JP2009058203A - Heat exchange device - Google Patents

Heat exchange device Download PDF

Info

Publication number
JP2009058203A
JP2009058203A JP2007227875A JP2007227875A JP2009058203A JP 2009058203 A JP2009058203 A JP 2009058203A JP 2007227875 A JP2007227875 A JP 2007227875A JP 2007227875 A JP2007227875 A JP 2007227875A JP 2009058203 A JP2009058203 A JP 2009058203A
Authority
JP
Japan
Prior art keywords
heat exchange
fluid
exchange channel
enormous
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007227875A
Other languages
Japanese (ja)
Inventor
Takahiko Ito
孝彦 伊東
Junko Seki
純子 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUKIGAYA SEIGYO KENKYUSHO KK
Yukigaya Institute Co Ltd
Original Assignee
YUKIGAYA SEIGYO KENKYUSHO KK
Yukigaya Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUKIGAYA SEIGYO KENKYUSHO KK, Yukigaya Institute Co Ltd filed Critical YUKIGAYA SEIGYO KENKYUSHO KK
Priority to JP2007227875A priority Critical patent/JP2009058203A/en
Publication of JP2009058203A publication Critical patent/JP2009058203A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchange device with heat exchange flow paths formed of flat plates and swollen parts, having improved heat exchanging performance by suppressing a three-dimensional flow in the heat exchange flow paths. <P>SOLUTION: The heat exchange device comprises the first heat exchange flow paths formed with the flat plates arranged at predetermined intervals, the second heat exchange flow paths formed with the first heat exchange flow paths arranged at predetermined intervals, and the swollen parts connected to the ends of the first heat exchange flow paths. A with E of the swollen part is E=(A+B)×(sinβ/sinα)-B, where A is a space between the first heat exchange flow paths, B is a space between the second heat exchange flow paths, and α (0<α≤π/2) and β (α<β<π-α) are the angles of boundary lines between each the first heat exchange flow path and the second heat exchange flow path and the swollen part to the first heat exchange flow path and to the second heat exchange flow path, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、温度の異なる2つの流体をそれぞれ独立した流体通路に流通させ、当該流体通路を構成する板の熱伝達面を通じて一方の流体から他方の流体に熱を伝達させる対向流型の熱交換器に関する。   The present invention is a counter flow type heat exchange in which two fluids having different temperatures are circulated through independent fluid passages and heat is transferred from one fluid to the other fluid through a heat transfer surface of a plate constituting the fluid passages. Related to the vessel.

温度が高い流体と、温度が低い流体を熱伝導体を介して熱的に接触させ、高温流体から低温流体に熱を与える熱交換装置は、火力発電用ボイラー、蒸留装置、化学反応装置、各種製造装置等の技術分野において、広く利用されている。また、廃棄される高温流体から熱を回収して利用する装置が、エネルギーの有効利用あるいは熱効率の改善のために用いられている。さらに、熱交換装置は、低温流体により高温流体を冷却する場合にも利用される。   A heat exchange device that heats a high-temperature fluid and a low-temperature fluid in thermal contact with each other through a heat conductor and applies heat from a high-temperature fluid to a low-temperature fluid is a boiler for a thermal power generation, a distillation device, a chemical reaction device, Widely used in technical fields such as manufacturing equipment. In addition, an apparatus that recovers and uses heat from a discarded high-temperature fluid is used for effective use of energy or improvement of thermal efficiency. Furthermore, the heat exchange device is also used when cooling a high temperature fluid with a low temperature fluid.

熱交換装置が有効に適用できる応用分野の一例として、再生サイクルガスタービンがある。タービン排気と圧縮された吸気との間で熱交換を行うことによって、排気に残った熱エネルギーを回収し、燃焼以前の圧縮された吸気を加熱することにより、燃料を節約することができ、ガスタービンの圧縮比を下げるに従って、カルノーサイクルの効率を極限値とする理論熱効率が期待できるため、熱交換装置の適用は有益である。   An example of an application field in which a heat exchange device can be effectively applied is a regeneration cycle gas turbine. By exchanging heat between the turbine exhaust and the compressed intake air, the heat energy remaining in the exhaust can be recovered and the compressed intake air prior to combustion can be heated to save fuel and gas As the turbine compression ratio is lowered, the theoretical thermal efficiency with the Carnot cycle efficiency as the limit value can be expected, so the application of the heat exchange device is beneficial.

利用目的に応じて熱交換装置の構造は様々であるが、熱交換の効率を高めるためには、高熱側と低熱側の伝熱面積を大きくする必要がある。従来も熱交換を行う流体の通路を複数に分割する発明がなされている(例えば、特許文献1参照)。   Although the structure of the heat exchange device varies depending on the purpose of use, in order to increase the efficiency of heat exchange, it is necessary to increase the heat transfer area on the high heat side and the low heat side. Conventionally, an invention has been made in which a fluid passage for heat exchange is divided into a plurality of parts (for example, see Patent Document 1).

しかし、複数の異なる液体間での熱交換には好都合であっても構造上鏡板を必要としパイプによって流体を供給し排出させる構造であるため、ガスタービン発電装置のような用途には好適とは言えなかった。ガスタービンの高温で大量の排気ガスとコンプレッサーからの大量の圧縮空気とを圧力損失が小さい状態で熱交換を行うことが可能な熱交換装置においては満足すべき性能に達していなかった。   However, even though it is convenient for heat exchange between a plurality of different liquids, it is structurally required to have an end plate and fluid is supplied and discharged by a pipe. I could not say it. A heat exchange apparatus capable of exchanging a large amount of exhaust gas and a large amount of compressed air from a compressor with a small pressure loss at a high temperature of the gas turbine has not reached satisfactory performance.

一方、熱交換装置においては、2つの流体が直交して流れる直交流(例えば、特許文献2参照)や、2つの流体が平行して同じ方向に流れる平行流にて熱交換を行うものがあるが、熱機関等に利用される熱交換装置は2つの流体が何れも気体である場合が多く、熱交換のために広大な流体の熱的接触面積を必要し、熱機関に課せられた一般的な熱的要求から、ほとんど全ての熱交換は対向流(カウンターフロー)型熱交換装置が望ましい。   On the other hand, in a heat exchange device, there is a heat exchange device that performs heat exchange using a cross flow in which two fluids flow orthogonally (for example, see Patent Document 2) or a parallel flow in which two fluids flow in the same direction in parallel. However, heat exchange devices used in heat engines and the like often have two fluids in the form of gas, and require a large fluid contact area for heat exchange, and are generally imposed on heat engines. From the viewpoint of general thermal requirements, counter flow type heat exchange devices are desirable for almost all heat exchange.

このため、対向流を実現させるために工夫をしたものがある(特許文献3参照)。特許文献3によれば、小間隔を保つように渦巻状に形成された偏平流路の両端部に、流体導入用膨大部と流体排出用膨大部とを形成し、導入用膨大部から流体排出用膨大部に通過させる過程で、偏平流路に流体を通す。このような偏平流路を複数用い、第一流体が偏平流路内で流れる向きと第二流体が偏平流路内で流れる向きとを対向させることで対向流を実現している。   For this reason, some have been devised to realize counterflow (see Patent Document 3). According to Patent Document 3, a fluid introduction enormous part and a fluid exhaust enormous part are formed at both ends of a flat flow path formed in a spiral shape so as to maintain a small interval, and fluid is discharged from the introduction enormous part. The fluid is passed through the flat channel in the process of passing through the enormous volume. A plurality of such flat channels are used, and a counter flow is realized by opposing the direction in which the first fluid flows in the flat channel and the direction in which the second fluid flows in the flat channel.

特公平1−14515Japanese Patent Publication 1-14515 特開2005−282904JP-A-2005-282904 特開2002−350073JP 2002-350073 A

しかしながら、特許文献3の熱交換装置では、膨大部から偏平流路に流入する2つの流体の流れが、対向流に近い流れとなっているものの、対向流と異なる斜行流等の三次元流が発生することがわかった。偏平流路内の流体に三次元流が発生すると、対向流と離れるため、熱交換性能が低下するおそれがある。このため、更に熱交換性能を高めるために、より三次元流の発生を抑制し、理想の対向流に近づける必要があった。   However, in the heat exchange device of Patent Document 3, the flow of the two fluids flowing from the enormous portion into the flat flow path is a flow close to the counterflow, but a three-dimensional flow such as an oblique flow different from the counterflow Was found to occur. When a three-dimensional flow is generated in the fluid in the flat flow path, the heat exchange performance may be deteriorated because it is separated from the counter flow. For this reason, in order to further improve the heat exchange performance, it is necessary to suppress the generation of a three-dimensional flow and bring it closer to an ideal counter flow.

そこで本発明の目的は、偏平な板で構成された熱交換用流路と膨大部とを有する熱交換装置において、熱交換用流路における三次元流を抑制することで、熱交換装置の熱交換性能を向上させることである。   Accordingly, an object of the present invention is to reduce the heat of the heat exchange device by suppressing the three-dimensional flow in the heat exchange channel in the heat exchange device having a heat exchange channel and a huge portion made of a flat plate. It is to improve exchange performance.

前記目的を達成するための本発明の第1の構成は、偏平な板を所定の間隔をおいて配置することで形成される第一熱交換用流路と、前記第一熱交換用流路を所定の間隔をおいて配置することで形成される第二熱交換用流路と、前記第一熱交換用流路の端部に接続される膨大部と、を備え、前記膨大部の幅Eは、前記第一熱交換用流路の間隔をAとし、前記第二熱交換用流路の間隔をBとし、前記第一熱交換用流路及び第二熱交換用流路と前記膨大部との境界線が、前記第一熱交換用流路となす角をα(0<α≦π/2)、第二熱交換用流路となす角をβ(α<β<π−α)とすると、E=(A+B)×(sinβ/sinα)−Bの関係を満たすことを特徴とする熱交換装置である。   In order to achieve the above object, a first configuration of the present invention includes a first heat exchange channel formed by arranging flat plates at a predetermined interval, and the first heat exchange channel. A second heat exchange channel formed by disposing the first heat exchange channel and an enormous portion connected to an end of the first heat exchange channel, the width of the enormous portion E represents the interval between the first heat exchange channels as A, the interval between the second heat exchange channels as B, the first heat exchange channel and the second heat exchange channel, and the enormous amount. The angle between the boundary line and the first heat exchange channel is α (0 <α ≦ π / 2), and the angle between the second heat exchange channel is β (α <β <π−α). ), The heat exchange device is characterized by satisfying a relationship of E = (A + B) × (sin β / sin α) −B.

また、第2の構成は、前記膨大部は、前記第一熱交換用流路の両端部に形成されることを特徴とする第1の構成に記載の熱交換装置である。   The second configuration is the heat exchange device according to the first configuration, wherein the enormous portion is formed at both ends of the first heat exchange channel.

また、第3の構成は、偏平な板を所定の間隔をおいて配置することで形成される第一熱交換用流路と、前記第一熱交換用流路を所定の間隔をおいて配置することで形成される第二熱交換用流路と、前記第一熱交換用流路の端部に接続される第一膨大部と、前記第二熱交換用流路の端部に接続される第二膨大部と、を備え、前記第一膨大部の幅E1及び前記第二膨大部の幅E2は、前記第一熱交換用流路の間隔をAとし、前記第二熱交換用流路の間隔をBとし、前記第一熱交換用流路及び第二熱交換用流路と前記膨大部との境界線が、前記第一熱交換用流路となす角をα(0<α≦π/2)、第二熱交換用流路となす角をβ(α<β<π−α)とすると、E1=(A+B)×(sinβ/sinα)−B、E2=(A+B)×(sinβ/sinα)−Aの関係を満たすことを特徴とする熱交換装置である。   In the third configuration, the first heat exchange channel formed by arranging flat plates at a predetermined interval and the first heat exchange channel at a predetermined interval are arranged. Connected to the end of the second heat exchange flow path, the first enormous portion connected to the end of the first heat exchange flow path, the second heat exchange flow path formed by The first enormous part width E1 and the second enormous part width E2 have an interval between the first heat exchange channels as A, and the second heat exchange flow The interval between the paths is B, and the angle between the boundary line between the first heat exchange channel and the second heat exchange channel and the enormous portion with the first heat exchange channel is α (0 <α .Ltoreq..pi. / 2), where .beta. (.Alpha. <. Beta. <. Pi .-. Alpha.) Is the angle formed with the second heat exchange channel, E1 = (A + B) .times. (Sin .beta. / Sin .alpha.)-B, E2 = (A + B) .times. (Sin β / sin α) -A It is a heat exchange device characterized by satisfying the relationship.

また、第4の構成は、前記第一熱交換用流路、前記第二熱交換用流路及び前記膨大部は、連続した1枚の板を折り曲げて構成されることを特徴とする第3の構成に記載の熱交換装置である。   In the fourth configuration, the first heat exchange channel, the second heat exchange channel, and the enormous portion are configured by bending a single continuous plate. It is a heat exchange apparatus as described in the structure.

以上のように構成したことにより、偏平な板で構成された熱交換用流路と膨大部とを有する熱交換装置において、熱交換用流路における三次元流を抑制し、熱交換装置の熱交換性能を向上させることができる。   By configuring as described above, in the heat exchange device having the heat exchange flow path configured by a flat plate and the enormous portion, the three-dimensional flow in the heat exchange flow path is suppressed, and the heat of the heat exchange device is reduced. Exchange performance can be improved.

〔第1実施形態〕
図を用いて本発明の第1実施形態について説明する。説明にあたっては、熱交換装置1の内部構造を説明した後、熱交換装置1の外部構造を説明する。
[First Embodiment]
A first embodiment of the present invention will be described with reference to the drawings. In the description, after describing the internal structure of the heat exchange device 1, the external structure of the heat exchange device 1 will be described.

(熱交換装置1の内部構造)
図1乃至図3を用いて、熱交換装置1の内部構造を説明する。
(Internal structure of heat exchange device 1)
The internal structure of the heat exchange device 1 will be described with reference to FIGS. 1 to 3.

図1は第1実施形態に係る熱交換装置1の内部構造を説明する断面斜視図である。図2は熱交換装置1の流路の模式図であり、(a)が斜視図、(b)が断面図である。   FIG. 1 is a cross-sectional perspective view illustrating the internal structure of the heat exchange device 1 according to the first embodiment. 2A and 2B are schematic views of the flow path of the heat exchange device 1, wherein FIG. 2A is a perspective view and FIG. 2B is a cross-sectional view.

図1に示すように、熱交換装置1の箱体30の内部は、薄い伝熱材料製の板Pで仕切られることで、第一流体が流れる流体通路と第二流体が流れる流体通路に隔てられる。図1においては、箱体30の内部に、12組の第一流体が流れる流体通路が、相互に所定の間隔を保持して固定される。   As shown in FIG. 1, the inside of the box 30 of the heat exchange device 1 is partitioned by a thin heat transfer material plate P so as to be separated into a fluid passage through which the first fluid flows and a fluid passage through which the second fluid flows. It is done. In FIG. 1, fluid passages through which twelve sets of first fluids flow are fixed inside the box 30 while maintaining a predetermined interval therebetween.

図2に示すように、第一流体が流れる流体通路は、断面が偏平な熱伝導性の板Pを平板状に狭い範囲で対向させることで仕切られる第一熱交換用流路10と、その両端に形成される第一流体導入用膨大部11及び第一流体導出用膨大部12から構成される。各膨大部11、12は、第一流体と気密状態に連接している。一方、第二流体が流れる流体通路は、第二熱交換用流路20と、その両端に形成される第二流体導入部21及び第二流体導出部22から形成される。尚、本実施形態においては、第二流体導入部21及び第二流体導出部22の断面が三角形状になるように形成される。   As shown in FIG. 2, the fluid passage through which the first fluid flows includes a first heat exchange channel 10 that is partitioned by facing a thermally conductive plate P having a flat cross section in a narrow range in a flat shape, The first fluid introducing enormous portion 11 and the first fluid deriving enormous portion 12 are formed at both ends. Each enormous part 11 and 12 is connected to the first fluid in an airtight state. On the other hand, the fluid passage through which the second fluid flows is formed by the second heat exchange channel 20 and the second fluid introduction part 21 and the second fluid outlet part 22 formed at both ends thereof. In the present embodiment, the second fluid introduction part 21 and the second fluid lead-out part 22 are formed to have a triangular cross section.

第一流体の流体通路は、膨大部11、12と第一熱交換用流路10の側面を箱体側面の封止部(後述)に固定して支持する。従って第一流体の流体通路を構成する伝熱材料製の板Pと、隣接する流体通路を構成する伝熱材料製の板Pで区画された間隙で構成される空間は、第一熱交換用流路10と相似の形状(Z字状)となり、第二熱交換用流路20を構成する。   The fluid passage of the first fluid fixes and supports the enormous portions 11 and 12 and the side surfaces of the first heat exchange channel 10 to a sealing portion (described later) on the side surface of the box. Therefore, the space formed by the gap defined by the heat transfer material plate P constituting the fluid passage of the first fluid and the heat transfer material plate P constituting the adjacent fluid passage is used for the first heat exchange. It becomes a shape (Z-shape) similar to the flow path 10 and constitutes the second heat exchange flow path 20.

第二熱交換用流路20の両端にある第二流体導入部21及び第二流体導出部22は、第一流体の複数の流体通路を内包するように、耐熱材料の箱体30によって外部と仕切ることで形成される。尚、箱体30は、第一流体の流体通路の第一熱交換用流路10に隣接する部分においては、第一熱交換用流路10に挟まれる第二熱交換用流路20における熱交換と同様な熱交換を行えるように、第一熱交換用流路10に沿って所定の間隙で形成する。   The second fluid introduction part 21 and the second fluid lead-out part 22 at both ends of the second heat exchange channel 20 are externally connected by the heat-resistant material box 30 so as to include a plurality of fluid passages of the first fluid. Formed by partitioning. Note that the box body 30 has heat in the second heat exchange channel 20 sandwiched between the first heat exchange channels 10 in a portion adjacent to the first heat exchange channel 10 of the fluid passage of the first fluid. The first heat exchange channel 10 is formed with a predetermined gap so that heat exchange similar to the exchange can be performed.

第二熱交換用流路20の排出部を環境に開放して第二流体を放出してしまう使い方も有り得るが、多くの場合は、排出ガスの高い温度や濾過を考慮して、第二流体を集めて導管により所定の場所で放出する。また第二流体が保持している熱を利用するため、他の熱交換器に導く利用方法も考えられるから、第二流体導出部22の設置を必要とする。   There may be a method of releasing the second fluid by opening the discharge part of the second heat exchange channel 20 to the environment, but in many cases, the second fluid is considered in consideration of high exhaust gas temperature and filtration. Are collected and discharged in place by a conduit. Moreover, since the heat | fever which the 2nd fluid hold | maintains is utilized, since the utilization method guide | induced to another heat exchanger is also considered, installation of the 2nd fluid derivation | leading-out part 22 is required.

箱体30は、第一流体導入用膨大部11等の熱交換装置の構成部材を固定し流路を支持する機能、後述の封止部を固定し支持する機能、第二流体の流体通路を形成する機能を果たす。箱体30は、熱交換装置を外部の機器に固定する際の支持部材としても利用することができるが、この場合には構造上要求される強度に対して配慮する必要がある。   The box body 30 has a function of fixing the constituent members of the heat exchange device such as the first fluid introducing enormous portion 11 and supporting the flow path, a function of fixing and supporting a sealing portion described later, and a fluid passage of the second fluid. Fulfills the function of forming. The box 30 can also be used as a support member when the heat exchange device is fixed to an external device. In this case, it is necessary to consider the strength required for the structure.

図2を用いて、本実施形態における流体の流れを説明する。図2において、実線の矢印で示す流れが第一流体の流れであり、破線の矢印で示す流れが第二流体の流れである。   The flow of the fluid in this embodiment is demonstrated using FIG. In FIG. 2, the flow indicated by the solid line arrow is the flow of the first fluid, and the flow indicated by the broken line arrow is the flow of the second fluid.

図2(a)に示すように、第一流体は第一流体導入用膨大部11に導入される。第一流体導入用膨大部11に導入された第一流体は、第一熱交換用流路10を通過した後、第一流体導出用膨大部12に至る。その後、第一流体は、第一流体導出用膨大部12を通って機外に排出される。一方、第二流体は同様に、第二流体導入部21から導入され、第一熱交換用流路10に挟まれるように形成される第二熱交換用流路20を通過して、第二流体導出部22に至る。   As shown in FIG. 2A, the first fluid is introduced into the first fluid introduction enormous portion 11. The first fluid introduced into the first fluid introduction enormous part 11 reaches the first fluid deriving enormous part 12 after passing through the first heat exchange channel 10. Thereafter, the first fluid is discharged out of the apparatus through the first fluid deriving enormous portion 12. On the other hand, the second fluid is similarly introduced from the second fluid introduction part 21 and passes through the second heat exchange channel 20 formed so as to be sandwiched between the first heat exchange channels 10, It reaches the fluid outlet 22.

このように構成されるため、低温の第一流体を第一流体導入用膨大部11に供給して第一熱交換用流路10を通過させる一方、高温の第二流体を第二流体導入部21に供給して第二熱交換用流路20を通過させると、第一熱交換用流路10と第二熱交換用流路20との間の伝熱材料製の板Pにおいて熱交換が行われる。これにより、第二流体から第一流体へ熱を与える。また、第一熱交換用流路10での第一流体の流れと、第二熱交換用流路20での第二流体の流れとは、対向流(カウンターフロー)型であり、熱交換には最適である。   Since it is configured in this manner, the low temperature first fluid is supplied to the first fluid introduction enormous portion 11 and passed through the first heat exchange channel 10 while the high temperature second fluid is supplied to the second fluid introduction portion. When the first heat exchange channel 10 and the second heat exchange channel 20 are passed through the second heat exchange channel 20, heat exchange is performed on the plate P made of heat transfer material between the first heat exchange channel 10 and the second heat exchange channel 20. Done. As a result, heat is applied from the second fluid to the first fluid. Further, the flow of the first fluid in the first heat exchange channel 10 and the flow of the second fluid in the second heat exchange channel 20 are counterflow type, and are used for heat exchange. Is the best.

尚、第一流体及び第二流体は伝熱材料製の板Pを隔壁としているから相互に混合することはない。また、流体の流路断面積に比較して、伝熱材料製の板Pの断面積は非常に大きい。このため、流体の流量、流速が大きい場合であっても、対向して流れる流体に充分伝熱することが可能である。   The first fluid and the second fluid are not mixed with each other because the heat transfer material plate P is used as a partition wall. Further, the cross-sectional area of the plate P made of the heat transfer material is very large compared to the cross-sectional area of the fluid flow path. For this reason, even when the flow rate and flow rate of the fluid are large, it is possible to sufficiently transfer heat to the fluid that flows oppositely.

第一熱交換用流路10及び第二熱交換用流路20を通過できる流体の量は、板Pの設置間隔により選択することができる。また、図1においては、第一流体の流体通路を12個示したが、流体の量や伝熱量、流体の温度等を考慮して設計により選定することができ、大型の熱交換器を実現する場合には、本実施形態よりも多数の流路を設けることができる。   The amount of fluid that can pass through the first heat exchange channel 10 and the second heat exchange channel 20 can be selected according to the installation interval of the plates P. In addition, in FIG. 1, 12 fluid passages for the first fluid are shown, but it can be selected by design in consideration of the amount of fluid, the amount of heat transfer, the temperature of the fluid, etc., realizing a large heat exchanger In this case, a larger number of channels can be provided than in the present embodiment.

図3を用いて、本実施形態の特徴部分を説明する。図3は熱交換用流路と膨大部との関係を説明する図であり、(a)及び(b)が膨大部の設計手順を説明する図、(c)が設計された膨大部の構造を説明する図である。   The characteristic part of this embodiment is demonstrated using FIG. FIG. 3 is a diagram for explaining the relationship between the heat exchange flow path and the enormous portion, wherein (a) and (b) are diagrams for explaining the design procedure of the enormous portion, and (c) is the structure of the enormous portion designed. FIG.

一般に対向流型熱交換装置を構成するにあたって、第一流体と第二流体を流入又は流出させる、一般にヘッダーと呼ばれる部分に幾何学的に理想的な流路構成が困難になる部分が生ずるとされている。本実施形態では、この課題に対して抜本的解決手段を与える数学上の解決を熱交換装置に適用できるように、合理的な遷移関数を与えた構造を備える。   In general, when constructing a counter flow type heat exchange device, it is said that a portion where a first fluid and a second fluid flow in or out, generally called a header, is difficult to achieve a geometrically ideal flow path configuration. ing. In this embodiment, a structure provided with a reasonable transition function is provided so that a mathematical solution that provides a fundamental solution to this problem can be applied to the heat exchange device.

図3(a)に示すように、膨大部を設計する際には、まず第一熱交換用流路10と膨大部11、12となるところの境界に境界線(補助線z−z)を引く。そして、第一熱交換用流路10の幅Aと、第一熱交換用流路10に対応する膨大部側の基準となる基準幅Cとを、次に示す式(1)を満たすように構成する。   As shown in FIG. 3A, when designing the enormous part, first, a boundary line (auxiliary line zz) is formed at the boundary between the first heat exchange channel 10 and the enormous parts 11 and 12. Pull. Then, the width A of the first heat exchange channel 10 and the reference width C serving as a reference on the enormous portion side corresponding to the first heat exchange channel 10 satisfy the following expression (1). Constitute.

C/A=sinβ/sinα … (1)
但し、0<α≦π/2、α<β<π−αである。
C / A = sin β / sin α (1)
However, 0 <α ≦ π / 2 and α <β <π−α.

これと同様の比で、第二熱交換用流路20の幅Bと、第二熱交換用流路20に対応する基準幅Dも、前述と同じ比を満たすように、次に示す式(2)、
D/B=sinβ/sinα(=C/A) … (2)
を満たすように構成する。
At the same ratio, the width B of the second heat exchange channel 20 and the reference width D corresponding to the second heat exchange channel 20 also satisfy the same ratio as described above ( 2),
D / B = sin β / sin α (= C / A) (2)
Configure to meet.

図3(b)に示すように、次に、膨大部の幅Eを、次の式(3)、
E=(C+D)−B、即ち、
E=(A+B)×(sinβ/sinα)−B … (3)
を満たすように構成する。
Next, as shown in FIG. 3 (b), the width E of the enormous portion is set to the following equation (3),
E = (C + D) −B, ie
E = (A + B) × (sin β / sin α) −B (3)
Configure to meet.

以上の手順のように、初等数学上の事実を利用して膨大部の幅Eを決定する(図3(c)参照)。図3(c)では第一流体導出用膨大部12を例示した。このように構成することで、どの断面を見ても同じ二次元構造となっている。このため、膨大部以外に三次元流の発生を抑制させ、第一熱交換用流路及び第二熱交換用流路の流れを、理想の対向流に近づけることで、熱交換性能を高めることができる。また、どの断面を見ても同じ二次元構造となっているため、同じ部材を繰り返し作れば足りるため、製作が容易となる。   As in the above procedure, the width E of the enormous portion is determined using the facts in elementary mathematics (see FIG. 3C). FIG. 3C illustrates the first fluid derivation enormous portion 12. With this configuration, the same two-dimensional structure is obtained regardless of the cross section. For this reason, the generation of a three-dimensional flow other than the enormous part is suppressed, and the flow of the first heat exchange channel and the second heat exchange channel is made closer to the ideal counter flow, thereby improving the heat exchange performance. Can do. In addition, since the same two-dimensional structure is used in any cross section, it is sufficient to make the same member repeatedly, so that the manufacture is easy.

(熱交換装置1の外部構造)
図4を用いて熱交換装置1の外部構造を説明する。図4は熱交換装置1の外部構造を説明する図であり、(a)が図1における表面側の斜視図、(b)が図1における裏面側の斜視図、(c)が配管を接続した模式図である。(c)の図は、(a)において矢印方向から見た図である。
(External structure of heat exchange device 1)
The external structure of the heat exchange device 1 will be described with reference to FIG. 4A and 4B are diagrams illustrating the external structure of the heat exchanging device 1. FIG. 4A is a perspective view of the front side in FIG. 1, FIG. 4B is a perspective view of the back side in FIG. 1, and FIG. FIG. The figure of (c) is the figure seen from the arrow direction in (a).

図4(a)に示すように、図1の表面側には、封止部40が配設される。封止部40には、第一流体導入用膨大部11に対応する位置に導入孔41が形成され、第一流体導出用膨大部12に対応する位置に導出孔42が形成される。   As shown in FIG. 4A, a sealing portion 40 is disposed on the surface side of FIG. In the sealing portion 40, an introduction hole 41 is formed at a position corresponding to the first fluid introduction enormous portion 11, and an outlet hole 42 is formed at a position corresponding to the first fluid deriving enormous portion 12.

図4(b)に示すように、図1の裏面側には、封止部50が配設される。封止部50には、第二流体導入部21に対応する位置に導入孔51が形成され、第二流体導出部22に対応する位置に導出孔52が形成される。   As shown in FIG. 4B, a sealing portion 50 is disposed on the back side of FIG. In the sealing part 50, an introduction hole 51 is formed at a position corresponding to the second fluid introduction part 21, and a lead-out hole 52 is formed at a position corresponding to the second fluid lead-out part 22.

封止部40及び封止部50は、熱交換装置1内部の流体通路へ通じる孔を確保しながら流体を封止する。封止部40、50は耐熱合金あるいはセラミックのような材料で製作する。封止部40、50は、熱交換用の流体と接触するから、耐熱性を有するとともに、熱伝導性が低いことが求められる。従って、セラミックが好適であるが、熱交換用の部材と気密に封止することを考慮して耐熱合金とセラミックの複合材、あるいはメタライズ加工したセラミックを選定することができる。   The sealing part 40 and the sealing part 50 seal the fluid while ensuring a hole leading to the fluid passage inside the heat exchange device 1. The sealing portions 40 and 50 are made of a material such as a heat resistant alloy or ceramic. Since the sealing parts 40 and 50 are in contact with the fluid for heat exchange, they are required to have heat resistance and low thermal conductivity. Therefore, although ceramic is preferable, a composite material of a heat-resistant alloy and ceramic, or a metallized ceramic can be selected in consideration of hermetically sealing with a heat exchange member.

また、封止部40、50は、第一熱交換用流路10、第二熱交換用流路20、第一流体導入用膨大部11、第一流体導出用膨大部12、第二流体導入部21、第二流体導出部22等の端部縁に対し、溶接、鑞付け、セラミック接着剤等の手段により気密に封止する。   Further, the sealing portions 40 and 50 are the first heat exchange channel 10, the second heat exchange channel 20, the first fluid introduction enormous portion 11, the first fluid deriving enormous portion 12, and the second fluid introduction. The end edges of the portion 21 and the second fluid lead-out portion 22 are hermetically sealed by means such as welding, brazing, or ceramic adhesive.

封止部に隣接して、後述の各種管の接続部が装着されるため、封止部40、50の孔41、42、51、52は、熱交換装置の各部と接続部の管と適合するように設ける。   Since the connection parts of various pipes, which will be described later, are mounted adjacent to the sealing part, the holes 41, 42, 51, 52 of the sealing parts 40, 50 are compatible with each part of the heat exchange device and the pipe of the connection part. Provide to do.

図4(c)に示すように、封止部40、50の孔41、42、51、52には、それぞれダクト61、62、63、64が配設される。本実施形態においては、第一流体はダクト61から導入され、ダクト62から導出される。一方、第二流体はダクト63から導入され、ダクト64から導出される。   As shown in FIG. 4C, ducts 61, 62, 63, and 64 are disposed in the holes 41, 42, 51, and 52 of the sealing portions 40 and 50, respectively. In the present embodiment, the first fluid is introduced from the duct 61 and led out from the duct 62. On the other hand, the second fluid is introduced from the duct 63 and led out from the duct 64.

尚、本実施形態においては、第一流体を表面側から導入及び導出させ、第二流体を裏面側から導入及び導出させたが、これに限るものではない。第一流体及び第二流体の流入する向きは適宜変更することができ、これに伴って、孔を配置する位置や形状や当該孔に接続するダクトの位置も適宜変更することができる。   In the present embodiment, the first fluid is introduced and led out from the front surface side, and the second fluid is introduced and led out from the back surface side. However, the present invention is not limited to this. The direction in which the first fluid and the second fluid flow can be changed as appropriate, and accordingly, the position and shape of the hole and the position of the duct connected to the hole can be changed as appropriate.

(熱交換装置1の変形例)
図5及び図7を用いて熱交換装置1の変形例を説明する。図5乃至図7は第1実施形態の変形例の説明をするための模式図である。尚、図5及び図6において、黒で塗った部分が第一流体の流路である。
(Modification of heat exchange device 1)
The modification of the heat exchange apparatus 1 is demonstrated using FIG.5 and FIG.7. 5 to 7 are schematic diagrams for explaining a modification of the first embodiment. In FIGS. 5 and 6, the portion painted in black is the flow path of the first fluid.

本実施形態においては、熱交換用流路10、20は直線状に配置していたが、これに限るものでもない。図5(a)及び図5(b)に示すように、熱交換用流路10、20に曲線部分を有する構成としてもよい。熱交換用流路10、20に曲線部分を有することで、より流路の表面積を確保することができ、熱交換性能を高めることができる。   In the present embodiment, the heat exchange channels 10 and 20 are arranged in a straight line, but the present invention is not limited to this. As shown in FIGS. 5A and 5B, the heat exchange channels 10 and 20 may have a curved portion. By providing the heat exchange channels 10 and 20 with curved portions, the surface area of the channels can be further secured, and the heat exchange performance can be enhanced.

また、図6(a)に示すように、本実施形態の内部の構造を対称に2つ配置することとしてもよい。   Further, as shown in FIG. 6A, two internal structures of the present embodiment may be arranged symmetrically.

また、本実施形態においては、補助線z−zを直線状として設計したが、これに限るものではない。図6(b)に示すように、補助線z−zを円形として設計してもよい。補助線z−zを円形にすることによって、第二流路を構成するための隔壁が不要になり、箱体30を円柱状に構成することができる。このように円柱状に構成すると、円柱外周部の周長は、円柱内部の膨大部が配置されている部分の周長より大きくなる。すると、膨大部を設けるなど、流路をヘッダーに接続する手段の選択の余地が拡大され、対向型熱交換装置を容易に実現することができる。   In the present embodiment, the auxiliary line zz is designed as a straight line, but the present invention is not limited to this. As shown in FIG. 6B, the auxiliary line zz may be designed as a circle. By making the auxiliary line z-z circular, a partition wall for configuring the second flow path becomes unnecessary, and the box body 30 can be configured in a cylindrical shape. Thus, if comprised in a column shape, the circumference of a cylinder outer peripheral part will become larger than the circumference of the part in which the enormous part inside a cylinder is arrange | positioned. Then, the room for selection of the means for connecting the flow path to the header, such as providing an enormous portion, is expanded, and the opposed heat exchange device can be easily realized.

図7(a)に示すように、図膨大部の幅を一定に保ったまま、膨大部に緩和曲線を付加してもよい。緩和曲線によって流路断面に丸みを付けると、流体が受ける抵抗を減少させることができる。また、緩和曲線を付加することで、装置を製造しやすくすることができる。   As shown in FIG. 7A, a relaxation curve may be added to the enormous portion while keeping the width of the enormous portion of the figure constant. If the flow path cross-section is rounded by the relaxation curve, the resistance received by the fluid can be reduced. In addition, the device can be easily manufactured by adding a relaxation curve.

図7(b)に示すように、本実施形態の設計方法を用いることで、膨大部を更に追加することができる。具体的には、本実施形態の設計方法で構成した膨大部の間に流路がくるようにし、当該流路に接続する膨大部を形成する。これによって、膨大部を千鳥配置することができる。   As shown in FIG. 7B, an enormous portion can be further added by using the design method of the present embodiment. Specifically, the flow path is provided between the enormous parts configured by the design method of the present embodiment, and the enormous part connected to the flow path is formed. Thereby, the enormous part can be arranged in a staggered manner.

〔第2実施形態〕
図8及び図9を用いて本発明の第2実施形態について説明する。前述と同様の作用を有する部材には、同符号を付すことで説明を省略する。図8は第2実施形態に係る熱交換装置2の内部構造を説明する断面斜視図である。図9は熱交換装置2の流路の模式図であり、(a)が斜視図、(b)が断面図である。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIGS. Members having the same action as described above are denoted by the same reference numerals and description thereof is omitted. FIG. 8 is a cross-sectional perspective view illustrating the internal structure of the heat exchange device 2 according to the second embodiment. FIG. 9 is a schematic diagram of the flow path of the heat exchange device 2, wherein (a) is a perspective view and (b) is a cross-sectional view.

図8及び図9に示すように、本実施形態においては、第一熱交換用流路70及び第二熱交換用流路80を、偏平な1枚の板Pを折り曲げて、あたかも板Pの断面形状を一筆書きで描くことができるように、連続するように構成する。   As shown in FIGS. 8 and 9, in the present embodiment, the first heat exchange channel 70 and the second heat exchange channel 80 are bent as if a single flat plate P is bent. It is configured to be continuous so that the cross-sectional shape can be drawn with a single stroke.

図8及び図9に示すように、第一流体が流れる流体通路は、第一熱交換用流路70と、その両端に形成される第一流体導入用膨大部71及び第一流体導出部72から構成される。一方、第二流体が流れる流体通路は、第二熱交換用流路20と、その両端に形成される第二流体導入用膨大部81及び第二流体導出部82から構成される。   As shown in FIGS. 8 and 9, the fluid passage through which the first fluid flows includes the first heat exchange channel 70, the first fluid introduction enormous portion 71 and the first fluid outlet portion 72 formed at both ends thereof. Consists of On the other hand, the fluid passage through which the second fluid flows is composed of the second heat exchange channel 20, the second fluid introduction enormous portion 81 and the second fluid outlet portion 82 formed at both ends thereof.

ここで、第一流体導入用膨大部(第一膨大部)71の幅E1や第二流体導入用膨大部(第二膨大部)81の幅E2は、前述と同様の式を満たすように構成する。即ち、前記第一熱交換用流路及び第二熱交換用流路と前記膨大部との境界線(補助線z−z)が、前記第一熱交換用流路となす角をα(0<α≦π/2)、第二熱交換用流路となす角をβ(α<β<π−α)とすると、次の式(4)、
E1=(A+B)×(sinβ/sinα)−B、
E2=(A+B)×(sinβ/sinα)−A … (4)
を満たすように構成する。
Here, the width E1 of the first fluid introduction enormous part (first enormous part) 71 and the width E2 of the second fluid introduction enormous part (second enormous part) 81 are configured to satisfy the same formula as described above. To do. That is, an angle formed by a boundary line (auxiliary line zz) between the first heat exchange channel and the second heat exchange channel and the enormous portion with the first heat exchange channel is α (0 <Α ≦ π / 2), and the angle formed with the second heat exchange channel is β (α <β <π−α), the following equation (4):
E1 = (A + B) × (sin β / sin α) −B,
E2 = (A + B) × (sin β / sin α) −A (4)
Configure to meet.

本実施形態のような構成であっても、同様の効果を得ることができる。また、1枚の板で各熱交換用流路を構成することによって、製造時において隔壁を溶接する手間が不要になり、製造が容易な熱交換装置を構成することができる。   Even if it is the structure like this embodiment, the same effect can be acquired. In addition, by configuring each heat exchange channel with a single plate, it is not necessary to weld the partition walls during production, and a heat exchange device that is easy to produce can be constructed.

〔他の実施形態〕
前述した実施形態においては、熱交換装置を気体間の熱交換に利用することとして説明したが、気体間の熱交換のみならず、気体と液体間、あるいは液体間の熱交換にも利用可能である。一例を挙げれば、温熱排水を利用した暖房用の空気の加熱、あるいは河川水による冷房用空気の冷却、等がある。しかし、このような特殊な用途を除いて、熱交換装置においては第一流体の圧力と第二流体の圧力が異なる場合が多い。このため、耐圧性を考慮する場合には、熱交換装置が使用される条件に応じて、流路内に流体の流れを妨げない向きにリブや突き当てを設けて補強してもよい。また、蒸気が発生して圧力が高くなるような使用状態では、耐圧性を考慮するなど、流体の性質に応じて流体通路の構造を最適化することが必要である。
[Other Embodiments]
In the above-described embodiment, the heat exchange device has been described as being used for heat exchange between gases, but it can be used not only for heat exchange between gases, but also for heat exchange between gases and liquids, or between liquids. is there. For example, there is heating air for heating using hot waste water or cooling air for cooling by river water. However, except for such special applications, in the heat exchange device, the pressure of the first fluid and the pressure of the second fluid are often different. For this reason, when pressure resistance is taken into consideration, ribs or butting may be provided in the flow path in a direction that does not hinder the flow of fluid depending on the conditions under which the heat exchange device is used. Further, in a use state where steam is generated and the pressure becomes high, it is necessary to optimize the structure of the fluid passage according to the properties of the fluid, such as considering pressure resistance.

本発明は、2つの流体(気体、液体等)の間において熱交換をする熱交換装置に利用することができる。   The present invention can be used in a heat exchange device that exchanges heat between two fluids (gas, liquid, etc.).

第1実施形態に係る熱交換装置1の内部構造を説明する断面斜視図。The cross-sectional perspective view explaining the internal structure of the heat exchange apparatus 1 which concerns on 1st Embodiment. 第1実施形態に係る熱交換装置1の流路の模式図。The schematic diagram of the flow path of the heat exchange apparatus 1 which concerns on 1st Embodiment. 熱交換用流路と膨大部との関係を説明する図。The figure explaining the relationship between the heat exchange flow path and the enormous part. 第1実施形態に係る熱交換装置1の外部構造を説明する図。The figure explaining the external structure of the heat exchange apparatus 1 which concerns on 1st Embodiment. 第1実施形態の変形例の説明をするための模式図。The schematic diagram for demonstrating the modification of 1st Embodiment. 第1実施形態の変形例の説明をするための模式図。The schematic diagram for demonstrating the modification of 1st Embodiment. 第1実施形態の変形例の説明をするための模式図。The schematic diagram for demonstrating the modification of 1st Embodiment. 第2実施形態に係る熱交換装置2の内部構造を説明する断面斜視図。The cross-sectional perspective view explaining the internal structure of the heat exchange apparatus 2 which concerns on 2nd Embodiment. 第2実施形態に係る熱交換装置2の流路の模式図。The schematic diagram of the flow path of the heat exchange apparatus 2 which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

P…板、1…熱交換装置、2…熱交換装置、10…第一熱交換用流路、11…第一流体導入用膨大部、12…第一流体導出用膨大部、20…第二熱交換用流路、21…第二流体導入部、22…第二流体導出部、30…箱体、40…封止部、41…導入孔、42…導出孔、50…封止部、51…導入孔、52…導出孔、61…ダクト、62…ダクト、63…ダクト、64…ダクト、70…第一熱交換用流路、71…第一流体導入用膨大部、72…第一流体導出部、80…第二熱交換用流路、81…第二流体導入用膨大部、82…第二流体導出部 P ... plate, 1 ... heat exchange device, 2 ... heat exchange device, 10 ... first heat exchange channel, 11 ... first fluid introduction enormous part, 12 ... first fluid deriving enormous part, 20 ... second Heat exchange flow path, 21 ... second fluid introduction part, 22 ... second fluid lead-out part, 30 ... box, 40 ... sealing part, 41 ... introduction hole, 42 ... lead-out hole, 50 ... sealing part, 51 ... Introduction hole, 52 ... Leading hole, 61 ... Duct, 62 ... Duct, 63 ... Duct, 64 ... Duct, 70 ... First heat exchange channel, 71 ... First fluid introduction enormous part, 72 ... First fluid Deriving section, 80 ... second heat exchange channel, 81 ... second fluid introducing enormous section, 82 ... second fluid deriving section

Claims (4)

偏平な板を所定の間隔をおいて配置することで形成される第一熱交換用流路と、
前記第一熱交換用流路を所定の間隔をおいて配置することで形成される第二熱交換用流路と、
前記第一熱交換用流路の端部に接続される膨大部と、を備え、
前記膨大部の幅Eは、
前記第一熱交換用流路の間隔をAとし、
前記第二熱交換用流路の間隔をBとし、
前記第一熱交換用流路及び第二熱交換用流路と前記膨大部との境界線が、前記第一熱交換用流路となす角をα(0<α≦π/2)、第二熱交換用流路となす角をβ(α<β<π−α)とすると、
E=(A+B)×(sinβ/sinα)−B
の関係を満たすことを特徴とする熱交換装置。
A first heat exchange channel formed by arranging flat plates at a predetermined interval;
A second heat exchange channel formed by disposing the first heat exchange channel at a predetermined interval;
A huge portion connected to an end of the first heat exchange channel,
The width E of the huge part is
The interval between the first heat exchange channels is A,
The interval between the second heat exchange channels is B,
The angle between the boundary line of the first heat exchange channel and the second heat exchange channel and the enormous portion with the first heat exchange channel is α (0 <α ≦ π / 2), If the angle between the two heat exchange channels is β (α <β <π−α),
E = (A + B) × (sin β / sin α) −B
A heat exchange device characterized by satisfying the above relationship.
前記膨大部は、前記第一熱交換用流路の両端部に形成されることを特徴とする請求項1に記載の熱交換装置。   The heat exchanging device according to claim 1, wherein the enormous portion is formed at both ends of the first heat exchange channel. 偏平な板を所定の間隔をおいて配置することで形成される第一熱交換用流路と、
前記第一熱交換用流路を所定の間隔をおいて配置することで形成される第二熱交換用流路と、
前記第一熱交換用流路の端部に接続される第一膨大部と、
前記第二熱交換用流路の端部に接続される第二膨大部と、を備え、
前記第一膨大部の幅E1及び前記第二膨大部の幅E2は、
前記第一熱交換用流路の間隔をAとし、
前記第二熱交換用流路の間隔をBとし、
前記第一熱交換用流路及び第二熱交換用流路と前記膨大部との境界線が、前記第一熱交換用流路となす角をα(0<α≦π/2)、第二熱交換用流路となす角をβ(α<β<π−α)とすると、
E1=(A+B)×(sinβ/sinα)−B、
E2=(A+B)×(sinβ/sinα)−A
の関係を満たすことを特徴とする熱交換装置。
A first heat exchange channel formed by arranging flat plates at a predetermined interval;
A second heat exchange channel formed by disposing the first heat exchange channel at a predetermined interval;
A first enormous portion connected to an end of the first heat exchange channel;
A second enormous portion connected to an end of the second heat exchange channel,
The width E1 of the first huge portion and the width E2 of the second huge portion are:
The interval between the first heat exchange channels is A,
The interval between the second heat exchange channels is B,
The angle between the boundary line of the first heat exchange channel and the second heat exchange channel and the enormous portion with the first heat exchange channel is α (0 <α ≦ π / 2), If the angle between the two heat exchange channels is β (α <β <π−α),
E1 = (A + B) × (sin β / sin α) −B,
E2 = (A + B) × (sin β / sin α) −A
A heat exchange device characterized by satisfying the above relationship.
前記第一熱交換用流路、前記第二熱交換用流路及び前記膨大部は、連続した1枚の板を折り曲げて構成されることを特徴とする請求項3に記載の熱交換装置。   The heat exchange device according to claim 3, wherein the first heat exchange channel, the second heat exchange channel, and the enormous portion are configured by bending a single continuous plate.
JP2007227875A 2007-09-03 2007-09-03 Heat exchange device Withdrawn JP2009058203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227875A JP2009058203A (en) 2007-09-03 2007-09-03 Heat exchange device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227875A JP2009058203A (en) 2007-09-03 2007-09-03 Heat exchange device

Publications (1)

Publication Number Publication Date
JP2009058203A true JP2009058203A (en) 2009-03-19

Family

ID=40554096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227875A Withdrawn JP2009058203A (en) 2007-09-03 2007-09-03 Heat exchange device

Country Status (1)

Country Link
JP (1) JP2009058203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189261A (en) * 2011-03-10 2012-10-04 National Institute Of Advanced Industrial Science & Technology Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189261A (en) * 2011-03-10 2012-10-04 National Institute Of Advanced Industrial Science & Technology Heat exchanger

Similar Documents

Publication Publication Date Title
JP4033402B2 (en) Heat exchanger
US8028410B2 (en) Gas turbine regenerator apparatus and method of manufacture
EP1541954B1 (en) Heat exchanger
EP2917550B1 (en) Heat exchange device for exchanging heat between fluids
US6840313B2 (en) Plate fin type heat exchanger for high temperature
JP7011079B2 (en) Heat exchange tube with outer fins and how to use it
RU2348883C1 (en) Plate-type heat-exchanger
EP1460367A2 (en) Heat exchanger for heating of fuel cell combustion air
US20110017428A1 (en) Plane type heat exchanger
RU2319095C1 (en) Heat-exchange element and plate heat exchanger
RU2543094C1 (en) Tube and shell heat exchanger
EP1136780A2 (en) Pipe within pipe heat exchanger construction
JP2009058203A (en) Heat exchange device
RU2719776C2 (en) Method of manufacturing plate-like slit heat exchanger
JP3979801B2 (en) Heat exchanger
US20100064672A1 (en) Exchange gas heat exchanger
JPH04340088A (en) Plate fin type heat exchanger
US11879691B2 (en) Counter-flow heat exchanger
JP6905654B2 (en) Reformer with extrusion guide wall perpendicular to the flow path
CN215337866U (en) Smoke and air pipeline of heat regenerator
CN217604766U (en) Heat exchanger
CN219141572U (en) Efficient gas-liquid heater
RU2790537C1 (en) Heat exchanger
RU2451887C1 (en) Shell-and-tube heat exchanger
KR20110042914A (en) Printed circuit heat exchanger type receiver of stirling engine for solar thermal power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100903

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120124

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207