JP2009062621A - Beta titanium alloy with low young's modulus - Google Patents
Beta titanium alloy with low young's modulus Download PDFInfo
- Publication number
- JP2009062621A JP2009062621A JP2008297686A JP2008297686A JP2009062621A JP 2009062621 A JP2009062621 A JP 2009062621A JP 2008297686 A JP2008297686 A JP 2008297686A JP 2008297686 A JP2008297686 A JP 2008297686A JP 2009062621 A JP2009062621 A JP 2009062621A
- Authority
- JP
- Japan
- Prior art keywords
- modulus
- young
- alloy
- titanium alloy
- atom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title abstract description 25
- 239000000956 alloy Substances 0.000 title abstract description 25
- 229910001040 Beta-titanium Inorganic materials 0.000 title abstract 2
- 229910001069 Ti alloy Inorganic materials 0.000 claims abstract description 18
- 239000010936 titanium Substances 0.000 claims abstract description 13
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 229910052718 tin Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 7
- 230000009466 transformation Effects 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 229910000734 martensite Inorganic materials 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000005097 cold rolling Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000003446 memory effect Effects 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Eyeglasses (AREA)
Abstract
Description
本発明は眼鏡フレーム等に用いる低ヤング率のチタン合金に関する。 The present invention relates to a low Young's modulus titanium alloy used for spectacle frames and the like.
チタンおよびチタン合金は、耐食性にすぐれ、軽くて強度が高い、すなわち比強度が高く、しかもアレルギーを引き起こさないなど生体に対する適合性が良好である。このような点から、従来の耐食用機械部品や航空機部品のような用途に加えて、肌に直接触れる装身具や人工骨、インプラントなど医療用具にもその用途が拡大されつつある。これらの特性に加え、ヤング率(のび弾性率)が低いという特徴があり、これを生かして特に眼鏡フレームに多く用いられている。 Titanium and titanium alloys are excellent in corrosion resistance, light and high in strength, that is, high in specific strength, and have good compatibility with living bodies, such as not causing allergies. In this respect, in addition to conventional applications such as anticorrosion machine parts and aircraft parts, the use is expanding to medical devices such as accessories, artificial bones, and implants that directly touch the skin. In addition to these characteristics, there is a characteristic that the Young's modulus (extended elastic modulus) is low.
ヤング率が低ければ、たとえば、強度が同じで同じ断面形状を持っているとすると、同じ力が加わったときに、より大きくたわむことができる。したがって、顔の形状に沿って容易に変形し、そのときの接触面の加圧力が低下することになり、装着による圧迫感が大幅に軽減する。ヤング率が低いことは、バネ材において同じ変形に対して断面積を大きくできるので、へたりが低減される。また、ゴルフクラブヘッドのフェース部のように、たわみが大きい方が打球の飛距離が増すといった用途もある。 If the Young's modulus is low, for example, if the strength is the same and the cross-sectional shape is the same, the deflection can be greater when the same force is applied. Therefore, it easily deforms along the shape of the face, and the pressure applied to the contact surface at that time decreases, and the feeling of pressure due to wearing is greatly reduced. Since the Young's modulus is low, the cross-sectional area can be increased for the same deformation in the spring material, so that sag is reduced. In addition, there is an application in which the hitting distance increases as the deflection becomes larger, such as the face portion of a golf club head.
ヤング率は、鉄や鋼では205GPa前後であり、銅では130GPa程度、アルミニウムでは70GPa程度である。これに対しチタンの場合、純チタンやα合金では115GPa程度であるが、β合金では80GPa程度に低下する。 Young's modulus is about 205 GPa for iron and steel, about 130 GPa for copper, and about 70 GPa for aluminum. On the other hand, in the case of titanium, it is about 115 GPa for pure titanium and α alloy, but it is reduced to about 80 GPa for β alloy.
ヤング率をより一層低下させたチタン合金に関しては、β型合金を対象にいくつかの発明が提案されている。たとえば特許文献1に開示された発明は、NbおよびTaを合計で20〜60質量%含有するヤング率が50〜60GPa程度のチタン合金であるが、そのなかのTaは6〜20%である。しかし、Taは密度が16.6g/cm3でチタンの3.7倍もあり、含有量を増すと重量が増し、軽いというチタンの特徴が失われてくる。 With respect to titanium alloys having a further reduced Young's modulus, several inventions have been proposed for β-type alloys. For example, the invention disclosed in Patent Document 1 is a titanium alloy containing Nb and Ta in a total amount of 20 to 60% by mass and having a Young's modulus of about 50 to 60 GPa, of which Ta is 6 to 20%. However, Ta has a density of 16.6 g / cm 3 and is 3.7 times that of titanium. When the content is increased, the weight increases and the characteristic of titanium, which is light, is lost.
特許文献2には、低ヤング率チタン合金として、Va族元素(V、NbおよびTa)を30〜60質量%含有するチタン合金の発明が開示されている。この場合、発明の効果を評価するのに「平均ヤング率」なる指標を用いているが、この指標は、引張試験の応力−ひずみ曲線において、0.2%耐力の1/2の応力が印加されたときの曲線の傾きであると定義している。一般に示されるヤング率は、比例限度内の変形範囲で計測する。これに対し、このように永久変形してしまう範囲までも含んで計測すると、同じ合金でも通常に測定されたヤング率より低い値になることが明らかである。したがって、この特許文献2の「平均ヤング率」の値は、一般のヤング率とは異なる計測方法にて求められた値であり、その値が低いことで判断しているのであれば、低ヤング率の合金が開発できたとは言い難い。 Patent Document 2 discloses an invention of a titanium alloy containing 30 to 60% by mass of a Va group element (V, Nb and Ta) as a low Young's modulus titanium alloy. In this case, an index of “average Young's modulus” is used to evaluate the effect of the invention, and this index is applied with a stress of 1/2 of 0.2% proof stress in the stress-strain curve of the tensile test. It is defined as the slope of the curve. The Young's modulus generally shown is measured in the deformation range within the proportional limit. On the other hand, it is clear that even if the range including the permanent deformation is measured, even the same alloy has a lower value than the normally measured Young's modulus. Therefore, the value of “average Young's modulus” in Patent Document 2 is a value obtained by a measurement method different from the general Young's modulus, and if it is determined that the value is low, the value of low Young ’s It is hard to say that a high-rate alloy has been developed.
また、特許文献3には、低ヤング率のチタン合金の組成を決定する方法の提案がなされており、計算値としてヤング率が50GPaを下回る組成が推測されているが、実際に作製された合金としては、60GPa程度のものしか示されていない。 Patent Document 3 proposes a method for determining the composition of a titanium alloy having a low Young's modulus, and it is estimated that the Young's modulus is less than 50 GPa as a calculated value. As shown, only about 60 GPa is shown.
本発明の目的は、ヤング率が低く冷間加工が容易で軽量であり、眼鏡フレームなどに好適なチタン合金を提供することにある。 An object of the present invention is to provide a titanium alloy that has a low Young's modulus, is easy to cold work and is lightweight, and is suitable for spectacle frames and the like.
チタン合金は、強度が高いにもかかわらずヤング率が低いという特徴があり、この特徴を生かした用途として、眼鏡フレームがある。本発明者らはこの眼鏡フレームに適したよりヤング率の低い、冷間加工性にすぐれたチタン合金をえるため種々検討を行った。冷間加工性は、細いフレームに加工するために重要な特性である。 Titanium alloys are characterized by low Young's modulus despite high strength, and there is a spectacle frame as an application that makes use of this feature. The present inventors conducted various studies to obtain a titanium alloy having a lower Young's modulus and excellent cold workability suitable for this spectacle frame. Cold workability is an important characteristic for processing into a thin frame.
チタンにはα型合金、α+β型合金およびβ型合金があるが、前述のようにβ型合金がヤング率は最も低い。また、β型合金は一般的に強度が高く、しかも冷間加工性にすぐれている特徴がある。そこで、β型合金を主対象に、よりヤング率を低くできる組成を調査した。その結果、これまでに知られているように、とくにNbおよびTaを添加してβ合金にすると、ヤング率が低下することがわかった。しかしヤング率をより低下させるには、Taの比率を増す必要があるが、Taの増加は合金の密度を増加させ、めがねフレームのような用途では重量が増すので好ましくない。またTaは高価な合金元素であるので、添加量の増加は製品価格を高くしてしまう。 Titanium includes α-type alloys, α + β-type alloys, and β-type alloys. As described above, β-type alloys have the lowest Young's modulus. Further, β-type alloys are generally characterized by high strength and excellent cold workability. Therefore, a composition that can lower the Young's modulus was investigated mainly for β-type alloys. As a result, as has been known, it has been found that the Young's modulus decreases particularly when Nb and Ta are added to form a β alloy. However, in order to further lower the Young's modulus, it is necessary to increase the Ta ratio. However, an increase in Ta is not preferable because it increases the density of the alloy and increases the weight in applications such as eyeglass frames. Further, since Ta is an expensive alloy element, an increase in the amount added increases the product price.
そこで、Taは使用せずに、よりヤング率を低下できる合金元素についてさらに調査をおこなったところ、Snの添加が有効であることがあきらかになってきた。Snは相変態にはほとんど影響せず、中性的元素として知られているが、Nb添加によるヤング率の低下をより一層大きくする効果がある。その上、冷間加工性を阻害することなく強度を上昇させる作用があり、しかもTaのように添加量を増すことによる密度の増加も少ない。 Therefore, further investigation was conducted on alloy elements that can lower Young's modulus without using Ta, and it has become clear that the addition of Sn is effective. Sn has little effect on the phase transformation and is known as a neutral element, but has the effect of further increasing the decrease in Young's modulus due to the addition of Nb. In addition, it has the effect of increasing the strength without impairing the cold workability, and there is little increase in density due to an increase in the amount of addition like Ta.
TiにNbおよびSnを含有させた合金として、特許文献4に形状記憶効果を有する合金の発明が開示されている。形状記憶効果を発現させるには、高温で溶体化後急冷してマルテンサイト変態させ、マルテンサイト相を生じさせなければならない。ところが、マルテンサイト相が生じるとヤング率が高くなるので、低ヤング率とするためには、高温で溶体化し急冷後にマルテンサイト相が生じない組成とし、熱的に十分安定したβ相の合金にしておく必要がある。 As an alloy containing Nb and Sn in Ti, Patent Document 4 discloses an invention of an alloy having a shape memory effect. In order to develop the shape memory effect, it must be cooled at a high temperature and then rapidly cooled to cause martensitic transformation to produce a martensitic phase. However, since the Young's modulus increases when the martensite phase occurs, in order to achieve a low Young's modulus, a composition that does not generate a martensite phase after being melted at a high temperature and rapidly cooled to a thermally stable β-phase alloy is obtained. It is necessary to keep.
これらの調査の中で、このNbおよびSnの含有に加えて、さらにV、Mo、W、ZrおよびAlを1種または2種以上少量含有させると、ヤング率には影響を与えないが、引張強さを増す効果のあることもわかった。 In these investigations, in addition to the inclusion of Nb and Sn, the addition of a small amount of V, Mo, W, Zr, and Al does not affect the Young's modulus. It was also found that it has the effect of increasing strength.
上述のような組成の検討は、高温からの急冷によるβ相化処理の後、ヤング率は60GPaを下回ること、そして冷間加工性としては、切削により成形した板状試験片にて圧下率70%の冷間圧延をおこない、耳割れ発生が実質的にないことを評価基準とし、合金元素含有量の効果を判断した。 Examination of the composition as described above shows that after β-phase treatment by rapid cooling from a high temperature, the Young's modulus is less than 60 GPa, and as cold workability, a plate-shaped test piece formed by cutting has a reduction rate of 70. % Was subjected to cold rolling, and the effect of the alloying element content was judged on the basis of evaluation that there was substantially no generation of ear cracks.
以上の検討結果に基づき、さらに限界条件を明らかにして本発明を完成させた。本発明の要旨は次のとおりである。 Based on the above examination results, the present invention was completed by further clarifying the limit conditions. The gist of the present invention is as follows.
(1) 13〜28atom%のNbおよび0.1〜10atom%のSnを含有し、さらに、それぞれが0.1〜5atom%のV、Mo、W、ZrおよびAlを1種または2種以上含有し、残部がTiおよび不純物からなることを特徴とする低ヤング率β型チタン合金。 (1) 13 to 28 atom% of Nb and 0.1 to 10 atom% of Sn, each of which contains 0.1 to 5 atom% of V, Mo, W, Zr and Al, or the balance, A low Young's modulus β-type titanium alloy comprising Ti and impurities.
本発明のチタン合金は、耐食性にすぐれ、比強度が高いチタンの特性を有しているだけでなく、ヤング率がとくに低く、その上重くないという特徴がある。このような特徴は眼鏡のフレームに用いれば好適であり、低ヤング率という特徴から、へたりのないバネあるいはゴルフクラブヘッドのフェース部などにも効果的に用いることが可能である。 The titanium alloy of the present invention is not only excellent in corrosion resistance and high in specific strength, but also has a characteristic that Young's modulus is particularly low and not heavy. Such a feature is suitable for use in a spectacle frame, and because of its low Young's modulus, it can be effectively used for a spring without a sag or a face part of a golf club head.
本発明の低ヤング率β型チタン合金は、13〜28atom%のNbおよび0.1〜10atom%のSnを含有し、さらに、それぞれが0.1〜5atom%のV、Mo、W、ZrおよびAlを1種または2種以上含有し、残部がTiおよび不純物からなる組成とする。また、本発明のチタン合金はβ相単相であることとするが、これはマルテンサイト相が現れたり、α相が残存したりするとヤング率が低下しなくなるためである。 The low Young's modulus β-type titanium alloy of the present invention contains 13 to 28 atom% of Nb and 0.1 to 10 atom% of Sn , and further contains 0.1 to 5 atom% of V, Mo, W, Zr and Al, respectively. Or it is set as the composition which contains 2 or more types and remainder consists of Ti and an impurity. The titanium alloy of the present invention is a β-phase single phase because the Young's modulus does not decrease when the martensite phase appears or the α-phase remains.
Nbはチタンに含有させると、β相を安定させる作用があり、高温のβ相からの冷却により常温でもβ相単相である合金にすることができる。また、このβ相の安定化と共に、ヤング率をより大きく低下させる効果がある。 When Nb is contained in titanium, it has an action of stabilizing the β phase, and can be made into an alloy that is a β phase single phase even at room temperature by cooling from the high temperature β phase. In addition, the β phase is stabilized and the Young's modulus is greatly reduced.
このNbの含有量は13〜28atom%とする。13atom%以上とするのは、13atom%未満の場合、安定してβ相が得られなくなり、α+β合金になったり、溶体化後の急冷でマルテンサイト変態し形状記憶効果を持つようになったりして、ヤング率が低下しなくなる。しかし多すぎる含有では、冷間加工性が低下したり、ヤング率が高くなったりするので、28atom%以下とするのがよい。より好ましいのは16〜28atom%である。 The Nb content is 13 to 28 atom%. If it is less than 13atom%, the β phase cannot be obtained stably and it becomes an α + β alloy, or it becomes martensitic by rapid cooling after solution treatment and has a shape memory effect. Thus, the Young's modulus does not decrease. However, if the content is too large, the cold workability is lowered and the Young's modulus is increased. More preferred is 16 to 28 atom%.
Snは、Nbと共に含有させることにより、ヤング率のより一層の低下をもたらすばかりでなく、冷間加工性を劣化させずに強度を向上させる効果がある。Snの含有量は0.1〜10atom%とするが、0.1atom%未満では添加による改良効果が現れない。しかし、過剰の含有はヤング率を上昇させ、冷間加工性を劣化させるので、多くても10atom%までとするのがよい。その効果が十分に発揮されるより好ましい含有量は、3〜10atom%である。 When Sn is contained together with Nb, it not only causes a further decrease in Young's modulus, but also has an effect of improving strength without deteriorating cold workability. The Sn content is 0.1 to 10 atom%, but if it is less than 0.1 atom%, the improvement effect by addition does not appear. However, excessive content raises the Young's modulus and degrades the cold workability, so it should be at most 10 atom%. A more preferable content at which the effect is sufficiently exhibited is 3 to 10 atom%.
NbおよびSnの含有の他、それぞれが、0.1〜5atom%のV、Mo、W、ZrおよびAlを1種または2種以上含有させると、ヤング率に影響を及ぼすことなく強度を向上させる効果がある。しかし、その含有量が0.1atom%以下では、添加の効果は現れず、5atom%を超える含有は、ヤング率を高くしたり冷間加工性を劣化させたりする。 In addition to containing Nb and Sn, when each contains 0.1 to 5 atom% of V, Mo, W, Zr and Al, the effect of improving the strength without affecting the Young's modulus is obtained. is there. However, when the content is 0.1 atom% or less, the effect of addition does not appear, and when the content exceeds 5 atom%, the Young's modulus is increased or the cold workability is deteriorated.
これらの合金の製造は、チタン合金にて通常用いられる非消耗電極式または消耗電極式の真空またはアルゴンアーク溶解法、電子ビーム溶解法、プラズマ溶解法等を用いておこなえばよい。得られた鋳塊は、熱間鍛造、熱間圧延、冷間圧延等の一般的に用いられる方法で、所要形状に成形加工する。加工後、ひずみ除去、溶体化あるいは均質化を目的に、β変態点以上に加熱し、放冷あるいは衝風や噴霧などにて急冷すれば安定したβ合金が得られる。 These alloys may be manufactured using a non-consumable electrode type or consumable electrode type vacuum or argon arc melting method, an electron beam melting method, a plasma melting method or the like that is usually used for titanium alloys. The obtained ingot is formed into a required shape by a generally used method such as hot forging, hot rolling, or cold rolling. After processing, for the purpose of strain removal, solution formation or homogenization, a stable β alloy can be obtained by heating above the β transformation point and quenching by cooling or blast or spraying.
純度99.5質量%以上のスポンジチタンを原料とし、表1に示す組成に配合し1ヶ約200gの小形鋳片を溶製した。この厚さ12mmの鋳片を1100℃に加熱し、6mm厚さまで圧延率50%の熱間圧延を施し、1000℃1時間保持後放冷する溶体化熱処理をおこなった後、幅10mm、長さ60mmの板状試験片を採取し、共振法によりヤング率を測定した。また、熱処理後の板から機械加工により、厚さ5mm、幅100mmの板状試験片を採取し、70%の冷間圧延をおこなって圧延後の耳割れ発生から、冷間加工性を評価した。これらの結果を表1に合わせて示す。 Sponge titanium having a purity of 99.5% by mass or more was used as a raw material, blended with the composition shown in Table 1, and a small slab of about 200 g was melted. This 12mm-thick slab is heated to 1100 ° C, hot-rolled to a thickness of 6mm, with a rolling rate of 50%, subjected to a solution heat treatment that is allowed to cool after holding at 1000 ° C for 1 hour, and then 10mm in width and length A 60 mm plate-shaped test piece was collected, and Young's modulus was measured by a resonance method. In addition, a plate-like test piece having a thickness of 5 mm and a width of 100 mm was collected from the heat-treated plate by machining and subjected to 70% cold rolling, and the cold workability was evaluated from the occurrence of ear cracks after rolling. . These results are also shown in Table 1.
表1の結果からあきらかなように、Nbの含有量およびSnの含有量が本発明にて定める範囲にある場合は、いずれもヤング率が60GPaを下回っており、良好な冷間加工性を示していることがわかる。しかし、試番1のようにNbが低い場合は、β相でなくマルテンサイト相(α”)が現れており、ヤング率は高く冷間加工性もよくない。またNb含有量が高過ぎると試番24に見られるように、ヤング率が高くなっている。 As is clear from the results in Table 1, when the Nb content and the Sn content are in the range defined by the present invention, the Young's modulus is less than 60 GPa, indicating good cold workability. You can see that However, when Nb is low as in Test No. 1, not the β phase but the martensite phase (α ″) appears, the Young's modulus is high and the cold workability is not good. If the Nb content is too high, As seen in trial number 24, the Young's modulus is high.
Snを含有しない場合、試番9および10に見られるように、Nbを多く含有させてもヤング率は十分低下しない。しかし、試番5および8のようにSnの多すぎる含有は、ヤング率の低下には効果がなくなる。 When Sn is not contained, the Young's modulus does not sufficiently decrease even if Nb is contained in a large amount, as seen in the trial numbers 9 and 10 . However, the inclusion of too much Sn as in Test Nos. 5 and 8 is ineffective for lowering the Young's modulus.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008297686A JP5143704B2 (en) | 2008-11-21 | 2008-11-21 | Low Young's modulus β-type titanium alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008297686A JP5143704B2 (en) | 2008-11-21 | 2008-11-21 | Low Young's modulus β-type titanium alloy |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003350359A Division JP4270443B2 (en) | 2003-10-09 | 2003-10-09 | β-type titanium alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009062621A true JP2009062621A (en) | 2009-03-26 |
JP5143704B2 JP5143704B2 (en) | 2013-02-13 |
Family
ID=40557455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008297686A Expired - Lifetime JP5143704B2 (en) | 2008-11-21 | 2008-11-21 | Low Young's modulus β-type titanium alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5143704B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004042097A1 (en) * | 2002-11-05 | 2004-05-21 | Aichi Steel Corporation | Low rigidity and high strength titanium ally excellent in cold worability, and eyeglass frame and golf club head |
WO2004042096A1 (en) * | 2002-11-05 | 2004-05-21 | Aichi Steel Corporation | Low rigidity and high strength titanium ally excellent in cold worability, and eyeglass frame and golf club head |
JP2005036273A (en) * | 2003-07-18 | 2005-02-10 | Furukawa Techno Material Co Ltd | Superelastic titanium alloy for living body |
-
2008
- 2008-11-21 JP JP2008297686A patent/JP5143704B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004042097A1 (en) * | 2002-11-05 | 2004-05-21 | Aichi Steel Corporation | Low rigidity and high strength titanium ally excellent in cold worability, and eyeglass frame and golf club head |
WO2004042096A1 (en) * | 2002-11-05 | 2004-05-21 | Aichi Steel Corporation | Low rigidity and high strength titanium ally excellent in cold worability, and eyeglass frame and golf club head |
JP2005036273A (en) * | 2003-07-18 | 2005-02-10 | Furukawa Techno Material Co Ltd | Superelastic titanium alloy for living body |
Also Published As
Publication number | Publication date |
---|---|
JP5143704B2 (en) | 2013-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090074606A1 (en) | Low density titanium alloy, golf club head, and process for prouducing low density titanium alloy part | |
JP5005889B2 (en) | High strength low Young's modulus titanium alloy and its manufacturing method | |
US20040052676A1 (en) | beta titanium compositions and methods of manufacture thereof | |
EP1706517A2 (en) | B titanium compositions and methods of manufacture thereof | |
JP2010275606A (en) | Titanium alloy | |
JP5201202B2 (en) | Titanium alloy for golf club face | |
CN103060609B (en) | Near-beta titanium alloy with low elastic modulus and high strength and preparation method of near-beta titanium alloy | |
JP4270443B2 (en) | β-type titanium alloy | |
WO2013125038A1 (en) | Titanium alloy for use in golf-club face | |
WO2013125039A1 (en) | Titanium alloy for use in golf-club face | |
US20040241037A1 (en) | Beta titanium compositions and methods of manufacture thereof | |
JP2005076098A (en) | HIGH-STRENGTH alpha-beta TITANIUM ALLOY | |
JP2006034414A (en) | Spike for shoe | |
JP5143704B2 (en) | Low Young's modulus β-type titanium alloy | |
JP5874707B2 (en) | Titanium alloy with high strength, high Young's modulus and excellent fatigue properties and impact toughness | |
JP2005060821A (en) | beta TYPE TITANIUM ALLOY, AND COMPONENT MADE OF beta TYPE TITANIUM ALLOY | |
US20070044868A1 (en) | Ti-based shape memory alloy article | |
JP4263987B2 (en) | High-strength β-type titanium alloy | |
JP4528109B2 (en) | Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same | |
JP2009270163A (en) | Titanium alloy | |
JP4304425B2 (en) | Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet | |
JP2008106317A (en) | beta-TYPE TITANIUM ALLOY | |
JP2016141838A (en) | β TYPE TITANIUM ALLOY | |
JP5533352B2 (en) | β-type titanium alloy | |
JP2004068146A (en) | beta TYPE TITANIUM ALLOY AND METHOD FOR PRODUCING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121011 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20121011 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121030 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121121 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151130 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5143704 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |