JP2009063220A - Temperature adjusting device for cooling water - Google Patents

Temperature adjusting device for cooling water Download PDF

Info

Publication number
JP2009063220A
JP2009063220A JP2007230999A JP2007230999A JP2009063220A JP 2009063220 A JP2009063220 A JP 2009063220A JP 2007230999 A JP2007230999 A JP 2007230999A JP 2007230999 A JP2007230999 A JP 2007230999A JP 2009063220 A JP2009063220 A JP 2009063220A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
compressor
cooling water
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007230999A
Other languages
Japanese (ja)
Inventor
Masuo Yoshioka
万寿男 吉岡
Takahisa Nakajima
孝久 中島
Koichi Ejiri
康一 江尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2007230999A priority Critical patent/JP2009063220A/en
Publication of JP2009063220A publication Critical patent/JP2009063220A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature adjusting device capable of easily precisely adjusting a temperature of cooling water by continuing an operation of a compressor even in a state that an inverter keeps a rotational frequency of the compressor at a prescribed rotational frequency. <P>SOLUTION: In this temperature adjusting device of cooling water comprising the compressor 10, a first heat exchanger 12 and a second heat exchanger 14 exchanging heat between a cold medium and the cooling water, a control portion 30 is disposed to control a first control valve 28a disposed in the first bypass pipe 26a and a second control valve 28b disposed in the second bypass pipe 26b, so that in a cooling cycle, the cold medium divided to a first bypass pipe 26a without cooled, of the cold medium compressed by the compressor 10 is mixed with the cooled cold medium to adjust a temperature of the cold medium supplied to the second heat exchanger 14, and in a heating cycle, a part of the cold medium compressed by the compressor 10 is divided to the second bypass pipe 26b and bypasses the second heat exchanger 14 to adjust the amount of cold medium supplied to the second heat exchanger 14. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は冷却水の温度調整装置に関し、更に詳細には産業機械等に用いられる冷却水の温度を所定温度に調整する冷却水の温度調整装置に関する。   The present invention relates to a cooling water temperature adjusting device, and more particularly to a cooling water temperature adjusting device that adjusts the temperature of cooling water used in an industrial machine or the like to a predetermined temperature.

現在、広く産業機械として用いられている大型化コンピュータのLSIを冷却する冷却水の温度調整装置として、下記特許文献1には、図7に示す温度調整装置が提案されている。
図7に示す温度調整装置は、空調機100で空調されている室102内に載置されているLSIの温度調整装置として用いられている。
かかる温度調整装置では、図7(a)に示す様に、LSIを冷却する冷却水を循環するポンプ103が設けられた冷却水流路104と、冷熱媒を圧縮する圧縮機106、冷熱媒と室内102の空気との熱交換を行う第1熱交換器108、膨張弁110及び四方弁112が設けられた冷熱媒流路114とを、第2熱交換器116を介して熱交換可能に配設してヒートポンプサイクルを形成している。
更に、圧縮機106には、圧縮機106の回転数を制御するインバータ118が設けられている。このインバータ118は、冷却水流路104の第2熱交換器116の出口側に設けられた温度センサ120で測定された冷却水温に基づいて圧縮機106の回転数を制御し、冷却水流路の第2熱交換器116の出口側の冷却水温を所定値に維持する。
特開昭63−176956号公報
As a temperature adjustment device for cooling water that cools LSIs of large computers that are widely used as industrial machines, a temperature adjustment device shown in FIG. 7 is proposed in Patent Document 1 below.
The temperature adjustment device shown in FIG. 7 is used as a temperature adjustment device for an LSI mounted in a room 102 that is air-conditioned by an air conditioner 100.
In such a temperature adjusting device, as shown in FIG. 7A, a cooling water flow path 104 provided with a pump 103 for circulating cooling water for cooling an LSI, a compressor 106 for compressing a cooling medium, a cooling medium and a room The first heat exchanger 108 that performs heat exchange with the air 102 and the cooling medium flow path 114 provided with the expansion valve 110 and the four-way valve 112 are arranged so as to be able to exchange heat via the second heat exchanger 116. To form a heat pump cycle.
Further, the compressor 106 is provided with an inverter 118 that controls the rotation speed of the compressor 106. The inverter 118 controls the rotational speed of the compressor 106 based on the cooling water temperature measured by the temperature sensor 120 provided on the outlet side of the second heat exchanger 116 in the cooling water flow path 104, and 2 Cooling water temperature on the outlet side of the heat exchanger 116 is maintained at a predetermined value.
Japanese Patent Laid-Open No. 63-176656

図7(a)に示す四方弁112は、第2熱交換器116において、冷却水を加熱する加熱サイクル回路側と冷却水を冷却する冷却サイクル回路側とに切り換えることができる。
図7(a)に示す四方弁112の位置では、冷却水を加熱する加熱サイクル回路側に切り替えられている。この加熱サイクル回路側では、圧縮機106で圧縮された冷熱媒を第2熱交換器116に供給して冷却水を加熱する。この様に、第2熱交換器116で冷却水を加熱して放熱した冷熱媒は、膨張弁110で断熱的に膨張されて冷却された後、第1熱交換器108で室内空気と熱交換し昇温してから圧縮機106に再供給される。
冷却水流路104の温度センサ120で測定された冷却水温が設定値よりも高温となった場合には、図7(b)に示す様に、四方弁112によって冷却水を冷却する冷却サイクル回路側に切り替えられる。
図7(b)に冷却水を冷却する冷却サイクル回路側では、圧縮機106で圧縮された冷熱媒を、第1熱交換器108で放熱して冷却した後、膨張弁110によって断熱的に膨張し更に冷却してから第2熱交換器116に供給して冷却水を冷却する。冷却水を冷却して昇温された冷熱媒は、再度圧縮機106で圧縮される。
In the second heat exchanger 116, the four-way valve 112 shown in FIG. 7A can be switched between a heating cycle circuit side for heating the cooling water and a cooling cycle circuit side for cooling the cooling water.
At the position of the four-way valve 112 shown in FIG. 7A, the position is switched to the heating cycle circuit side for heating the cooling water. On the heating cycle circuit side, the cooling medium compressed by the compressor 106 is supplied to the second heat exchanger 116 to heat the cooling water. In this way, the cooling medium that has dissipated heat by heating the cooling water in the second heat exchanger 116 is expanded and cooled in an adiabatic manner by the expansion valve 110, and then heat-exchanged with room air in the first heat exchanger 108. Then, after the temperature is raised, it is supplied again to the compressor 106.
When the cooling water temperature measured by the temperature sensor 120 in the cooling water flow path 104 becomes higher than the set value, as shown in FIG. 7B, the cooling cycle circuit side that cools the cooling water by the four-way valve 112 Can be switched to.
7B, on the cooling cycle circuit side for cooling the cooling water, the cooling medium compressed by the compressor 106 is radiated and cooled by the first heat exchanger 108, and then expanded adiabatically by the expansion valve 110. After further cooling, it is supplied to the second heat exchanger 116 to cool the cooling water. The cooling medium heated by cooling the cooling water is compressed again by the compressor 106.

図7に示す温度調整装置では、四方弁112によって切りかえられた、加熱サイクル回路側又は冷却サイクル回路側においても、冷却水流路104の第2熱交換器116の出口側に設けられた温度センサ120で測定された冷却水温に基づいて、インバータ118は圧縮機106の回転数を制御し、冷却水流路104の第2熱交換器116の出口側での冷却水温を所定値に維持できる。
ところで、インバータ118による圧縮機106の回転数の制御は、図8に示す様に、冷却水流路104の第2熱交換器116の出口側に設けられた温度センサ120で測定された冷却水温と設定温度との温度差が小となるほど、圧縮機106の回転数を低下するように制御する。
しかし、圧縮機106の回転数が所定回転数まで低下したとき、温度センサ120の測定温度と設定温度との温度差が更に小さくなっても、インバータ118は圧縮機106の回転数を所定回転数に維持する。圧縮機106の回転数を所定回転数よりも低下した場合には、圧縮機106が不安定化するおそれがあるからである。
従って、圧縮機106の回転数が所定回転数に維持された状態(図8に示す斜線部分)では、圧縮機106の回転数変更による冷却水の温度調整はできなくなり、冷却水の精密な温度調整はできない。
このため、図8に示す斜線部での冷却水の温度調整を図るべく、温度センサ120の測定温度と設定温度との温度差に基づいて圧縮機106をON−OFF制御することが考えられる。
しかしながら、圧縮機106を頻繁にON−OFFすることは、圧縮機106のメンテナンス上問題であり、系に与える変動も大きい。
In the temperature adjusting device shown in FIG. 7, the temperature sensor 120 provided on the outlet side of the second heat exchanger 116 in the cooling water flow path 104 also on the heating cycle circuit side or the cooling cycle circuit side switched by the four-way valve 112. The inverter 118 controls the rotation speed of the compressor 106 based on the cooling water temperature measured in step 1, and can maintain the cooling water temperature on the outlet side of the second heat exchanger 116 in the cooling water channel 104 at a predetermined value.
By the way, as shown in FIG. 8, the control of the rotation speed of the compressor 106 by the inverter 118 is performed using the cooling water temperature measured by the temperature sensor 120 provided on the outlet side of the second heat exchanger 116 in the cooling water flow path 104. Control is performed so that the rotational speed of the compressor 106 decreases as the temperature difference from the set temperature becomes smaller.
However, when the rotational speed of the compressor 106 is reduced to a predetermined rotational speed, the inverter 118 sets the rotational speed of the compressor 106 to the predetermined rotational speed even if the temperature difference between the temperature measured by the temperature sensor 120 and the set temperature is further reduced. To maintain. This is because when the rotational speed of the compressor 106 is decreased below a predetermined rotational speed, the compressor 106 may become unstable.
Therefore, in a state where the rotation speed of the compressor 106 is maintained at a predetermined rotation speed (shaded area shown in FIG. 8), the temperature of the cooling water cannot be adjusted by changing the rotation speed of the compressor 106, and the precise temperature of the cooling water It cannot be adjusted.
For this reason, in order to adjust the temperature of the cooling water at the shaded portion shown in FIG. 8, it is conceivable to control the compressor 106 on and off based on the temperature difference between the temperature measured by the temperature sensor 120 and the set temperature.
However, frequently turning on and off the compressor 106 is a problem in terms of maintenance of the compressor 106, and the fluctuation given to the system is large.

また、図9に示す様に、冷却水流路104に補助ヒータ200を設けることによって、冷却水の精密な温度調整を可能にできる。
つまり、冷却水の冷却サイクル回路側に切り替えられており、圧縮機106の回転数が所定回転数に維持された状態(図8に示す冷却側の斜線部)の場合、冷却水の温度を調整するには、所定回転数で回転する圧縮機106によって冷却水に加えられる過剰な冷熱を、補助ヒータ200の加熱によって除去し、冷却水を設定温度に近づけることができる。
他方、冷却水の加熱サイクル回路側に切り替えられており、圧縮機106の回転数が所定回転数に維持された状態(図8に示す冷却側の斜線部)の場合、冷却水を温度調整するには、圧縮機106を停止して、不足する熱量を補助ヒータ200によって補うことによって、冷却水を設定温度に近づけることができる。
しかしながら、図9に示す様に、補助ヒータ200を設けた温度調整装置でも、圧縮機106のON―OFFによって系が不安定となる懸念が依然として存在し、且つ冷却水を冷却しつつ加熱するため、省エネルギーの観点からも好ましくない。
そこで、本発明の課題は、圧縮機の回転数が所定回転数まで低下したとき、インバータが圧縮機の回転数を所定回転数に維持し、圧縮機の回転数の調整によって冷却水の精密温度制御が困難となる従来の冷却水の温度調整装置の課題を解決し、圧縮機の回転数が所定回転数まで低下し、インバータが圧縮機の回転数を所定回転数に維持した状態でも、圧縮機の運転を続行して、冷却水の精密な温度調整を容易に行うことができ、且つ省エネルギーを図ることのできる温度調整装置を提供することを目的とする。
Further, as shown in FIG. 9, by providing the auxiliary heater 200 in the cooling water flow path 104, it is possible to precisely adjust the temperature of the cooling water.
That is, when the cooling water is switched to the cooling cycle circuit side and the rotation speed of the compressor 106 is maintained at a predetermined rotation speed (the hatched portion on the cooling side shown in FIG. 8), the temperature of the cooling water is adjusted. For this purpose, excess cooling heat added to the cooling water by the compressor 106 rotating at a predetermined number of revolutions can be removed by heating the auxiliary heater 200, and the cooling water can be brought close to the set temperature.
On the other hand, when the cooling water is switched to the heating cycle circuit side and the rotation speed of the compressor 106 is maintained at a predetermined rotation speed (the hatched portion on the cooling side shown in FIG. 8), the temperature of the cooling water is adjusted. In this case, the cooling water can be brought close to the set temperature by stopping the compressor 106 and supplementing the insufficient amount of heat with the auxiliary heater 200.
However, as shown in FIG. 9, there is still a concern that the system may become unstable due to ON / OFF of the compressor 106 even in the temperature adjusting device provided with the auxiliary heater 200, and the cooling water is heated while being cooled. From the viewpoint of energy saving, it is not preferable.
Therefore, the problem of the present invention is that when the rotation speed of the compressor is reduced to a predetermined rotation speed, the inverter maintains the rotation speed of the compressor at the predetermined rotation speed, and the precise temperature of the cooling water is adjusted by adjusting the rotation speed of the compressor. Solves the problem of the conventional cooling water temperature control device, which is difficult to control, and reduces the compressor speed even when the compressor speed is reduced to the specified speed and the inverter maintains the compressor speed at the specified speed. It is an object of the present invention to provide a temperature adjusting device that can easily perform precise temperature adjustment of cooling water by continuing the operation of the machine and can save energy.

本発明者等は、前記課題を解決すべく検討した結果、図7(a)に示す冷却水の加熱サイクル回路側であって、インバータが圧縮機の回転数を所定回転数に維持している場合(図8に示す加熱側の斜線部に位置している場合)には、圧縮機106で圧縮された冷熱媒の一部を、第2熱交換器116をバイパスすることによって、第2熱交換器116に供給される冷熱媒の供給量を調整できることを知った。
更に、図7(b)に示す冷却水の冷却サイクル回路側であって、インバータが圧縮機の回転数を所定回転数に維持している場合(図8に示す冷却側の斜線部に位置している場合)には、圧縮機106で圧縮された冷熱媒の一部を、第1熱交換器108と膨張弁110とをバイパスし、第1熱交換器108及び膨張弁110を通過して冷却された冷熱媒と混合することによって、第2熱交換器116に供給する冷熱媒の温度を調整できることを知り、本発明に到達した。
As a result of studying to solve the above-mentioned problems, the present inventors are on the side of the cooling water heating cycle circuit shown in FIG. 7A, and the inverter maintains the rotation speed of the compressor at a predetermined rotation speed. In the case (when located in the shaded portion on the heating side shown in FIG. 8), the second heat exchanger 116 bypasses a part of the cooling medium compressed by the compressor 106 to generate the second heat. It has been found that the supply amount of the cooling medium supplied to the exchanger 116 can be adjusted.
Further, in the cooling cycle circuit side of the cooling water shown in FIG. 7B, when the inverter maintains the rotation speed of the compressor at a predetermined rotation speed (located in the hatched portion on the cooling side shown in FIG. 8). A portion of the cooling medium compressed by the compressor 106 bypasses the first heat exchanger 108 and the expansion valve 110 and passes through the first heat exchanger 108 and the expansion valve 110. Knowing that the temperature of the cooling medium supplied to the second heat exchanger 116 can be adjusted by mixing with the cooled cooling medium, the present invention has been achieved.

すなわち、本発明は、冷熱媒を圧縮する圧縮機と、前記冷熱媒を加熱又は冷却する第1熱交換器と、前記冷熱媒と冷却水との熱交換を行う第2熱交換器と、前記冷熱媒を断熱的に膨張する膨張弁と、前記冷却水の温度と設定温度との温度差に基づいて前記圧縮機の回転数を制御し、前記回転数が所定回転数まで低下したとき、前記圧縮機の回転数を前記所定回転数に維持するインバータとを具備し、前記圧縮機で圧縮して第1熱交換器で冷却した冷熱媒を、前記膨張弁で断熱的に膨張し冷却してから第2熱交換器に供給する冷却水の冷却サイクル回路と、前記圧縮機で圧縮して供給した第2熱交換器で冷却水を加熱し放熱した冷熱媒を、前記膨張弁で断熱的に膨張し冷却してから第1熱交換器に供給して昇温する冷却水の加熱サイクル回路とを切り替える四方弁が設けられた冷却水の温度調整装置であって、前記第1熱交換器及び膨張弁をバイパスする第1バイパス配管に配設された第1制御弁と、前記第2熱交換器をバイパスする第2バイパス配管に配設された第2制御弁とが設けられ、前記四方弁が冷却サイクル回路側に切り替えられ、前記圧縮機の回転数が所定回転数に到達している場合に、前記冷却水を温度調整する際に、前記圧縮機で圧縮された冷熱媒のうち、前記第1バイパス配管に分流した冷熱媒を、前記第1熱交換器及び膨張弁を通過して冷却された他の冷熱媒と混合して、前記第2熱交換器に供給する冷熱媒の温度を調整し、且つ前記四方弁が加熱サイクル回路側に切り替えられ、前記圧縮機の回転数が所定回転数に到達している場合に、前記冷却水を温度調整する際に、前記圧縮機で圧縮された冷熱媒の一部を前記第2バイパス配管に分流して、前記第2熱交換器に供給する冷熱媒量を調整するように、前記第1制御弁及び第2制御弁の開度を冷却水の温度と設定温度との温度差とに基づいて制御する制御部が設けられていることを特徴とする冷却水の温度調整装置にある。
かかる本発明において、第2バイパス配管を、第2熱交換器及び膨張弁をバイパスするバイパス配管とすることによって、温度調整装置の運転を安定化できる。
That is, the present invention includes a compressor that compresses a cooling medium, a first heat exchanger that heats or cools the cooling medium, a second heat exchanger that performs heat exchange between the cooling medium and cooling water, An expansion valve that adiabatically expands the cooling medium, and the rotational speed of the compressor is controlled based on a temperature difference between the temperature of the cooling water and a set temperature, and when the rotational speed is reduced to a predetermined rotational speed, An inverter that maintains the rotational speed of the compressor at the predetermined rotational speed, and a cooling medium that has been compressed by the compressor and cooled by the first heat exchanger is adiabatically expanded and cooled by the expansion valve. A cooling cycle circuit for cooling water supplied to the second heat exchanger, and a cooling medium that heats and dissipates the cooling water by the second heat exchanger that is compressed and supplied by the compressor. A cooling water heating cycle circuit that expands and cools and then supplies the temperature to the first heat exchanger to raise the temperature; A cooling water temperature adjusting device provided with a switching four-way valve, the first control valve disposed in a first bypass pipe bypassing the first heat exchanger and the expansion valve, and the second heat exchanger And a second control valve disposed in a second bypass pipe that bypasses the four-way valve, the four-way valve is switched to the cooling cycle circuit side, and the rotational speed of the compressor has reached a predetermined rotational speed. When adjusting the temperature of the cooling water, the cooling medium compressed by the compressor is cooled by passing through the first heat exchanger and the expansion valve. The temperature of the cooling medium supplied to the second heat exchanger is adjusted by mixing with another cooling medium, the four-way valve is switched to the heating cycle circuit side, and the rotational speed of the compressor is a predetermined rotational speed. The temperature of the cooling water is adjusted when the temperature reaches The first control valve so that a part of the cooling medium compressed by the compressor is diverted to the second bypass pipe and the amount of the cooling medium supplied to the second heat exchanger is adjusted. And the control part which controls the opening degree of a 2nd control valve based on the temperature difference of the temperature of cooling water and preset temperature is provided in the temperature control apparatus of the cooling water characterized by the above-mentioned.
In the present invention, the operation of the temperature adjustment device can be stabilized by using the second bypass pipe as a bypass pipe that bypasses the second heat exchanger and the expansion valve.

また、本発明は、冷熱媒を圧縮する圧縮機と、前記冷熱媒を加熱又は冷却する第1熱交換器と、前記冷熱媒と冷却水との熱交換を行う第2熱交換器と、前記冷熱媒を断熱的に膨張する膨張弁と、前記冷却水の温度と設定温度との温度差に基づいて前記圧縮機の回転数を制御し、前記回転数が所定回転数まで低下したとき、前記圧縮機の回転数を前記所定回転数に維持するインバータとを具備し、前記圧縮機で圧縮して第1熱交換器で冷却した冷熱媒を、前記膨張弁で断熱的に膨張し冷却してから第2熱交換器に供給する冷却水の冷却サイクル回路と、前記圧縮機で圧縮して供給した第2熱交換器で冷却水を加熱し放熱した冷熱媒を、前記膨張弁で断熱的に膨張し冷却してから第1熱交換器に供給して昇温する冷却水の加熱サイクル回路とを切り替える四方弁が設けられた冷却水の温度調整装置であって、前記第1熱交換器及び膨張弁をバイパスする第1バイパス配管に第1制御弁が配設されており、前記四方弁が冷却サイクル回路側に切り替えられ、前記圧縮機の回転数が所定回転数に到達した場合に、前記冷却水を温度調整する際に、前記圧縮機で圧縮された冷熱媒のうち、前記第1バイパス配管に分流した冷熱媒を、前記第1熱交換器及び膨張弁を通過して冷却された他の冷熱媒と混合して、前記第2熱交換器に供給する冷熱媒の温度を調整するように前記第1制御弁を制御し、且つ前記四方弁が加熱サイクル回路側に切り替えられ、前記圧縮機の回転数が所定回転数に到達した場合に、前記冷却水を温度調整する際に、前記四方弁を冷却サイクル回路側に切り替えるように、前記四方弁の加熱サイクル回路側から冷却サイクル側への切り替えを前記圧縮機の回転数に基づいて制御する制御部が設けられていることを特徴とする冷却水の温度調整装置でもある。   The present invention also includes a compressor that compresses the cooling medium, a first heat exchanger that heats or cools the cooling medium, a second heat exchanger that performs heat exchange between the cooling medium and cooling water, An expansion valve that adiabatically expands the cooling medium, and the rotational speed of the compressor is controlled based on a temperature difference between the temperature of the cooling water and a set temperature, and when the rotational speed is reduced to a predetermined rotational speed, An inverter that maintains the rotational speed of the compressor at the predetermined rotational speed, and a cooling medium that has been compressed by the compressor and cooled by the first heat exchanger is adiabatically expanded and cooled by the expansion valve. A cooling cycle circuit for cooling water supplied to the second heat exchanger, and a cooling medium that heats and dissipates the cooling water by the second heat exchanger that is compressed and supplied by the compressor. Turn off the cooling water heating cycle circuit that expands and cools, then supplies to the first heat exchanger and heats up A cooling water temperature adjusting device provided with a four-way valve to be replaced, wherein a first control valve is disposed in a first bypass pipe that bypasses the first heat exchanger and the expansion valve, and the four-way valve is cooled. When the temperature of the cooling water is adjusted when the rotation speed of the compressor reaches a predetermined rotation speed when switched to the cycle circuit side, the first bypass pipe among the cooling medium compressed by the compressor So that the temperature of the cooling medium supplied to the second heat exchanger is adjusted by mixing the cooling medium divided into the first heat exchanger and the other cooling medium cooled by passing through the expansion valve. When controlling the temperature of the cooling water when the first control valve is controlled and the four-way valve is switched to the heating cycle circuit side and the rotation speed of the compressor reaches a predetermined rotation speed, To switch the valve to the cooling cycle circuit side, It is also the temperature adjustment device of the cooling water, characterized in that the control unit for controlling the heating cycle circuit side of the serial four-way valve on the basis of the switching to the cooling cycle side to the rotational speed of the compressor is provided.

これらの本発明において、冷却サイクル回路と加熱サイクル回路との各々に膨張弁を設けることによって、膨張弁への冷熱媒の流入・流出の方向が一定しており、膨張弁の構造等を簡易化できる。
また、第1熱交換器としては、冷熱媒が通過する配管に向かって外部空気を吹き付けるファンが設けられている熱交換器を用いることによって、外部空気の温度を吸収するヒートポンプとしても用いることができる。
更に、第1熱交換器には、四方弁が加熱サイクル回路側又は冷却サイクル回路側に切り替えられても、同一方向から冷熱媒が供給されるように配管及び制御弁を配設することによって、第1熱交換器への冷熱媒の供給方向が一定となり、第1熱交換器の構造等を簡易化できる。
In these inventions, by providing an expansion valve in each of the cooling cycle circuit and the heating cycle circuit, the direction of inflow and outflow of the cooling medium to the expansion valve is constant, and the structure of the expansion valve is simplified. it can.
Moreover, as a 1st heat exchanger, it can also be used as a heat pump which absorbs the temperature of external air by using the heat exchanger provided with the fan which blows external air toward the piping through which a cooling medium passes. it can.
Furthermore, in the first heat exchanger, even if the four-way valve is switched to the heating cycle circuit side or the cooling cycle circuit side, by arranging the piping and the control valve so that the cooling medium is supplied from the same direction, The supply direction of the cooling medium to the first heat exchanger is constant, and the structure of the first heat exchanger can be simplified.

本発明に係る冷却水の温度調整装置(第1の温度調整装置)では、四方弁が冷却水の加熱サイクル回路側に切り替えられているとき、インバータが圧縮機の回転数を所定回転数に維持している場合(図8示す加熱側の斜線部に位置している場合)に、冷却水を温度調整する際には、圧縮機で圧縮された冷熱媒のうち、第2バイパス配管を経由して第2熱交換器をバイパスする冷熱媒量を第2制御弁で調整することによって、第2熱交換器に供給する冷熱媒の供給量を調整でき、第2熱交換器を通過する冷却水の温度を調整できる。
一方、かかる第1の温度調整装置では、四方弁が冷却水の冷却サイクル回路側に切り替えられているとき、インバータが圧縮機の回転数を所定回転数に維持している場合(図8に示す冷却側の斜線部に位置している場合)に、冷却水を温度調整する際には、圧縮機で圧縮された冷熱媒のうち、第1熱交換器と膨張弁とをバイパスする第1バイパス配管に分流した冷熱媒を、第1熱交換器及び膨張弁を通過して冷却された冷熱媒と混合することによって、第2熱交換器に供給する冷熱媒の温度を調整できる。
また、第1制御弁が設けられた第1バイパス配管のみが設けられている本発明に係る温度調整装置(第2の温度調整装置)では、四方弁が冷却水の加熱サイクル回路側に切り替えられており、インバータが圧縮機の回転数を所定回転数に維持している場合(図8示す加熱側の斜線部に位置している場合)に、冷却水を温度調整する際には、四方弁を冷却サイクル回路側に切り替え、圧縮機で圧縮された冷熱媒のうち、第1バイパス配管に分流した冷熱媒を、第1熱交換器及び膨張弁を通過して冷却された冷熱媒と混合して、第2熱交換器に供給する冷熱媒の温度を調整する。
かかる第2の温度調整装置において、四方弁が冷却水の冷却サイクル回路側に切り替えられており、インバータが圧縮機の回転数を所定回転数に維持している場合(図8示す冷却側の斜線部に位置している場合)に、冷却水を温度調整する際には、第1の温度調整装置と同様に、圧縮機で圧縮された冷熱媒のうち、第1熱交換器と膨張弁とをバイパスする第1バイパス配管に分流した冷熱媒を、第1熱交換器及び膨張弁を通過して冷却された冷熱媒と混合することによって、第2熱交換器に供給する冷熱媒の温度を調整できる。
その結果、本発明に係る冷却水の温度調整装置によれば、図8示す斜線部の領域に位置している場合でも、圧縮機を所定回転数に維持して連続運転しつつ、冷却水流路に補助ヒータ等を設置することなく冷却水の精密温度調整を可能にでき、省エネルギーも図ることができる。
In the cooling water temperature adjusting device (first temperature adjusting device) according to the present invention, when the four-way valve is switched to the cooling water heating cycle circuit side, the inverter maintains the rotation speed of the compressor at a predetermined rotation speed. When the temperature of the cooling water is adjusted in the case where the cooling water is temperature-adjusted (when located in the shaded portion on the heating side shown in FIG. 8), the cooling medium compressed by the compressor passes through the second bypass pipe. By adjusting the amount of the cooling medium that bypasses the second heat exchanger with the second control valve, the supply amount of the cooling medium supplied to the second heat exchanger can be adjusted, and the cooling water that passes through the second heat exchanger Can adjust the temperature.
On the other hand, in the first temperature adjusting device, when the four-way valve is switched to the cooling water cooling cycle circuit side, the inverter maintains the rotational speed of the compressor at a predetermined rotational speed (shown in FIG. 8). The first bypass that bypasses the first heat exchanger and the expansion valve in the cooling medium compressed by the compressor when the temperature of the cooling water is adjusted when the cooling water is temperature-adjusted) The temperature of the cooling medium supplied to the second heat exchanger can be adjusted by mixing the cooling medium divided into the pipe with the cooling medium cooled by passing through the first heat exchanger and the expansion valve.
Further, in the temperature adjustment device (second temperature adjustment device) according to the present invention in which only the first bypass pipe provided with the first control valve is provided, the four-way valve is switched to the cooling water heating cycle circuit side. When the inverter maintains the compressor speed at a predetermined speed (when it is located in the shaded area on the heating side shown in FIG. 8), Of the cooling medium compressed by the compressor and mixed with the cooling medium cooled by passing through the first heat exchanger and the expansion valve. Then, the temperature of the cooling medium supplied to the second heat exchanger is adjusted.
In such a second temperature control device, when the four-way valve is switched to the cooling water cooling cycle circuit side and the inverter maintains the rotational speed of the compressor at a predetermined rotational speed (the diagonal line on the cooling side shown in FIG. 8). When the temperature of the cooling water is adjusted in the case of the first heat exchanger and the expansion valve among the cooling medium compressed by the compressor, as in the case of the first temperature adjustment device. The temperature of the cooling medium supplied to the second heat exchanger is adjusted by mixing the cooling medium divided into the first bypass pipe that bypasses the cooling medium with the cooling medium that has passed through the first heat exchanger and the expansion valve and is cooled. Can be adjusted.
As a result, according to the cooling water temperature adjusting device according to the present invention, even when the cooling water temperature adjusting device is located in the shaded area shown in FIG. It is possible to precisely adjust the cooling water temperature without installing an auxiliary heater or the like, and to save energy.

本発明に係る冷却水の温度調整装置(第1の温度調整装置)の概要を図1に示す。図1に示す冷却水の温度調整装置では、四方弁24によって冷却サイクル回路側に切り替えられている。この冷却サイクル回路には、インバータ18によって回転数が制御されている圧縮機10、第1熱交換器12、第2熱交換器14及び膨張弁16a,16bが設けられている。
かかる第2熱交換器14には、冷却水と加熱又は冷却された冷熱媒とが供給され、冷却水が所定温度に調整されるように、冷熱媒と冷却水との熱交換が行われる。ユーザから戻って貯留槽20に貯留された冷却水は、送液ポンプ22によって第2熱交換器14に供給され、所定温度に調整されてユーザに供給される。
また、第1熱交換器12は、冷熱媒が通過する配管に向かって外部空気を吹き付けるファン12aが設けられている熱交換器が用いられている。
かかる図1に示す第1の温度調整装置には、圧縮機10で圧縮して第1熱交換器12で冷却した冷熱媒を、膨張弁16aで断熱的に膨張し冷却してから第2熱交換器14に供給する冷却水の冷却サイクル回路と、圧縮機10で圧縮し第2熱交換器14に供給して冷却水を加熱し放熱した冷熱媒を、膨張弁16bで断熱的に膨張し冷却してから第1熱交換器12に供給して昇温する冷却水の加熱サイクル回路とを切り替える四方弁24が設けられている。この膨張弁16a,16bの各々の下流側には、逆止弁17a,17bが設けられており、断熱膨張して冷却された冷熱媒が逆流することを防止している。
FIG. 1 shows an outline of a cooling water temperature adjusting device (first temperature adjusting device) according to the present invention. In the cooling water temperature adjusting device shown in FIG. 1, the four-way valve 24 switches to the cooling cycle circuit side. The cooling cycle circuit is provided with a compressor 10 whose rotation speed is controlled by an inverter 18, a first heat exchanger 12, a second heat exchanger 14, and expansion valves 16a and 16b.
The second heat exchanger 14 is supplied with cooling water and a heated or cooled cooling medium, and heat exchange between the cooling medium and the cooling water is performed so that the cooling water is adjusted to a predetermined temperature. The cooling water returned from the user and stored in the storage tank 20 is supplied to the second heat exchanger 14 by the liquid feed pump 22, adjusted to a predetermined temperature, and supplied to the user.
The first heat exchanger 12 is a heat exchanger provided with a fan 12a that blows external air toward a pipe through which a cooling medium passes.
In the first temperature adjusting device shown in FIG. 1, the cooling medium compressed by the compressor 10 and cooled by the first heat exchanger 12 is adiabatically expanded by the expansion valve 16a and cooled, and then the second heat The cooling cycle circuit of the cooling water supplied to the exchanger 14 and the cooling medium that is compressed by the compressor 10 and supplied to the second heat exchanger 14 to heat the cooling water and dissipate the heat are expanded adiabatically by the expansion valve 16b. A four-way valve 24 that switches between a cooling water heating cycle circuit that cools and then supplies the first heat exchanger 12 and raises the temperature is provided. On the downstream side of each of the expansion valves 16a and 16b, check valves 17a and 17b are provided to prevent the cooling medium that has been adiabatically expanded and cooled from flowing backward.

更に、図1に示す冷却水の温度調整装置には、圧縮機10からの冷熱媒の一部を第1熱交換器12、膨張弁16a及び逆止弁17aをバイパスする第1バイパス配管26aに配設された第1制御弁28aと、第2熱交換器14、膨張弁16b及び逆止弁17bをバイパスする第2バイパス配管26bに配設された第2制御弁28bとが設けられている。
図1に示す冷却水の温度調整装置に設けられた膨張弁16a,16b、インバータ18、四方弁24、第1制御弁28a及び第2制御弁28bは、制御部30によって制御されている。この制御部30には、第2熱交換器14で温度調整された冷却水が通水される配管に設けられた温度センサ34で測定された冷却水の温度データが送信される。
尚、圧縮機10には、アキュームレータ32に貯留された冷熱媒が供給される。
Further, in the cooling water temperature adjusting apparatus shown in FIG. 1, a part of the cooling medium from the compressor 10 is transferred to the first bypass pipe 26a that bypasses the first heat exchanger 12, the expansion valve 16a and the check valve 17a. A first control valve 28a provided, and a second control valve 28b provided in a second bypass pipe 26b that bypasses the second heat exchanger 14, the expansion valve 16b, and the check valve 17b are provided. .
The expansion valves 16 a and 16 b, the inverter 18, the four-way valve 24, the first control valve 28 a and the second control valve 28 b provided in the cooling water temperature adjusting device shown in FIG. 1 are controlled by the control unit 30. Cooling water temperature data measured by a temperature sensor 34 provided in a pipe through which the cooling water whose temperature is adjusted by the second heat exchanger 14 is passed is transmitted to the control unit 30.
The compressor 10 is supplied with a cooling medium stored in the accumulator 32.

図1に示す冷却水の温度調整装置では、ユーザの産業機械等の加熱負荷が大きく冷却水を冷却すべく、四方弁24によって冷却サイクル回路側に切り替えられている。この冷却サイクル回路では、圧縮機10で圧縮された冷熱媒は、四方弁24を通過して第1熱交換器12によって冷却された後、膨張弁16aによって断熱的に膨張されて更に冷却され、第2熱交換器14に供給される。第2熱交換器14では、冷却水を冷却して吸熱した冷熱媒は、四方弁24を通過してアキュームレータ32に一旦貯留されて圧縮機10に供給される。
図1に示す様に、冷却サイクル回路側に切り替えられた温度調整装置では、温度センサ34からの冷却水の温度データと設定温度との温度差に基づいて制御部30は、インバータ18を介して圧縮機10の回転数を制御する。このため、例えば、冷却水の温度データと設定温度との温度差が大きい程(ユーザからの熱負荷が大きい程)、圧縮機10の回転数を増加する。他方、冷却水の温度データと設定温度との温度差が小さい程(ユーザからの熱負荷が小さい程)、圧縮機10の回転数を減少する。
しかし、圧縮機10の回転数が所定回転数まで低下すると、図8に示す様に、インバータ18は圧縮機10の回転数を所定回転数に維持するように圧縮機10を制御する。この様に、圧縮機10の回転数が所定回転数に維持されている状態で、冷却水を温度調整する場合(図8に示す冷却側の斜線部に位置している場合)、圧縮機10の回転数は必要回転数よりも過大となり、第2熱交換器14で冷却水が過剰に冷却されることになる。
In the cooling water temperature adjusting device shown in FIG. 1, the heating load of the user's industrial machine or the like is large, and the cooling water is switched to the cooling cycle circuit side by the four-way valve 24 to cool the cooling water. In this cooling cycle circuit, the cooling medium compressed by the compressor 10 passes through the four-way valve 24 and is cooled by the first heat exchanger 12, and then is adiabatically expanded by the expansion valve 16a and further cooled. It is supplied to the second heat exchanger 14. In the second heat exchanger 14, the cooling medium that has absorbed the heat by cooling the cooling water passes through the four-way valve 24, is temporarily stored in the accumulator 32, and is supplied to the compressor 10.
As shown in FIG. 1, in the temperature adjustment device switched to the cooling cycle circuit side, the control unit 30 is connected via the inverter 18 based on the temperature difference between the temperature data of the cooling water from the temperature sensor 34 and the set temperature. The rotation speed of the compressor 10 is controlled. For this reason, for example, the rotation speed of the compressor 10 is increased as the temperature difference between the temperature data of the cooling water and the set temperature is larger (as the heat load from the user is larger). On the other hand, the smaller the temperature difference between the temperature data of the cooling water and the set temperature (the smaller the heat load from the user), the lower the rotational speed of the compressor 10.
However, when the rotational speed of the compressor 10 decreases to a predetermined rotational speed, the inverter 18 controls the compressor 10 to maintain the rotational speed of the compressor 10 at the predetermined rotational speed, as shown in FIG. As described above, when the temperature of the cooling water is adjusted in a state where the rotation speed of the compressor 10 is maintained at the predetermined rotation speed (when the cooling water is located in the hatched portion on the cooling side shown in FIG. 8), the compressor 10 The number of rotations becomes higher than the necessary number of rotations, and the cooling water is excessively cooled by the second heat exchanger 14.

この場合、制御部30は、第1バイパス配管26aの第1制御弁28aを開くと共に開度を調整し、圧縮機10で圧縮された冷熱媒のうち、第1バイパス配管26aに分流した冷熱媒を、第1熱交換器12及び膨張弁16aを通過して冷却された他の冷熱媒と混合し、第2熱交換器14に供給する冷熱媒の温度を調整する。このため、冷却水は第2熱交換器14で過剰に冷却されることなく、所定の温度に調整される。
一方、ユーザとしての産業機械等を冬季に起動した際に、産業機械等を冷却する冷却水が低温すぎて加熱することが必要となる場合がある。この場合、制御部30からの切替信号によって四方弁24は、図2に示す様に、加熱サイクル回路側に切り替えられる。この加熱サイクル回路では、圧縮機10で圧縮された冷熱媒は、第2熱交換器14に供給されて冷却水を加熱して放熱した後、膨張弁16bによって断熱的に膨張されて冷却される。冷却された冷熱媒は、第1熱交換器12に供給されて、ファン12aによって吹き付けられる室内空気流から吸熱して昇温された後、アキュームレータ32に一旦貯留され、圧縮機10に再供給される。
In this case, the control unit 30 opens the first control valve 28a of the first bypass pipe 26a, adjusts the opening degree, and among the cooling medium compressed by the compressor 10, the cooling medium that is divided into the first bypass pipe 26a. Is mixed with another cooling medium cooled by passing through the first heat exchanger 12 and the expansion valve 16a, and the temperature of the cooling medium supplied to the second heat exchanger 14 is adjusted. For this reason, the cooling water is adjusted to a predetermined temperature without being excessively cooled by the second heat exchanger 14.
On the other hand, when an industrial machine or the like as a user is started in winter, the cooling water for cooling the industrial machine or the like may be too low to be heated. In this case, the four-way valve 24 is switched to the heating cycle circuit side by the switching signal from the control unit 30 as shown in FIG. In this heating cycle circuit, the cooling medium compressed by the compressor 10 is supplied to the second heat exchanger 14 to heat the cooling water to dissipate heat, and then is expanded adiabatically by the expansion valve 16b and cooled. . The cooled cooling medium is supplied to the first heat exchanger 12, and is heated and heated from the indoor air flow blown by the fan 12 a, and then temporarily stored in the accumulator 32 and re-supplied to the compressor 10. The

図2に示す様に、加熱サイクル回路側に切り替えられた温度調整装置では、温度センサ34からの冷却水の温度データと設定温度との温度差に基づいて制御部30は、インバータ18を介して圧縮機10の回転数を制御する。このため、例えば、冷却水の温度データと設定温度との温度差が大きい程(ユーザからの冷却水が低温である程)、圧縮機10の回転数を増加する。他方、冷却水の温度データと設定温度との温度差が小さい程(ユーザからの冷却水が昇温されている程)、圧縮機10の回転数を減少する。
しかし、圧縮機10の回転数が所定回転数まで低下すると、図8に示す様に、インバータ18は圧縮機10の回転数を所定回転数に維持するように圧縮機10を制御する。この様に、圧縮機10の回転数が所定回転数に維持されている状態で、冷却水を温度調整する場合(図8に示す加熱側の斜線部に位置している場合)、圧縮機10の回転数は必要回転数よりも過大となり、第2熱交換器14で冷却水が過剰に加熱されることになる。
この場合、制御部30は、第2バイパス配管26aの第2制御弁28bを開くと共に開度を調整し、圧縮機10で圧縮された冷熱媒の一部を第2バイパス配管26bに分流し、第2熱交換器14に供給する冷熱媒量を調整する。このため、冷却水は第2熱交換器14で過剰に加熱されることなく、所定の温度に調整される。
尚、第2バイパス配管26bを通過した冷熱媒は、第2熱交換器14を通過して凝縮され膨張弁16b及び逆止弁17bを通過して断熱膨張して冷却された冷熱媒と合流し、第1熱交換器12に供給されて、ファン12aによって吹き付けられる室内空気流から吸熱して昇温された後、アキュームレータ32に一旦貯留され、圧縮機10に再供給される。
As shown in FIG. 2, in the temperature adjustment device switched to the heating cycle circuit side, the control unit 30 is connected via the inverter 18 based on the temperature difference between the temperature data of the cooling water from the temperature sensor 34 and the set temperature. The rotation speed of the compressor 10 is controlled. For this reason, for example, the rotational speed of the compressor 10 is increased as the temperature difference between the temperature data of the cooling water and the set temperature is larger (the cooling water from the user is lower in temperature). On the other hand, the smaller the temperature difference between the temperature data of the cooling water and the set temperature (the higher the temperature of the cooling water from the user), the lower the rotational speed of the compressor 10.
However, when the rotational speed of the compressor 10 decreases to a predetermined rotational speed, the inverter 18 controls the compressor 10 to maintain the rotational speed of the compressor 10 at the predetermined rotational speed, as shown in FIG. As described above, when the temperature of the cooling water is adjusted in a state where the rotation speed of the compressor 10 is maintained at the predetermined rotation speed (when the cooling water is positioned in the shaded portion on the heating side shown in FIG. 8), the compressor 10 The number of rotations becomes higher than the necessary number of rotations, and the cooling water is excessively heated in the second heat exchanger 14.
In this case, the control unit 30 opens the second control valve 28b of the second bypass pipe 26a, adjusts the opening degree, and diverts a part of the cooling medium compressed by the compressor 10 to the second bypass pipe 26b. The amount of the cooling medium supplied to the second heat exchanger 14 is adjusted. For this reason, the cooling water is adjusted to a predetermined temperature without being excessively heated by the second heat exchanger 14.
The cooling medium that has passed through the second bypass pipe 26b is condensed after passing through the second heat exchanger 14 and is condensed through the expansion valve 16b and the check valve 17b to be adiabatically expanded and merged. Then, after being supplied to the first heat exchanger 12 and absorbing heat from the indoor air flow blown by the fan 12a, the temperature is raised and then temporarily stored in the accumulator 32 and re-supplied to the compressor 10.

この様に、図1及び図2に示す温度調整装置では、冷却サイクル回路側及び加熱サイクル側回路でも、圧縮機10の回転数が所定回転数まで低下し、所定回転数で維持する状態の領域内(図8に示す斜線の領域内)でも、圧縮機10を連続運転して冷却水の温度調整ができる。このため、圧縮機10のメンテナンスの観点からは勿論のこと、圧縮機10のON−OFFに伴う系の変動を解消できる。
しかも、図8に示す斜線の領域内での冷却水の温度調整に、予備加熱ヒータ等を用いることを要しないため、省エネルギーを図ることができる。
ところで、図1及び図2に示す温度調整装置では、冷却サイクル回路側と加熱サイクル回路側とでは、第1熱交換器12への冷熱媒の供給方向が反転する。このため、第1熱交換器12の構造が複雑化等する場合には、図3に示す様に、第1熱交換器12には、四方弁24によって加熱サイクル回路側と冷却サイクル回路側とが切り替えられても、同一方向から冷熱媒が供給されるように配管及び制御弁を配設することが好ましい。
As described above, in the temperature control apparatus shown in FIGS. 1 and 2, in the cooling cycle circuit side and the heating cycle side circuit, the region where the rotation speed of the compressor 10 decreases to the predetermined rotation speed and is maintained at the predetermined rotation speed. Even inside (within the shaded area shown in FIG. 8), the compressor 10 can be continuously operated to adjust the temperature of the cooling water. For this reason, the system fluctuation | variation accompanying ON-OFF of the compressor 10 can be eliminated from the viewpoint of the maintenance of the compressor 10 as well.
In addition, since it is not necessary to use a preheater or the like for adjusting the temperature of the cooling water in the shaded area shown in FIG. 8, energy saving can be achieved.
By the way, in the temperature control apparatus shown in FIG.1 and FIG.2, the supply direction of the cooling medium to the 1st heat exchanger 12 is reversed in the cooling cycle circuit side and the heating cycle circuit side. For this reason, when the structure of the first heat exchanger 12 is complicated, as shown in FIG. 3, the first heat exchanger 12 includes a four-way valve 24 and a heating cycle circuit side and a cooling cycle circuit side. It is preferable to arrange the piping and the control valve so that the cooling medium is supplied from the same direction even if the operation is switched.

図3に示す第1熱交換器12の一方側が冷熱媒の供給側となるように、第1熱交換器12の一方側には、四方弁24からの配管36と膨張弁16b及び逆止弁17bからの配管36とが繋ぎ込まれている。かかる配管36には、第1バイパス配管26aが繋ぎ込まれていると共に、制御弁42が設けられている。
また、第1熱交換器12の他方側が冷熱媒の出口側となるように、第1熱交換器12の他方側と膨張弁16a及び逆止弁17aとの間を接続する配管40が設けられている。
更に、配管40と配管36とを接続する配管44が設けられ、配管44の途中には制御弁46が設けられている。この配管44は、制御弁42と第1バイパス配管26aとの間に繋ぎ込まれている。
図3に示す様に、四方弁24によって加熱サイクル回路側に切り替えられている場合、制御弁42を閉じ且つ制御弁46を開くことによって、膨張弁16b及び逆止弁17bを通過した冷熱媒は、第1熱交換器12の一方側から供給され、その他方側から流出する。
他方、四方弁24によって冷却サイクル回路側に切り替えられている場合、制御弁42を開き且つ制御弁46を閉じることによって、四方弁24を通過した冷熱媒は、第1熱交換器12の一方側から供給され、その他方側から流出する。
この様に、図3に示す温度調整装置では、四方弁24によって冷却サイクル回路側又は加熱サイクル回路側に切り替えても、第1熱交換器12への冷熱媒の供給方向・流出方向を一定とすることができる。
The pipe 36 from the four-way valve 24, the expansion valve 16b, and the check valve are arranged on one side of the first heat exchanger 12 so that one side of the first heat exchanger 12 shown in FIG. The piping 36 from 17b is connected. The first bypass pipe 26a is connected to the pipe 36, and a control valve 42 is provided.
In addition, a pipe 40 is provided to connect the other side of the first heat exchanger 12 to the expansion valve 16a and the check valve 17a so that the other side of the first heat exchanger 12 becomes the outlet side of the cooling medium. ing.
Furthermore, a pipe 44 that connects the pipe 40 and the pipe 36 is provided, and a control valve 46 is provided in the middle of the pipe 44. The pipe 44 is connected between the control valve 42 and the first bypass pipe 26a.
As shown in FIG. 3, when the four-way valve 24 is switched to the heating cycle circuit side, the cooling medium that has passed through the expansion valve 16 b and the check valve 17 b is closed by closing the control valve 42 and opening the control valve 46. , Is supplied from one side of the first heat exchanger 12 and flows out from the other side.
On the other hand, when the four-way valve 24 is switched to the cooling cycle circuit side, the cooling medium that has passed through the four-way valve 24 is opened on one side of the first heat exchanger 12 by opening the control valve 42 and closing the control valve 46. From the other side.
As described above, in the temperature adjusting device shown in FIG. 3, even if the four-way valve 24 is switched to the cooling cycle circuit side or the heating cycle circuit side, the supply / outflow direction of the cooling medium to the first heat exchanger 12 is constant. can do.

以上、説明してきた図1〜図3に示す温度調整装置では、第1制御弁28aが配設された第1バイパス配管26aと第2制御弁28bが配設された第2バイパス配管26bとを設けていたが、図4及び図5に示す温度調整装置の様に、第1制御弁28aが配設された第1バイパス配管26aのみが設けられていてもよい。
図4及び図5に示す温度調整装置の構成は、図1〜図3に示す温度調整装置とは、その第2制御弁28bが配設された第2バイパス配管26bが設けられていない点で相違するのみであるため、図4及び図5に示す温度調整装置の構成部材と同一部材については、同一番号を付して詳細な説明は省略する。
更に、図4に示す温度調整装置では、四方弁24が冷却サイクル回路側に切り替えられており、その動作は図1に示す温度調整装置と同様に、温度センサ34からの冷却水の温度データと設定温度との温度差に基づいて制御部30は、インバータ18を介して圧縮機10の回転数を制御する。このため、例えば、冷却水の温度データと設定温度との温度差が大きい程(ユーザからの熱負荷が大きい程)、圧縮機10の回転数を増加する。他方、冷却水の温度データと設定温度との温度差が小さい程(ユーザからの熱負荷が小さい程)、圧縮機10の回転数を減少する。
一方、圧縮機10の回転数が所定回転数まで低下し、図8に示す様に、圧縮機10の回転数が所定回転数に維持されている状態で、冷却水を温度調整する場合(図8に示す冷却側の斜線部に位置している場合)、制御部30は、第1バイパス配管26aの第1制御弁28aを開くと共に開度を調整し、圧縮機10で圧縮された冷熱媒のうち、第1バイパス配管26aに分流した冷熱媒を、第1熱交換器12及び膨張弁16aを通過して冷却された他の冷熱媒と混合し、第2熱交換器14に供給する冷熱媒の温度を調整する。このため、冷却水は第2熱交換器14で過剰に冷却されることなく、所定の温度に調整される。
1 to 3 described above, the first bypass pipe 26a provided with the first control valve 28a and the second bypass pipe 26b provided with the second control valve 28b are provided. Although provided, only the first bypass pipe 26a provided with the first control valve 28a may be provided as in the temperature control device shown in FIGS.
The configuration of the temperature adjusting device shown in FIGS. 4 and 5 is different from the temperature adjusting device shown in FIGS. 1 to 3 in that the second bypass pipe 26b provided with the second control valve 28b is not provided. Since they are only different, the same members as those of the temperature adjusting device shown in FIGS. 4 and 5 are designated by the same reference numerals, and detailed description thereof is omitted.
Further, in the temperature adjusting device shown in FIG. 4, the four-way valve 24 is switched to the cooling cycle circuit side, and its operation is similar to that of the temperature adjusting device shown in FIG. Based on the temperature difference from the set temperature, the control unit 30 controls the rotational speed of the compressor 10 via the inverter 18. For this reason, for example, the rotation speed of the compressor 10 is increased as the temperature difference between the temperature data of the cooling water and the set temperature is larger (as the heat load from the user is larger). On the other hand, the smaller the temperature difference between the temperature data of the cooling water and the set temperature (the smaller the heat load from the user), the lower the rotational speed of the compressor 10.
On the other hand, when the rotational speed of the compressor 10 is reduced to a predetermined rotational speed and the temperature of the cooling water is adjusted in a state where the rotational speed of the compressor 10 is maintained at the predetermined rotational speed as shown in FIG. 8), the control unit 30 opens the first control valve 28a of the first bypass pipe 26a, adjusts the opening degree, and the cooling medium compressed by the compressor 10 Among them, the cooling medium that has been divided into the first bypass pipe 26a is mixed with the other cooling medium that has been cooled by passing through the first heat exchanger 12 and the expansion valve 16a, and is supplied to the second heat exchanger 14. Adjust the temperature of the medium. For this reason, the cooling water is adjusted to a predetermined temperature without being excessively cooled by the second heat exchanger 14.

他方、図5に示す様に、四方弁24が加熱サイクル回路側に切り替えられているとき、圧縮機10の回転数が所定回転数まで低下して、圧縮機10の回転数を所定回転数に維持する状態で冷却水を温度調整する場合(図8に示す加熱側の斜線部に位置している場合)には、図5に示す温度調整装置には冷却水の温度を調整する調整手段がない。このため、制御部30は、四方弁24に冷却サイクル回路側に切り替える切替信号を発する。
この様に、四方弁24が冷却サイクル回路側に切り替えられた図4に示す状態の温度調整装置でも、冷却水を加熱することが可能である(図6に示す一点鎖線よりも左側部分の場合)。この場合、第1バイパス配管26aに配設された第1制御弁28aを開き、圧縮機10から吐出された冷熱媒のうち、第1バイパス配管26aに分流した冷熱媒を、第1熱交換器12及び膨張弁16aを通過して冷却された他の冷熱媒と混合し、第2熱交換器14に供給する冷熱媒の温度を調整する。この際に、第1バイパス配管26aの第1制御弁28aの開度を調整することによって、第2熱交換器14に供給する冷熱媒の温度を冷却水が過剰に加熱されることのない温度に調整できる。
尚、図6に示す一点鎖線よりも右側部分の場合には、第1バイパス配管26aの第1制御弁28aの開度を調整することによって、第2熱交換器14に供給する冷熱媒の温度を冷却水が過剰に冷却されることのない温度にも調整できる。
On the other hand, as shown in FIG. 5, when the four-way valve 24 is switched to the heating cycle circuit side, the rotational speed of the compressor 10 is reduced to a predetermined rotational speed, and the rotational speed of the compressor 10 is set to the predetermined rotational speed. In the case where the temperature of the cooling water is adjusted in a state where it is maintained (when it is located in the shaded portion on the heating side shown in FIG. 8), the temperature adjusting device shown in FIG. Absent. For this reason, the control unit 30 issues a switching signal for switching the four-way valve 24 to the cooling cycle circuit side.
As described above, even with the temperature adjusting device in the state shown in FIG. 4 in which the four-way valve 24 is switched to the cooling cycle circuit side, the cooling water can be heated (in the case of the left portion of the one-dot chain line shown in FIG. 6). ). In this case, the 1st control valve 28a arrange | positioned at the 1st bypass piping 26a is opened, and the 1st heat exchanger removes the cooling medium which shunted to the 1st bypass piping 26a among the cooling media discharged from the compressor 10. 12 and the other cooling medium cooled by passing through the expansion valve 16 a and adjusting the temperature of the cooling medium supplied to the second heat exchanger 14. At this time, by adjusting the opening degree of the first control valve 28a of the first bypass pipe 26a, the temperature of the cooling medium supplied to the second heat exchanger 14 is a temperature at which the cooling water is not excessively heated. Can be adjusted.
In the case of the portion on the right side of the alternate long and short dash line shown in FIG. 6, the temperature of the cooling medium supplied to the second heat exchanger 14 is adjusted by adjusting the opening of the first control valve 28a of the first bypass pipe 26a. Can be adjusted to a temperature at which the cooling water is not excessively cooled.

以上、説明してきた図1〜図5に示す温度調整装置では、冷却サイクル回路と加熱サイクル回路との各々に膨張弁16a,16bが設けられていたが、図7に示す温度調整装置の様に、両回路で共用できる膨張弁を1個設けてもよい。但し、この場合、膨張弁への冷熱媒の供給方向が、冷却サイクル回路と加熱サイクル回路とで反転するため、膨張弁として、冷熱媒の供給方向によって流動抵抗が異ならないものを用いることが大切である。
また、図1〜図5に示す温度調整装置では、第1熱交換器12として、冷熱媒が通過する配管に向かって外部空気を吹き付けるファン12aが設けられている熱交換器を用いるが、冷熱媒が通過する配管を水等の他の液体媒体で取り囲む方式の熱交換器を用いてもよい。
In the temperature adjusting device shown in FIGS. 1 to 5 described above, the expansion valves 16a and 16b are provided in each of the cooling cycle circuit and the heating cycle circuit. However, like the temperature adjusting device shown in FIG. One expansion valve that can be shared by both circuits may be provided. However, in this case, since the cooling medium supply direction to the expansion valve is reversed between the cooling cycle circuit and the heating cycle circuit, it is important to use an expansion valve whose flow resistance does not differ depending on the supply direction of the cooling medium. It is.
Moreover, in the temperature control apparatus shown in FIGS. 1-5, although the heat exchanger provided with the fan 12a which blows external air toward the piping through which a cooling medium passes is used as the 1st heat exchanger 12, it is You may use the heat exchanger of the system which surrounds piping which a medium passes with other liquid media, such as water.

本発明に係る冷却水の温度調整装置の一例であって、冷却サイクル回路側に切り替えられている状態を説明するための概略図である。It is an example of the temperature control apparatus of the cooling water which concerns on this invention, Comprising: It is the schematic for demonstrating the state switched to the cooling cycle circuit side. 図1に示す冷却水の温度調整装置が加熱サイクル回路側に切り替えられている状態を説明するための概略図である。It is the schematic for demonstrating the state by which the temperature adjustment apparatus of the cooling water shown in FIG. 1 is switched to the heating cycle circuit side. 図1及び図2に示す冷却水の温度調整装置の改良例であって、加熱サイクル回路側に切り替えられている状態を説明するための概略図である。FIG. 3 is a schematic diagram for explaining a state in which the cooling water temperature adjusting device shown in FIGS. 1 and 2 is improved and switched to the heating cycle circuit side. 本発明に係る冷却水の温度調整装置の他の例であって、冷却サイクル回路側に切り替えられている状態を説明するための概略図である。It is the schematic for demonstrating the state switched to the cooling cycle circuit side which is another example of the temperature control apparatus of the cooling water which concerns on this invention. 図4に示す冷却水の温度調整装置が加熱サイクル回路側に切り替えられている状態を説明するための概略図である。It is the schematic for demonstrating the state by which the temperature adjustment apparatus of the cooling water shown in FIG. 4 is switched to the heating cycle circuit side. 図4及び図5に示す冷却水の温度調整装置において、冷却水の設定温度との温度差と圧縮機の回転数との関係について説明する説明図である。FIG. 6 is an explanatory diagram for explaining the relationship between the temperature difference from the set temperature of the cooling water and the rotational speed of the compressor in the cooling water temperature adjusting device shown in FIGS. 4 and 5. 従来の冷却水の温度調整装置を説明するための概略図である。It is the schematic for demonstrating the conventional temperature control apparatus of cooling water. 冷却水の設定温度との温度差と圧縮機の回転数との関係について説明する説明図である。It is explanatory drawing explaining the relationship between the temperature difference with the preset temperature of a cooling water, and the rotation speed of a compressor. 改良した冷却水の温度調整装置を説明するための概略図である。It is the schematic for demonstrating the temperature control apparatus of the improved cooling water.

符号の説明Explanation of symbols

10 圧縮機
12 第1熱交換器
14 第2熱交換器
16a,16b 膨張弁
17a,17b 逆止弁
18 インバータ
20 貯留槽
22 送液ポンプ
24 四方弁
26a 第1バイパス配管
26b 第2バイパス配管
28a 第1制御弁
28b 第2制御弁
30 制御部
32 アキュームレータ
34 温度センサ
36,40,44 配管
42,46 制御弁
DESCRIPTION OF SYMBOLS 10 Compressor 12 1st heat exchanger 14 2nd heat exchanger 16a, 16b Expansion valve 17a, 17b Check valve 18 Inverter 20 Storage tank 22 Liquid feed pump 24 Four way valve 26a 1st bypass piping 26b 2nd bypass piping 28a 1st 1 control valve 28b 2nd control valve 30 control part 32 accumulator 34 temperature sensor 36, 40, 44 piping 42, 46 control valve

Claims (6)

冷熱媒を圧縮する圧縮機と、前記冷熱媒を加熱又は冷却する第1熱交換器と、前記冷熱媒と冷却水との熱交換を行う第2熱交換器と、前記冷熱媒を断熱的に膨張する膨張弁と、前記冷却水の温度と設定温度との温度差に基づいて前記圧縮機の回転数を制御し、前記回転数が所定回転数まで低下したとき、前記圧縮機の回転数を前記所定回転数に維持するインバータとを具備し、
前記圧縮機で圧縮して第1熱交換器で冷却した冷熱媒を、前記膨張弁で断熱的に膨張し冷却してから第2熱交換器に供給する冷却水の冷却サイクル回路と、前記圧縮機で圧縮して供給した第2熱交換器で冷却水を加熱し放熱した冷熱媒を、前記膨張弁で断熱的に膨張し冷却してから第1熱交換器に供給して昇温する冷却水の加熱サイクル回路とを切り替える四方弁が設けられた冷却水の温度調整装置であって、
前記第1熱交換器及び膨張弁をバイパスする第1バイパス配管に配設された第1制御弁と、前記第2熱交換器をバイパスする第2バイパス配管に配設された第2制御弁とが設けられ、
前記四方弁が冷却サイクル回路側に切り替えられ、前記圧縮機の回転数が所定回転数に到達している場合に、前記冷却水を温度調整する際に、前記圧縮機で圧縮された冷熱媒のうち、前記第1バイパス配管に分流した冷熱媒を、前記第1熱交換器及び膨張弁を通過して冷却された他の冷熱媒と混合して、前記第2熱交換器に供給する冷熱媒の温度を調整し、
且つ前記四方弁が加熱サイクル回路側に切り替えられ、前記圧縮機の回転数が所定回転数に到達している場合に、前記冷却水を温度調整する際に、前記圧縮機で圧縮された冷熱媒の一部を前記第2バイパス配管に分流して、前記第2熱交換器に供給する冷熱媒量を調整するように、前記第1制御弁及び第2制御弁の開度を冷却水の温度と設定温度との温度差とに基づいて制御する制御部が設けられていることを特徴とする冷却水の温度調整装置。
A compressor that compresses the cooling medium, a first heat exchanger that heats or cools the cooling medium, a second heat exchanger that performs heat exchange between the cooling medium and cooling water, and the cooling medium The number of rotations of the compressor is controlled based on a temperature difference between the expansion valve and the temperature of the cooling water and a set temperature, and when the number of rotations decreases to a predetermined number of rotations, the number of rotations of the compressor is reduced. An inverter that maintains the predetermined number of revolutions,
The cooling medium compressed by the compressor and cooled by the first heat exchanger is adiabatically expanded and cooled by the expansion valve and then cooled and supplied to the second heat exchanger, and the compression cycle circuit Cooling medium that is heated by the second heat exchanger that is compressed and supplied by the machine and that dissipates the cooling medium is adiabatically expanded and cooled by the expansion valve, and then is supplied to the first heat exchanger and the temperature is raised. A temperature adjusting device for cooling water provided with a four-way valve for switching between a water heating cycle circuit,
A first control valve disposed in a first bypass pipe that bypasses the first heat exchanger and the expansion valve; a second control valve disposed in a second bypass pipe that bypasses the second heat exchanger; Is provided,
When the four-way valve is switched to the cooling cycle circuit side and the rotation speed of the compressor reaches a predetermined rotation speed, the temperature of the cooling water is adjusted when the temperature of the cooling water is adjusted. Among them, the cooling medium that has been divided into the first bypass pipe is mixed with the other cooling medium that has been cooled by passing through the first heat exchanger and the expansion valve, and is supplied to the second heat exchanger. Adjust the temperature of
In addition, when the four-way valve is switched to the heating cycle circuit side and the rotation speed of the compressor has reached a predetermined rotation speed, when the temperature of the cooling water is adjusted, the cooling medium compressed by the compressor Part of the first control valve and the second control valve are adjusted to the temperature of the cooling water so as to adjust the amount of the cooling medium supplied to the second heat exchanger. And a control unit for controlling the temperature based on a temperature difference between the temperature and the set temperature.
第2バイパス配管は、第2熱交換器及び膨張弁をバイパスするバイパス配管である請求項1記載の冷却水の温度調整装置。   The temperature adjustment device for cooling water according to claim 1, wherein the second bypass pipe is a bypass pipe that bypasses the second heat exchanger and the expansion valve. 冷熱媒を圧縮する圧縮機と、前記冷熱媒を加熱又は冷却する第1熱交換器と、前記冷熱媒と冷却水との熱交換を行う第2熱交換器と、前記冷熱媒を断熱的に膨張する膨張弁と、前記冷却水の温度と設定温度との温度差に基づいて前記圧縮機の回転数を制御し、前記回転数が所定回転数まで低下したとき、前記圧縮機の回転数を前記所定回転数に維持するインバータとを具備し、
前記圧縮機で圧縮して第1熱交換器で冷却した冷熱媒を、前記膨張弁で断熱的に膨張し冷却してから第2熱交換器に供給する冷却水の冷却サイクル回路と、前記圧縮機で圧縮して供給した第2熱交換器で冷却水を加熱し放熱した冷熱媒を、前記膨張弁で断熱的に膨張し冷却してから第1熱交換器に供給して昇温する冷却水の加熱サイクル回路とを切り替える四方弁が設けられた冷却水の温度調整装置であって、
前記第1熱交換器及び膨張弁をバイパスする第1バイパス配管に第1制御弁が配設されており、
前記四方弁が冷却サイクル回路側に切り替えられ、前記圧縮機の回転数が所定回転数に到達した場合に、前記冷却水を温度調整する際に、前記圧縮機で圧縮された冷熱媒のうち、前記第1バイパス配管に分流した冷熱媒を、前記第1熱交換器及び膨張弁を通過して冷却された他の冷熱媒と混合して、前記第2熱交換器に供給する冷熱媒の温度を調整するように前記第1制御弁を制御し、
且つ前記四方弁が加熱サイクル回路側に切り替えられ、前記圧縮機の回転数が所定回転数に到達した場合に、前記冷却水を温度調整する際に、前記四方弁を冷却サイクル回路側に切り替えるように、前記四方弁の加熱サイクル回路側から冷却サイクル側への切り替えを前記圧縮機の回転数に基づいて制御する制御部が設けられていることを特徴とする冷却水の温度調整装置。
A compressor that compresses the cooling medium, a first heat exchanger that heats or cools the cooling medium, a second heat exchanger that performs heat exchange between the cooling medium and cooling water, and the cooling medium The number of rotations of the compressor is controlled based on a temperature difference between the expansion valve and the temperature of the cooling water and a set temperature, and when the number of rotations decreases to a predetermined number of rotations, the number of rotations of the compressor is reduced. An inverter that maintains the predetermined number of revolutions,
The cooling medium compressed by the compressor and cooled by the first heat exchanger is adiabatically expanded and cooled by the expansion valve and then cooled and supplied to the second heat exchanger, and the compression cycle circuit Cooling medium that is heated by the second heat exchanger that is compressed and supplied by the machine and that dissipates the cooling medium is adiabatically expanded and cooled by the expansion valve, and then is supplied to the first heat exchanger and the temperature is raised. A temperature adjusting device for cooling water provided with a four-way valve for switching between a water heating cycle circuit,
A first control valve is disposed in a first bypass pipe that bypasses the first heat exchanger and the expansion valve;
When the four-way valve is switched to the cooling cycle circuit side and the rotation speed of the compressor reaches a predetermined rotation speed, when the temperature of the cooling water is adjusted, among the cooling medium compressed by the compressor, The temperature of the cooling medium supplied to the second heat exchanger by mixing the cooling medium divided into the first bypass pipe with the other cooling medium cooled by passing through the first heat exchanger and the expansion valve. Controlling the first control valve to adjust
And when the said four-way valve is switched to the heating cycle circuit side and the rotation speed of the said compressor reaches | attains predetermined rotation speed, when adjusting the temperature of the said cooling water, the said four-way valve is switched to the cooling cycle circuit side And a controller for controlling the switching of the four-way valve from the heating cycle circuit side to the cooling cycle side based on the rotational speed of the compressor.
冷却サイクル回路と加熱サイクル回路との各々に膨張弁が設けられている請求項1〜3のいずれか一項記載の冷却水の温度調整装置。   The temperature adjustment apparatus for cooling water according to any one of claims 1 to 3, wherein an expansion valve is provided in each of the cooling cycle circuit and the heating cycle circuit. 第1熱交換器には、冷熱媒が通過する配管に向かって外部空気を吹き付けるファンが設けられている請求項1〜4のいずれか一項記載の冷却水の温度調整装置。   The temperature adjustment apparatus for cooling water according to any one of claims 1 to 4, wherein the first heat exchanger is provided with a fan that blows external air toward a pipe through which the cooling medium passes. 第1熱交換器には、四方弁が加熱サイクル回路側又は冷却サイクル回路側に切り替えられても、同一方向から冷熱媒が供給されるように配管及び制御弁が配設されている請求項1〜5のいずれか一項記載の冷却水の温度調整装置。   The first heat exchanger is provided with a piping and a control valve so that the cooling medium is supplied from the same direction even when the four-way valve is switched to the heating cycle circuit side or the cooling cycle circuit side. The temperature adjustment apparatus of the cooling water as described in any one of -5.
JP2007230999A 2007-09-06 2007-09-06 Temperature adjusting device for cooling water Withdrawn JP2009063220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007230999A JP2009063220A (en) 2007-09-06 2007-09-06 Temperature adjusting device for cooling water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230999A JP2009063220A (en) 2007-09-06 2007-09-06 Temperature adjusting device for cooling water

Publications (1)

Publication Number Publication Date
JP2009063220A true JP2009063220A (en) 2009-03-26

Family

ID=40557950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230999A Withdrawn JP2009063220A (en) 2007-09-06 2007-09-06 Temperature adjusting device for cooling water

Country Status (1)

Country Link
JP (1) JP2009063220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186868A (en) * 2019-05-15 2020-11-19 ダイキン工業株式会社 Unit for refrigerating device, heat source unit, utilization unit, and refrigerating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186868A (en) * 2019-05-15 2020-11-19 ダイキン工業株式会社 Unit for refrigerating device, heat source unit, utilization unit, and refrigerating device
WO2020230376A1 (en) * 2019-05-15 2020-11-19 ダイキン工業株式会社 Unit for refrigeration devices, heat source unit, utilization unit, and refrigeration device
CN113841017A (en) * 2019-05-15 2021-12-24 大金工业株式会社 Unit for refrigeration device, heat source unit, utilization unit, and refrigeration device
JP7057509B2 (en) 2019-05-15 2022-04-20 ダイキン工業株式会社 Refrigeration unit, heat source unit, utilization unit, and refrigeration unit

Similar Documents

Publication Publication Date Title
JP6791052B2 (en) Air conditioner
KR101020543B1 (en) Air-Conditioning Apparatus Using Thermoelectric Devices
US8733126B2 (en) Vehicle air-conditioning apparatus
JP2006017376A (en) Water heater
JP2012030699A5 (en)
JP6141089B2 (en) Cold / hot water supply system and air conditioner
JP2009274517A (en) Air conditioning system
JP6939575B2 (en) Vehicle cooling system
JP2008014585A (en) Brine heat radiation type heating apparatus
JP6415709B2 (en) Air conditioner and indoor unit
JP5098046B2 (en) Temperature control system
JP2010155599A (en) Vehicular air conditioner
JP5801642B2 (en) Heat pump hot water supply system
JP2017013561A (en) Heat pump system for vehicle
JP2018063090A (en) Heat pump water heater with cooling/heating function
JP2005289152A (en) Air-conditioning control device
KR100746763B1 (en) Temperature control system and vehicle seat temperature control system
JP2010236816A (en) Heat pump type air conditioner and method of controlling heat pump type air conditioner
JP4088790B2 (en) Heat pump type water heater and its operating method
JP6718786B2 (en) Heat pump water heater with heating function
JP2009063220A (en) Temperature adjusting device for cooling water
JP6351478B2 (en) Air conditioning system
JP2009052869A (en) Cooling water temperature control device
JP2004036940A (en) Air conditioner
CN116710307A (en) Temperature control system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207