JP2009060016A - Printed circuit board - Google Patents

Printed circuit board Download PDF

Info

Publication number
JP2009060016A
JP2009060016A JP2007227736A JP2007227736A JP2009060016A JP 2009060016 A JP2009060016 A JP 2009060016A JP 2007227736 A JP2007227736 A JP 2007227736A JP 2007227736 A JP2007227736 A JP 2007227736A JP 2009060016 A JP2009060016 A JP 2009060016A
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
insulating layer
hole
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007227736A
Other languages
Japanese (ja)
Inventor
Sadashi Nakamura
禎志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007227736A priority Critical patent/JP2009060016A/en
Priority to PCT/JP2008/001891 priority patent/WO2009031262A1/en
Priority to US12/514,383 priority patent/US8253033B2/en
Priority to EP08776850A priority patent/EP2056655B1/en
Priority to TW097126934A priority patent/TWI422301B/en
Publication of JP2009060016A publication Critical patent/JP2009060016A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounting configuration capable of easily actualizing size reduction and height reduction adaptive to high-function/multi-pin configurations of a semiconductor needed to make mobile equipment compact, thin, lightweight, highly fine, multifunctional, etc. <P>SOLUTION: The printed circuit board 1 is composed of an insulating layer 2 formed by dispersing an inorganic filler in thermosetting resin and has a via hole 5 formed by boring a through hole 3 in the insulating layer 2 at a predetermined position and charging conductive paste 4 in the through hole 3. T the printed circuit board is characterized in that the via hole 5 is compressed along the thickness and secures conduction while maintaining the shape of the through hole 3 and the insulating layer contains no core material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、パソコン、移動体通信用電話機、ビデオカメラ等の各種電子機器に広く用いられるプリント配線板に関するものである。   The present invention relates to a printed wiring board widely used in various electronic devices such as a personal computer, a mobile communication telephone, and a video camera.

近年、電子機器の小型化、高性能化に伴い、産業用にとどまらず、広く民生用機器の分野においても、LSI等の半導体チップを高密度に実装できる多層配線基板が安価に供給されることが強く要望されてきている。このような多層配線基板では微細な配線ピッチで形成された複数層の配線パターン間を高い接続信頼性で電気的に接続できることが重要である。   In recent years, with the downsizing and higher performance of electronic devices, multilayer wiring boards capable of mounting LSI chips and other semiconductor chips at a high density have been supplied at a low cost not only for industrial use but also in the field of consumer equipment. Has been strongly requested. In such a multilayer wiring board, it is important that a plurality of wiring patterns formed at a fine wiring pitch can be electrically connected with high connection reliability.

このような市場の要望に対して、従来多層配線基板の層間接続の主流となっていたスルーホール内壁の金属めっき導体に代えて、多層配線基板の任意の電極を任意の配線パターン位置において、層間接続できるインナービアホール接続法すなわち全層IVH構造樹脂多層基板と呼ばれるものがある。   In response to such market demand, instead of the metal plated conductor on the inner wall of the through-hole, which has been the mainstream for interlayer connection of multilayer wiring boards in the past, any electrode on the multilayer wiring board can be placed at any wiring pattern position. There is an inner via hole connection method that can be connected, that is, an all-layer IVH structure resin multilayer substrate.

これは、多層配線基板のビアホール内に導電体としての導電性ペーストを充填して、必要な各層間のみを接続することが可能であり、部品ランド直下にインナービアホールを設けることができるため、基板サイズの小型化や高密度実装を実現できる。   This is because a conductive paste as a conductor is filled in a via hole of a multilayer wiring board and only necessary layers can be connected, and an inner via hole can be provided directly under a component land. Size reduction and high-density mounting can be realized.

なお、この発明の出願に関連する先行技術文献情報としては、例えば、特許文献1、2が知られている。
特開平06―268345号公報 特開2002−208763号公報
For example, Patent Documents 1 and 2 are known as prior art document information related to the application of the present invention.
Japanese Patent Laid-Open No. 06-268345 JP 2002-208763 A

従来の多層プリント配線板は、一般に織布、不織布、フィルムなどの芯材を含んでいるために、貫通孔を設けてこの貫通孔に導電性ペーストを充填してビアを形成した場合、特にプリント配線板を加圧した場合においてビア内に充填された導電性ペーストが基材へ流れやすくなり、図7に示すように、(A)→(B)のようにビアの変形が発生しやすくなるという課題があった。導電性ペーストが流れることによってビアの接続安定性が低下し、またビアの変形によって上下のビア径が広がり、結果として微細なビアを形成することが困難となるので、微細かつ高密度のプリント配線板を形成することが困難となるという課題を有していた。   Since conventional multilayer printed wiring boards generally include core materials such as woven fabric, nonwoven fabric, and film, when a through hole is provided and a via is formed by filling the through hole with a conductive paste, it is particularly printed. When the wiring board is pressurized, the conductive paste filled in the via easily flows to the base material, and as shown in FIG. 7, deformation of the via is likely to occur as shown in (A) → (B). There was a problem. As the conductive paste flows, the connection stability of the vias decreases, and the diameter of the upper and lower vias increases due to the deformation of the vias. As a result, it becomes difficult to form fine vias, so fine and high-density printed wiring It had the subject that it will become difficult to form a board.

本発明は、上記課題を鑑みて成されたものであり、安定したビアの接続性を有し、かつ基板内での配線密度も高めることのできるプリント配線板を提供するものである。   The present invention has been made in view of the above problems, and provides a printed wiring board that has stable via connectivity and can also increase the wiring density in the substrate.

上記目的を達成するために、本発明は無機フィラーが熱硬化性樹脂に分散されてなる絶縁層からなり、この絶縁層の所定の位置に貫通孔が形成され、この貫通孔に導電性ペーストが充填されたビアを有するプリント配線板であって、前記ビアは厚み方向に圧縮されているとともに前記貫通孔の形状を維持しながら導通が確保され、かつ前記絶縁層には芯材を含まないことを特徴とするプリント配線板であり、このような構成にすることにより、接続層に熱硬化性樹脂と無機フィラーとの混合物を用いた場合においても無機フィラー粒子が流動することを抑制でき、貫通孔の形状を維持することが可能となるため、安定したビアの接続性を有し、かつ基板内での配線密度を高めることが可能なプリント配線板を実現することができる。   In order to achieve the above object, the present invention comprises an insulating layer in which an inorganic filler is dispersed in a thermosetting resin. A through hole is formed at a predetermined position of the insulating layer, and a conductive paste is formed in the through hole. A printed wiring board having filled vias, wherein the vias are compressed in the thickness direction while maintaining the shape of the through holes, and the insulating layer does not include a core material. With such a configuration, the printed wiring board is characterized in that the inorganic filler particles can be prevented from flowing even when a mixture of a thermosetting resin and an inorganic filler is used for the connection layer. Since the shape of the hole can be maintained, it is possible to realize a printed wiring board having stable via connectivity and capable of increasing the wiring density in the substrate.

以上のように本発明は、多ピンの基板間接続が可能で、かつ基板内での配線密度も高めることが可能となるため、モバイル機器の小型、薄型、軽量、高精細、多機能化等を実現するために必要な、半導体の高機能・多ピン化に対応した小型、低背を容易に実現するプリント配線板を提供することが可能となる。   As described above, the present invention enables multi-pin connection between substrates and increases the wiring density in the substrate, so that the mobile device is small, thin, lightweight, high-definition, multifunctional, etc. Therefore, it is possible to provide a printed wiring board that can easily realize a small size and a low profile corresponding to high functionality and high pin count of a semiconductor necessary for realizing the above.

(実施の形態1)
以下本発明の実施の形態1について、図面を参照しながら説明する。
(Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to the drawings.

図1は本発明の実施の形態におけるプリント配線板を示す断面図である。本実施の形態のプリント配線板1は、無機フィラーが熱硬化性樹脂に分散されてなる絶縁層2で構成され、この絶縁層2の所定の位置に形成された貫通孔3に導電性ペースト4が充填されることによって、ビア5が形成されている。本発明において、プリント配線板1の絶縁層2は織布、不織布、フィルムなどの芯材を含んでおらず、ビア5は厚み方向に圧縮されているとともに、貫通孔3の形状をほぼ円筒形状あるいは円錐台形状に近い形状に維持しながら導通が確保されている。   FIG. 1 is a cross-sectional view showing a printed wiring board according to an embodiment of the present invention. The printed wiring board 1 of the present embodiment is composed of an insulating layer 2 in which an inorganic filler is dispersed in a thermosetting resin, and a conductive paste 4 is inserted into a through hole 3 formed at a predetermined position of the insulating layer 2. As a result, the via 5 is formed. In the present invention, the insulating layer 2 of the printed wiring board 1 does not include a core material such as a woven fabric, a nonwoven fabric, or a film, the via 5 is compressed in the thickness direction, and the shape of the through hole 3 is substantially cylindrical. Alternatively, conduction is ensured while maintaining a shape close to a truncated cone shape.

このとき、プリント配線板1は無機フィラーが70〜90重量%と高い密度で充填されていることにより、加熱加圧においても無機フィラーが流動しないのでビア5の壁面にビア壁が維持され、このビア壁によりビア5内に充填された導電性ペースト4が絶縁層2へ流れることがなく、安定した導通を確保することができる。導電性ペースト4が絶縁層2へ流れることがないことによってビア5が変形しにくくなるので、ビア5を形成する貫通孔3の形状をほぼ円筒形状あるいは円錐台形状に近い形状に維持することができる。   At this time, since the printed wiring board 1 is filled with an inorganic filler at a high density of 70 to 90% by weight, the inorganic filler does not flow even in heat and pressure, so the via wall is maintained on the wall surface of the via 5. The conductive paste 4 filled in the via 5 by the via wall does not flow to the insulating layer 2, and stable conduction can be ensured. Since the conductive paste 4 does not flow to the insulating layer 2 and the via 5 is difficult to deform, the shape of the through hole 3 forming the via 5 can be maintained in a substantially cylindrical shape or a shape similar to a truncated cone shape. it can.

本発明において、絶縁層2における無機フィラーは、シリカ、アルミナ、チタン酸バリウムの内少なくとも一種以上のもので構成されていることが好ましい。また、絶縁層2における無機フィラーの粒径は1〜15μm、無機フィラーの含有率は70〜90重量%であることが好ましい。無機フィラーの含有量が70%未満ならば、接続層3を形成する、無機フィラー量が熱硬化性樹脂の量に対して少なく粗な状態となり、熱硬化性樹脂がプレス中に流動する際に、同時に無機フィラーも流動してしまい、90%を超えると、接続層3の樹脂量が少なくなり過ぎ、配線の埋込性や密着性が損なわれるため不適切である。   In the present invention, the inorganic filler in the insulating layer 2 is preferably composed of at least one of silica, alumina, and barium titanate. Moreover, it is preferable that the particle size of the inorganic filler in the insulating layer 2 is 1 to 15 μm, and the content of the inorganic filler is 70 to 90% by weight. If the content of the inorganic filler is less than 70%, the amount of the inorganic filler that forms the connection layer 3 is less than the amount of the thermosetting resin, and is in a rough state, and the thermosetting resin flows during the press. At the same time, the inorganic filler also flows, and if it exceeds 90%, the amount of the resin of the connection layer 3 becomes too small, and the embeddability and adhesion of the wiring are impaired, which is inappropriate.

本発明のプリント配線板に使用される導電性ペースト4は、銅、銀、金、パラジウム、ビスマス、錫およびこれらの合金の内から構成され、粒径は1〜20μmであることが好ましい。   The conductive paste 4 used for the printed wiring board of the present invention is composed of copper, silver, gold, palladium, bismuth, tin, and alloys thereof, and preferably has a particle size of 1 to 20 μm.

また、無機フィラーの平均粒径は、導電性ペーストの平均粒径よりも大きい粒径にて構成されている。   Moreover, the average particle diameter of an inorganic filler is comprised by the particle size larger than the average particle diameter of an electrically conductive paste.

なお、本発明のプリント配線板1において、絶縁層2に使用する熱硬化性樹脂に無機フィラーの他にエラストマー成分が分散されていてもよい。この場合、エラストマー成分が無機フィラー表面に偏析するため、無機フィラーの流動性をさらに抑制することができるので、本発明においてさらに効果的である。   In the printed wiring board 1 of the present invention, an elastomer component may be dispersed in the thermosetting resin used for the insulating layer 2 in addition to the inorganic filler. In this case, since the elastomer component segregates on the surface of the inorganic filler, the fluidity of the inorganic filler can be further suppressed, which is more effective in the present invention.

本発明におけるエラストマー成分は、アクリル系エラストマー、熱可塑性エラストマーのいずれかからなる。具体的には、たとえばポリブタジエンまたはブタジエン系ランダム共重合ゴムまたはハードセグメントとソフトセグメントを有する共重合体が用いられる。エラストマー成分の含有量は、エポキシ樹脂組成物全量に対して0.2〜5.0重量%が好ましい。   The elastomer component in the present invention is composed of either an acrylic elastomer or a thermoplastic elastomer. Specifically, for example, polybutadiene or butadiene-based random copolymer rubber or a copolymer having a hard segment and a soft segment is used. The content of the elastomer component is preferably 0.2 to 5.0% by weight with respect to the total amount of the epoxy resin composition.

次に、本実施の形態のプリント配線板の製造プロセスについて、図2を用いて詳細に説明する。   Next, the manufacturing process of the printed wiring board of this Embodiment is demonstrated in detail using FIG.

まず図2(A)に示すように、絶縁層2の両側にPETフィルム6をラミネート加工によって貼り付ける。   First, as shown in FIG. 2A, a PET film 6 is attached to both sides of the insulating layer 2 by laminating.

続いて、図2(B)に示すように絶縁層2とPETフィルム6の全てを貫通する貫通孔3をレーザー等によって形成する。   Subsequently, as shown in FIG. 2B, a through hole 3 penetrating all of the insulating layer 2 and the PET film 6 is formed by a laser or the like.

次に図2(C)に示すように貫通孔3に導電性ペースト4を充填する。このPETフィルム6は絶縁層2の表面に導電性ペースト4が残存しないようにする役割を果たす。   Next, as shown in FIG. 2C, the through-hole 3 is filled with a conductive paste 4. This PET film 6 serves to prevent the conductive paste 4 from remaining on the surface of the insulating layer 2.

その後、両側のPETフィルム6を剥離し(図2(D))、この状態で絶縁層2の両側から箔状の配線材料7を用意し(図2(E))、積層配置すると図2(F)に示した状態になる。   Thereafter, the PET films 6 on both sides are peeled off (FIG. 2 (D)), and in this state, foil-like wiring material 7 is prepared from both sides of the insulating layer 2 (FIG. 2 (E)). The state shown in F) is obtained.

次に配線材料7を加熱加圧することにより、絶縁層2に接着させる。この加熱加圧工程によって、導電性ペースト4が充填されたビア5は剥離されたPETフィルム6の厚み分が圧縮される。この圧縮によって、導電性ペースト4内の金属フィラーどうしが高密度に接触し、配線材料7と導電性ペースト4との電気的接続が実現されることとなる。本発明において、ビア5は、加熱加圧時においても無機フィラーが流動しないため導電性ペースト4が絶縁層2へ流動しなくなるので、加熱加圧工程においても貫通孔3の形状、すなわちほぼ円筒形状あるいは円錐台形状に近い形状を維持することができる。   Next, the wiring material 7 is bonded to the insulating layer 2 by heating and pressing. By this heating and pressing step, the via 5 filled with the conductive paste 4 is compressed by the thickness of the peeled PET film 6. By this compression, the metal fillers in the conductive paste 4 come into contact with each other at a high density, and electrical connection between the wiring material 7 and the conductive paste 4 is realized. In the present invention, since the conductive paste 4 does not flow to the insulating layer 2 because the inorganic filler does not flow even during heating and pressurization, the via 5 has a shape of the through-hole 3, that is, a substantially cylindrical shape. Alternatively, a shape close to a truncated cone shape can be maintained.

その後、図2(G)に示すように配線材料7をパターニングすることによって両面のプリント配線板1を完成させる。   Thereafter, as shown in FIG. 2G, the printed wiring board 1 on both sides is completed by patterning the wiring material 7.

なお、本発明において、絶縁層2は、着色剤を含有していてもよい。この場合、実装性、光反射性が向上する。   In the present invention, the insulating layer 2 may contain a colorant. In this case, mountability and light reflectivity are improved.

また、絶縁層2の最低溶融粘度は、図3の溶融粘度曲線に示すように、1000〜100000Pa・sが適切である。1000Pa・s未満の場合、樹脂流れが大きくなり、100000Pa・sを超える場合、プリント配線板の多層化における接着不良や配線材料5への埋め込み不良が発生するおそれがあるので不適切である。   Further, the minimum melt viscosity of the insulating layer 2 is suitably 1000 to 100,000 Pa · s as shown in the melt viscosity curve of FIG. If it is less than 1000 Pa · s, the resin flow becomes large, and if it exceeds 100000 Pa · s, there is a possibility that poor adhesion due to multilayering of the printed wiring board or poor embedding in the wiring material 5 may occur.

なお、本発明のプリント配線板において、両面のプリント配線板で説明したが、図4に示すようにこれを複数層積層して多層のプリント配線板を形成しても良く、図5に示すような本発明のプリント配線板の上下に材質の異なる樹脂基材で形成されたプリント配線板9を積層して多層のプリント配線板を形成してもよい。この材質の異なる樹脂基材で形成されたプリント配線板9は、両面基板であっても多層基板であっても良く、また、スルーホール構造や全層IVH構造などの基板構造に特に限定されるものでなく、材質についても特に限定されるものではない。また、図6(A)(B)に示すように、上側と下側に形成するプリント配線板9は異なる形状のものであってもよい。また、本発明のプリント配線板1と、材質の異なるプリント配線板9とを交互に積層して多層のプリント配線板を形成してもよい。   In the printed wiring board of the present invention, the description has been made on the double-sided printed wiring board. However, as shown in FIG. 4, a multilayer printed wiring board may be formed by laminating a plurality of layers as shown in FIG. A multilayer printed wiring board may be formed by laminating printed wiring boards 9 formed of resin base materials of different materials on the top and bottom of the printed wiring board of the present invention. The printed wiring board 9 formed of a resin base material of a different material may be a double-sided board or a multilayer board, and is particularly limited to a board structure such as a through-hole structure or an all-layer IVH structure. The material is not particularly limited. Further, as shown in FIGS. 6A and 6B, the printed wiring boards 9 formed on the upper side and the lower side may have different shapes. Further, a multilayer printed wiring board may be formed by alternately laminating the printed wiring board 1 of the present invention and the printed wiring boards 9 made of different materials.

本発明にかかるプリント配線板は、多ピンの基板間接続が可能で、かつ基板内での配線密度も高めることが可能となるため、モバイル機器の小型、薄型、軽量、高精細、多機能化等を実現するために必要な、半導体の高機能・多ピン化に対応した小型、低背を容易に実現するプリント配線板を提供することが可能となる。   The printed wiring board according to the present invention enables multi-pin connection between boards and increases the wiring density in the board, so that the mobile device is small, thin, lightweight, high definition, and multifunctional. Therefore, it is possible to provide a printed wiring board that can easily realize a small size and a low profile corresponding to high functionality and multi-pin semiconductors necessary for realizing the above.

本発明の実施の形態1におけるプリント配線板の一例を示す断面図Sectional drawing which shows an example of the printed wiring board in Embodiment 1 of this invention 本発明の実施の形態1におけるプリント配線板の製造工程断面図Manufacturing process sectional drawing of the printed wiring board in Embodiment 1 of this invention 本発明の実施の形態1におけるプリント配線板の接続層の溶融粘度を示す図The figure which shows the melt viscosity of the connection layer of the printed wiring board in Embodiment 1 of this invention 本発明の実施の形態1におけるプリント配線板の一例を示す断面図Sectional drawing which shows an example of the printed wiring board in Embodiment 1 of this invention 本発明の実施の形態1におけるプリント配線板の一例を示す断面図Sectional drawing which shows an example of the printed wiring board in Embodiment 1 of this invention 本発明の実施の形態1におけるプリント配線板の一例を示す斜視図The perspective view which shows an example of the printed wiring board in Embodiment 1 of this invention 従来のプリント配線板のビアの形状を示す図The figure which shows the shape of the via of the conventional printed wiring board

符号の説明Explanation of symbols

1 プリント配線板
2 絶縁層
3 貫通孔
4 導電性ペースト
5 ビア
6 PETフィルム
7 配線材料
9 プリント配線板
DESCRIPTION OF SYMBOLS 1 Printed wiring board 2 Insulating layer 3 Through-hole 4 Conductive paste 5 Via 6 PET film 7 Wiring material 9 Printed wiring board

Claims (10)

無機フィラーが熱硬化性樹脂に分散されてなる絶縁層からなり、この絶縁層の所定の位置に貫通孔が形成され、この貫通孔に導電性ペーストが充填されたビアを有するプリント配線板であって、前記ビアは厚み方向に圧縮されているとともに前記貫通孔の形状を維持しながら導通が確保され、かつ前記絶縁層には芯材を含まないことを特徴とするプリント配線板。 The printed wiring board includes an insulating layer in which an inorganic filler is dispersed in a thermosetting resin, and a through hole is formed at a predetermined position of the insulating layer, and the through hole is filled with a conductive paste. The via is compressed in the thickness direction, and electrical conductivity is ensured while maintaining the shape of the through hole, and the insulating layer does not include a core material. 接続層において、熱硬化性樹脂にエラストマー成分が分散されてなる請求項1に記載のプリント配線板。 The printed wiring board according to claim 1, wherein an elastomer component is dispersed in a thermosetting resin in the connection layer. 無機フィラーの粒径は、1〜15μmである請求項1または2に記載のプリント配線板。 The printed wiring board according to claim 1, wherein the inorganic filler has a particle size of 1 to 15 μm. 導電性ペーストの粒径は、1〜20μmである請求項1または2に記載のプリント配線板。 The printed wiring board according to claim 1, wherein the conductive paste has a particle size of 1 to 20 μm. 無機フィラーの平均粒径は、導電性ペーストの平均粒径よりも大きいことを特徴とする、請求項1〜4のいずれか一つに記載のプリント配線板。 The printed wiring board according to claim 1, wherein an average particle size of the inorganic filler is larger than an average particle size of the conductive paste. 無機フィラーの含有率は、70〜90重量%である請求項1または2に記載のプリント配線板。 The printed wiring board according to claim 1 or 2, wherein the content of the inorganic filler is 70 to 90% by weight. 無機フィラーは、シリカ、アルミナ、チタン酸バリウムの内の少なくとも一種以上からなる請求項1または2に記載のプリント配線板。 The printed wiring board according to claim 1 or 2, wherein the inorganic filler comprises at least one of silica, alumina, and barium titanate. 導電性ペーストは、銅、銀、金、パラジウム、錫、およびこれらの合金の内からなる請求項1または2に記載のプリント配線板。 The printed wiring board according to claim 1, wherein the conductive paste is made of copper, silver, gold, palladium, tin, and an alloy thereof. 最低溶融粘度は、1000〜100000Pa・sである請求項1または2に記載のプリント配線板。 The printed wiring board according to claim 1, wherein the minimum melt viscosity is 1000 to 100,000 Pa · s. 絶縁層は着色剤が含有されている請求項1または2に記載のプリント配線板。 The printed wiring board according to claim 1, wherein the insulating layer contains a colorant.
JP2007227736A 2007-09-03 2007-09-03 Printed circuit board Pending JP2009060016A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007227736A JP2009060016A (en) 2007-09-03 2007-09-03 Printed circuit board
PCT/JP2008/001891 WO2009031262A1 (en) 2007-09-03 2008-07-15 Wiring board
US12/514,383 US8253033B2 (en) 2007-09-03 2008-07-15 Circuit board with connection layer with fillet
EP08776850A EP2056655B1 (en) 2007-09-03 2008-07-15 Wiring board
TW097126934A TWI422301B (en) 2007-09-03 2008-07-16 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227736A JP2009060016A (en) 2007-09-03 2007-09-03 Printed circuit board

Publications (1)

Publication Number Publication Date
JP2009060016A true JP2009060016A (en) 2009-03-19

Family

ID=40555461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227736A Pending JP2009060016A (en) 2007-09-03 2007-09-03 Printed circuit board

Country Status (1)

Country Link
JP (1) JP2009060016A (en)

Similar Documents

Publication Publication Date Title
US7642468B2 (en) Multilayer wiring board and fabricating method of the same
US7968803B2 (en) Wiring substrate, wiring material, copper-clad laminate, and method of manufacturing the wiring substrate
EP2227076A1 (en) Multilayer circuit board and production method thereof and communication device
US9693458B2 (en) Printed wiring board, method for manufacturing printed wiring board and package-on-package
US9888569B2 (en) Printed circuit board having buried circuit pattern and method for manufacturing the same
US20120017437A1 (en) Circuitized substrate with conductive paste, electrical assembly including said circuitized substrate and method of making said substrate
TW200904278A (en) Circuitized substrate assembly with internal stacked semiconductor chips, method of making same, electrical assembly utilizing same and information handling system utilizing same
JP2007266196A (en) Multilayer printed-wiring board and manufacturing method thereof
US8785789B2 (en) Printed circuit board and method for manufacturing the same
KR101516072B1 (en) Semiconductor Package and Method of Manufacturing The Same
TWI389279B (en) Printed circuit board structure and fabrication method thereof
JP2009289802A (en) Module having electronic part built-in and production method thereof
KR20090122748A (en) A printed circuit board comprising a high density external circuit pattern and method for manufacturing the same
JPWO2011062252A1 (en) Manufacturing method of component built-in module and component built-in module
JP2010062199A (en) Circuit board
JP2008091603A (en) Buildup wiring board
JP2009060016A (en) Printed circuit board
JP2006339560A (en) Manufacturing method of multilayered flexible printed circuit board
JP2005347414A (en) Adhesive sheet, and double printed board or multilayer printed board using the same
JP2005045228A (en) Circuit board with built-in electronic component and its manufacturing method
JP2015225936A (en) Component built-in board and method of manufacturing the same and mounting body
JP6028256B2 (en) Component built-in substrate and manufacturing method thereof
JP2000183531A (en) Mounting board and mounting structure
JP4389750B2 (en) Manufacturing method of flexible printed wiring board
JP2009081334A (en) Multi-layer printed wiring board, and manufacturing method thereof