JP2009059651A - Silsesquioxane based insulating material - Google Patents

Silsesquioxane based insulating material Download PDF

Info

Publication number
JP2009059651A
JP2009059651A JP2007227644A JP2007227644A JP2009059651A JP 2009059651 A JP2009059651 A JP 2009059651A JP 2007227644 A JP2007227644 A JP 2007227644A JP 2007227644 A JP2007227644 A JP 2007227644A JP 2009059651 A JP2009059651 A JP 2009059651A
Authority
JP
Japan
Prior art keywords
group
silsesquioxane
mmol
solution
polysilsesquioxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007227644A
Other languages
Japanese (ja)
Inventor
Koyo Matsukawa
公洋 松川
Takashi Hamada
崇 濱田
Mitsuru Watanabe
充 渡辺
Kenichi Azuma
賢一 東
Hide Nakamura
秀 中村
Yasunari Kusaka
康成 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Sekisui Chemical Co Ltd
Osaka City
Original Assignee
Japan Science and Technology Agency
Sekisui Chemical Co Ltd
Osaka City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Sekisui Chemical Co Ltd, Osaka City filed Critical Japan Science and Technology Agency
Priority to JP2007227644A priority Critical patent/JP2009059651A/en
Publication of JP2009059651A publication Critical patent/JP2009059651A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silsesquioxane based insulating material capable of forming an insulating film of high dielectric constant, and yet, with surface smoothness hardly damaged. <P>SOLUTION: The material contains polysilsesquioxane with a structure represented by formula (1). In the formula (1), x and y are an integer of any number, showing a composition ratio as in the case of a copolymer, becoming a single polymer in the case of: Za=Zb, that is, x+y. R denotes hydrogen or an alkyl group with the carbon number of 1 to 3, Za denotes a hydrocarbon group and an aromatic hydrocarbon group with the carbon number of 1 to 8, a glycidyl group, a cyano group or a mercapto group, and Zb is a glycidyl group, a cyano group or a mercapto group in case the Za is a hydrocarbon group, and is the same as the Za in case the Za is a glycidyl group, a cyano group or a mercapto group. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば有機TFT(薄膜トランジスタ)のゲート絶縁膜などに用いられる絶縁材料に関し、より詳細には、誘電率の高い絶縁膜を得ることを可能とするシルセスキオキサン系絶縁材料に関する。   The present invention relates to an insulating material used for, for example, a gate insulating film of an organic TFT (thin film transistor), and more particularly to a silsesquioxane-based insulating material capable of obtaining an insulating film having a high dielectric constant.

有機TFTの低電圧駆動を可能とするには、ゲート絶縁膜の誘電率が高いことが強く求められる。従来、有機TFTを構成する絶縁材料として、様々な材料が検討されている。下記の特許文献1には、このような用途に用いられる絶縁材料として、ポリシルセスキオキサンが開示されている。   In order to enable the organic TFT to be driven at a low voltage, it is strongly required that the gate insulating film has a high dielectric constant. Conventionally, various materials have been studied as insulating materials constituting organic TFTs. Patent Document 1 below discloses polysilsesquioxane as an insulating material used for such applications.

ポリシルセスキオキサンからなる絶縁膜の製造に際しては、アルコキシシランと、アルコキシシランの加水分解を促進するための触媒と溶媒とを含む溶液を用意し、加水分解重縮合を進行させて、ポリシルセスキオキサンを含む溶液を得る。しかる後、この溶液を塗工し、焼き付けることにより、ポリシルセスキオキサンからなる絶縁膜を得ることができる。
特開2006−216792号公報
In the production of an insulating film made of polysilsesquioxane, a solution containing alkoxysilane, a catalyst for promoting hydrolysis of alkoxysilane and a solvent is prepared, and hydrolysis polycondensation is allowed to proceed. A solution containing sesquioxane is obtained. Thereafter, this solution is applied and baked to obtain an insulating film made of polysilsesquioxane.
JP 2006-216792 A

従来のポリシルセスキオキサン系絶縁膜の製造に際しては、上記アルコキシシランとして、例えばメチルトリエトキシシランやフェニルトリエトキシシランなどが用いられていた。そのため、得られたポリシルセスキオキサンは、置換基としてメチル基やフェニル基を有していた。   In manufacturing a conventional polysilsesquioxane insulating film, for example, methyltriethoxysilane, phenyltriethoxysilane, or the like has been used as the alkoxysilane. Therefore, the obtained polysilsesquioxane had a methyl group or a phenyl group as a substituent.

ところが、このようなポリシルセスキオキサンからなる絶縁膜は電気的絶縁性には優れているものの、誘電率が低かった。前述したように、有機TFTのゲート絶縁膜では、誘電率の高いことが強く望まれている。従来のポリシルセスキオキサンからなる絶縁膜では、このような要望に応えることができなかった。   However, such an insulating film made of polysilsesquioxane is excellent in electrical insulation, but has a low dielectric constant. As described above, it is strongly desired that the gate insulating film of the organic TFT has a high dielectric constant. A conventional insulating film made of polysilsesquioxane cannot meet such a demand.

従って、上記ポリシルセスキオキサンからなる絶縁膜をゲート絶縁膜として用いた場合、有機TFTの消費電力が大きくならざるを得なかった。   Therefore, when the insulating film made of polysilsesquioxane is used as a gate insulating film, the power consumption of the organic TFT has to be increased.

そこで、ポリシルセスキオキサンに高誘電率の無機酸化物粒子を混合することにより、誘電率を高めることが試みられている。しかしながら、無機酸化物粒子を添加した場合、形成される絶縁膜表面に無機酸化物粒子の存在による凹凸が生じがちであった。そのため、ゲート絶縁膜の表面平滑性が低下し、有機TFTの特性が劣化するという問題があった。   Therefore, attempts have been made to increase the dielectric constant by mixing inorganic oxide particles having a high dielectric constant with polysilsesquioxane. However, when inorganic oxide particles are added, unevenness due to the presence of the inorganic oxide particles tends to occur on the surface of the insulating film to be formed. Therefore, there has been a problem that the surface smoothness of the gate insulating film is lowered and the characteristics of the organic TFT are deteriorated.

本発明の目的は、上述した従来技術の現状に鑑み、高い誘電率の絶縁膜を形成することができ、しかも表面平滑性が損なわれがたい、シルセスキオキサン系絶縁材料を提供することにある。   An object of the present invention is to provide a silsesquioxane-based insulating material that can form an insulating film having a high dielectric constant and that does not impair surface smoothness in view of the above-described state of the prior art. is there.

本発明に係るシルセスキオキサン系絶縁材料は、下記の式(1)で示す構造を有するポリシルセスキオキサンを含むことを特徴とする。   The silsesquioxane-based insulating material according to the present invention includes polysilsesquioxane having a structure represented by the following formula (1).

Figure 2009059651
Figure 2009059651

式(1)において、xとyは任意の整数であり、共重合体である場合の組成比を示し、Za=Zbの場合は単独重合体となるので、x+yとなる。Rは水素または炭素数1〜3のアルキル基を示し、Zaは炭素数1〜8の炭化水素基及び芳香族炭化水素基、グリシジル基、シアノ基またはメルカプト基であり、ZbはZaが炭化水素基である場合、グリシジル基、シアノ基またはメルカプト基であり、Zaがグリシジル基、シアノ基またはメルカプト基である場合、Zaと同じである。   In the formula (1), x and y are arbitrary integers and indicate a composition ratio in the case of a copolymer. When Za = Zb, a homopolymer is formed, and thus x + y. R represents hydrogen or an alkyl group having 1 to 3 carbon atoms, Za represents a hydrocarbon group having 1 to 8 carbon atoms, an aromatic hydrocarbon group, a glycidyl group, a cyano group, or a mercapto group, and Zb represents a hydrocarbon in which Za is a hydrocarbon. When it is a group, it is a glycidyl group, a cyano group or a mercapto group, and when Za is a glycidyl group, a cyano group or a mercapto group, it is the same as Za.

好ましくは、前記Zaが、前記炭化水素基であり、前記Zbがグリシジル基、シアノ基及びメルカプト基から選択された一種の置換基である。Zaが炭化水素基である場合には、最終的に得られる絶縁膜の撥水性が高められることができる。   Preferably, Za is the hydrocarbon group, and Zb is a kind of substituent selected from a glycidyl group, a cyano group, and a mercapto group. In the case where Za is a hydrocarbon group, the water repellency of the finally obtained insulating film can be improved.

本発明に係るシルセスキオキサン系絶縁材料は、上記ポリシルセスキオキサンを溶解する溶媒をさらに含んでいてもよく、その場合には、ポリシルセスキオキサンが溶媒に溶解されたポリシルセスキオキサン溶液を塗工し、加熱することによりシルセスキオキサン系絶縁膜を容易に得ることができる。   The silsesquioxane-based insulating material according to the present invention may further include a solvent that dissolves the polysilsesquioxane, and in that case, the polysilsesquioxane in which the polysilsesquioxane is dissolved in the solvent. A silsesquioxane insulating film can be easily obtained by applying an oxan solution and heating.

また、本発明に係るシルセスキオキサン系絶縁材料は、上記ポリシルセスキオキサンを塗工し、焼き付けることにより得られた絶縁体であってもよい。すなわち、本発明のシルセスキオキサン系絶縁材料とは、塗工・焼き付けにより形成された絶縁膜などの絶縁体だけでなく、このような絶縁膜や絶縁体を得る前の上記特定のポリシルセスキオキサンであってもよく、また、ポリシルセスキオキサンを含む溶液であってもよく、これらを全て含むものとする。   The silsesquioxane insulating material according to the present invention may be an insulator obtained by applying and baking the polysilsesquioxane. That is, the silsesquioxane-based insulating material of the present invention includes not only an insulator such as an insulating film formed by coating and baking, but also the specific polysilene before obtaining such an insulating film or insulator. It may be sesquioxane or a solution containing polysilsesquioxane, and all of these should be included.

以下、本発明の詳細を説明する。   Details of the present invention will be described below.

本発明に係るシルセスキオキサン系絶縁材料は、上述した式(1)で示す構造を有するポリシルセスキオキサンを含む。実際に、上記特定のポリシルセスキオキサンの合成に際しては、下記の反応式Aまたは反応式Bで示すように、アルコキシシランを、酸触媒と、水と非プロトン性溶媒の存在下で加水分解重縮合をする。この合成の結果、ポリシルセスキオキサン系溶液を得ることができる。該ポリシルセスキオキサン溶液を塗工し、焼き付けることにより、シルセスキオキサン系絶縁膜のような絶縁体を得ることができる。上記加水分解重縮合は、50〜70℃程度の温度に溶液を維持することにより進行される。また、焼き付けに際しての温度は、150〜170℃程度の温度であればよく、従って、低温プロセスで、シルセスキオキサン系絶縁膜を得ることができる。   The silsesquioxane-based insulating material according to the present invention includes polysilsesquioxane having a structure represented by the above-described formula (1). Actually, in the synthesis of the specific polysilsesquioxane, as shown in the following reaction formula A or reaction formula B, the alkoxysilane is hydrolyzed in the presence of an acid catalyst, water and an aprotic solvent. Perform polycondensation. As a result of this synthesis, a polysilsesquioxane-based solution can be obtained. An insulator such as a silsesquioxane insulating film can be obtained by applying and baking the polysilsesquioxane solution. The hydrolysis polycondensation proceeds by maintaining the solution at a temperature of about 50 to 70 ° C. Moreover, the temperature at the time of baking should just be about 150-170 degreeC, Therefore, a silsesquioxane type | system | group insulating film can be obtained with a low-temperature process.

Figure 2009059651
Figure 2009059651

Figure 2009059651
Figure 2009059651

上記反応式Aにおいて、左辺のアルコキシシラン中のアルコキシ基ORにおけるRは炭素数1〜3のアルキル基であり、好ましくは、メチル基、エチル基であり、複数のORは同一であってもよく、異なっていてもよい。Zaは、炭素数1〜8の炭化水素基及び芳香族炭化水素基、グリシジル基、シアノ基もしくはメルカプト基またはこれらの一種を含む置換基である。これらの一種を含む置換基とは、グリシジル基、シアノ基またはメルカプト基にさらに炭化水素基が結合した置換基などをいうものとする。例えば、グリシジルプロピル基、グリシジルヘキシル基、シアノメチル基、シアノエチル基、メルカプトメチル基、メルカプトフェニル基などをいうものとする。Zbは、Zaが炭化水素基である場合、グリシジル基、シアノ基もしくはメルカプト基またはこれらの一種を含む置換基であり、Zaがグリシジル基、シアノ基またはメルカプト基である場合には、Zaと同一である。上記Zaとしての炭化水素基としては、特に限定されないが、より具体的には、メチル基、エチル基、プロピル基、ヘキシル基、フェニル基などを挙げることができる。   In the above reaction formula A, R in the alkoxy group OR in the alkoxysilane on the left side is an alkyl group having 1 to 3 carbon atoms, preferably a methyl group or an ethyl group, and a plurality of ORs may be the same. , May be different. Za is a hydrocarbon group having 1 to 8 carbon atoms, an aromatic hydrocarbon group, a glycidyl group, a cyano group, a mercapto group, or a substituent containing one of these. The substituent containing one of these means a substituent in which a hydrocarbon group is further bonded to a glycidyl group, a cyano group, or a mercapto group. For example, a glycidylpropyl group, a glycidylhexyl group, a cyanomethyl group, a cyanoethyl group, a mercaptomethyl group, a mercaptophenyl group, etc. shall be said. Zb is a glycidyl group, a cyano group or a mercapto group or a substituent containing one of these when Za is a hydrocarbon group, and is the same as Za when Za is a glycidyl group, a cyano group or a mercapto group It is. Although it does not specifically limit as said hydrocarbon group as Za, More specifically, a methyl group, an ethyl group, a propyl group, a hexyl group, a phenyl group etc. can be mentioned.

反応式Aの右辺では、上記式(1)の構造式を有する共重合体が得られており、ここでx及びyは、組成比を示す任意の整数である。   On the right side of the reaction formula A, a copolymer having the structural formula of the above formula (1) is obtained, where x and y are arbitrary integers indicating the composition ratio.

上記反応式Bは、上記反応式AにおいてZa=Zbの場合の反応を示す。Za=Zbの場合、反応式Bで示すように、単独重合体が得られ、この場合x+yとなる重合度の単独重合体が得られることになる。   The above reaction formula B shows the reaction in the case of Za = Zb in the above reaction formula A. In the case of Za = Zb, as shown in Reaction Formula B, a homopolymer is obtained. In this case, a homopolymer having a polymerization degree of x + y is obtained.

好ましくは、Zaが炭化水素基であり、Zbがグリシジル基、シアノ基及びメルカプト基から選択された一種の置換基である。Zaが炭化水素基の場合、最終的に得られる絶縁膜の撥水性を高めることができる。   Preferably, Za is a hydrocarbon group, and Zb is a kind of substituent selected from a glycidyl group, a cyano group, and a mercapto group. In the case where Za is a hydrocarbon group, the water repellency of the finally obtained insulating film can be increased.

上記出発原料として用いられるアルコキシシランとしては、上記特定のポリシルセスキオキサンを与える限り特に限定されるものではない。このようなアルコキシシランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、グリシジルトリメトキシシラン、グリシジルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン、シアノエチルトリメトキシシラン、シアノエチルトリエトキシシランなどを挙げることができる。   The alkoxysilane used as the starting material is not particularly limited as long as the specific polysilsesquioxane is given. Examples of such alkoxysilanes include methyltrimethoxysilane, methyltriethoxysilane, glycidyltrimethoxysilane, glycidyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane. Examples include methoxysilane, vinyltriethoxysilane, mercaptopropyltrimethoxysilane, mercaptopropyltriethoxysilane, cyanoethyltrimethoxysilane, and cyanoethyltriethoxysilane.

上記式(1)で示す構造を有するポリシルセスキオキサンにおいて、ZaとZbが同一である場合には、反応式Bで示すように、一種のアルコキシシランが出発原料として用いられる。ZaとZbとが異なる場合には、置換基Za及び置換基Zbを導入するために、反応式Aのように、置換基Zaを有するアルコキシシランと置換基Zbを有するアルコキシシランとが出発原料として用いられる。この点については、後述の様々な特定のポリシルセスキオキサンの合成のための反応式により明らかにする。   In the polysilsesquioxane having the structure represented by the above formula (1), when Za and Zb are the same, a kind of alkoxysilane is used as a starting material as shown in the reaction formula B. When Za and Zb are different, in order to introduce the substituent Za and the substituent Zb, as shown in Reaction Formula A, an alkoxysilane having the substituent Za and an alkoxysilane having the substituent Zb are used as starting materials. Used. This point will be clarified by reaction formulas for the synthesis of various specific polysilsesquioxanes described later.

(酸触媒)
本発明においては、上記アルコキシシランの加水分解及び加水分解重縮合を促進するために酸触媒が用いられる。酸触媒については特に限定されず、無機酸を用いてもよく、有機酸を用いてもよい。無機酸としては、硝酸、塩酸、硫酸などを挙げることができる。有機酸としては、ギ酸、酢酸、蓚酸などを挙げることができる。好ましくは、反応終了後に酸が残ると縮合安定性が悪くなるため、低沸点で揮発性が高くpKaの小さなギ酸が酸触媒として好ましい。
(Acid catalyst)
In the present invention, an acid catalyst is used to promote hydrolysis and hydrolysis polycondensation of the alkoxysilane. It does not specifically limit about an acid catalyst, An inorganic acid may be used and an organic acid may be used. Examples of inorganic acids include nitric acid, hydrochloric acid, sulfuric acid and the like. Examples of the organic acid include formic acid, acetic acid, and succinic acid. Preferably, if acid remains after completion of the reaction, the condensation stability is deteriorated. Formic acid having a low boiling point, high volatility and a small pKa is preferred as the acid catalyst.

上記酸触媒は、後述の焼き付けに際し、焼き付け温度以下の温度で揮発するものであることが必要である。   The acid catalyst needs to volatilize at a temperature not higher than the baking temperature during baking described later.

上記酸触媒の使用量については、十分の触媒作用を発揮し得る限り、特に限定されるわけではないが、上記一種以上のアルコキシシラン1モルに対して、0.1モル以上、より好ましくは、0.3モル以上を配合することが好ましい。また、酸触媒が多すぎると、最終的に得られたシルセスキオキサン系絶縁膜や絶縁体が酸の存在により劣化するおそれがあるので、一種以上のアルコキシシランに対して1モル以下の割合で用いることが望ましい。   The amount of the acid catalyst used is not particularly limited as long as sufficient catalytic action can be exerted, but is preferably 0.1 mol or more, more preferably, 1 mol of the one or more alkoxysilanes. It is preferable to blend 0.3 mol or more. In addition, if there are too many acid catalysts, the finally obtained silsesquioxane insulating film or insulator may be deteriorated by the presence of an acid, so the ratio is 1 mol or less with respect to one or more alkoxysilanes. It is desirable to use in.

(水)
本発明のシルセスキオキサン系絶縁材料を得るには、上記アルコキシシランの加水分解を進行させるために、水を出発原料に添加する必要がある。上記アルコキシシランの加水分解を引き起し得る限り、特に限定されないが、一種以上のアルコキシシラン1モルに対し、2〜6モルの割合で水を添加することが望ましい。2モル未満では、加水分解が十分に進行し難いことがあり、6モルを超えると、加水分解が速く進行しすぎ、加水分解重縮合の進行を妨げるおそれがある。より好ましくは、水は、一種以上のアルコキシシラン1モルに対し、2.5〜4モルの割合で用いることが望ましい。
(water)
In order to obtain the silsesquioxane insulating material of the present invention, it is necessary to add water to the starting material in order to promote hydrolysis of the alkoxysilane. Although it does not specifically limit as long as it can cause the hydrolysis of the said alkoxysilane, It is desirable to add water in the ratio of 2-6 mol with respect to 1 mol of 1 or more types of alkoxysilane. If it is less than 2 moles, hydrolysis may not proceed sufficiently, and if it exceeds 6 moles, hydrolysis may proceed too quickly, possibly hindering the progress of hydrolysis polycondensation. More preferably, water is used in a ratio of 2.5 to 4 moles with respect to 1 mole of one or more alkoxysilanes.

(溶媒)
本発明に係るシルセスキオキサン系絶縁材料において、上記特定の構造のポリシルセスキオキサンが合成するに際しては、上記アルコキシシラン、酸触媒及び水に加えて、適宜の溶媒を添加することにより、加水分解速度を適度に低め、加水分解重縮合を確実に進行させることができる。このような非プロトン性溶媒としては、例えば、トルエン、キシレン、プロピレングリコールモノメチルエーテルアセテート(PGMEA)などを挙げることができる。特に、良好な製膜性を得るためには,高沸点溶媒であるPGMEAを用いることが好ましい。
(solvent)
In the silsesquioxane-based insulating material according to the present invention, when the polysilsesquioxane having the specific structure is synthesized, in addition to the alkoxysilane, the acid catalyst, and water, by adding an appropriate solvent, The hydrolysis rate can be lowered moderately, and the hydrolysis polycondensation can surely proceed. Examples of such aprotic solvents include toluene, xylene, propylene glycol monomethyl ether acetate (PGMEA), and the like. In particular, in order to obtain good film forming properties, it is preferable to use PGMEA which is a high boiling point solvent.

上記溶媒の使用量は、一種以上のアルコキシシランに対し、100〜300重量部の範囲とすることが望ましい。100重量部未満では、加水分解及び加水分解重縮合を適度の反応速度で進行させることが困難となることがあり、300重量部を超えると、減圧・留去の長時間を必要とするおそれがある。   The amount of the solvent used is desirably in the range of 100 to 300 parts by weight with respect to one or more alkoxysilanes. If the amount is less than 100 parts by weight, it may be difficult to cause hydrolysis and hydrolysis polycondensation to proceed at an appropriate reaction rate. If the amount exceeds 300 parts by weight, it may require a long time for reduced pressure and distillation. is there.

(式(1)で示す構造を有する様々なポリシルセスキオキサンの合成)
前述したように、上記特定のポリシルセスキオキサンの合成に際しては、先ず一種または二種のアルコキシシランを、酸触媒、水及び溶媒と混合して溶液を得る。この溶液を0〜50℃の温度に維持することにより、加水分解が進行する。0℃未満では、加水分解が十分に進行し難いことがあり、50℃を超えると加水分解反応が一気に進行し、未反応のアルコキシ基が残存することになる。上記加水分解の時間は、10分〜60分程度が好ましい。10分未満では、十分に加水分解が進行しないことがあり、60分を超えるとそれ以上反応が進まないため、不要な時間となることがある。
(Synthesis of various polysilsesquioxanes having the structure represented by formula (1))
As described above, in synthesizing the specific polysilsesquioxane, first, one or two alkoxysilanes are mixed with an acid catalyst, water, and a solvent to obtain a solution. Hydrolysis proceeds by maintaining this solution at a temperature of 0-50 ° C. If it is less than 0 ° C., the hydrolysis may not proceed sufficiently, and if it exceeds 50 ° C., the hydrolysis reaction proceeds at a stretch and an unreacted alkoxy group remains. The hydrolysis time is preferably about 10 to 60 minutes. If it is less than 10 minutes, the hydrolysis may not proceed sufficiently, and if it exceeds 60 minutes, the reaction does not proceed any further, and therefore it may be unnecessary time.

加水分解工程に続いて、溶液を50〜70℃の温度に維持、加水分解重縮合を進行する。50℃未満では、加水分解重縮合は進行し難いことがあり、70℃を超えると縮合反応が急激に進行し、ゲル化もしくは溶液の着色の原因となることがある。より好ましくは、50〜70℃の温度に加温すればよい。   Subsequent to the hydrolysis step, the solution is maintained at a temperature of 50 to 70 ° C., and hydrolysis polycondensation proceeds. If it is less than 50 ° C., hydrolysis polycondensation may not proceed easily, and if it exceeds 70 ° C., the condensation reaction proceeds rapidly, which may cause gelation or coloration of the solution. More preferably, it may be heated to a temperature of 50 to 70 ° C.

加水分解重縮合の時間は、1〜6時間とすることが望ましく、より好ましくは、2〜3時間である。   The hydrolysis polycondensation time is desirably 1 to 6 hours, and more preferably 2 to 3 hours.

50〜70℃の温度に加温する方法は、適宜の熱源により溶液を加温する方法が挙げられる。   Examples of the method of heating to a temperature of 50 to 70 ° C. include a method of heating the solution with an appropriate heat source.

好ましくは、溶液を減圧し、減圧下で加水分解重縮合を進行させることが望ましい。   Preferably, the solution is decompressed and the hydrolysis polycondensation proceeds under reduced pressure.

上記加水分解重縮合の進行により、本発明の特定の構造を有するポリシルセスキオキサンを含む溶液を得ることができる。上記のようにして得られる上記式(1)で示す構造を有する様々なポリシルセスキオキサンの合成反応を下記の反応式C〜Jで示す。すなわち、反応式C〜Jの右辺で示す各ポリシルセスキオキサンは、置換基としてグリシジル基、メルカプト基またはシアノ基を有する。   As the hydrolysis polycondensation proceeds, a solution containing polysilsesquioxane having a specific structure of the present invention can be obtained. Synthesis reactions of various polysilsesquioxanes having the structure represented by the above formula (1) obtained as described above are represented by the following reaction formulas C to J. That is, each polysilsesquioxane shown on the right side of Reaction Formulas C to J has a glycidyl group, a mercapto group, or a cyano group as a substituent.

この場合、反応式Cで示すように、グリシジル基を有する一種のアルコキシシランを重縮合してポリシルセスキオキサンを行ってもよい。また、反応式Dで示すように、グリシジル基を有しないメチルトリメトキシシランとグリシジル基を有するトリメトキシシランとを重縮合し、メチル基が置換基としてケイ素に結合している骨格と、グリシジル基がケイ素に置換基として結合されている骨格とを含む共重縮合体であってもよい。すなわち、得られるポリシルセスキオキサンの構造によって、前述したように、一種のアルコキシシランのみが用いられてもよく、置換基Zaを有しするアルコキシシランと置換基Zbを有するアルコキシシランとを加水分解共重縮合してもよい。   In this case, as shown in Reaction Formula C, polysilsesquioxane may be performed by polycondensation of a kind of alkoxysilane having a glycidyl group. Further, as shown in Reaction Formula D, a skeleton in which methyltrimethoxysilane having no glycidyl group and trimethoxysilane having a glycidyl group are polycondensed and the methyl group is bonded to silicon as a substituent, and a glycidyl group May be a copolycondensate containing a skeleton bonded to silicon as a substituent. That is, depending on the structure of the resulting polysilsesquioxane, only one kind of alkoxysilane may be used as described above, and the alkoxysilane having the substituent Za and the alkoxysilane having the substituent Zb are hydrolyzed. Decomposition copolycondensation may be performed.

Figure 2009059651
Figure 2009059651

Figure 2009059651
Figure 2009059651

Figure 2009059651
Figure 2009059651

Figure 2009059651
Figure 2009059651

Figure 2009059651
Figure 2009059651

Figure 2009059651
Figure 2009059651

Figure 2009059651
Figure 2009059651

Figure 2009059651
Figure 2009059651

(用途)
式(1)で示す構造を有する上記特定のポリシルセスキオキサン溶液を塗工し、焼き付けることにより、シルセスキオキサン系絶縁膜を含む様々な絶縁体を得ることができる。このようなシルセスキオキサン系絶縁膜を含む絶縁体は、絶縁抵抗が高いだけでなく、高い誘電率を示す。
(Use)
Various insulators including a silsesquioxane insulating film can be obtained by applying and baking the specific polysilsesquioxane solution having the structure represented by the formula (1). An insulator including such a silsesquioxane insulating film has not only high insulation resistance but also high dielectric constant.

従って、本発明のシルセスキオキサン系絶縁材料しての上記絶縁膜や絶縁体は、例えば高誘電率が求められる有機TFTのゲート絶縁膜などに好適に用いることができる。また、高い誘電率及び高い絶縁抵抗が求められる限り、上記有機TFTゲート絶縁膜だけでなく、様々な半導体装置の絶縁膜や半導体装置以外のデバイスの絶縁材料として好適に用いられ得る。   Therefore, the above-described insulating film or insulator as the silsesquioxane-based insulating material of the present invention can be suitably used, for example, as a gate insulating film of an organic TFT requiring a high dielectric constant. Moreover, as long as a high dielectric constant and a high insulation resistance are required, it can be suitably used as an insulating material for not only the organic TFT gate insulating film but also various semiconductor devices and devices other than the semiconductor device.

本発明に係るシルセスキオキサン系絶縁材料は、上記式(1)で示す構造を有する特定のポリシルセスキオキサンを含むため、ゾルゲル法を用いて低温プロセスで絶縁膜や絶縁体を形成することができ、しかも得られた絶縁膜や絶縁体の絶縁抵抗が十分に高いだけでなく、誘電率も高められる。よって、有機TFTなどの電気的絶縁性に優れているだけでなく、誘電率が高いことが求められる用途に最適な絶縁材料を提供することが可能となる。   Since the silsesquioxane-based insulating material according to the present invention includes a specific polysilsesquioxane having a structure represented by the above formula (1), an insulating film or an insulator is formed by a low-temperature process using a sol-gel method. In addition, the insulation resistance of the obtained insulating film or insulator is not only sufficiently high, but also the dielectric constant is increased. Therefore, it is possible to provide an insulating material that is not only excellent in electrical insulation, such as an organic TFT, but also optimal for applications that require a high dielectric constant.

また、本発明によるシルセスキオキサン系絶縁材料の誘電率が高いため、誘電率を高めるために無機酸化物粒子を配合する必要がない。従って、得られる絶縁膜や絶縁体の表面の平滑性も損なわれ難い。   In addition, since the silsesquioxane insulating material according to the present invention has a high dielectric constant, it is not necessary to add inorganic oxide particles to increase the dielectric constant. Accordingly, the smoothness of the surface of the obtained insulating film or insulator is hardly damaged.

加えて、170℃以下の比較的低い温度で焼き付けることができるので、すなわち低温プロセスで絶縁膜や絶縁体を形成することができるので、高温で劣化しやすいポリイミドなどからなるフレキシブル基板上に、本発明のシルセスキオキサン系絶縁材料からなる絶縁膜や絶縁体をフレキシブル基板を劣化させることなく形成することができる。よって、高温処理により劣化しやすい材料表面に絶縁膜や絶縁体を形成する用途に最適な絶縁材料を提供することも可能となる。   In addition, since it can be baked at a relatively low temperature of 170 ° C. or lower, that is, an insulating film or an insulator can be formed by a low-temperature process, the present invention is applied to a flexible substrate made of polyimide or the like that easily deteriorates at a high temperature. An insulating film or an insulator made of the silsesquioxane insulating material of the invention can be formed without degrading the flexible substrate. Therefore, it is also possible to provide an insulating material that is most suitable for an application in which an insulating film or an insulator is formed on the surface of a material that is easily deteriorated by high-temperature treatment.

以下、図面を参照しつつ、本発明の具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。   Hereinafter, the present invention will be clarified by giving specific examples and comparative examples of the present invention with reference to the drawings.

[実験例I]
(比較例1)
100mLのフラスコに、メチルトリメトキシシラン10.0g(73mモル)と、プロピレングリコールモノメチルエーテル(PGMEA)10gとを投入し、室温で撹拌し、溶液を得た。この溶液に、触媒としてギ酸1.02g(22mモル)及び蒸留水3.97g(220mモル)を加え、室温で30分間維持し、加水分解を行った。しかる後、加水分解後の溶液を、70℃の温度に1時間維持し、加水分解重縮合を進行させ、さらに200mmHgの圧力下に維持し、副生したアルコールを留去しつつ、さらに2時間加水分解重縮合を行った。このようにして、下記の反応式Kで示すように、反応式Kの右辺に記載のポリシルセスキオキサンを合成し、該ポリシルセスキオキサンがPGMEAに溶解した溶液を得た。
[Experimental Example I]
(Comparative Example 1)
In a 100 mL flask, 10.0 g (73 mmol) of methyltrimethoxysilane and 10 g of propylene glycol monomethyl ether (PGMEA) were added and stirred at room temperature to obtain a solution. To this solution, 1.02 g (22 mmol) of formic acid and 3.97 g (220 mmol) of distilled water were added as catalysts, and the mixture was maintained at room temperature for 30 minutes for hydrolysis. Thereafter, the hydrolyzed solution is maintained at a temperature of 70 ° C. for 1 hour to proceed with hydrolysis polycondensation, and further maintained at a pressure of 200 mmHg, while distilling off the by-produced alcohol and further for 2 hours. Hydrolysis polycondensation was performed. Thus, as shown by the following reaction formula K, the polysilsesquioxane described in the right side of the reaction formula K was synthesized, and a solution in which the polysilsesquioxane was dissolved in PGMEA was obtained.

Figure 2009059651
Figure 2009059651

(実施例1)
100mLのフラスコに、3−グリシドキシプロピルトリメトキシシラン3.03g(13mモル)と、メチルトリメトキシシラン7.01g(51mモル)と、プロピレングリコールモノメチルエーテル(PGMEA)10gとを投入し、室温で撹拌し、溶液を得た。この溶液に、触媒としてギ酸0.89g(19mモル)及び蒸留水3.47g(193mモル)を添加し、室温で30分間維持し、加水分解を行った。加水分解後の溶液を70℃で1時間維持し、加水分解重縮合を進行させた。さらに、200mmHgの圧力下で2時間維持し、副生したアルコールを留去し、加水分解重縮合を進行させた。このようにして、前述した反応式Dに従って、ポリ(メチル−co−3−グリシドキシプロピル)シルセスキオキサンを合成し、該ポリ(メチル−co−3−グリシドキシプロピル)シルセスキオキサンのPGMEA溶液を得た。
(Example 1)
A 100 mL flask was charged with 3.03 g (13 mmol) of 3-glycidoxypropyltrimethoxysilane, 7.01 g (51 mmol) of methyltrimethoxysilane, and 10 g of propylene glycol monomethyl ether (PGMEA) at room temperature. To obtain a solution. To this solution, 0.89 g (19 mmol) of formic acid and 3.47 g (193 mmol) of distilled water were added as catalysts and maintained at room temperature for 30 minutes for hydrolysis. The hydrolyzed solution was maintained at 70 ° C. for 1 hour to allow hydrolysis polycondensation to proceed. Furthermore, it maintained for 2 hours under the pressure of 200 mmHg, alcohol byproduced was distilled off, and hydrolysis polycondensation was advanced. In this way, poly (methyl-co-3-glycidoxypropyl) silsesquioxane was synthesized according to the above-mentioned reaction formula D, and the poly (methyl-co-3-glycidoxypropyl) silsesquioxane was synthesized. Sun's PGMEA solution was obtained.

(実施例2)
出発原料として、3−グリシドキシプロピルトリメトキシシラン8.71g(37mモル)と、メチルトリメトキシシラン5.02g(37mモル)とを用い、PGMEAの添加量を14gに変更し、触媒としてのギ酸の添加量を0.88g(19mモル)及び蒸留水の添加量3.47g(193mモル)に変更したことを除いては、実施例1と同様にして、ポリ(メチル−co−3−グリシドキシプロピル)シルセスキオキサンのPGMEA溶液を得た。
(Example 2)
As starting materials, 3-glycidoxypropyltrimethoxysilane (8.71 g, 37 mmol) and methyltrimethoxysilane (5.02 g, 37 mmol) were used, and the amount of PGMEA added was changed to 14 g. In the same manner as in Example 1 except that the amount of formic acid added was changed to 0.88 g (19 mmol) and the amount of distilled water added was 3.47 g (193 mmol), poly (methyl-co-3- A PGMEA solution of glycidoxypropyl) silsesquioxane was obtained.

(実施例3)
出発原料として、3−グリシドキシプロピルトリメトキシシランを12.2g(51mモル)と、メチルトリメトキシシラン1.75g(13mモル)とを用い、PGMEAの添加量を14gに変更し、触媒としてのギ酸の添加量を1.03g(22mモル)及び蒸留水の添加量3.98g(221mモル)に変更したことを除いては、実施例1と同様にして、ポリ(メチル−co−3−グリシドキシプロピル)シルセスキオキサンのPGMEA溶液を得た。
(Example 3)
As starting materials, 12.2 g (51 mmol) of 3-glycidoxypropyltrimethoxysilane and 1.75 g (13 mmol) of methyltrimethoxysilane were used, and the addition amount of PGMEA was changed to 14 g. Poly (methyl-co-3) in the same manner as in Example 1 except that the amount of formic acid added was changed to 1.03 g (22 mmol) and the amount of distilled water added was 3.98 g (221 mmol). -Glycidoxypropyl) silsesquioxane in PGMEA solution was obtained.

(実施例4)
100mLのフラスコに3−グリシドキシプロピルトリメトキシシラン5.02g(21mモル)と、トルエン5gとを投入し、室温で撹拌し、3−グリシドキシプロピルトリメトキシシランのトルエン溶液を得た。この溶液に、触媒としてギ酸0.31g(7mモル)と、蒸留水1.15g(64mモル)とを添加し、室温で30分間維持し、加水分解を行った。しかる後、加水分解後の溶液を70℃に1時間維持し、加水分解重縮合を進行させ、さらに、70mmHgの圧力下に2時間維持し、副生したメタノール及びトルエンを留去し、加水分解重縮合を行い、その後、PGMEAに溶解させた。このようにして、前述の反応式Cに従ってポリ(3−グリシドキシプロピル)シルセスキオキサンのPGMEA溶液を得た。
Example 4
To a 100 mL flask, 5.02 g (21 mmol) of 3-glycidoxypropyltrimethoxysilane and 5 g of toluene were added and stirred at room temperature to obtain a toluene solution of 3-glycidoxypropyltrimethoxysilane. To this solution, 0.31 g (7 mmol) of formic acid and 1.15 g (64 mmol) of distilled water were added as catalysts and maintained at room temperature for 30 minutes for hydrolysis. Thereafter, the hydrolyzed solution is maintained at 70 ° C. for 1 hour to proceed with hydrolysis polycondensation, and further maintained under a pressure of 70 mmHg for 2 hours. Distilling off by-produced methanol and toluene, hydrolysis is performed. Polycondensation was performed and then dissolved in PGMEA. In this way, a PGMEA solution of poly (3-glycidoxypropyl) silsesquioxane was obtained according to the above reaction formula C.

上記のようにして、後述の表1に示す比較例1及び実施例1〜4の各シルセスキオキサン系絶縁材料を得た。   As described above, each silsesquioxane-based insulating material of Comparative Example 1 and Examples 1 to 4 shown in Table 1 described later was obtained.

[実験例II]
(実施例5)
100mLのフラスコに3−グリシドキシプロピルトリメトキシシラン5.01g(21mモル)と、フェニルトリメトキシシラン4.22g(21mモル)と、溶媒としてのトルエン9.3gとを投入し、室温で撹拌し、アルコキシシランのトルエン溶液を得た。この溶液に、触媒としてギ酸0.59g(13mモル)及び蒸留水2.30g(128mモル)を加え、室温で30分間維持し、加水分解を行った。しかる後、70℃の温度に溶液を1時間維持し、加水分解重縮合を進行させ、さらに、70mmHgの圧力下に2時間維持することにより、副生したアルコール及びトルエンを留去しつつ加水分解重縮合をさらに進行させた。その後、PGMEAに溶解させた。このようにして、前述した反応式Eに示す反応に従って、ポリ(フェニル−co−3−グリシドキシプロピル)シルセスキオキサンのトルエン溶液を得た。
[Experimental Example II]
(Example 5)
A 100 mL flask was charged with 5.01 g (21 mmol) of 3-glycidoxypropyltrimethoxysilane, 4.22 g (21 mmol) of phenyltrimethoxysilane, and 9.3 g of toluene as a solvent, and stirred at room temperature. Thus, a toluene solution of alkoxysilane was obtained. To this solution, 0.59 g (13 mmol) of formic acid and 2.30 g (128 mmol) of distilled water were added as catalysts, and the mixture was maintained at room temperature for 30 minutes for hydrolysis. Thereafter, the solution is maintained at a temperature of 70 ° C. for 1 hour to proceed with hydrolysis polycondensation, and further maintained under a pressure of 70 mmHg for 2 hours to distill off by-produced alcohol and toluene while distilling off by-products. The polycondensation proceeded further. Thereafter, it was dissolved in PGMEA. In this manner, a toluene solution of poly (phenyl-co-3-glycidoxypropyl) silsesquioxane was obtained according to the reaction shown in Reaction Formula E described above.

(実施例6)
フェニルトリメトキシシラン4.22gに代えて、ヘキシルトリメトキシシラン4.42g(21mモル)を用いたことを除いたは、実施例5と同様にして、前述した反応式Fに従って、ポリ(ヘキシル−co−3−グリシドキシプロピル)シルセスキオキサンのトルエン溶液を得た。上記のようにして、後述の表2に示す実施例5及び実施例6のシルセスキオキサン系絶縁材料を得た。
(Example 6)
According to Reaction Formula F described above, except that 4.42 g (21 mmol) of hexyltrimethoxysilane was used instead of 4.22 g of phenyltrimethoxysilane, poly (hexyl- A toluene solution of (co-3-glycidoxypropyl) silsesquioxane was obtained. As described above, silsesquioxane-based insulating materials of Examples 5 and 6 shown in Table 2 described later were obtained.

なお、下記の表2では実施例5及び実施例6だけでなく、表1に記載の実施例2についての結果を再度記載した。これは、実施例5,6と実施例2の対比を容易とするためである。   In Table 2 below, not only Example 5 and Example 6 but also the results for Example 2 described in Table 1 are described again. This is to facilitate comparison between the fifth and sixth embodiments and the second embodiment.

[実験例III]
(比較例2)
100mLフラスコにトリエトキシシラン4.12g(25mモル)と、メチルトリメトキシシラン7.02g(51mモル)と、PGMEA12gとを投入し、室温で撹拌し、アルコキシシランのPGMEA溶液を得た。この溶液に、触媒としてギ酸1.16g(25mモル)と、蒸留水4.51g(250mモル)とを添加し、室温で30分間維持し、加水分解を行った。しかる後、加水分解後に、溶液を50℃の温度に1時間維持し、加水分解重縮合を進行させ、さらに、150mmHgの圧力下に2時間維持し、副生したアルコールを留去しつつ、さらに加水分解重縮合を進行させた。このようにして、下記の反応式Lに示すように、ポリ(メチル−水素)シルセスキオキサンのPGMEA溶液を得た。
[Experimental Example III]
(Comparative Example 2)
A 100 mL flask was charged with 4.12 g (25 mmol) of triethoxysilane, 7.02 g (51 mmol) of methyltrimethoxysilane, and 12 g of PGMEA, and stirred at room temperature to obtain a PGMEA solution of alkoxysilane. To this solution, 1.16 g (25 mmol) of formic acid and 4.51 g (250 mmol) of distilled water were added as catalysts and maintained at room temperature for 30 minutes for hydrolysis. Thereafter, after hydrolysis, the solution is maintained at a temperature of 50 ° C. for 1 hour to proceed with hydrolysis polycondensation, and further maintained under a pressure of 150 mmHg for 2 hours to further distill off the by-produced alcohol. Hydrolysis polycondensation was allowed to proceed. Thus, as shown in the following reaction formula L, a PGMEA solution of poly (methyl-hydrogen) silsesquioxane was obtained.

Figure 2009059651
Figure 2009059651

(比較例3)
100mLフラスコに、フェニルトリメトキシシラン10.0g(51mモル)と、トルエン10gとを投入し、室温で撹拌し、フェニルトリメトキシシランのトルエン溶液を得た。この溶液に、触媒としてギ酸0.69g(15mモル)及び蒸留水2.73g(151mモル)を加え、室温で30分間維持し、加水分解を行った。しかる後、70℃にこの溶液を1時間維持し、加水分解重縮合を進行させ、さらに、70mmHgの圧力下に溶液を2時間維持することにより、副生したメタノール及びトルエンを留去しつつ、さらに加水分解重縮合を行った。このようにして、下記の反応式Mで示すように、ポリフェニルシルセスキオキサンを合成した。
(Comparative Example 3)
A 100 mL flask was charged with 10.0 g (51 mmol) of phenyltrimethoxysilane and 10 g of toluene, and stirred at room temperature to obtain a toluene solution of phenyltrimethoxysilane. To this solution, 0.69 g (15 mmol) of formic acid and 2.73 g (151 mmol) of distilled water were added as catalysts, and the mixture was maintained at room temperature for 30 minutes for hydrolysis. Thereafter, this solution is maintained at 70 ° C. for 1 hour to proceed with hydrolytic polycondensation, and further, by maintaining the solution for 2 hours under a pressure of 70 mmHg, while distilling off by-produced methanol and toluene, Furthermore, hydrolysis polycondensation was performed. In this way, polyphenylsilsesquioxane was synthesized as shown in the following reaction formula M.

Figure 2009059651
Figure 2009059651

(比較例4)
フェニルトリメトキシシランに代えて、ビニルトリメトキシシラン10.0g(53mモル)を用いたこと、ギ酸の添加量を0.75g(16mモル)及び蒸留水の添加量2.84g(158mモル)としたことを除いては、比較例3と同様にして、下記の反応式Nに従って、ポリビニルシルセスキオキサンを合成した。
(Comparative Example 4)
Instead of phenyltrimethoxysilane, 10.0 g (53 mmol) of vinyltrimethoxysilane was used, the amount of formic acid added was 0.75 g (16 mmol), and the amount of distilled water added was 2.84 g (158 mmol). Except for this, polyvinyl silsesquioxane was synthesized according to the following reaction formula N in the same manner as in Comparative Example 3.

Figure 2009059651
Figure 2009059651

(実施例7)
100mLのフラスコに、メルカプトプロピルトリメトキシシラン10.0g(51mモル)と、PGMEA10gとを投入し、室温で撹拌し、メルカプトプロピルトリメトキシシランのPGMEA溶液を得た。この溶液に、触媒とて、ギ酸0.71g(15mモル)及び蒸留水2.75g(153mモル)を添加し、室温で30分間溶液を維持し、加水分解を行った。しかる後、溶液70℃の温度に1時間維持し、加水分解重縮合を進行させて、さらに、200mmHgの圧力下に2時間維持することにより、副生したメタノールを留去しつつ、さらに加水分解重縮合を行った。このようにして、前述した反応式Gに従って、ポリメルカプトプロピルシルセスキオキサンのPGMEA溶液を得た。
(Example 7)
Into a 100 mL flask, 10.0 g (51 mmol) of mercaptopropyltrimethoxysilane and 10 g of PGMEA were added and stirred at room temperature to obtain a PGMEA solution of mercaptopropyltrimethoxysilane. To this solution, 0.71 g (15 mmol) of formic acid and 2.75 g (153 mmol) of distilled water were added as a catalyst, and the solution was maintained at room temperature for 30 minutes for hydrolysis. Thereafter, the solution is maintained at a temperature of 70 ° C. for 1 hour, the hydrolysis polycondensation proceeds, and further maintained under a pressure of 200 mmHg for 2 hours, thereby further distilling off the by-produced methanol and further hydrolysis. Polycondensation was performed. In this way, a PGMEA solution of polymercaptopropylsilsesquioxane was obtained according to the reaction formula G described above.

(実施例8)
100mLのフラスコに、2−シアノエチルトリエトキシシラン2.01g(9.3mモル)と、メチルトリメトキシシラン1.27g(9.3mモル)と、PGMEA3.3gとを投入し、室温で撹拌し、アルコキシシラン溶液を得た。この溶液に、触媒とて、ギ酸0.27g(5.8mモル)及び蒸留水1.01g(56mモル)を添加し、溶液を室温で30分間溶液を維持し、加水分解を行った。しかる後、溶液を70℃の温度に1時間維持し、加水分解重縮合を進行させて、さらに、200mmHgの圧力下に2時間維持することにより、副生したアルコールを留去しつつ、さらに加水分解重縮合を行った。このようにして、前述した反応式Hポリ(メチル−co−2−シアノエチル)シルセスキオキサンのPGMEA溶液を得た。
(Example 8)
A 100 mL flask was charged with 2.01 g (9.3 mmol) of 2-cyanoethyltriethoxysilane, 1.27 g (9.3 mmol) of methyltrimethoxysilane, and 3.3 g of PGMEA, and stirred at room temperature. An alkoxysilane solution was obtained. To this solution, 0.27 g (5.8 mmol) of formic acid and 1.01 g (56 mmol) of distilled water were added as a catalyst, and the solution was kept at room temperature for 30 minutes for hydrolysis. Thereafter, the solution is maintained at a temperature of 70 ° C. for 1 hour to proceed with hydrolysis polycondensation, and further maintained under a pressure of 200 mmHg for 2 hours, thereby distilling off the by-produced alcohol and further adding water. Decomposition polycondensation was performed. In this way, a PGMEA solution of the above-described reaction formula H poly (methyl-co-2-cyanoethyl) silsesquioxane was obtained.

(実施例9)
2−シアノエチルトリエトキシシランの配合量を2.00g(9.2mモル)としたこと、メチルトリメトキシシランに代えてフェニルトリメトキシシラン1.85g(9.3mモル)を用いたこと、溶媒としてPGMEAに代えてトルエン3.9gを用いたことを除いては、実施例8と同様にして、前述した反応式Iに従って、ポリ(フェニル−co−2−シアノエチル)シルセスキオキサンのPGMEA溶液を得た。
Example 9
The amount of 2-cyanoethyltriethoxysilane was 2.00 g (9.2 mmol), 1.85 g (9.3 mmol) of phenyltrimethoxysilane was used instead of methyltrimethoxysilane, and the solvent Except that 3.9 g of toluene was used instead of PGMEA, a PGMEA solution of poly (phenyl-co-2-cyanoethyl) silsesquioxane was prepared according to Reaction Formula I described above in the same manner as in Example 8. Obtained.

(実施例10)
2−シアノエチルトリエトキシシランの配合量を5.13g(236mモル)としたこと、メチルトリメトキシシランに代えてヘキシルトリメトキシシラン4.87g(236mモル)を用いたこと、溶媒としてPGMEAに代えてトルエン10gを用いたこと、触媒としてのギ酸の配合量を0.65g(5.8mモル)、蒸留水の添加量を2.55g(142mモル)としたことを除いては、実施例8と同様にして、前述した反応式Jに従ってポリ(ヘキシル−co−2−シアノエチル)シルセスキオキサンのPGMEA溶液を得た。
(Example 10)
The blending amount of 2-cyanoethyltriethoxysilane was 5.13 g (236 mmol), 4.87 g (236 mmol) of hexyltrimethoxysilane was used instead of methyltrimethoxysilane, and PGMEA was used as a solvent. Except for using 10 g of toluene, adding 0.65 g (5.8 mmol) of formic acid as a catalyst, and adding 2.55 g (142 mmol) of distilled water, Example 8 and Similarly, a PGMEA solution of poly (hexyl-co-2-cyanoethyl) silsesquioxane was obtained according to Reaction Formula J described above.

(実施例11)
2−シアノエチルトリエトキシシランの配合量を4.00g(18.4mモル)としたこと、メチルトリメトキシシランの配合量を0.63g(4.6mモル)としたこと、PGMEAの配合量を4.6gとしたこと、ギ酸の配合量0.32g(7.0mモル)としたこと、蒸留水の配合量を1.24g(69mモル)としたことを除いては、実施例8と同様にして、反応式Hに従ってポリ(メチル−co−2−シアノエチル)シルセスキオキサンのPGMEA溶液を得た。
(Example 11)
The blending amount of 2-cyanoethyltriethoxysilane was 4.00 g (18.4 mmol), the blending amount of methyltrimethoxysilane was 0.63 g (4.6 mmol), and the blending amount of PGMEA was 4 .6 g, the amount of formic acid was 0.32 g (7.0 mmol), and the amount of distilled water was 1.24 g (69 mmol). In accordance with Reaction Formula H, a PGMEA solution of poly (methyl-co-2-cyanoethyl) silsesquioxane was obtained.

(実施例12)
2−シアノエチルトリエトキシシランの配合量1.01g(4.6mモル)としたこと、メチルトリメトキシシランの配合量を2.53g(18.6mモル)としたこと、PGMEAの添加量3.5gとしたこと、蒸留水の配合量1.25g(70mモル)としたことを除いては、ギ酸の配合量を0.32g(7.0mモル)及び蒸留水の配合量1.25g(70mモル)としたことを除いては、反応式Hに従って実施例8と同様にして、ポリ(メチル−co−2−シアノエチル)シルセスキオキサンのPGMEAの溶液を得た。
Example 12
The amount of 2-cyanoethyltriethoxysilane was 1.01 g (4.6 mmol), the amount of methyltrimethoxysilane was 2.53 g (18.6 mmol), and the amount of PGMEA added was 3.5 g. Except that the blending amount of distilled water is 1.25 g (70 mmol), the blending amount of formic acid is 0.32 g (7.0 mmol) and the blending amount of distilled water is 1.25 g (70 mmol). Except for the above, a PGMEA solution of poly (methyl-co-2-cyanoethyl) silsesquioxane was obtained in the same manner as in Example 8 according to Reaction Formula H.

上記のようにして、下記の表3に示す比較例2〜4,実施例7〜12に記載の各シルセスキオキサン系絶縁材料を得た。   As described above, each silsesquioxane-based insulating material described in Comparative Examples 2 to 4 and Examples 7 to 12 shown in Table 3 below was obtained.

(実施例及び比較例の評価)
スライドガラスの上面に下部電極としてアルミニウムを蒸着した。次に、上記下部電極が形成されている面の上面に、比較例または実施例のシルセスキオキサン系絶縁材料としてのポリシルセスキオキサン溶液をスピンコートし、150℃の温度で1時間焼き付け、厚み200〜800nmのシルセスキオキサン系絶縁材料を形成した。このシルセスキオキサン系絶縁膜の上面に、上部電極として、アルミニウムを蒸着した。このようにして、アルミニウムからなる上部電極及び下部電極にシルセスキオキサン系絶縁膜が積層された積層体を得た。上記積層体サンプルについて、上部電極と下部電極との間のシルセスキオキサン系絶縁膜の誘電率を、インピーダンスアナライザーを用いて測定した。100mVの電圧で、10mHzから1MHzの周波数範囲で誘電率をインピーダンスアナライザーにより求めた。式(1)は誘電率を求めた式であり、εは真空の誘電率であり、8.85×1012である。
(Evaluation of Examples and Comparative Examples)
Aluminum was deposited on the upper surface of the slide glass as a lower electrode. Next, a polysilsesquioxane solution as a silsesquioxane insulating material of a comparative example or an example is spin-coated on the upper surface of the surface on which the lower electrode is formed, and baked at a temperature of 150 ° C. for 1 hour. A silsesquioxane insulating material having a thickness of 200 to 800 nm was formed. Aluminum was deposited as an upper electrode on the upper surface of the silsesquioxane insulating film. Thus, the laminated body by which the silsesquioxane type insulating film was laminated | stacked on the upper electrode and lower electrode which consist of aluminum was obtained. About the said laminated body sample, the dielectric constant of the silsesquioxane type insulation film between an upper electrode and a lower electrode was measured using the impedance analyzer. The dielectric constant was determined with an impedance analyzer in the frequency range of 10 mHz to 1 MHz at a voltage of 100 mV. Expression (1) is an expression for obtaining a dielectric constant, and ε 0 is a vacuum dielectric constant, which is 8.85 × 10 12 .

ε=Cd/εS………(1)
なお、下記の表1及び表2では、上記絶縁膜に対する水の接触角を5回測定し、その平均により算出した結果を合わせて示す。この接触角が大きいほど撥水性が高いことを示す。
ε = Cd / ε 0 S (1)
In Tables 1 and 2 below, the contact angle of water with respect to the insulating film is measured five times, and the results calculated by the average are also shown. A larger contact angle indicates higher water repellency.

実施例及び比較例のポリシルセスキオキサンについて、ゲルパーミエーションクロマトグラフ(GPC)を用いて重量平均分子量(Mw)および分散比(Mw/Mn)を測定した。Mnは数平均分子量を表す。   About the polysilsesquioxane of the Example and the comparative example, the weight average molecular weight (Mw) and dispersion ratio (Mw / Mn) were measured using the gel permeation chromatograph (GPC). Mn represents a number average molecular weight.

結果を表1〜表3に示す。   The results are shown in Tables 1 to 3.

また、上記インピーダンスアナライザーで求められた誘電率の周波数依存性を、図1〜図6に示す。図1及び図2には、比較例1及び実施例1〜4で得られた絶縁膜における誘電率の周波数依存性を示す図であり、図1では、0.01〜10Hzの範囲での誘電率依存性が示されており、図2では、100〜10Hzの範囲での誘電率依存性が示されている。 Moreover, the frequency dependence of the dielectric constant calculated | required with the said impedance analyzer is shown in FIGS. 1 and FIG. 2 are diagrams showing the frequency dependence of the dielectric constant in the insulating films obtained in Comparative Example 1 and Examples 1 to 4, and in FIG. 1, in the range of 0.01 to 10 5 Hz. In FIG. 2, the dielectric constant dependency in the range of 100 to 10 5 Hz is shown.

図1及び図2から明らかなように、実施例1〜4では、比較例1に比べて、誘電率が増加している。図2から明らかなように、実施例1〜3では、実用的な周波数範囲である100〜10Hzの範囲内で誘電率がほぼ一定であるこがわかる。図3及び図4は、実施例2及び実施例5における上記誘電率の周波数依存性を示す図であり、図3では、0.01〜10Hzの範囲の結果が、図4では、100〜10Hzの結果が示されている。実施例2に比べて実施例5のほうが、広い周波数範囲で誘電率がほぼ一定であることがわかる。もっとも、図4から明らかなように、実用的な周波数範囲にある100〜10Hzの範囲では、実施例2及び実施例5のいずれにおいても誘電率がほぼ一定であることがわかる。 As is clear from FIGS. 1 and 2, in Examples 1 to 4, the dielectric constant is increased as compared with Comparative Example 1. As can be seen from FIG. 2, in Examples 1 to 3, the dielectric constant is substantially constant within a practical frequency range of 100 to 10 5 Hz. 3 and 4 are diagrams showing the frequency dependence of the dielectric constant in Example 2 and Example 5. In FIG. 3, the results in the range of 0.01 to 10 5 Hz are shown in FIG. Results of -10 5 Hz are shown. It can be seen that the dielectric constant of Example 5 is substantially constant over a wider frequency range than that of Example 2. However, as is clear from FIG. 4, it can be seen that the dielectric constant is substantially constant in both Example 2 and Example 5 in the practical frequency range of 100 to 10 5 Hz.

図5及び図6は、実施例8,9の絶縁膜の誘電率の周波数依存性を示す図であり、図5及び図6では、比較のために比較例1の結果も示した。図5は、0.01〜10Hzの範囲の結果を示し、図6は、100〜10Hzの範囲の結果を示す。図5及び図6から明らかなように、比較例1に比べて、実施例8,9では、誘電率が非常に高く、また誘電率の周波数依存性が小さく、特に実用的な周波数範囲である100〜10Hzでは、誘電率がほぼ一定であることがわかる。 FIGS. 5 and 6 are diagrams showing the frequency dependence of the dielectric constant of the insulating films of Examples 8 and 9. FIGS. 5 and 6 also show the results of Comparative Example 1 for comparison. Figure 5 shows the results of the range of 0.01 to 10 5 Hz, Figure 6 shows the results in the range of 100 to 10 5 Hz. As apparent from FIGS. 5 and 6, compared with Comparative Example 1, Examples 8 and 9 have a very high dielectric constant and a small frequency dependency of the dielectric constant, which is a particularly practical frequency range. It can be seen that the dielectric constant is substantially constant at 100 to 10 5 Hz.

Figure 2009059651
Figure 2009059651

Figure 2009059651
Figure 2009059651

Figure 2009059651
Figure 2009059651

表1から明らかなように、比較例1では、誘電率εは、4.4と低かったのに対し、実施例1〜4によれば、誘電率が比較例1に比べて高められており、6.1以上であり、特にグリシジル基とメチル基との割合が1:1よりもグリシジル基が多い場合には、誘電率εは10.4以上と飛躍的に高められることがわかる。   As is clear from Table 1, in Comparative Example 1, the dielectric constant ε was as low as 4.4, whereas according to Examples 1 to 4, the dielectric constant was higher than that in Comparative Example 1. It is found that the dielectric constant ε is dramatically increased to 10.4 or more, particularly when the ratio of glycidyl groups to methyl groups is more than 1: 1.

また、表1から明らかなように、メチル基とグリシジル基との割合を変化させた場合、グリシジル基の割合が増加するにつれて、水に対する接触角が低くなり、撥水性は劣化することがわかる。従って、グリシジル基の割合を少なくすることにより、誘電率は低くなる傾向はあるものの、撥水性を高めることができる。従って、撥水性が求められる場合にはグリシジル基の割合はメチル基とグリシジル基の合計の1/2以下とすることが望ましく、より好ましくは、1/5以下とすることが望ましい。もっとも、誘電率を十分に高めるには、前述したように、メチル基とグリシジル基との合計において、グリシジル基は1/2以上であることが望ましい。   Further, as is apparent from Table 1, when the ratio of methyl group to glycidyl group is changed, the contact angle with respect to water decreases as the ratio of glycidyl group increases, and the water repellency deteriorates. Therefore, by reducing the proportion of the glycidyl group, the water repellency can be increased although the dielectric constant tends to be lowered. Therefore, when water repellency is required, the ratio of glycidyl groups is desirably 1/2 or less of the total of methyl groups and glycidyl groups, and more desirably 1/5 or less. However, in order to sufficiently increase the dielectric constant, as described above, it is desirable that the glycidyl group is ½ or more in the total of the methyl group and the glycidyl group.

表2から明らかなように、置換基Zaが、メチル基、フェニル基またはヘキシル基である場合、グリシジル基との割合が全て1:1であったとしても、置換基Zaを構成する炭化水素基の種類によって接触角が異なることがわかる。特に、接触角を高め、絶縁膜の撥水性を高めるには、メチル基よりもフェニル基が好ましく、より好ましくは、ヘキシル基が望ましいことがわかる。これは、置換基Zaとしての炭化水素基の大きさが大きいほど、疎水性が高められていることによると考えられる。   As is clear from Table 2, when the substituent Za is a methyl group, a phenyl group or a hexyl group, even if the ratio to the glycidyl group is all 1: 1, the hydrocarbon group constituting the substituent Za It can be seen that the contact angle differs depending on the type. In particular, in order to increase the contact angle and increase the water repellency of the insulating film, a phenyl group is preferable to a methyl group, and a hexyl group is more preferable. This is considered to be because the larger the size of the hydrocarbon group as the substituent Za, the higher the hydrophobicity.

また、表3から明らかなように、置換基Zbとして、シアノ基を含むシアノエチル基を用いた場合においても、同様に、絶縁膜の誘電率を効果的に高め得ることがわかる。さらに、置換基としてメルカプトプロピル基を用いた場合においても、誘電率εは5.6と、比較例1に比べて高められることがわかる。すなわち、ポリシルセスキオキサンにおける上記置換基Za,Zbとして、グリシジル基だけでなく、シアノ基やメルカプト基を用いた場合においても、同様にその極性により誘電率を効果的に高め得ることがわかる。   Further, as is apparent from Table 3, it can be seen that even when a cyanoethyl group containing a cyano group is used as the substituent Zb, the dielectric constant of the insulating film can be effectively increased. Furthermore, it can be seen that even when a mercaptopropyl group is used as a substituent, the dielectric constant ε is 5.6, which is higher than that of Comparative Example 1. That is, it can be understood that the dielectric constant can be effectively increased by the polarity even when a cyano group or a mercapto group is used as the substituents Za and Zb in the polysilsesquioxane in addition to the glycidyl group. .

比較例1及び実施例1〜4で得られた絶縁膜の誘電率が0.01〜10Hz周波数範囲における周波数依存性を示す図である。It is a figure in which the dielectric constant of the insulating film obtained by the comparative example 1 and Examples 1-4 shows the frequency dependence in a 0.01-10 < 5 > Hz frequency range. 比較例1及び実施例1〜4で得られた絶縁膜の誘電率が100〜10Hz周波数範囲における周波数依存性を示す図である。It is a figure in which the dielectric constant of the insulating film obtained by the comparative example 1 and Examples 1-4 shows the frequency dependence in a 100-10 < 5 > Hz frequency range. 実施例2,5で得られた絶縁膜の誘電率が0.01〜10Hz周波数範囲における周波数依存性を示す図である。It is a figure which shows the frequency dependence in the dielectric constant of the insulating film obtained in Example 2, 5 in a 0.01-10 < 5 > Hz frequency range. 実施例2,5で得られた絶縁膜の誘電率が100〜10Hz周波数範囲における周波数依存性を示す図である。It is a figure which shows the frequency dependence in the dielectric constant of the insulating film obtained in Example 2, 5 in a 100-10 < 5 > Hz frequency range. 比較例1及び実施例8,9で得られた絶縁膜の誘電率が0.01〜10Hz周波数範囲における周波数依存性を示す図である。It is a figure which shows the frequency dependence in the dielectric constant of the dielectric film of the insulating film obtained by the comparative example 1 and Examples 8 and 9 in a 0.01-10 < 5 > Hz frequency range. 比較例1及び実施例8,9で得られた絶縁膜の誘電率が100〜10Hz周波数範囲における周波数依存性を示す図である。It is a figure which shows the frequency dependence in the dielectric constant of the insulating film obtained by the comparative example 1 and Example 8, 9 in the frequency range of 100-10 < 5 > Hz.

Claims (4)

下記の式(1)で示す構造を有するポリシルセスキオキサンを含むことを特徴とする、シルセスキオキサン系絶縁材料。
Figure 2009059651
式(1)において、xとyは任意の整数であり、共重合体である場合の組成比を示し、Za=Zbの場合は単独重合体となるので、x+yとなる。Rは水素または炭素数1〜3のアルキル基を示し、Zaは炭素数1〜8の炭化水素基及び芳香族炭化水素基、またはグリシジル基、シアノ基もくしはメルカプト基またはこれらの一種を含む基であり、ZbはZaが炭化水素基である場合、グリシジル基、シアノ基もしくはメルカプト基またはこれらの一種を含む基であり、Zaがグリシジル基、シアノ基もしくはメルカプト基またはこれらの一種を含む基である場合、Zaと同じである。
A silsesquioxane-based insulating material comprising polysilsesquioxane having a structure represented by the following formula (1):
Figure 2009059651
In the formula (1), x and y are arbitrary integers and indicate a composition ratio in the case of a copolymer. When Za = Zb, a homopolymer is formed, and thus x + y. R represents hydrogen or an alkyl group having 1 to 3 carbon atoms, Za represents a hydrocarbon group and aromatic hydrocarbon group having 1 to 8 carbon atoms, or a glycidyl group, a cyano group or a mercapto group, or one of these. Zb is a group containing a glycidyl group, a cyano group or a mercapto group or one of them when Za is a hydrocarbon group, and Za is a group containing a glycidyl group, a cyano group or a mercapto group or one of these Is the same as Za.
前記Zaが、前記炭化水素基であり、前記Zbがグリシジル基、シアノ基もしくはメルカプト基またはこれらの一種を含む置換基である、請求項1に記載のシルセスキオキサン系絶縁材料。   The silsesquioxane insulating material according to claim 1, wherein Za is the hydrocarbon group, and Zb is a glycidyl group, a cyano group, a mercapto group, or a substituent containing one of these. 前記ポリシルセスキオキサンを溶解する溶媒をさらに含む、請求項1に記載のシルセスキオキサン系絶縁材料。   The silsesquioxane-based insulating material according to claim 1, further comprising a solvent that dissolves the polysilsesquioxane. 前記ポリシルセスキオキサンを塗工し、焼き付けることにより得られた絶縁体である、請求項1〜3のいずれか1項に記載のシルセスキオキサン系絶縁材料。   The silsesquioxane-based insulating material according to any one of claims 1 to 3, which is an insulator obtained by applying and baking the polysilsesquioxane.
JP2007227644A 2007-09-03 2007-09-03 Silsesquioxane based insulating material Pending JP2009059651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227644A JP2009059651A (en) 2007-09-03 2007-09-03 Silsesquioxane based insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227644A JP2009059651A (en) 2007-09-03 2007-09-03 Silsesquioxane based insulating material

Publications (1)

Publication Number Publication Date
JP2009059651A true JP2009059651A (en) 2009-03-19

Family

ID=40555201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227644A Pending JP2009059651A (en) 2007-09-03 2007-09-03 Silsesquioxane based insulating material

Country Status (1)

Country Link
JP (1) JP2009059651A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060007A (en) * 2007-09-03 2009-03-19 Sekisui Chem Co Ltd Manufacturing method of silsesquioxane-based insulation film
JP2010135470A (en) * 2008-12-03 2010-06-17 Rasa Ind Ltd Coating liquid for forming dielectric layer, and method of manufacturing the same
JP2011068787A (en) * 2009-09-25 2011-04-07 Sekisui Chem Co Ltd Transparent composite material and transparent sheet
WO2012073988A1 (en) * 2010-11-30 2012-06-07 リンテック株式会社 Curable composition, cured article, and method for using curable composition
WO2014125990A1 (en) 2013-02-12 2014-08-21 Dic株式会社 Resin composition for insulating materials, insulating ink, insulating film and organic field effect transistor using insulating film
EP3290426A1 (en) 2016-09-06 2018-03-07 Shin-Etsu Chemical Co., Ltd. 2-cyanoethyl-containing organoxysilane compound, silsesquioxane, and making methods
WO2023223909A1 (en) * 2022-05-19 2023-11-23 住友化学株式会社 Polyolefin copolymer, resin pellets, modifier for engineering plastic, engineering plastic composition, and resin molded body
WO2024038900A1 (en) * 2022-08-18 2024-02-22 日産化学株式会社 Silica sol containing silicone compound, and resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586194A (en) * 1991-09-26 1993-04-06 Shimizu:Kk Composition of polysiloxane resin containing cationic functional group, coating composition made by using it, and production of the resin composition
JP2000309752A (en) * 1999-04-27 2000-11-07 Jsr Corp Composition for forming film and material for forming insulation film
JP2004043696A (en) * 2002-07-15 2004-02-12 Nippon Kayaku Co Ltd Epoxy group-containing silicon compound and composition
WO2004072150A1 (en) * 2003-02-12 2004-08-26 Nippon Kayaku Kabushiki Kaisha Silicon compound containing epoxy group and thermosetting resin composition
JP2004256609A (en) * 2003-02-25 2004-09-16 Nippon Kayaku Co Ltd Epoxy group-having silicon compound, method for producing the same and thermosetting resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586194A (en) * 1991-09-26 1993-04-06 Shimizu:Kk Composition of polysiloxane resin containing cationic functional group, coating composition made by using it, and production of the resin composition
JP2000309752A (en) * 1999-04-27 2000-11-07 Jsr Corp Composition for forming film and material for forming insulation film
JP2004043696A (en) * 2002-07-15 2004-02-12 Nippon Kayaku Co Ltd Epoxy group-containing silicon compound and composition
WO2004072150A1 (en) * 2003-02-12 2004-08-26 Nippon Kayaku Kabushiki Kaisha Silicon compound containing epoxy group and thermosetting resin composition
JP2004256609A (en) * 2003-02-25 2004-09-16 Nippon Kayaku Co Ltd Epoxy group-having silicon compound, method for producing the same and thermosetting resin composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060007A (en) * 2007-09-03 2009-03-19 Sekisui Chem Co Ltd Manufacturing method of silsesquioxane-based insulation film
JP2010135470A (en) * 2008-12-03 2010-06-17 Rasa Ind Ltd Coating liquid for forming dielectric layer, and method of manufacturing the same
JP2011068787A (en) * 2009-09-25 2011-04-07 Sekisui Chem Co Ltd Transparent composite material and transparent sheet
JP5940456B2 (en) * 2010-11-30 2016-06-29 リンテック株式会社 Curable composition, cured product and method of using curable composition
JPWO2012073988A1 (en) * 2010-11-30 2014-05-19 リンテック株式会社 Curable composition, cured product and method of using curable composition
WO2012073988A1 (en) * 2010-11-30 2012-06-07 リンテック株式会社 Curable composition, cured article, and method for using curable composition
WO2014125990A1 (en) 2013-02-12 2014-08-21 Dic株式会社 Resin composition for insulating materials, insulating ink, insulating film and organic field effect transistor using insulating film
EP3290426A1 (en) 2016-09-06 2018-03-07 Shin-Etsu Chemical Co., Ltd. 2-cyanoethyl-containing organoxysilane compound, silsesquioxane, and making methods
CN107793445A (en) * 2016-09-06 2018-03-13 信越化学工业株式会社 Organic TMOS compound, silsesquioxane and preparation method containing 2 cyano ethyls
KR20180027355A (en) 2016-09-06 2018-03-14 신에쓰 가가꾸 고교 가부시끼가이샤 2-cyanoethyl-containing organoxysilane compound, silsesquioxane, and methods for preparing the same
JP2018039743A (en) * 2016-09-06 2018-03-15 信越化学工業株式会社 2-cyanoethyl group-containing organosilane compound, silsesquioxane and manufacturing method therefor
US10533073B2 (en) 2016-09-06 2020-01-14 Shin-Etsu Chemical Co., Ltd. 2-cyanoethyl-containing organoxysilane compound, silsesquioxane, and making methods
WO2023223909A1 (en) * 2022-05-19 2023-11-23 住友化学株式会社 Polyolefin copolymer, resin pellets, modifier for engineering plastic, engineering plastic composition, and resin molded body
WO2024038900A1 (en) * 2022-08-18 2024-02-22 日産化学株式会社 Silica sol containing silicone compound, and resin composition

Similar Documents

Publication Publication Date Title
JP2009059651A (en) Silsesquioxane based insulating material
WO2018223501A1 (en) Method for anhydrous synthesis of organosiloxane resin and product thereof, and use of product
CN105713512B (en) It is used to form the constituent of silica-type layer, the method for manufacturing silica-type layer and electronic device
CN1246362C (en) Process for preparing organic silicate polymer
JP2010116462A (en) Siloxane polymer, siloxane-based crosslinkable composition and silicone membrane
KR20040087888A (en) Coating composition for insulating film production, preparation method of insulation film by using the same, insulation film for semi-conductor device prepared therefrom, and semi-conductor device comprising the same
JP4180417B2 (en) Composition for forming porous film, method for producing porous film, porous film, interlayer insulating film, and semiconductor device
JP2006045516A (en) Silsesquioxane-containing compound
JP6930242B2 (en) Semiconductor devices and their manufacturing methods
JPWO2017122465A1 (en) Method for producing silicone polymer
US20060199021A1 (en) Composition, methods for forming low-permittivity film using the composition, low-permittivity film, and electronic part having the low-permittivity film
JP4996832B2 (en) Silica-based coating agent, silica-based thin film and structure using the same
JP2004307692A (en) Composition for forming porous film, method for producing porous film, porous film, interlayer dielectric film and semiconductor device
JP4139710B2 (en) Composition for forming porous film, method for producing porous film, porous film, interlayer insulating film, and semiconductor device
JP2904317B2 (en) Method for producing organopolysiloxane resin
TWI358427B (en)
JP2004307693A (en) Composition for forming porous film, method for producing porous film, porous film, interlayer dielectric film and semiconductor device
EP1566417B1 (en) Composition for porous film formation, porous film, process for producing the same, interlayer insulation film and semiconductor device
KR101940171B1 (en) Method for manufacturing silica layer, silica layer, and electronic device
JP2004292642A (en) Composition for forming porous film, manufacturing method of porous film, porous film, interlayer insulating film and semiconductor device
JP2006016596A (en) Silicon-containing compound, composition containing the compound and insulating material
JP4139711B2 (en) Composition for forming porous film, method for producing porous film, porous film, interlayer insulating film, and semiconductor device
KR20020031195A (en) Composition, Methods of Forming Low-Permittivity Film from the Composition, Low-Permittivity Film, and Electronic Part Having the Low-Permittivity Film
JP2006232756A (en) Silicon oxygen crosslinked compound and composition containing the compound
JP2009060007A (en) Manufacturing method of silsesquioxane-based insulation film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090501

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218