JP2009059432A - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium Download PDF

Info

Publication number
JP2009059432A
JP2009059432A JP2007226593A JP2007226593A JP2009059432A JP 2009059432 A JP2009059432 A JP 2009059432A JP 2007226593 A JP2007226593 A JP 2007226593A JP 2007226593 A JP2007226593 A JP 2007226593A JP 2009059432 A JP2009059432 A JP 2009059432A
Authority
JP
Japan
Prior art keywords
layer
magnetic
force control
recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007226593A
Other languages
Japanese (ja)
Inventor
Toshio Sugimoto
利夫 杉本
Ryoichi Mukai
良一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007226593A priority Critical patent/JP2009059432A/en
Publication of JP2009059432A publication Critical patent/JP2009059432A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To attain compatibility between reduction of medium noise and recording performance by forming a thin film, with respect to a perpendicular magnetic recording medium wherein a plurality of recording layers are layered and disposed via binder layers (interlayer bonding force control layer). <P>SOLUTION: The perpendicular magnetic recording medium has a non-magnetic substrate 1, a soft magnetic backing layer 10 formed on the non-magnetic substrate 1, an intermediate layer 20 formed on the soft magnetic backing layer 10 and a magnetic recording layer 30 (comprising a first recording layer 31, the interlayer bonding force control layer 32 and a second recording layer 33) formed on the intermediate layer 20, wherein a magnetic region which becomes in an anti-ferromagnetic bonding state is provided in an interface 34 between the interlayer bonding force control layer 32 and the first recording layer 31, and an interface 35 between the interlayer bonding force control layer 32 and the second recording layer 33. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は垂直磁気記録媒体に関し、特に結合層を介して複数の記録層を積層配置した垂直磁気記録媒体に関する。   The present invention relates to a perpendicular magnetic recording medium, and more particularly to a perpendicular magnetic recording medium in which a plurality of recording layers are stacked via a coupling layer.

従来、磁気記録装置として磁気記録層の磁化方向が面内を向いた面内磁気記録方式が使用されてきた。しかしながら、面内磁気記録方式では高密度記録のため磁区ドメインを小さくして行くと、熱揺らぎのため記録した情報が消えていくことが問題となる。   Conventionally, an in-plane magnetic recording system in which the magnetization direction of a magnetic recording layer faces in-plane has been used as a magnetic recording apparatus. However, in the in-plane magnetic recording system, if the domain domain is made smaller for high density recording, the recorded information disappears due to thermal fluctuation.

そこで、軟磁性裏打ち層の上に磁気記録層を配置し、磁気記録層の表面に対して垂直方向の磁界を印加し、磁化方向を記録層の面に垂直にした垂直磁気記録方式の実用化か進められている。垂直磁気記録方式によれば、高密度記録が可能になるとされている。しかし、垂直磁気記録媒体においても、耐熱揺らぎ特性と信号雑音比(SN比)を、共に良好に保つことは容易でない。   Therefore, a magnetic recording layer is placed on the soft magnetic underlayer, a magnetic field perpendicular to the surface of the magnetic recording layer is applied, and the perpendicular magnetic recording method is put into practical use with the magnetization direction perpendicular to the surface of the recording layer. Is being advanced. According to the perpendicular magnetic recording system, high density recording is possible. However, even in a perpendicular magnetic recording medium, it is not easy to keep both the heat-resistant fluctuation characteristics and the signal-to-noise ratio (SN ratio) good.

これを解決しうる垂直磁気記録媒体として特許文献1は、第1の磁性層の上に中間層を形成し、その上に第2の磁性層を形成する構成を提案している。第1、第2の磁性層は、たとえばCo(66at%)Pt(18at%)Cr(16at%)で形成し、中間層はRu−Ti合金、またはHfで形成する。第1と第2の磁性層で発生するノイズは独立でありSN比を向上できる、第1と第2の磁性層は磁気的には分断されず良好な熱揺らぎ耐性を得られると説明されている。   As a perpendicular magnetic recording medium capable of solving this, Patent Document 1 proposes a configuration in which an intermediate layer is formed on a first magnetic layer and a second magnetic layer is formed thereon. The first and second magnetic layers are made of, for example, Co (66 at%) Pt (18 at%) Cr (16 at%), and the intermediate layer is made of a Ru—Ti alloy or Hf. It is explained that the noise generated in the first and second magnetic layers is independent and can improve the S / N ratio. The first and second magnetic layers are not divided magnetically and can obtain good thermal fluctuation resistance. Yes.

また、特許文献2では、結合層によって第1と第2の磁性層を磁気的に結合する際、反強磁性結合させる時と強磁性結合させる時とを比較し、強磁性結合させた場合、交換結合エネルギが高くなるほど、反強磁性結合の場合と同様熱安定性が増し、反強磁性結合の場合と異なり記録容易性が向上することを開示している。このような磁気的結合記録媒体を、ECC(exchange coupled composite)媒体と呼ぶ。   In Patent Document 2, when the first and second magnetic layers are magnetically coupled by the coupling layer, the antiferromagnetic coupling and the ferromagnetic coupling are compared, and when the ferromagnetic coupling is performed, It is disclosed that as the exchange coupling energy increases, the thermal stability increases as in the case of antiferromagnetic coupling, and the ease of recording improves unlike in the case of antiferromagnetic coupling. Such a magnetically coupled recording medium is called an ECC (exchange coupled composite) medium.

このECC媒体として、Co基合金にSiO2が添加された磁性膜上にSiO2が添加されない磁性膜(Capping Layer)を積層した構成の磁気記録層を持ち、そのSiO2が添加された磁性膜ではCo基合金磁性粒が相互にSiO2によって空間的に隔てられた膜構造を持ち、しかも、この磁気記録層の直下に中間層としてRu層が配置された積層構造が提案されている。 This ECC medium has a magnetic recording layer having a configuration in which a magnetic film (Capping Layer) not containing SiO 2 is laminated on a magnetic film containing SiO 2 added to a Co-based alloy, and the magnetic film containing the SiO 2 added Has proposed a laminated structure in which Co-based alloy magnetic grains have a film structure spatially separated from each other by SiO 2 , and a Ru layer is disposed as an intermediate layer directly under the magnetic recording layer.

この垂直磁気記録媒体では、SiO2あるいはTiO2などの酸化物が添加されたCoCrPt磁性膜であるグラニュラ構造磁性層の直上に、この様な酸化物の添加がされないCoCrPtまたはCoCrPt基合金磁性膜からなるキャップ層を配置して磁気特性の制御を行っている。従来例では、十分な熱擾乱耐性を持つために必要なHc,Hsが得られる膜厚のグラニュラ構造磁性層を形成した後に、磁化反転を容易にする目的でキャップ層を配置して、Hc(保磁力),Hs(飽和磁界)を低減させ記録性能を確保していた。
特開2003−157516号公報 特開2006−48900号公報
In this perpendicular magnetic recording medium, a CoCrPt or CoCrPt based alloy magnetic film to which such an oxide is not added is directly above the granular magnetic layer which is a CoCrPt magnetic film to which an oxide such as SiO 2 or TiO 2 is added. The cap layer is arranged to control the magnetic characteristics. In the conventional example, after forming a granular structure magnetic layer having a film thickness that provides Hc and Hs necessary for having sufficient thermal disturbance resistance, a cap layer is disposed for the purpose of facilitating magnetization reversal, and Hc ( The recording performance was ensured by reducing the coercive force) and Hs (saturation magnetic field).
JP 2003-157516 A JP 2006-48900 A

しかしながら、グラニュラ構造磁性層の薄膜化を図るには、CoCrPt合金中のPt濃度を高めて高い垂直磁気異方性を得る(高Ku化)が必要となり、高記録密度化に必要な媒体ノイズの低減を阻害する(グレインサイズ増大による遷移ノイズ増大)という問題点があった。   However, in order to reduce the thickness of the granular structure magnetic layer, it is necessary to increase the Pt concentration in the CoCrPt alloy to obtain high perpendicular magnetic anisotropy (high Ku), and the medium noise required for high recording density There is a problem of inhibiting the reduction (increase in transition noise due to increase in grain size).

また、十分な保持力Hc及び飽和磁界Hsの低減効果をえるには、キャップ層の飽和磁化Msの高Ms化或いは厚膜化も必要となり、これも媒体ノイズの低減を阻害する(記録磁界勾配の緩慢化)という問題点があった。   Further, in order to obtain a sufficient holding force Hc and saturation magnetic field Hs reduction effect, it is necessary to increase the saturation magnetization Ms of the cap layer or to increase the film thickness, which also inhibits the reduction of medium noise (recording magnetic field gradient). There was a problem of slowing down.

本発明は上記の点に鑑みてなされたものであり、薄膜化による媒体ノイズの低減と記録性能の両立を実現しうる垂直磁気記録媒体を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a perpendicular magnetic recording medium capable of realizing both reduction in medium noise and recording performance by thinning.

上記の課題は、本発明の第1の観点からは、
非磁性基板と、
前記非磁性基板上方に形成された軟磁性裏打ち層と、
前記軟磁性裏打ち層上に形成された非磁性中間層と、
前記中間層上に形成され、垂直磁気異方性を有する第1記録層と、前記第1記録層上に形成された層間結合力制御層と、前記層間結合力制御層上に形成され垂直磁気異方性を有する第2記録層を含む磁気記録層とを有する垂直磁気記録媒体であって、
前記層間結合力制御層と前記第1記録層の界面、及び前記層間結合力制御層と前記第2記録層の界面に、反強磁性結合状態となる磁性領域を有する垂直磁気記録媒体により解決することができる。
From the first aspect of the present invention, the above problem is
A non-magnetic substrate;
A soft magnetic backing layer formed above the non-magnetic substrate;
A nonmagnetic intermediate layer formed on the soft magnetic backing layer;
A first recording layer formed on the intermediate layer and having perpendicular magnetic anisotropy; an interlayer coupling force control layer formed on the first recording layer; and a perpendicular magnetic layer formed on the interlayer coupling force control layer. A perpendicular magnetic recording medium having a magnetic recording layer including a second recording layer having anisotropy,
This is solved by a perpendicular magnetic recording medium having magnetic regions in an antiferromagnetic coupling state at the interface between the interlayer coupling force control layer and the first recording layer and at the interface between the interlayer coupling force control layer and the second recording layer. be able to.

また、上記発明において、前記磁気記録層は、全体としての磁気状態が強磁性結合状態であることが望ましい。   In the above invention, it is desirable that the magnetic recording layer as a whole has a ferromagnetic coupling state.

また、上記発明において、前記第1の強磁性記録層は、前記第2の強磁性記録層より大きい垂直磁気異方性を有することが望ましい。   In the above invention, it is desirable that the first ferromagnetic recording layer has a perpendicular magnetic anisotropy greater than that of the second ferromagnetic recording layer.

また、上記発明において、第1記録層が少なくともCoPt合金を含むグラニュラ磁性層で形成され、第2磁性記録層がCoCrを含む磁性合金で形成されることが望ましい。   In the above invention, it is desirable that the first recording layer is formed of a granular magnetic layer containing at least a CoPt alloy, and the second magnetic recording layer is formed of a magnetic alloy containing CoCr.

また、上記発明において、前記層間結合力制御層は、非磁性材料からなることが望ましい。   In the above invention, the interlayer coupling force control layer is preferably made of a nonmagnetic material.

また、上記発明において、前記層間結合力制御層は、磁性材料からなることが望ましい。   In the above invention, the interlayer coupling force control layer is preferably made of a magnetic material.

また、上記発明において、前記層間結合力制御層としてパラジウムを用いることができる。   In the above invention, palladium can be used as the interlayer cohesion control layer.

また、上記発明において、前記層間結合力制御層の膜厚は、当該層間結合力制御層の膜厚変化に伴い発生する前記磁気記録層の飽和磁界の振動変化の内、極小となる飽和磁界に対応する膜厚を選定することが望ましい。   Further, in the above invention, the film thickness of the interlayer coupling force control layer is a saturation magnetic field that becomes a minimum among the vibration change of the saturation magnetic field of the magnetic recording layer that occurs with the film thickness change of the interlayer coupling force control layer. It is desirable to select the corresponding film thickness.

本発明によれば、各記録層と層間結合力制御層との界面に反強磁性結合状態となる磁性領域を有しているため、層間結合している領域の磁化の揺らぎが抑制され媒体ノイズを低減することができる。   According to the present invention, since there is a magnetic region in an antiferromagnetic coupling state at the interface between each recording layer and the interlayer coupling force control layer, fluctuations in magnetization in the interlayer coupling region are suppressed and medium noise is suppressed. Can be reduced.

また、各記録層と層間結合力制御層との界面に反強磁性結合状態となる磁性領域が存在するために、実効的に磁気異方性を高めた効果を得ることができる、よって従来のようにCoCrPt合金中のPt濃度を高めて高Ku化を図る必要がなくなり、媒体ノイズの低減を図ることができる。   In addition, since there is a magnetic region in an antiferromagnetic coupling state at the interface between each recording layer and the interlayer coupling force control layer, the effect of effectively increasing the magnetic anisotropy can be obtained. Thus, it is not necessary to increase the Ku concentration by increasing the Pt concentration in the CoCrPt alloy, and the medium noise can be reduced.

次に、本発明を実施するための最良の形態について図面と共に説明する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings.

図1は、本発明に係るECC構造を有する垂直磁気記録媒体の基本構成を示す概略断面図である。同図に示すように、ECC構造を有する垂直磁気記録媒体は、ガラス、アルミニウム、Si等の非磁性材料で形成された非磁性基板1の上に、軟磁性裏打ち層10、非磁性中間層20、磁気記録層30、保護層40を積層した構成を有する。   FIG. 1 is a schematic sectional view showing the basic configuration of a perpendicular magnetic recording medium having an ECC structure according to the present invention. As shown in the figure, a perpendicular magnetic recording medium having an ECC structure includes a soft magnetic backing layer 10 and a nonmagnetic intermediate layer 20 on a nonmagnetic substrate 1 made of a nonmagnetic material such as glass, aluminum, or Si. The magnetic recording layer 30 and the protective layer 40 are stacked.

磁気記録層30は、強磁性記録層31,33を非磁性或いは磁性(本実施例では非磁性)の層間結合力制御層32で結合した構成を有する。軟磁性裏打ち層10は磁気ヘッドと共に磁気閉回路を形成するための磁性層であり、例えば非晶質のCo合金であるCoZrNb,CoZrTa等を用いることができる。この軟磁性裏打ち層10は、非磁性層を含む複数層を積層した構成としてもよい。例えば、FeCoB層、Ru層、FeCoB層の各層を積層した構成としてもよい。   The magnetic recording layer 30 has a configuration in which the ferromagnetic recording layers 31 and 33 are coupled by a nonmagnetic or magnetic (nonmagnetic in this embodiment) interlayer coupling force control layer 32. The soft magnetic backing layer 10 is a magnetic layer for forming a magnetic closed circuit together with the magnetic head, and for example, an amorphous Co alloy such as CoZrNb, CoZrTa or the like can be used. The soft magnetic backing layer 10 may be configured by laminating a plurality of layers including a nonmagnetic layer. For example, a configuration in which each of the FeCoB layer, the Ru layer, and the FeCoB layer is stacked may be employed.

非磁性中間層20は、磁気記録層30の結晶性を向上するための層であり、単層または複数層で形成される。この中間層20は、例えば、アモルファスTa層、NiFeCr層、Ru層の積層、NiFeCr層、Ru層の積層等で形成できる。アモルファスTa層は、その上に形成する結晶性金属層の配向を向上できる機能を有する。   The nonmagnetic intermediate layer 20 is a layer for improving the crystallinity of the magnetic recording layer 30 and is formed of a single layer or a plurality of layers. The intermediate layer 20 can be formed by, for example, an amorphous Ta layer, a NiFeCr layer, a Ru layer, a NiFeCr layer, a Ru layer, or the like. The amorphous Ta layer has a function of improving the orientation of the crystalline metal layer formed thereon.

強磁性記録層31,33は、例えばCoCrPt,CoCrPtB等のCoCrPtの磁性合金,CoCrTa,CoPt等の強磁性材料で形成できる。   The ferromagnetic recording layers 31 and 33 can be formed of a CoCrPt magnetic alloy such as CoCrPt or CoCrPtB, or a ferromagnetic material such as CoCrTa or CoPt.

層間結合力制御層32は、良好なECC構造を実現するための層であり、本発明では層間結合力制御層32として非磁性材であるPdを用いることを試みた。しかしながら、層間結合力制御層32としてPt等の磁性材を用いることも可能である。   The interlayer coupling force control layer 32 is a layer for realizing a good ECC structure. In the present invention, an attempt was made to use Pd, which is a nonmagnetic material, as the interlayer coupling force control layer 32. However, it is also possible to use a magnetic material such as Pt for the interlayer coupling force control layer 32.

次に、本発明の一実施例であるECC構造を有する垂直磁気記録媒体について、同じく図1を参照しつつ説明する。以下の説明では、実際に作製したサンプルの構成を例にとって説明する。   Next, a perpendicular magnetic recording medium having an ECC structure according to an embodiment of the present invention will be described with reference to FIG. In the following description, an example of the configuration of a sample actually manufactured will be described.

本実施例に係る垂直磁気記録媒体を作製するには、先ずガラス基板1上に軟磁性裏打ち層10となる厚さ25nmのFeCoB膜をArガス圧0.5Pa、スパッタ電力1kWで成膜する。本実施例では、軟磁性裏打ち層10を単層の磁性裏打ち層としている。   In order to manufacture the perpendicular magnetic recording medium according to this example, first, a 25 nm thick FeCoB film to be the soft magnetic backing layer 10 is formed on the glass substrate 1 with an Ar gas pressure of 0.5 Pa and a sputtering power of 1 kW. In this embodiment, the soft magnetic backing layer 10 is a single magnetic backing layer.

次に、軟磁性裏打ち層10の上に、中間層20を成膜する。中間層20は、厚さ3nmの(アモルファス)Ta層21をアルゴンガス圧0.5Pa,スパッタ電力0.4kWのスパッタリングで成膜し、その上に厚さ3nmのNiFe層をArガス圧0.5Pa,スパッタ電力0.1kWのスパッタリングで成膜し、更にその上に厚さ20nmのRu層をArガス圧4.0Pa,0.4kWのスパッタリングで成膜することにより作製する。このように本実施例では、Ta層、NiFeCr層、Ru層が3層積層構造の中間層20を構成する。   Next, the intermediate layer 20 is formed on the soft magnetic backing layer 10. As the intermediate layer 20, a 3 nm thick (amorphous) Ta layer 21 is formed by sputtering with an argon gas pressure of 0.5 Pa and a sputtering power of 0.4 kW, and a 3 nm thick NiFe layer is formed thereon with an Ar gas pressure of 0. A film is formed by sputtering at 5 Pa and sputtering power of 0.1 kW, and a Ru layer having a thickness of 20 nm is formed thereon by sputtering at an Ar gas pressure of 4.0 Pa and 0.4 kW. As described above, in this embodiment, the Ta layer, the NiFeCr layer, and the Ru layer constitute the intermediate layer 20 having a three-layer structure.

上記のように中間層20が作製されると、この中間層20上に磁気記録層30を成膜する。この磁気記録層30を作製するには、先ず中間層20上に第1記録層(グラニュラ層)31となる厚さ10nmのCoCrPt−SiO膜をArガス圧4Pa、スパッタ電力0.4kWのスパッタリングで成膜を行なった。 When the intermediate layer 20 is manufactured as described above, the magnetic recording layer 30 is formed on the intermediate layer 20. In order to manufacture the magnetic recording layer 30, first, a 10 nm thick CoCrPt—SiO 2 film serving as the first recording layer (granular layer) 31 is sputtered on the intermediate layer 20 with an Ar gas pressure of 4 Pa and a sputtering power of 0.4 kW. The film was formed.

次いで、層間結合力制御層32としてPdを0.1nm刻みに1.8nmまで成膜した。このときの成膜条件はArガス圧0.5 Pa,スパッタ電力0.1kWのスパッタリングで成膜した。次いで、第2記録層33である厚さ8nmのCoCrPtB層をArガス圧0.5Pa,スパッタ電力0.4kWで成膜した。   Next, Pd was deposited as an interlayer bonding force control layer 32 to 1.8 nm in increments of 0.1 nm. Film formation conditions at this time were formed by sputtering with an Ar gas pressure of 0.5 Pa and a sputtering power of 0.1 kW. Next, a CoCrPtB layer having a thickness of 8 nm as the second recording layer 33 was formed at an Ar gas pressure of 0.5 Pa and a sputtering power of 0.4 kW.

上記の第1記録層31、層間結合力制御層32、第2記録層33がECC構造の記録層30を構成する。外部磁界を印加しない状態で、第1記録層31と第2記録層33とは強磁性の結合状態を有する。また、グラニュラ強磁性層の第1記録層31の垂直磁気異方性(Ku1)は、ノングラニュラ強磁性層の第2記録層33の垂直磁気異方性(Ku2)より大きい(Ku1>Ku2)。   The first recording layer 31, the interlayer cohesive force control layer 32, and the second recording layer 33 constitute the recording layer 30 having an ECC structure. The first recording layer 31 and the second recording layer 33 have a ferromagnetic coupling state without applying an external magnetic field. The perpendicular magnetic anisotropy (Ku1) of the first recording layer 31 of the granular ferromagnetic layer is larger than the perpendicular magnetic anisotropy (Ku2) of the second recording layer 33 of the non-granular ferromagnetic layer (Ku1> Ku2). .

最後に、記録層30の上に、厚さ3nmのC層を保護層40として形成した。実際に使用する場合は、保護層40の上にさらに液体潤滑層を塗布することが好ましい。アモルファスTa層の上の層は、fccまたはhcp構造を有するので、優れた結晶性、配向性が得られ、エピタキシャル的層が得られる。尚、上記したガラス基板1上の各層10〜40は、真空を破ることなく連続して成膜を行った。   Finally, a C layer having a thickness of 3 nm was formed as a protective layer 40 on the recording layer 30. When actually used, it is preferable to further apply a liquid lubricant layer on the protective layer 40. Since the layer above the amorphous Ta layer has an fcc or hcp structure, excellent crystallinity and orientation can be obtained, and an epitaxial layer can be obtained. In addition, each layer 10-40 on the above-mentioned glass substrate 1 formed into a film continuously, without breaking a vacuum.

上記のように作製される垂直磁気記録媒体の特性を図5〜図7に示す。   The characteristics of the perpendicular magnetic recording medium manufactured as described above are shown in FIGS.

図5は、作成した垂直磁気記録媒体で測定した、層間結合力制御層32の厚さに対する、保磁力Hcと飽和磁界Hsを示す図である。図5では、層間結合力制御層32の厚さを0nmから0.1nm刻みで2.0nmまで変えて作成し、それぞれの層間結合力制御層32の厚さに対する保磁力Hc及び飽和磁界Hsを示したものである。横軸は層間結合力制御層32の厚さを単位nmで示し、縦軸はHs,Hcを単位kOeで示している。但し、厚さ1.9nm以上では、グラニュラ磁性層の下層と上層とがデカップリング状態となり、それぞれ単層の磁気特性を示すようになるので、以下の図示及び説明は省略している。   FIG. 5 is a diagram showing the coercive force Hc and the saturation magnetic field Hs with respect to the thickness of the interlayer coupling force control layer 32 measured with the produced perpendicular magnetic recording medium. In FIG. 5, the thickness of the interlayer coupling force control layer 32 is changed from 0 nm to 2.0 nm in increments of 0.1 nm, and the coercive force Hc and the saturation magnetic field Hs with respect to the thickness of each interlayer coupling force control layer 32 are shown. It is shown. The horizontal axis indicates the thickness of the interlayer bonding force control layer 32 in the unit of nm, and the vertical axis indicates Hs and Hc in the unit of kOe. However, when the thickness is 1.9 nm or more, the lower layer and the upper layer of the granular magnetic layer are in a decoupled state, and each exhibits magnetic properties of a single layer, and thus the following illustration and description are omitted.

磁気特性として保磁力Hcの値は、意図せざる原因による磁気的記録の書き換えに対する耐性を示し、熱的ゆらぎや、隣接領域の書き込みによる漏洩磁界に対する障壁高さ(記録を保持する力)を表し大きいほど好ましい。また、飽和磁界Hsの値は、書き込みに必要な磁界を表わし低いほど好ましい。   The value of the coercive force Hc as a magnetic characteristic indicates resistance to rewriting of magnetic recording due to an unintended cause, and represents thermal fluctuation and barrier height against a leakage magnetic field caused by writing in an adjacent area (recording holding force). Larger is preferable. Further, the value of the saturation magnetic field Hs represents a magnetic field necessary for writing and is preferably as low as possible.

また、図6には層間結合力制御層32(Pd膜)の膜厚に対する動的(ダイナミック)Hcの変化を示した(ダイナミックHcは記録磁界に相当する。Hc0と表記する)。横軸は層間結合力制御層32であるPd膜の厚さを単位nmで示し、縦軸はダイナミックHc0を単位kOeで示す。   FIG. 6 shows a change in dynamic Hc with respect to the film thickness of the interlayer bonding force control layer 32 (Pd film) (dynamic Hc corresponds to a recording magnetic field, expressed as Hc0). The horizontal axis indicates the thickness of the Pd film as the interlayer bonding force control layer 32 in the unit of nm, and the vertical axis indicates the dynamic Hc0 in the unit of kOe.

また、図7にはオーバーライト(OW)特性の層間結合力制御層32の膜厚に対する依存性を示している。横軸がPd層の厚さを単位nmで示し、縦軸がOWを単位dBで示す。   FIG. 7 shows the dependence of the overwrite (OW) characteristic on the film thickness of the interlayer bonding force control layer 32. The horizontal axis indicates the thickness of the Pd layer in the unit of nm, and the vertical axis indicates OW in the unit of dB.

OW特性は書き込み特性の一種であり、一旦記録した上に再度記録を行なった際の記録特性がある。このOW特性としては、ビット長の短い高密度記録を行い、その上にビット長の長い低密度記録を行なった時、先に記録していた高密度記録がどこまで減衰するかを示すオーバーライトOW(dB)がよく測定される。OWにおいて、減衰率を高くすると、実効的ライトコア幅WCwは大きくなり易い。   The OW characteristic is a kind of writing characteristic, and has a recording characteristic when recording is performed once after recording. The OW characteristic is an overwrite OW that indicates how much the high-density recording previously recorded is attenuated when high-density recording with a short bit length is performed and low-density recording with a long bit length is performed thereon. (DB) is often measured. In OW, if the attenuation factor is increased, the effective write core width WCw tends to increase.

図5に示すように層間結合力制御層32としてPdを用いた場合、層間結合力制御層32の厚さが0の場合の保磁力Hc及び飽和磁界Hsに比べ、層間結合力制御層32の厚さが1.3nm〜1.5nmの膜厚付近でそれぞれ最小値を示し、ECC構造を有しない2層記録層媒体(層間結合力制御層32(Pd膜)が存在しない記録媒体)に比べ、保磁力Hc及び飽和磁界Hsが低下することが確認できた。また実験において、層間結合力制御層32としてPdを用いた場合、膜厚マージンが最も広いことも確認できた(図5にIIで示す領域)。   As shown in FIG. 5, when Pd is used as the interlayer coupling force control layer 32, the interlayer coupling force control layer 32 has a layer coercivity Hc and a saturation magnetic field Hs that are 0 compared to the coercivity Hc and the saturation magnetic field Hs. Compared to a double-layer recording layer medium (recording medium in which the interlayer cohesion control layer 32 (Pd film) does not exist) that shows a minimum value in the vicinity of a film thickness of 1.3 nm to 1.5 nm and does not have an ECC structure. It was confirmed that the coercive force Hc and the saturation magnetic field Hs were lowered. In the experiment, it was also confirmed that the film thickness margin was the widest when Pd was used as the interlayer bonding force control layer 32 (region indicated by II in FIG. 5).

また図6に示すように、記録磁界の目安となるダイナミックHc(Hc0)でも、ECC構造を有しない2層記録層媒体(層間結合力制御層32の膜厚ゼロの記録媒体)よりもHc0が低下し、記録磁界が5kOe程度低減(具体的には、12.3kOeが7.2kOeに低減)できることを確認した。   Further, as shown in FIG. 6, even in the dynamic Hc (Hc0) that is a standard of the recording magnetic field, the Hc0 is higher than that of the two-layer recording layer medium that does not have the ECC structure (the recording medium having the interlayer coupling force control layer 32 of zero thickness). It was confirmed that the recording magnetic field can be reduced by about 5 kOe (specifically, 12.3 kOe can be reduced to 7.2 kOe).

更に、図7に示すように、Pd層の厚さを厚くするほどOW2の減衰が大きくなることを示している。スピンスタンドによるリードライト評価(測定ヘッドにも依存するが)からも、層間結合力制御層32であるPd膜の膜厚が1.5nmのとき、OW2が5dB以上改善できることを確認した。   Furthermore, as shown in FIG. 7, it is shown that the attenuation of OW2 increases as the thickness of the Pd layer increases. From the read / write evaluation by a spin stand (depending on the measurement head), it was confirmed that OW2 can be improved by 5 dB or more when the thickness of the Pd film as the interlayer bonding force control layer 32 is 1.5 nm.

ここで本発明者は、図5に示される飽和磁界HsのPd膜厚依存性に注目したところ、図5に矢印で示すように、飽和磁界HsがPd膜厚の変化に伴い、一定の周期で振動していることが確認できた。   Here, the present inventor paid attention to the dependency of the saturation magnetic field Hs shown in FIG. 5 on the Pd film thickness. As shown by the arrow in FIG. 5, the saturation magnetic field Hs has a constant period as the Pd film thickness changes. It was confirmed that it was vibrating.

本発明者の実験によれば、Kerr効果によるマイナーループ評価から、通常のループとは逆位相の磁化曲線が確認でき、また光学干渉によるものではないことから、これが磁化の反磁性成分の存在によるものと推定される。そのためこの振動がRKKY相互作用(RKKY:Ruderman-Kittel-Kasuya-Yosida)によるものであると推定される。   According to the experiment of the present inventor, from the minor loop evaluation by the Kerr effect, a magnetization curve having a phase opposite to that of a normal loop can be confirmed, and since it is not due to optical interference, this is due to the presence of a diamagnetic component of magnetization. Estimated. Therefore, this vibration is presumed to be due to RKKY interaction (RKKY: Ruderman-Kittel-Kasuya-Yosida).

図2は、磁気記録層30を拡大して示す図であり、図3及び図4は第1記録層(グラニュラ層)31と層間結合力制御層32との界面34の磁化状態を模式的に示す図である。図3は層間結合力制御層32として非磁性材料(Pd等)を用いた例を示し、図4は層間結合力制御層32として磁性材料(CoPt合金等)を用いた例を示している。   FIG. 2 is an enlarged view of the magnetic recording layer 30, and FIGS. 3 and 4 schematically show the magnetization state of the interface 34 between the first recording layer (granular layer) 31 and the interlayer coupling force control layer 32. FIG. 3 shows an example using a nonmagnetic material (Pd or the like) as the interlayer coupling force control layer 32, and FIG. 4 shows an example using a magnetic material (CoPt alloy or the like) as the interlayer coupling force control layer 32.

図2に示すように、磁気記録層30の第1記録層31と第2記録層33は層間結合力制御層32を介して、フェロカップリング(強磁性結合)状態にある。即ち、第1記録層31と第2記録層33は、ECC構造と同様な結合状態となっている。   As shown in FIG. 2, the first recording layer 31 and the second recording layer 33 of the magnetic recording layer 30 are in a ferro-coupling (ferromagnetic coupling) state via the interlayer coupling force control layer 32. That is, the first recording layer 31 and the second recording layer 33 are in a combined state similar to the ECC structure.

また第1記録層31と層間結合力制御層32との界面34の記録層界面の磁化状態については、図3に示すように層間結合力制御層32が非磁性材料の場合、界面34の凹凸によるエネルギーバランスにより、部分的に反強磁性結合成分(図中、黒塗りの矢印で示す)が存在すると推定される。また、図4に示すように層間結合力制御層32が磁性材料の場合には、第1記録層31ばかりでなく、層間結合制御層32の内部にも反強磁性成分(図中、黒塗りの矢印で示す)が存在するものと推定される。   As for the magnetization state of the recording layer interface of the interface 34 between the first recording layer 31 and the interlayer coupling force control layer 32, as shown in FIG. 3, when the interlayer coupling force control layer 32 is a non-magnetic material, the unevenness of the interface 34 It is estimated that an antiferromagnetic coupling component (indicated by a black arrow in the figure) exists partially due to the energy balance of. In addition, when the interlayer coupling force control layer 32 is a magnetic material as shown in FIG. 4, not only the first recording layer 31 but also the interior of the interlayer coupling control layer 32 has an antiferromagnetic component (indicated by black coating in the figure). It is presumed that there is an arrow).

上記の現象は、層間結合力制御層32と第2記録層33との界面34においても同様に発生する。また、界面34,35における反強磁性結合は界面状態により制御され、その制御方法としては、例えば製膜ガス圧(プロセス制御)の制御、及び記録層および層間結合力制御層材料を適宜選定する等の手法を講じることにより実現できるものと推定される。   The above phenomenon also occurs at the interface 34 between the interlayer bonding force control layer 32 and the second recording layer 33 in the same manner. Further, the antiferromagnetic coupling at the interfaces 34 and 35 is controlled by the interface state. As a control method thereof, for example, the film forming gas pressure (process control) and the recording layer and the interlayer coupling force control layer material are appropriately selected. It is presumed that this can be realized by taking such a method.

次いで本発明者は、スピンスタンドによるトレーリングシールド付きSPT(単磁極)ヘッドでの電磁変換測定を行なった。測定条件は、トレーリングシールド付き単磁極(SPT)ヘッドを用い,F2記録周波数(kBPI)として450kBPIを用いた(最短記録密度はF1:900kBPI)。図8は、その結果を示している。   Next, the present inventor performed electromagnetic conversion measurement with an SPT (single pole) head with a trailing shield by a spin stand. The measurement conditions were a single pole (SPT) head with a trailing shield and 450 kBPI as the F2 recording frequency (kBPI) (the shortest recording density was F1: 900 kBPI). FIG. 8 shows the result.

サンプルとしては、図5に示す磁気特性に基づき、垂直磁気記録媒体としての使用に適した層間結合力制御層32の膜厚が0.7nm〜1.2nmの領域(媒体選定領域という)において、一定の周期で振動する飽和磁界Hsの極小値をとる膜厚のもの(図5に矢印II−Aで示す)を本発明実施例とし、同じく層間結合力制御層32の膜厚が媒体選定領域において、一定の周期で振動する飽和磁界Hsの極大値をとる膜厚のもの(図5に矢印II−Bで示す)を比較例1とし、層間結合力制御層32の膜厚がゼロのもの(2層記録層)を比較例2とした。   As a sample, based on the magnetic characteristics shown in FIG. 5, an interlayer coupling force control layer 32 suitable for use as a perpendicular magnetic recording medium has a thickness of 0.7 nm to 1.2 nm (referred to as a medium selection region). A film having a minimum value of the saturation magnetic field Hs oscillating at a constant period (indicated by an arrow II-A in FIG. 5) is an embodiment of the present invention. The film thickness of the saturation magnetic field Hs oscillating at a constant period (shown by the arrow II-B in FIG. 5) is Comparative Example 1, and the interlayer bonding force control layer 32 has a film thickness of zero. The (two-layer recording layer) was set as Comparative Example 2.

図8より、層間結合力制御層32の膜厚の選定において、媒体領域において飽和磁界Hsが極小値を取る膜厚を選定することにより、飽和磁界Hsが極小値を取る膜厚を選定する場合に比べ、R/W特性が良好であることが確認できた。更に、比較例1のWcwが0.171μm、比較例2のWcwが0.177μmであるのに対し、本発明実施例のWcwは0.171μmでありWcwが広がっていないことも確認できた。   From FIG. 8, when selecting the film thickness of the interlayer coercivity control layer 32, selecting the film thickness at which the saturation magnetic field Hs takes the minimum value by selecting the film thickness at which the saturation magnetic field Hs takes the minimum value in the medium region. It was confirmed that the R / W characteristics were better than Furthermore, while the Wcw of Comparative Example 1 was 0.171 μm and the Wcw of Comparative Example 2 was 0.177 μm, it was confirmed that Wcw of the Example of the present invention was 0.171 μm and Wcw did not spread.

以上の結果より、本発明実施例に係る垂直磁気記録媒体によれば、層間結合力制御層32と第1記録層31の界面34、及び層間結合力制御層32と第2記録層33の界面35に反強磁性結合状態となる磁性領域を有することで、媒体ノイズの低減と記録性能の両立が可能なる。   From the above results, according to the perpendicular magnetic recording medium according to the embodiment of the present invention, the interface 34 between the interlayer coupling force control layer 32 and the first recording layer 31 and the interface between the interlayer coupling force control layer 32 and the second recording layer 33. By providing the magnetic region 35 in the antiferromagnetic coupling state 35, it is possible to reduce both medium noise and recording performance.

即ち、再生時においては記録層31,33と層間結合力制御層32の界面34,35での反強磁性結合成分の存在により、層間結合している領域の磁化の揺らぎが抑制され媒体ノイズを低減(S/Nの向上)を図ることができる。また、反強磁性成分が存在するために、実効的に磁気異方性を高めた効果を得ることができるため、Pt濃度を高めた高Ku化する必要がない。更に記録時にあっては、層間結合力制御層32の膜厚および磁気エネルギーバランスを調整することにより、記録磁界の低減を図ることが可能となる。   That is, during reproduction, the presence of antiferromagnetic coupling components at the interfaces 34 and 35 between the recording layers 31 and 33 and the interlayer coupling force control layer 32 suppresses fluctuations in magnetization in the interlayer coupling region, thereby reducing medium noise. Reduction (S / N improvement) can be achieved. In addition, since an antiferromagnetic component is present, an effect of effectively increasing the magnetic anisotropy can be obtained, so that it is not necessary to increase the Ku with an increased Pt concentration. Further, at the time of recording, the recording magnetic field can be reduced by adjusting the film thickness and magnetic energy balance of the interlayer coupling force control layer 32.

尚、前記した図5〜図7において、符号Iで示したのは層間の結合力最大(直接結合)となる熱さであり、符号IIで示したのは層間結合制御領域(RKKY結合成分を含む領域)を示しており、符号IIIで示したのは層間結合制御領域(記録磁界最小となる膜厚)を示しており、更に符号IVで示したのは層間結合力が弱い領域(デカップル領域:磁性層独立に動作)である。   In FIGS. 5 to 7, the symbol I indicates the heat that maximizes the bonding force between layers (direct coupling), and the symbol II indicates the interlayer coupling control region (including the RKKY coupling component). The reference numeral III indicates an interlayer coupling control region (film thickness that minimizes the recording magnetic field), and the reference symbol IV indicates a region having a weak interlayer coupling force (decoupled region: The magnetic layer operates independently).

本願発明に係る垂直磁気記録媒体はECC構造を有する垂直磁気記録媒体に広く適用することができる。また、HDD等の磁気記録再生装置に広く適用することが可能である。   The perpendicular magnetic recording medium according to the present invention can be widely applied to perpendicular magnetic recording media having an ECC structure. Further, it can be widely applied to a magnetic recording / reproducing apparatus such as an HDD.

図1は、本実施例に係るECC構造を有する垂直磁気記録媒体の構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the configuration of a perpendicular magnetic recording medium having an ECC structure according to this embodiment. 図2は、本実施例に係る垂直磁気記録媒体の磁気記録層を拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view showing the magnetic recording layer of the perpendicular magnetic recording medium according to this example. 図3は、第2記録層と層間結合力制御層との間の磁化状態を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a magnetization state between the second recording layer and the interlayer coupling force control layer. 図4は、第1記録層と層間結合力制御層との間の磁化状態を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a magnetization state between the first recording layer and the interlayer coupling force control layer. 図5は、層間結合力制御層(Pd)の厚さ変化に対する保磁力Hc及び飽和磁界Hsの変化を示す図である。FIG. 5 is a diagram illustrating changes in the coercive force Hc and the saturation magnetic field Hs with respect to changes in the thickness of the interlayer coupling force control layer (Pd). 図6は、層間結合力制御層(Pd)の厚さに対する記録磁界Hc99の変化を示す図である。FIG. 6 is a diagram showing a change in the recording magnetic field Hc 99 with respect to the thickness of the interlayer coupling force control layer (Pd). 図7は、記録特性を示す図である。FIG. 7 is a diagram showing recording characteristics. 図8は、本発明の効果を説明するための図である。FIG. 8 is a diagram for explaining the effect of the present invention.

符号の説明Explanation of symbols

1 非磁性基板
10 軟磁性裏打ち層
20 中間層
30 磁気記録層
31 第1記録層(グラニュラ層)
32 層間結合力制御層
33 第2記録層
40 保護層
DESCRIPTION OF SYMBOLS 1 Nonmagnetic substrate 10 Soft magnetic backing layer 20 Intermediate layer 30 Magnetic recording layer 31 First recording layer (granular layer)
32 Interlayer bonding force control layer 33 Second recording layer 40 Protective layer

Claims (8)

非磁性基板と、
前記非磁性基板上方に形成された軟磁性裏打ち層と、
前記軟磁性裏打ち層上に形成された非磁性中間層と、
前記中間層上に形成され、垂直磁気異方性を有する第1記録層と、前記第1記録層上に形成された層間結合力制御層と、前記層間結合力制御層上に形成され垂直磁気異方性を有する第2記録層を含む磁気記録層とを有する垂直磁気記録媒体であって、
前記層間結合力制御層と前記第1記録層の界面、及び前記層間結合力制御層と前記第2記録層の界面に、反強磁性結合状態となる磁性領域を有する垂直磁気記録媒体。
A non-magnetic substrate;
A soft magnetic backing layer formed above the non-magnetic substrate;
A nonmagnetic intermediate layer formed on the soft magnetic backing layer;
A first recording layer formed on the intermediate layer and having perpendicular magnetic anisotropy; an interlayer coupling force control layer formed on the first recording layer; and a perpendicular magnetic layer formed on the interlayer coupling force control layer. A perpendicular magnetic recording medium having a magnetic recording layer including a second recording layer having anisotropy,
A perpendicular magnetic recording medium having a magnetic region in an antiferromagnetic coupling state at an interface between the interlayer coupling force control layer and the first recording layer and at an interface between the interlayer coupling force control layer and the second recording layer.
前記磁気記録層は、全体としての磁気状態が強磁性結合状態である請求項1に記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 1, wherein the magnetic recording layer has a ferromagnetic coupling state as a whole. 前記第1の強磁性記録層は、前記第2の強磁性記録層より大きい垂直磁気異方性を有する請求項1又は2に記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 1, wherein the first ferromagnetic recording layer has a perpendicular magnetic anisotropy greater than that of the second ferromagnetic recording layer. 第1記録層が少なくともCoPt合金を含むグラニュラ磁性層で形成され、第2磁性記録層がCoCrを含む磁性合金で形成された請求項3記載の垂直磁気記録媒体。   4. The perpendicular magnetic recording medium according to claim 3, wherein the first recording layer is formed of a granular magnetic layer containing at least a CoPt alloy, and the second magnetic recording layer is formed of a magnetic alloy containing CoCr. 前記層間結合力制御層は、非磁性材料からなる請求項1乃至4の何れか一項に記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 1, wherein the interlayer coupling force control layer is made of a nonmagnetic material. 前記層間結合力制御層は、磁性材料からなる請求項1乃至4の何れか一項に記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 1, wherein the interlayer coupling force control layer is made of a magnetic material. 前記層間結合力制御層は、パラジウムである請求項5の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 5, wherein the interlayer coupling force control layer is palladium. 前記層間結合力制御層の膜厚は、当該層間結合力制御層の膜厚変化に伴い発生する前記磁気記録層の飽和磁界の振動変化の内、極小となる飽和磁界に対応する膜厚を選定してなる請求項1乃至6の何れか一項に記載の垂直磁気記録媒体。   As the film thickness of the interlayer coupling force control layer, a film thickness corresponding to the minimum saturation magnetic field is selected from the change in the saturation magnetic field vibration of the magnetic recording layer that occurs with the film thickness variation of the interlayer coupling force control layer. The perpendicular magnetic recording medium according to any one of claims 1 to 6.
JP2007226593A 2007-08-31 2007-08-31 Perpendicular magnetic recording medium Pending JP2009059432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007226593A JP2009059432A (en) 2007-08-31 2007-08-31 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007226593A JP2009059432A (en) 2007-08-31 2007-08-31 Perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2009059432A true JP2009059432A (en) 2009-03-19

Family

ID=40555022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007226593A Pending JP2009059432A (en) 2007-08-31 2007-08-31 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2009059432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076681A (en) * 2009-09-30 2011-04-14 Wd Media Singapore Pte Ltd Manufacturing control method of perpendicular magnetic recording medium
WO2012004883A1 (en) * 2010-07-09 2012-01-12 国立大学法人東北大学 Magnetoresistive effect element and random access memory using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076681A (en) * 2009-09-30 2011-04-14 Wd Media Singapore Pte Ltd Manufacturing control method of perpendicular magnetic recording medium
WO2012004883A1 (en) * 2010-07-09 2012-01-12 国立大学法人東北大学 Magnetoresistive effect element and random access memory using same
JPWO2012004883A1 (en) * 2010-07-09 2013-09-02 国立大学法人東北大学 Magnetoresistive element and random access memory using the same

Similar Documents

Publication Publication Date Title
JP5443065B2 (en) Perpendicular magnetic recording medium
JP5103097B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
US8277961B2 (en) Magnetic recording medium
JP4741685B2 (en) Perpendicular magnetic recording medium
JP5067744B2 (en) Perpendicular magnetic recording medium
JP2008146816A (en) Vertical magnetic recording medium equipped with multilayer recording structure including intergranular exchange enhancement layer
JP2008084413A (en) Magnetic recording medium, manufacturing method of magnetic recording medium and magnetic recording device
KR100374792B1 (en) Perpendicular magnetic recording disks
JP2006155861A (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
WO2010064409A1 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording device
JP5337451B2 (en) Perpendicular magnetic recording medium
JP5412729B2 (en) Perpendicular magnetic recording medium
JP2006127588A (en) Perpendicular magnetic recording medium
JP5610716B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3900999B2 (en) Perpendicular magnetic recording medium
US20060147760A1 (en) Perpendicular magnetic recording medium
US20080199734A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof and magnetic recording device
US20100079911A1 (en) Magnetic recording medium, process for producing same, and magnetic recording reproducing apparatus using the magnetic recording medium
JP5127950B2 (en) Magnetic recording medium
JP2009059432A (en) Perpendicular magnetic recording medium
JP2009026353A (en) Perpendicular magnetic recording medium
JP3588039B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP5213470B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP5267938B2 (en) Magnetic recording medium
JP2008243316A (en) Magnetic recording medium and magnetic recorder

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20090902

Free format text: JAPANESE INTERMEDIATE CODE: A711