shows one Embodiment which applied the inspection apparatus of this invention to the semiconductor inspection apparatus. 図1の半導体検査装置に装備されたセンサヘッドの部分を拡大した概略側面図である。It is the schematic side view to which the part of the sensor head with which the semiconductor inspection apparatus of FIG. 1 was equipped was expanded. 図2のセンサヘッド中の測長センサ部分の拡大説明図である。FIG. 3 is an enlarged explanatory view of a length measurement sensor portion in the sensor head of FIG. 2. 図2のセンサヘッドを半導体ウェハ上で走査させる状態の説明図である。It is explanatory drawing of the state which scans the sensor head of FIG. 2 on a semiconductor wafer. 図1の半導体検査装置に装備された制御部の制御内容の一例を示すフローチャートである。It is a flowchart which shows an example of the control content of the control part with which the semiconductor inspection apparatus of FIG. 1 was equipped.

符号の説明Explanation of symbols

10 半導体ウェハ
11 検査ステージ
12 レジスト膜
13 駆動装置
15 静電容量センサ
16 対向電極
20 測長センサ
21 測定光源
22 受光部
25 センサヘッド
30 移動機構
35 走査機構
36 支持部
37 案内レール
38 駆動部
40 制御部
DESCRIPTION OF SYMBOLS 10 Semiconductor wafer 11 Inspection stage 12 Resist film 13 Drive apparatus 15 Capacitance sensor 16 Counter electrode 20 Length measuring sensor 21 Measurement light source 22 Light-receiving part 25 Sensor head 30 Moving mechanism 35 Scan mechanism 36 Support part 37 Guide rail 38 Drive part 40 Control Part

Claims (5)

被測定物の静電容量を測定する静電容量センサと、
前記被測定物の底面と前記静電容量センサとの間の距離を測定する測長センサと、
を具備してなることを特徴とする検査装置。
A capacitance sensor for measuring the capacitance of the object to be measured;
A length measuring sensor for measuring a distance between a bottom surface of the object to be measured and the capacitance sensor;
An inspection apparatus comprising:
請求項1に記載の検査装置において、
前記静電容量センサと前記被測定物の底面との間の距離が一定になるように、前記測長センサの測定結果に基づいて、前記静電容量センサ及び/又は前記被測定物を移動させる移動機構を備えることを特徴とする検査装置。
The inspection apparatus according to claim 1,
The capacitance sensor and / or the object to be measured are moved based on the measurement result of the length measuring sensor so that the distance between the capacitance sensor and the bottom surface of the object to be measured is constant. An inspection apparatus comprising a moving mechanism.
請求項1又は2に記載の検査装置において、
前記静電容量センサを前記被測定物上で走査させる走査機構を備えることを特徴とする検査装置。
The inspection apparatus according to claim 1 or 2,
An inspection apparatus comprising: a scanning mechanism that scans the capacitance sensor on the object to be measured.
請求項2に記載の検査装置において、
前記移動機構は、前記測長センサからの測定結果に基づいて前記静電容量センサを移動させる、圧電素子を備えてなることを特徴とする検査装置。
The inspection apparatus according to claim 2,
2. The inspection apparatus according to claim 1, wherein the moving mechanism includes a piezoelectric element that moves the capacitance sensor based on a measurement result from the length measurement sensor.
半導体ウェハの表面を検査する装置であって、
請求項1乃至4の何れか一項に記載の検査装置を備えてなることを特徴とする半導体検査装置。
An apparatus for inspecting the surface of a semiconductor wafer,
A semiconductor inspection apparatus comprising the inspection apparatus according to claim 1.
JP2007229616A 2007-09-05 2007-09-05 Inspection device Pending JP2009063334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007229616A JP2009063334A (en) 2007-09-05 2007-09-05 Inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007229616A JP2009063334A (en) 2007-09-05 2007-09-05 Inspection device

Publications (1)

Publication Number Publication Date
JP2009063334A true JP2009063334A (en) 2009-03-26

Family

ID=40558046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007229616A Pending JP2009063334A (en) 2007-09-05 2007-09-05 Inspection device

Country Status (1)

Country Link
JP (1) JP2009063334A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101272860B1 (en) * 2011-04-26 2013-06-11 (주)기흥기계 Rotation Precision of Table for machine tool measurement device
KR20130114454A (en) * 2012-04-09 2013-10-17 삼성디스플레이 주식회사 Method of measuring a silicon thin film, method of detecting defects in a silicon thin film, and apparatus for detecting defects in a silicon thin film
KR101729271B1 (en) 2015-09-25 2017-04-24 (주)기흥기계 Jig base of the rotary table
JP2020079796A (en) * 2015-01-15 2020-05-28 トランステック システムズ、 インコーポレイテッド System for measurement and monitoring of physical properties of material under test from vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101272860B1 (en) * 2011-04-26 2013-06-11 (주)기흥기계 Rotation Precision of Table for machine tool measurement device
KR20130114454A (en) * 2012-04-09 2013-10-17 삼성디스플레이 주식회사 Method of measuring a silicon thin film, method of detecting defects in a silicon thin film, and apparatus for detecting defects in a silicon thin film
KR101913311B1 (en) 2012-04-09 2019-01-15 삼성디스플레이 주식회사 Method of measuring a silicon thin film, method of detecting defects in a silicon thin film, and apparatus for detecting defects in a silicon thin film
JP2020079796A (en) * 2015-01-15 2020-05-28 トランステック システムズ、 インコーポレイテッド System for measurement and monitoring of physical properties of material under test from vehicle
KR101729271B1 (en) 2015-09-25 2017-04-24 (주)기흥기계 Jig base of the rotary table

Similar Documents

Publication Publication Date Title
US10359370B2 (en) Template substrate for use in adjusting focus offset for defect detection
JP5325807B2 (en) Foreign object detection device on flat glass surface
JP5078583B2 (en) Macro inspection device and macro inspection method
US9797846B2 (en) Inspection method and template
US7616299B2 (en) Surface inspection method and surface inspection apparatus
JP5826707B2 (en) Substrate inspection apparatus and substrate inspection method
JP2011022308A (en) Pellicle inspection device, exposure apparatus using the same, and method of manufacturing device
JP5322543B2 (en) Substrate inspection apparatus and substrate inspection method
JP2012078164A (en) Pattern inspection device
JP2009063334A (en) Inspection device
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
JP2014062940A (en) Checking device
JP5152567B2 (en) TFT array inspection equipment
US8547547B2 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
JP2013044578A (en) Substrate inspection method and device
JP5446316B2 (en) Optical sensor device
JP5145495B2 (en) Inspection device
JP4534877B2 (en) Optical sensor device
JP2012163370A (en) In-line substrate inspection method and device
JP2005274173A (en) Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device
JP5400548B2 (en) Resist film surface unevenness inspection apparatus, inspection method, and DTM production line
JP2007113941A (en) Device and method for inspecting defect
JP4708292B2 (en) Substrate inspection apparatus and substrate inspection method
JP5455957B2 (en) Semiconductor element failure analysis method and failure analysis apparatus
JP6330211B2 (en) Surface state inspection method for flat substrate and flat surface state inspection apparatus using the same