JP2009058267A - Silver deposition film thickness measuring method - Google Patents
Silver deposition film thickness measuring method Download PDFInfo
- Publication number
- JP2009058267A JP2009058267A JP2007224041A JP2007224041A JP2009058267A JP 2009058267 A JP2009058267 A JP 2009058267A JP 2007224041 A JP2007224041 A JP 2007224041A JP 2007224041 A JP2007224041 A JP 2007224041A JP 2009058267 A JP2009058267 A JP 2009058267A
- Authority
- JP
- Japan
- Prior art keywords
- film thickness
- silver
- film
- vapor deposition
- deposition film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本発明は、銀蒸着膜厚測定方法に関するものである。特に、反射フィルム用の銀蒸着膜厚測定方法に関するものである。 The present invention relates to a method for measuring a deposited film thickness of silver. In particular, the present invention relates to a method for measuring a deposited silver film thickness for a reflective film.
真空槽内を走行する高分子フィルム上に連続的に蒸着する蒸着膜の膜厚をオンラインで測定する方法には、例えば、可視光透過法、抵抗値測定法、渦電流法または水晶振動子法などがある。 Examples of the method for measuring the film thickness of a deposited film continuously deposited on a polymer film running in a vacuum chamber include, for example, a visible light transmission method, a resistance value measurement method, an eddy current method, or a crystal resonator method. and so on.
可視光透過法は、測定物を通った光量から測定するもので、この場合の測定物は、蒸着膜と高分子フィルムとなる(特許文献1)。渦電流法は、測定子に高周波電流を流し、蒸着膜に渦電流を生じさせ、厚さによって変化する渦電流を測定するものである。この場合蒸着膜の電導度を測定する。抵抗値測定法は、接触間の電気的な抵抗値を測定するもので、この場合、2本の導電性ローラー間の、蒸着膜の抵抗を測る。水晶振動子法は、水晶振動子に蒸着膜が付着することによって生じる振動周波数変化を測定することによって膜厚を求めるものである。この方法では、蒸着領域近傍で水晶振動子上に堆積した膜厚を測定する。
反射フィルム用の蒸着膜厚は、フィルムの耐透湿度を上げるためにした300Å(オングストローム)から600Å程度の半透明金属蒸着膜厚とは異なり、蒸着膜厚が1000Å程度以上のより金属板に近い膜厚を求められている。特に液晶表示などの反射フィルム用には、できるだけ反射効率をあげることが要求されていて、可視光領域では銀蒸着が最も高反射率となることが知られている。しかし、銀は高価であるため、膜厚が厚ければ厚いほどよいというわけにはいかず、膜厚制御が必要となっている。
しかし、可視光透過法、抵抗値測定法、または渦電流法はいずれも半透明金属蒸着膜厚部分で感度が高く、金属板に近い膜厚になると感度が低くなってしまう欠点がある。また、水晶振動子法は、高価な水晶振動子を頻繁にとりかえなければならない欠点がある。
解決しようとする問題点は、より金属板に近い膜厚の銀蒸着を、安価に連続的に測定する方法を提供することである。
The vapor deposition film thickness for the reflective film is closer to the metal plate than the vapor deposition film thickness of about 1000 mm or more, unlike the translucent metal film thickness of about 300 mm (angstrom) to 600 mm for increasing the moisture permeability of the film. The film thickness is required. Particularly for reflective films such as liquid crystal displays, it is required to increase the reflection efficiency as much as possible, and it is known that silver deposition has the highest reflectance in the visible light region. However, since silver is expensive, the thicker the film, the better. The film thickness must be controlled.
However, any of the visible light transmission method, resistance measurement method, and eddy current method has a drawback that the sensitivity is high in the semi-transparent metal vapor deposition film thickness portion, and the sensitivity decreases when the film thickness is close to the metal plate. In addition, the crystal resonator method has a drawback that an expensive crystal resonator must be frequently replaced.
The problem to be solved is to provide a method for continuously and inexpensively measuring silver deposition having a film thickness closer to that of a metal plate.
本発明は、透明基板上に形成される銀蒸着膜に、310nmから340nmの範囲の紫外光を照射し、その光線透過率と銀蒸着膜厚との相関関係により、100nmから400nmの銀蒸着膜の膜厚測定することを特徴とする銀蒸着膜厚測定方法を提供するものである。
また、透明基板上に形成される銀蒸着膜に、310nmから340nmの範囲の紫外光を照射し、その光線透過率の対数値と銀蒸着膜厚との直線関係により、100nmから400nmの銀蒸着膜の膜厚測定することを特徴とする銀蒸着膜厚測定方法を提供するものである。
The present invention irradiates a silver vapor deposition film formed on a transparent substrate with ultraviolet light in the range of 310 nm to 340 nm, and the silver vapor deposition film of 100 nm to 400 nm depending on the correlation between the light transmittance and the silver vapor deposition film thickness. It is intended to provide a method for measuring the thickness of a silver deposited film characterized by measuring the thickness of the film.
In addition, the silver vapor deposition film formed on the transparent substrate is irradiated with ultraviolet light in the range of 310 nm to 340 nm, and the silver vapor deposition of 100 nm to 400 nm is performed according to the linear relationship between the logarithmic value of the light transmittance and the silver vapor deposition film thickness. The present invention provides a silver vapor deposition film thickness measuring method characterized by measuring the film thickness of a film.
本発明の銀蒸着膜厚測定方法は、310nmから340nmの範囲の紫外光を照射し、その光線透過率と銀蒸着膜厚との相関関係により、銀蒸着の厚膜の膜厚を測定できるので、反射フィルムに適した銀蒸着を容易で安価に製造するという利点がある。
The method for measuring the thickness of a silver deposited film according to the present invention can irradiate ultraviolet light in the range of 310 nm to 340 nm, and can measure the film thickness of the thick film of silver deposited by the correlation between the light transmittance and the silver deposited film thickness. There is an advantage that silver deposition suitable for a reflective film is easily and inexpensively manufactured.
本発明に述べる透明基板は、ポリオレフィン、ポリエステル、ポリアミド、ポリカーボネート、アクリル樹脂等の連続製膜性に優れた透明なプラスチックフィルムをさすが、プラスチック基板、ソーダライムシリカ組成のガラスや硼珪酸ガラス(無アルカリガラス)などの公知のガラス基板にも適用できる。
特に、二軸配向ポリエステルフィルムは、寸法安定性、機械的性質、耐熱性、透明性、電気的性質などに優れた性質を有することから好ましい。
また、透明基板の蒸着密着性を改善するために、例えば、表面のコロナ放電処理、紫外線照射処理、プラズマ処理などを行う表面活性化法、酸、アルカリ、アミン水溶液などの薬剤による表面エッチング法、あるいは、フィルム表面に接着性を有するアクリル樹脂、ポリエステル樹脂、ウレタン樹脂、ポリオレフィン樹脂などの各種樹脂をプライマー層として設けてもかまわない。
また、必要に応じ本発明の趣旨を損なわない範囲で他の粒子、例えばカオリン、タルク、二酸化ケイ素、炭酸カルシウム、二酸化チタン、ゼオライト、酸化アルミニウム等を少量配合してもよい。また、耐候剤、帯電防止剤、潤滑剤、抗酸化剤等を配合してもかまわない。
The transparent substrate described in the present invention refers to a transparent plastic film excellent in continuous film-forming properties such as polyolefin, polyester, polyamide, polycarbonate, acrylic resin, etc., but plastic substrate, soda lime silica composition glass or borosilicate glass (non-alkali) It can also be applied to known glass substrates such as glass.
In particular, the biaxially oriented polyester film is preferable because it has excellent properties such as dimensional stability, mechanical properties, heat resistance, transparency, and electrical properties.
Moreover, in order to improve the vapor deposition adhesion of the transparent substrate, for example, a surface activation method for performing surface corona discharge treatment, ultraviolet irradiation treatment, plasma treatment, etc., a surface etching method with a chemical such as acid, alkali, aqueous amine solution, Alternatively, various resins such as an acrylic resin, a polyester resin, a urethane resin, and a polyolefin resin having adhesiveness may be provided on the film surface as a primer layer.
Further, if necessary, other particles such as kaolin, talc, silicon dioxide, calcium carbonate, titanium dioxide, zeolite, aluminum oxide and the like may be blended in a small amount without departing from the spirit of the present invention. In addition, a weathering agent, an antistatic agent, a lubricant, an antioxidant and the like may be blended.
本発明に述べる銀蒸着膜は、真空蒸着法、スパッタリング法、イオンプレーティング法などの通常の金属の薄膜形成方法によって形成することができ、銀、銀と他の金属との合金ないしは混合物を含む銀蒸着膜の全てを含む。銀に、例えば、銅、白金、パラジウム、イリジウム、亜鉛、スズ等含ませることにより、変色を防止することができる。
本発明において透明基板は、真空度10−2Torr以下の空間に放置して真空乾燥し、該平膜中に存在する例えば水、酸素、窒素、炭化水素ガス等の揮発性物質を十分に除去しておくのが好ましい。その結果、蒸着操作中の真空度の変化も少なく、安定した条件下での蒸着が可能となる。
銀蒸着膜の上には、保護膜として、酸化アルミニウム、酸化ジルコニウム、酸化チタン、スズ−インジウム−亜鉛合金などの蒸着膜、ポリエステル系樹脂、シリコンアルキッド樹脂、レチル形酸化チタンとカーボンブラックを含有する熱硬化性防湿塗料、気化性防錆剤を主成分とする腐食抑制剤などの塗布膜等を設け、この保護膜によって良好な反射率を維持しながら耐環境性の向上が図ることもできる。
The silver deposited film described in the present invention can be formed by a normal metal thin film forming method such as vacuum deposition, sputtering, or ion plating, and includes an alloy or a mixture of silver, silver and other metals. Includes all of the silver deposited film. Discoloration can be prevented by including, for example, copper, platinum, palladium, iridium, zinc, tin and the like in silver.
In the present invention, the transparent substrate is left in a space with a vacuum degree of 10 −2 Torr or less and dried in a vacuum to sufficiently remove volatile substances such as water, oxygen, nitrogen, hydrocarbon gas, etc. present in the flat film. It is preferable to keep it. As a result, there is little change in the degree of vacuum during the vapor deposition operation, and vapor deposition under stable conditions becomes possible.
On the silver vapor-deposited film, as a protective film, a vapor-deposited film such as aluminum oxide, zirconium oxide, titanium oxide, tin-indium-zinc alloy, polyester-based resin, silicon alkyd resin, retil-type titanium oxide and carbon black are contained. A coating film such as a thermosetting moisture-proof paint and a corrosion inhibitor mainly composed of a vaporizable rust preventive agent is provided, and the environmental resistance can be improved while maintaining a good reflectance by this protective film.
本発明は、透明基板上に形成される銀蒸着膜に、310nmから340nmの範囲の紫外光を照射し、その光線透過率と銀蒸着膜厚との相関関係により銀蒸着の膜厚を測定する。光線透過率は、(銀蒸着膜付きの透明基板を通った光の強さ)/(透明基板を通った光の強さ)でもとめる。
光線透過率は、一般的な分光透過率測定器により計測できる。分光透過率測定器は、光源から発した光を回折格子あるいはプリズムに当て、Blag散乱の原理により角度により任意の単色光を取り出だす。このとき、目的の波長の(1/整数)の光も一緒に出てきてしまうので、フィルターを通して、光源から発した光を格子に当てている。
一般的な分光透過率測定器は、波長が100nmから1000nm程度と紫外光、可視光、赤外光と、広範囲に透過率を測定するため、水銀灯、キセノンランプ、重水素ランプなど、だせる波長範囲の光源を複数用意して切り替えて広範囲に透過率を測定しているが、本発明の場合、波長が160nmから400nmまでだせる重水素ランプをひとつ用意すればたりるため、測定器の小型化と消耗品であるランプの管理が容易である。
In the present invention, a silver vapor deposition film formed on a transparent substrate is irradiated with ultraviolet light in the range of 310 nm to 340 nm, and the film thickness of silver vapor deposition is measured by the correlation between the light transmittance and the silver vapor deposition film thickness. . The light transmittance can also be determined by (light intensity through a transparent substrate with a silver vapor deposition film) / (light intensity through a transparent substrate).
The light transmittance can be measured by a general spectral transmittance measuring device. The spectral transmittance measuring device applies light emitted from a light source to a diffraction grating or a prism, and extracts an arbitrary monochromatic light depending on an angle based on the principle of Bragg scattering. At this time, (1 / integer) light of the target wavelength also comes out together, so the light emitted from the light source is applied to the grating through the filter.
A general spectral transmittance measuring instrument has a wavelength range of about 100 nm to 1000 nm, and measures the transmittance over a wide range of ultraviolet light, visible light, and infrared light. However, in the case of the present invention, since one deuterium lamp capable of setting the wavelength from 160 nm to 400 nm is prepared, the measuring instrument can be downsized. Easy management of consumable lamps.
また、分光せずに、紫外光を発するランプ、たとえば、重水素ランプで単に照射し、そのときの光線透過率と銀蒸着膜厚との相関関係により銀蒸着の膜厚を測定してもかまわない。波長を310nmから340nmの範囲に絞るために、フィルターを通してもかまわない。いずれにしても、回折格子あるいはプリズム等の分光装置を削除することにより、測定器の小型化、低コスト化がはかられる。 Alternatively, the film may be irradiated with a lamp that emits ultraviolet light, for example, a deuterium lamp without spectroscopy, and the film thickness of silver vapor deposition may be measured by the correlation between the light transmittance at that time and the film thickness of silver vapor deposition. Absent. In order to narrow the wavelength in the range from 310 nm to 340 nm, a filter may be used. In any case, by eliminating a spectroscopic device such as a diffraction grating or a prism, the measuring device can be reduced in size and cost.
以下、本発明に述べる銀蒸着膜厚測定方法を説明する。
まず、反射フィルム用の透明なプラスチックフィルムと、そのフィルムの上に、目的の反射率が得られる銀の蒸着膜前後の膜厚の、銀の蒸着膜付きフィルムを、実際の膜厚制御したい真空装置で、透明基板の材料、真空度、成膜速度などの成膜条件を同一にして作成する。
次に、310nmから340nmの範囲の紫外光を分光して照射し、そのときの波長に対する光線透過率を銀の膜厚ごとにプロットしたグラフを作成する。
次に、その範囲の波長の中で、各銀の蒸着膜厚の光線透過率の、計測できる波長をひとつまたは範囲を設定し、各銀の蒸着膜の膜厚に対するその波長に対する光線透過率との関係を求める。
このことにより、銀蒸着膜の膜厚測定することができる。
また、膜厚に対して光線透過率を対数表示などすることにより、直線回帰することをみちびいて、精度良く銀蒸着膜の膜厚測定できることを確認する。
Hereinafter, the silver vapor deposition film thickness measuring method described in the present invention will be described.
First, a transparent plastic film for a reflective film, and a film with a silver vapor deposited film on the film before and after the silver vapor deposited film that provides the desired reflectance. With the apparatus, the transparent substrate material, the degree of vacuum, and the film forming conditions such as film forming speed are made the same.
Next, ultraviolet rays in the range of 310 nm to 340 nm are dispersed and irradiated, and a graph is created in which the light transmittance with respect to the wavelength at that time is plotted for each film thickness of silver.
Next, within the range of wavelengths, one or a range of wavelengths that can be measured for the light transmittance of the deposited film thickness of each silver is set, and the light transmittance for that wavelength with respect to the thickness of the deposited film of each silver Seeking the relationship.
Thereby, the film thickness of a silver vapor deposition film can be measured.
In addition, it is confirmed that the film thickness of the silver vapor deposition film can be measured with high accuracy by using a logarithmic display of the light transmittance with respect to the film thickness to find out that the linear regression is performed.
透明基板として、膜厚50μmの二軸配向ポリエステルフィルムを使用し、銀の成膜方法として、真空度が5×10−2Pa、成膜速度40m/分の真空蒸着法により、膜厚が、1000Å前後のものを用意する。図1は、その銀蒸着膜厚と反射率の関係を示すグラフで、銀蒸着膜厚が1000Å程度以上で反射率が飽和することがわかる。
次に、反射率が飽和するあたりの銀蒸着膜厚前後の、310nmから340nmの範囲の紫外光を分光して照射し、そのときの波長に対する光線透過率を銀の膜厚ごとにプロットしたグラフを作成する。
図2は、その銀蒸着膜厚と光線透過率の関係を示すグラフある。光線透過率の値の山は、波長が310nmから340nmの範囲の中にあることがわかる。従って、この波長の範囲で、光線透過率の値からその銀蒸着膜厚を実質的に測定することができることがわかる。図3は、たとえば、波長が314nmでの、銀蒸着膜厚と光線透過率の関係を示すグラフで、この線にそって銀蒸着膜厚を特定することができる。
また、図4は、図3を膜厚に対して光線透過率を対数表示した結果を示している。
膜厚値に対して光線透過率の対数値はほぼ直線に乗り、回帰直線の方程式を求めると下記の数式1となる(M:光線透過率%、N:膜厚Å)。また、数式1の相関係数は−0.99938で強い負の相関を示す。
As a transparent substrate, a biaxially oriented polyester film having a film thickness of 50 μm is used, and as a film formation method for silver, the film thickness is determined by a vacuum deposition method with a vacuum degree of 5 × 10 −2 Pa and a film formation rate of 40 m / min. Prepare around 1000cm. FIG. 1 is a graph showing the relationship between the silver deposited film thickness and the reflectance, and it can be seen that the reflectance is saturated when the silver deposited film thickness is about 1000 mm or more.
Next, a graph in which ultraviolet light in the range of 310 nm to 340 nm is scattered and irradiated before and after the silver vapor deposition film thickness at which the reflectance is saturated, and the light transmittance with respect to the wavelength at that time is plotted for each silver film thickness. Create
FIG. 2 is a graph showing the relationship between the silver deposited film thickness and the light transmittance. It can be seen that the peak of the light transmittance value is in the range of 310 nm to 340 nm. Therefore, it can be seen that the silver deposited film thickness can be substantially measured from the value of light transmittance in this wavelength range. FIG. 3 is a graph showing the relationship between the silver deposited film thickness and the light transmittance at a wavelength of 314 nm, for example, and the silver deposited film thickness can be specified along this line.
FIG. 4 shows the result of logarithmic display of the light transmittance with respect to the film thickness in FIG.
The logarithmic value of the light transmittance is almost linear with respect to the film thickness value, and the equation of the regression line is obtained as the following mathematical formula 1 (M: light transmittance%, N: film thickness Å). Moreover, the correlation coefficient of Formula 1 is −0.999938, indicating a strong negative correlation.
従って、膜厚に対して光線透過率を対数表示することにより、直線回帰することが可能で、このことにより、精度良く銀蒸着膜の膜厚測定することができる。
また、図5は、膜厚値と光線透過率の対数値の相関係数をプロットしたもので、波長が310nmから334nmの相関係数は0.83以上でありこの波長範囲で精度良く銀蒸着膜の膜厚測定することができることを示している。また、この結果より、特定波長にしぼらなくても、おおよそ波長が310nmから334nm程度の広範囲の波長域で精度良く膜厚を測定することができる。
Therefore, by linearly displaying the light transmittance with respect to the film thickness, it is possible to perform a linear regression, and thus the film thickness of the silver deposited film can be measured with high accuracy.
FIG. 5 is a plot of the correlation coefficient between the film thickness value and the logarithmic value of the light transmittance. The correlation coefficient between wavelengths of 310 nm and 334 nm is 0.83 or more, and silver deposition is accurately performed in this wavelength range. It shows that the film thickness of the film can be measured. Further, from this result, the film thickness can be accurately measured in a wide wavelength range of about 310 nm to 334 nm even if the specific wavelength is not limited.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007224041A JP2009058267A (en) | 2007-08-30 | 2007-08-30 | Silver deposition film thickness measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007224041A JP2009058267A (en) | 2007-08-30 | 2007-08-30 | Silver deposition film thickness measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009058267A true JP2009058267A (en) | 2009-03-19 |
Family
ID=40554150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007224041A Pending JP2009058267A (en) | 2007-08-30 | 2007-08-30 | Silver deposition film thickness measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009058267A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013525845A (en) * | 2010-04-21 | 2013-06-20 | スリーエム イノベイティブ プロパティズ カンパニー | Metal detectable lens |
KR200472113Y1 (en) | 2012-12-03 | 2014-04-07 | 현대중공업 주식회사 | Center of pipe measuring Guide Plate |
-
2007
- 2007-08-30 JP JP2007224041A patent/JP2009058267A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013525845A (en) * | 2010-04-21 | 2013-06-20 | スリーエム イノベイティブ プロパティズ カンパニー | Metal detectable lens |
EP2561399A4 (en) * | 2010-04-21 | 2014-04-30 | 3M Innovative Properties Co | Metal detectable lens |
KR200472113Y1 (en) | 2012-12-03 | 2014-04-07 | 현대중공업 주식회사 | Center of pipe measuring Guide Plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jobst et al. | Optical properties of unprotected and protected sputtered silver films: Surface morphology vs. UV/VIS reflectance | |
Choudhury et al. | RF-PACVD of water repellent and protective HMDSO coatings on bell metal surfaces: Correlation between discharge parameters and film properties | |
Rawal et al. | Structural, optical and hydrophobic properties of sputter deposited zirconium oxynitride films | |
JPWO2011046050A1 (en) | Production apparatus and production method for transparent conductive film | |
Hovish et al. | Open air plasma deposition of superhydrophilic titania coatings | |
Chu et al. | Corrosion characterization of durable silver coatings by electrochemical impedance spectroscopy and accelerated environmental testing | |
US20140242571A1 (en) | Optical element, analysis equipment, analysis method and electronic apparatus | |
Matsui et al. | Oxide Surface Plasmon Resonance for a New Sensing Platform in the Near‐Infrared Range | |
Boscher et al. | Chemical compositions of organosilicon thin films deposited on aluminium foil by atmospheric pressure dielectric barrier discharge and their electrochemical behaviour | |
Di Mundo et al. | Nano‐texturing of Transparent Polymers with Plasma Etching: Tailoring Topography for a Low Reflectivity | |
JP2009058267A (en) | Silver deposition film thickness measuring method | |
Meng et al. | Thermal stability of AlN films prepared by ion beam assisted deposition | |
Takarada et al. | Structural dependence of corrosion resistance of amorphous carbon films against nitric acid | |
Drabik et al. | Composite TiOx/hydrocarbon plasma polymer films prepared by magnetron sputtering of TiO2 and poly (propylene) | |
Maidul Haque et al. | Extended x-ray absorption fine structure measurements on asymmetric bipolar pulse direct current magnetron sputtered Ta2O5 thin films | |
Polonskyi et al. | Gas barrier properties of hydrogenated amorphous carbon films coated on polyethylene terephthalate by plasma polymerization in argon/n-hexane gas mixture | |
Hasaneen et al. | Effect of copper and silver as a middle layer on the structural, electrical, photocatalytic, and optical properties of ZnS/metal/ZnS films for optoelectronics applications | |
Lackner et al. | Plasma polymerization inside tubes in hexamethyldisiloxanes and ethyne glow discharges: effects of deposition atmosphere on wetting and ageing in solvents | |
KR102520744B1 (en) | laminate | |
Zhao et al. | Perspective—Nano Infrared Microscopy: obtaining chemical information on the nanoscale in corrosion studies | |
Klages et al. | Immersion infrared reflection‐absorption spectroscopy studies on diamond‐like carbon surfaces. I. Formation of electrophilic groups on surfaces of amorphous carbon films aging in ambient air | |
RU2627945C1 (en) | Method for determining thickness of aluminium oxide film during anodic oxidation of cold cathode in glow oxygen discharge | |
De et al. | Fabrication of TiO2-based broadband single-layer anti-reflection coating by collimated glancing angle deposition technique | |
de los Arcos et al. | UV-enhanced environmental charge compensation in near ambient pressure XPS | |
Dixit et al. | ZnO thick film based opto-electronic humidity sensor for a wide range of humidity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20091117 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100618 |