JP2009057247A - Method for growing group iii nitride crystal, and group iii nitride crystal substrate - Google Patents

Method for growing group iii nitride crystal, and group iii nitride crystal substrate Download PDF

Info

Publication number
JP2009057247A
JP2009057247A JP2007226025A JP2007226025A JP2009057247A JP 2009057247 A JP2009057247 A JP 2009057247A JP 2007226025 A JP2007226025 A JP 2007226025A JP 2007226025 A JP2007226025 A JP 2007226025A JP 2009057247 A JP2009057247 A JP 2009057247A
Authority
JP
Japan
Prior art keywords
group iii
iii nitride
crystal
nitride crystal
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007226025A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoshida
浩章 吉田
Shinsuke Fujiwara
伸介 藤原
Tatsu Hirota
龍 弘田
Koji Uematsu
康二 上松
Haruko Tanaka
晴子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007226025A priority Critical patent/JP2009057247A/en
Publication of JP2009057247A publication Critical patent/JP2009057247A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for growing a group III nitride crystal which has a nonpolar surface as its principal surface, and has a low dislocation density; and the group III nitride crystal substrate. <P>SOLUTION: The method for growing a group III nitride crystal comprises a step of preparing a ground substrate 10 which includes a group III nitride seed crystal 10a at least at the principal surface 10m side and of which the principal surface 10m has an inclination angle of ≥0.5° to ≤10° with respect to the ä1-100} surface 10c of the group III nitride crystal layer 10a and a step of growing a group III nitride crystal 20 on the principal surface 10 m of the ground substrate 10. When the group III nitride crystal 20 is grown, at least one portion of the dislocation remaining in the group III nitride crystal 20 is propagated in a direction substantially parallel to the ä1-100} surface 10c and discharged to the outer peripheral part of the group III nitride crystal 20. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、発光素子、電子素子、半導体センサなどの各種半導体デバイスの基板として好ましく用いられる転位密度が低いIII族窒化物結晶の成長方法およびIII族窒化物結晶基板に関する。   The present invention relates to a method for growing a group III nitride crystal having a low dislocation density and a group III nitride crystal substrate, which are preferably used as substrates for various semiconductor devices such as light-emitting elements, electronic elements, and semiconductor sensors.

AlxGayIn1-x-yN結晶(0≦x、0≦y、x+y≦1、以下同じ)などのIII族窒化物結晶は、発光素子、電子素子、半導体センサなどの各種半導体デバイスの基板を形成するための材料として非常に有用なものである。ここで、各種半導体デバイスの特性を向上させるために、転位密度が低く結晶性のよいIII族窒化物結晶が必要とされている。 Group III nitride crystals such as Al x Ga y In 1-xy N crystal (0 ≦ x, 0 ≦ y, x + y ≦ 1, and so on) are substrates for various semiconductor devices such as light emitting elements, electronic elements, and semiconductor sensors. It is very useful as a material for forming. Here, in order to improve the characteristics of various semiconductor devices, a group III nitride crystal having a low dislocation density and good crystallinity is required.

かかるIII族窒化物結晶を成長させる方法として、超高温超高圧溶液法、フラックス法などの液相法、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法などの気相法が提案されている。   As a method of growing such a group III nitride crystal, a liquid phase method such as an ultrahigh temperature ultrahigh pressure solution method, a flux method, a gas phase such as an HVPE (hydride vapor phase epitaxy) method, and a MOCVD (metal organic chemical vapor deposition) method. A law has been proposed.

たとえば、特開2004−244307号公報(以下、特許文献1という)は、基板と、その基板上に形成された半導体層と、その半導体層の上方に形成されたIII族窒化物結晶とを備えるIII族窒化物基板であって、上記半導体層が、組成式AluGavIn1-u-vN(0≦u≦1、0≦v≦1)で表される半導体からなり、その半導体層の表面が(0001)面のステップが階段状に配置された一方向に傾斜した面であり、その傾斜した面と上記(0001)面とのなす角が、0.05°以上であり、さらに、上記半導体層上に形成されたIII族窒化物結晶のキャリア濃度の面内ばらつきが、キャリア濃度の平均値の1/5以上5倍以下であるIII族窒化物基板を開示する。 For example, Japanese Unexamined Patent Application Publication No. 2004-244307 (hereinafter referred to as Patent Document 1) includes a substrate, a semiconductor layer formed on the substrate, and a group III nitride crystal formed above the semiconductor layer. A group III nitride substrate, wherein the semiconductor layer is made of a semiconductor represented by a composition formula Al u Ga v In 1-uv N (0 ≦ u ≦ 1, 0 ≦ v ≦ 1), The surface is a (0001) plane step inclined in one direction arranged stepwise, the angle between the inclined plane and the (0001) plane is 0.05 ° or more, and A group III nitride substrate is disclosed in which the in-plane variation of the carrier concentration of the group III nitride crystal formed on the semiconductor layer is 1/5 or more and 5 times or less of the average value of the carrier concentration.

ここで、上記特許文献1は、かかるIII族窒化物結晶基板の製造方法として、基板上に、組成式AluGavIn1-u-vN(0≦u≦1、0≦v≦1)で表される半導体であって、その表面に(0001)面が存在する半導体層を形成する工程と、その半導体層の(0001)面に対して傾斜した面となるように半導体層の表面を処理する工程と、窒素を含む雰囲気下において、ガリウム、アルミニウムおよびインジウムから選ばれる少なくとも1つのIII族元素と溶剤とを含む融液に、その半導体層の表面を接触させることによって、少なくとも1つのIII族元素と窒素とを反応させて上記半導体層上にIII族窒化物結晶を成長させる工程とを含む。 Here, in Patent Document 1, as a method for producing such a group III nitride crystal substrate, a composition formula Al u Ga v In 1-uv N (0 ≦ u ≦ 1, 0 ≦ v ≦ 1) is formed on the substrate. Forming a semiconductor layer having a (0001) plane on the surface, and treating the surface of the semiconductor layer so as to be inclined with respect to the (0001) plane of the semiconductor layer And bringing the surface of the semiconductor layer into contact with a melt containing at least one group III element selected from gallium, aluminum, and indium and a solvent in an atmosphere containing nitrogen, and at least one group III And a step of causing a group III nitride crystal to grow on the semiconductor layer by reacting the element with nitrogen.

上記特許文献1の方法においては、半導体層の表面が、(0001)面が露出した階段状に加工されている。そのため、結晶育成時の異常成長を防止できる。また通常の種結晶基板を用いた場合と比較して、表面平坦性が高い結晶を得ることができる。特に、液相成長において、傾斜した基板を用いることにより、傾斜した基板を用いない場合に比べて、成長速度の向上と結晶中に取り込まれる不純物濃度の均一性が向上することが可能となる。   In the method of Patent Document 1, the surface of the semiconductor layer is processed into a stepped shape with the (0001) plane exposed. Therefore, abnormal growth during crystal growth can be prevented. In addition, a crystal having high surface flatness can be obtained as compared with the case where a normal seed crystal substrate is used. In particular, by using a tilted substrate in the liquid phase growth, it is possible to improve the growth rate and the uniformity of the concentration of impurities incorporated into the crystal as compared with the case where the tilted substrate is not used.

ここで、主面が(0001)面であるIII族窒化物基板上にIII族窒化物結晶を成長させた場合、III族窒化物基板の転位がIII族窒化物結晶の成長方向である[0001]方向に伝搬しIII族窒化物結晶の成長表面に到達する。III族窒化物結晶を厚く成長させると、バーガーズベクトルの符号が反対で大きさが同じ転位同士が引力により合体して消滅することにより、III族窒化物結晶の転位密度が低減する。   Here, when a group III nitride crystal is grown on a group III nitride substrate whose principal surface is the (0001) plane, the dislocation of the group III nitride substrate is the growth direction of the group III nitride crystal [0001] ] To the growth surface of the group III nitride crystal. When a group III nitride crystal is grown thickly, dislocations having the same sign of the Burgers vector but having the same magnitude merge by attraction and disappear, thereby reducing the dislocation density of the group III nitride crystal.

しかし、結晶の転位密度が1×107cm-2未満になると、転位間の間隔が大きくなるため上記のような転位の合体が生じる可能性が極めて低くなる。すなわち、転位密度が1×107cm-2未満のIII族窒化物結晶基板にIII族窒化物結晶を成長させる場合、下地基板であるIII族窒化物結晶基板に比べて転位密度が低いIII族窒化物結晶を成長させることは困難であった。 However, when the dislocation density of the crystal is less than 1 × 10 7 cm −2 , the distance between the dislocations is increased, so that the possibility of the above-described dislocation coalescence is extremely reduced. That is, when a group III nitride crystal is grown on a group III nitride crystal substrate having a dislocation density of less than 1 × 10 7 cm −2 , the group III has a lower dislocation density than the group III nitride crystal substrate that is the base substrate. It was difficult to grow nitride crystals.

また、従来のIII族窒化物結晶は、通常、下地基板であるIII族窒化物結晶基板の主面である(0001)面上にエピタキシャル成長させて得られるものであることから、その結晶成長面も(0001)面となり、(0001)面がその結晶の主面となる。かかる(0001)面は、その面の垂直方向に極性を有する極性面である。このため、III族窒化物結晶の主面である(0001)面上に少なくとも1層の半導体結晶層を形成して得られる半導体デバイスは、分解電界が発生して電子と正孔が空間的に分離するため、発光効率などのデバイス特性が低下する問題点があった。このため、その面の垂直方向に極性がない非極性面を主面とする結晶が望まれていた。
特開2004−244307号公報
Further, since the conventional group III nitride crystal is usually obtained by epitaxial growth on the (0001) plane which is the main surface of the group III nitride crystal substrate which is the base substrate, its crystal growth surface is also The (0001) plane becomes the principal plane of the crystal. The (0001) plane is a polar plane having a polarity in the direction perpendicular to the plane. For this reason, a semiconductor device obtained by forming at least one semiconductor crystal layer on the (0001) plane, which is the main surface of a group III nitride crystal, generates a decomposition electric field, and electrons and holes are spatially generated. In order to isolate | separate, there existed a problem that device characteristics, such as luminous efficiency, fell. For this reason, there has been a demand for a crystal whose main surface is a nonpolar surface having no polarity in the direction perpendicular to the surface.
JP 2004-244307 A

本発明は、非極性面を主面とする転位密度が低いIII族窒化物結晶の成長方法およびIII族窒化物結晶基板を提供することを目的とする。   An object of the present invention is to provide a method for growing a group III nitride crystal having a nonpolar plane as a main surface and a low dislocation density, and a group III nitride crystal substrate.

本発明は、少なくとも主面側にIII族窒化物種結晶を含み、主面がIII族窒化物種結晶の{1−100}面に対して0.5°以上10°以下の傾き角を有する下地基板を準備する工程と、下地基板の主面上にIII族窒化物結晶を成長させる工程とを備え、III族窒化物結晶の成長の際に、III族窒化物結晶に存在する転位の少なくとも一部が、{1−100}面に対して実質的に平行な方向に伝搬して、III族窒化物結晶の外周部に排出されるIII族窒化物結晶の成長方法である。   The present invention provides a base substrate that includes a group III nitride seed crystal at least on the main surface side, and the main surface has an inclination angle of 0.5 ° to 10 ° with respect to the {1-100} plane of the group III nitride seed crystal. And a step of growing a group III nitride crystal on the main surface of the base substrate, and at the time of growing the group III nitride crystal, at least a part of dislocations existing in the group III nitride crystal Is a method for growing a group III nitride crystal that propagates in a direction substantially parallel to the {1-100} plane and is discharged to the outer periphery of the group III nitride crystal.

本発明にかかるIII族窒化物結晶の成長方法において、下地基板の主面における転位密度を1×107cm-2未満とし、III族窒化物結晶の成長後の結晶成長面における転位密度を主面における転位密度の1/10以下とすることができる。ここで、III族窒化物結晶を成長させる方法として液相法を用いることができる。また、液相法としてIII族元素を含む融液中に窒素含有ガスを供給することができる。 In the method for growing a group III nitride crystal according to the present invention, the dislocation density on the main surface of the base substrate is less than 1 × 10 7 cm −2, and the dislocation density on the crystal growth surface after the growth of the group III nitride crystal is mainly used. The dislocation density in the plane can be 1/10 or less. Here, a liquid phase method can be used as a method for growing a group III nitride crystal. Moreover, nitrogen-containing gas can be supplied in the melt containing a group III element as a liquid phase method.

また、本発明は、上記の成長方法により得られるIII族窒化物結晶から切り出して得られるIII族窒化物結晶基板である。   In addition, the present invention is a group III nitride crystal substrate obtained by cutting out from a group III nitride crystal obtained by the above growth method.

本発明によれば、非極性面を主面とする転位密度が低いIII族窒化物結晶の成長方法およびIII族窒化物結晶基板を提供することができる。   According to the present invention, it is possible to provide a group III nitride crystal growth method and a group III nitride crystal substrate having a nonpolar plane as a main surface and a low dislocation density.

(実施形態1)
本発明にかかるIII族窒化物結晶の成長方法の一実施形態は、図1を参照して、少なくとも主面10m側にIII族窒化物種結晶10aを含み、主面10mがIII族窒化物種結晶10aの{1−100}面10cに対して0.5°以上10°以下の傾き角θを有する下地基板10を準備する工程と、下地基板10の主面10m上にIII族窒化物結晶20を成長させる工程とを備え、III族窒化物結晶20の成長の際に、III族窒化物結晶20に存在する転位の少なくとも一部が、{1−100}面10cに対して実質的に平行な方向に伝搬して、III族窒化物結晶20の外周部に排出される。これにより、非極性面である{1−100}面を成長後の結晶成長面(この面が結晶の主面に相当)とする転位密度が低いIII族窒化物結晶が得られる。
(Embodiment 1)
One embodiment of a method for growing a group III nitride crystal according to the present invention, as shown in FIG. 1, includes a group III nitride seed crystal 10a at least on the main surface 10m side, and the main surface 10m is a group III nitride seed crystal 10a. A step of preparing the base substrate 10 having an inclination angle θ of 0.5 ° or more and 10 ° or less with respect to the {1-100} surface 10c, and a group III nitride crystal 20 on the main surface 10m of the base substrate 10 And at least a part of the dislocations existing in the group III nitride crystal 20 is substantially parallel to the {1-100} plane 10c when the group III nitride crystal 20 is grown. Propagated in the direction and discharged to the outer periphery of the group III nitride crystal 20. Thereby, a group III nitride crystal having a low dislocation density is obtained, in which the {1-100} plane which is a nonpolar plane is a grown crystal growth plane (this plane corresponds to the main plane of the crystal).

本実施形態のIII族窒化物結晶の成長方法は、まず、少なくとも主面側にIII族窒化物種結晶10aを含み、主面10mがIII族窒化物種結晶10aの{1−100}面に対して0.5°以上10°以下の傾き角θを有する下地基板を準備する(下地基板準備工程)。下地基板10は主面10m側にIII族窒化物種結晶10aを含む。すなわち、そのIII族窒化物種結晶10aは主面10mを有する。このため、下地基板10の主面10m上にIII族窒化物結晶20をエピタキシャル成長させることができる。したがって、下地基板10の{1−100}面またはそれに近い面方位を有する主面10m上に成長するIII族窒化物結晶20は、下地基板10のIII族窒化物種結晶10aの結晶方位を受け継いで、結晶成長面が{1−100}面となる。また、主面10mはIII族窒化物種結晶10aの{1−100}面10cに対して0.5°以上10°以下の傾き角θを有する。   In the method for growing a group III nitride crystal of the present embodiment, first, at least the main surface side includes a group III nitride seed crystal 10a, and the main surface 10m is relative to the {1-100} plane of the group III nitride seed crystal 10a. A base substrate having an inclination angle θ of 0.5 ° or more and 10 ° or less is prepared (base substrate preparation step). Base substrate 10 includes a group III nitride seed crystal 10a on the main surface 10m side. That is, the group III nitride seed crystal 10a has a main surface 10m. Therefore, the group III nitride crystal 20 can be epitaxially grown on the main surface 10 m of the base substrate 10. Therefore, group III nitride crystal 20 grown on main surface 10m having a {1-100} plane of base substrate 10 or a plane orientation close thereto inherits the crystal orientation of group III nitride seed crystal 10a of base substrate 10. The crystal growth plane becomes the {1-100} plane. Main surface 10m has an inclination angle θ of 0.5 ° or more and 10 ° or less with respect to {1-100} surface 10c of group III nitride seed crystal 10a.

ここで、上記のような下地基板10の製造方法は、特に制限はなく、たとえば以下の方法が可能である。すなわち、従来の通常の気相法または液相法で、主面を(0001)面とするIII族窒化物バルク結晶を厚く成長させる。得られたIII族窒化物バルク結晶を、互いに平行な{1−100}面でスライスして、スライス面を研磨および/または研削することにより鏡面化することにより得られたものである。スライス方法には、特に制限はなく、ワイヤーソー、内周刃、外周刃、レーザ光などが用いられる。   Here, the manufacturing method of the base substrate 10 as described above is not particularly limited, and for example, the following method is possible. That is, a group III nitride bulk crystal whose principal surface is the (0001) plane is grown thick by a conventional ordinary vapor phase method or liquid phase method. The obtained group III nitride bulk crystal was obtained by slicing with {1-100} planes parallel to each other, and polishing and / or grinding the sliced surface to obtain a mirror surface. There is no restriction | limiting in particular in the slicing method, A wire saw, an inner peripheral blade, an outer peripheral blade, a laser beam etc. are used.

本実施形態のIII族窒化物結晶の成長方法は、次に、下地基板10の主面10m上にIII族窒化物結晶20を成長させる(III族窒化物結晶成長工程)。かかる下地基板10の主面10m上にIII族窒化物結晶20を成長させると、下地基板10から受け継がれ、または、結晶成長の際に発生し、III族窒化物結晶20に存在する転位の少なくとも一部が{1−100}面10cに対して実質的に平行な方向に伝搬してIII族窒化物結晶20の外周部に排出されるため、III族窒化物結晶20の転位密度を低減することができる。   In the method for growing a group III nitride crystal of the present embodiment, the group III nitride crystal 20 is then grown on the main surface 10 m of the base substrate 10 (group III nitride crystal growth step). When the group III nitride crystal 20 is grown on the main surface 10 m of the base substrate 10, at least of dislocations inherited from the base substrate 10 or generated during crystal growth and existing in the group III nitride crystal 20. A part of the light propagates in a direction substantially parallel to the {1-100} surface 10c and is discharged to the outer peripheral portion of the group III nitride crystal 20, thereby reducing the dislocation density of the group III nitride crystal 20. be able to.

このような低減方法は、バーガーズベクトルの符号が反対で大きさが同じ転位同士が引力により合体して消滅することによる転位密度の低減とは異なり、結晶の転位密度が1×107cm-2未満となっても、転位密度をさらに低減することができる。結晶の表面における転位密度は、カソードルミネッセンス法により測定することができる。 Such a reduction method is different from the reduction in dislocation density in which dislocations having the same sign of the Burgers vector but having the same magnitude are merged together by attraction and disappear, and the dislocation density of the crystal is 1 × 10 7 cm −2. Even if it is less than this, the dislocation density can be further reduced. The dislocation density on the surface of the crystal can be measured by a cathodoluminescence method.

ここで、結晶の{hkil}面、<hkil>方向は、結晶のX線回折により特定することができる。ここで、i=−(h+k)であり、h、kおよびlは、いずれも整数であり、それぞれ同じであっても異なっていてもよい。また、結晶の転位の伝搬の様子(転位伝搬線20d)は、光散乱トモグラフ法により観察することができる。なお、{hkil}面とは、(hkil)面および(hkil)面と結晶幾何学的に等価な結晶面を含む総称である。<hkil>方向とは、[hkil]方向および[hkil]方向と結晶幾何学的に等価な方向を含む総称である。   Here, the {hkil} plane and the <hkil> direction of the crystal can be specified by X-ray diffraction of the crystal. Here, i = − (h + k), and h, k, and l are all integers, and may be the same or different. The state of dislocation propagation (dislocation propagation line 20d) in the crystal can be observed by a light scattering tomography method. The {hkil} plane is a generic name including a (hkil) plane and a crystal plane that is crystal geometrically equivalent to the (hkil) plane. The <hkil> direction is a generic name including a [hkil] direction and a direction geometrically equivalent to the [hkil] direction.

本実施形態におけるIII族窒化物結晶の転位密度低減のメカニズムを以下に説明する。図2を参照して、本実施形態における下地基板10の主面10mは、ミクロ的には、複数の{1−100}面10mcとそれらの{1−100}面10mcそれぞれに対してある角度を持つ複数のステップ面10tとでそれぞれ構成される複数のステップ10sを有する階段状の凹凸面である。   The mechanism for reducing the dislocation density of the group III nitride crystal in this embodiment will be described below. Referring to FIG. 2, the main surface 10 m of the base substrate 10 in the present embodiment is at a certain angle with respect to each of a plurality of {1-100} surfaces 10 mc and those {1-100} surfaces 10 mc. And a plurality of step surfaces 10t each having a plurality of steps 10s.

この様な主面10m上にIII族窒化物結晶20を成長させると、III族窒化物結晶20は、主面10mの{1−100}面10cに垂直な方向と、主面10mのステップ面10tに垂直な方向に成長する。このため、III族窒化物結晶20の成長中の結晶成長面20a,20bには、複数の{1−100}面20ac,20bcとそれらの{1−100}面20ac,20bcのそれぞれに対してある角度を有する複数のステップ面20at,20btとでそれぞれ構成される複数のステップ20as,20bsが形成される。   When the group III nitride crystal 20 is grown on such a main surface 10m, the group III nitride crystal 20 has a direction perpendicular to the {1-100} surface 10c of the main surface 10m and a step surface of the main surface 10m. Grows in a direction perpendicular to 10t. For this reason, the crystal growth surfaces 20a and 20b during the growth of the group III nitride crystal 20 have a plurality of {1-100} surfaces 20ac and 20bc and their {1-100} surfaces 20ac and 20bc, respectively. A plurality of steps 20as and 20bs each formed by a plurality of step surfaces 20at and 20bt having a certain angle are formed.

ここで、ステップ面20at,20btに垂直な方向の結晶成長は、{1−100}面20ac,20bcに垂直な方向の結晶成長に比べて優勢である。また、転位は結晶の成長方向に伝搬する。このため、下地基板10の主面から受け継がれ、または、結晶成長の際に発生して、結晶に存在する転位を{1−100}方向に実質的に平行に伝搬させて(図1(b)および図2(b)の転位伝搬線20dを参照)、結晶の外周部に排出させることができるものと考えられる。ここで、転位伝搬線20とは、転位の伝搬の軌跡を示す線をいう。   Here, the crystal growth in the direction perpendicular to the step faces 20at and 20bt is superior to the crystal growth in the direction perpendicular to the {1-100} faces 20ac and 20bc. Dislocations propagate in the crystal growth direction. For this reason, it is inherited from the main surface of the base substrate 10 or is generated during crystal growth, and dislocations existing in the crystal are propagated substantially parallel to the {1-100} direction (FIG. 1B). ) And the dislocation propagation line 20d in FIG. 2 (b)), it is considered that the crystal can be discharged to the outer periphery of the crystal. Here, the dislocation propagation line 20 refers to a line indicating a trajectory of dislocation propagation.

ここで、結晶に存在する転位が伝搬する方向である{1−100}面に実質的に平行な方向とは、III族窒化物結晶の成長において、ステップ面20at,20btに垂直な方向の結晶成長速度は{1−100}面20ac,20bcに垂直な方向の結晶成長速度に比べて約2倍以上となることから、{1−100}面10c,20ac,20bcに対する傾き角φ(これは、転位伝搬線20dと{0001}面10c,20c,20ac,20bcとのなす転位伝搬角φである)が約26°以下の方向を意味する。   Here, the direction substantially parallel to the {1-100} plane, which is the direction in which dislocations existing in the crystal propagate, is a crystal perpendicular to the step faces 20at and 20bt in the growth of the group III nitride crystal. Since the growth rate is about twice or more the crystal growth rate in the direction perpendicular to the {1-100} planes 20ac, 20bc, the tilt angle φ with respect to the {1-100} planes 10c, 20ac, 20bc (this is , The dislocation propagation angle φ formed by the dislocation propagation line 20d and the {0001} planes 10c, 20c, 20ac, and 20bc) means a direction of about 26 ° or less.

III族窒化物結晶20の成長とともに、ステップ面20at,20btが転位とともに結晶の外周部へ移動して、ある結晶成長面20eにおいてステップ面が消滅する。さらに、結晶が{1−100}面に垂直な方向に成長して結晶成長面20sとして{1−100}面を有するIII族窒化物結晶20が得られる。この様にして、結晶成長面20sにおける転位密度が低減したIII族窒化物結晶が得られる。   As the group III nitride crystal 20 grows, the step surfaces 20at and 20bt move to the outer periphery of the crystal together with dislocations, and the step surface disappears at a certain crystal growth surface 20e. Furthermore, the crystal grows in a direction perpendicular to the {1-100} plane, and a group III nitride crystal 20 having a {1-100} plane as the crystal growth plane 20s is obtained. In this way, a group III nitride crystal having a reduced dislocation density at the crystal growth surface 20s is obtained.

下地基板10において、III族窒化物種結晶10aの{1−100}面10cに対する主面10mの傾き角θが、0.5°より小さいと下地基板10の主面10mに存在するステップ10sの数が少なく転位を{1−100}面と実質的に平行な方向に効率的に伝搬させることができなくなり、10°より大きいと主面10mに存在するステップ10sの数が多くなり、結晶成長中にステップ20as,20bsが合体してマクロステップ化する(図示せず)。マクロステップが生じると、マクロステップに融液が巻き込まれて結晶中に液胞が生じやすくなる。かかる観点から、傾き角θは、0.5°以上5°以下であることがより好ましい。   If the inclination angle θ of the main surface 10m with respect to the {1-100} surface 10c of the group III nitride seed crystal 10a in the base substrate 10 is smaller than 0.5 °, the number of steps 10s existing on the main surface 10m of the base substrate 10 Therefore, dislocations cannot be efficiently propagated in a direction substantially parallel to the {1-100} plane, and if it is larger than 10 °, the number of steps 10 s existing on the main surface 10 m increases, and the crystal is growing. Steps 20as and 20bs are combined into a macro step (not shown). When the macro step occurs, the melt is caught in the macro step and a vacuole is easily generated in the crystal. From this viewpoint, the inclination angle θ is more preferably 0.5 ° or more and 5 ° or less.

また、{1−100}面10cに対する主面10mの傾きの方向10hは、特に制限はないが、結晶対称性の観点から、<0001>方向、<000−1>方向、<11−20>方向などであることが好ましい。   Further, the direction 10h of the inclination of the main surface 10m with respect to the {1-100} surface 10c is not particularly limited, but from the viewpoint of crystal symmetry, the <0001> direction, the <000-1> direction, and the <11-20> The direction is preferred.

本実施形態のIII族窒化物結晶の成長方法においては、上記の傾き角θに加えて、主面10mにおける転位密度が1×107cm-2未満の下地基板の主面10m上に、成長後の結晶成長面20sにおける転位密度が下地基板10の主面10mにおける転位密度の1/10以下であるIII族窒化物結晶を成長させることができる。本実施形態においては、バーガーズベクトルの符号が反対で大きさが同じ転位同士が引力により合体して消滅することによる転位密度の低減とは異なり、下地基板の転位密度が1×107cm-2未満であっても、成長させる結晶の転位密度をさらに低減させ、成長後の結晶成長面20sにおける転位密度を下地基板10の主面10mにおける転位密度の1/10以下とすることができる。 In the group III nitride crystal growth method of this embodiment, in addition to the tilt angle θ described above, the growth is performed on the main surface 10 m of the base substrate having a dislocation density of less than 1 × 10 7 cm −2 on the main surface 10 m. A group III nitride crystal in which the dislocation density on the subsequent crystal growth surface 20 s is 1/10 or less of the dislocation density on the main surface 10 m of the base substrate 10 can be grown. In this embodiment, dislocation density of the base substrate is 1 × 10 7 cm −2 , unlike dislocation density reduction in which dislocations having the same sign of the Burgers vector but having the same size are combined and disappeared by attractive force. Even if it is less, the dislocation density of the crystal to be grown can be further reduced, and the dislocation density on the crystal growth surface 20s after the growth can be reduced to 1/10 or less of the dislocation density on the main surface 10m of the base substrate 10.

本実施形態のIII族窒化物結晶の成長方法において、成長方法には特に制限はなく、液相法、気相法いずれの方法を用いることができる。ここで、液相法は気相法に比べて、図2(b)におけるステップ面20at,20btに垂直な方向の結晶成長速度を{1−100}面20ac,20bcに垂直な方向の結晶成長速度に比べて大きくしやすい。このため、液相法は、気相法に比べて、結晶成長の初期における{1−100}面に実質的に平行に転位が伝搬するように結晶成長するステップフロー結晶成長をさせやすく、効果的に転位を減少させることが容易である点で有利である。   In the group III nitride crystal growth method of this embodiment, the growth method is not particularly limited, and either a liquid phase method or a gas phase method can be used. Here, in the liquid phase method, the crystal growth rate in the direction perpendicular to the step surfaces 20at and 20bt in FIG. 2B is higher than that in the gas phase method in the direction perpendicular to the {1-100} surfaces 20ac and 20bc. Easy to increase compared to speed. Therefore, the liquid phase method is easier to perform step flow crystal growth in which crystal growth is performed so that dislocations propagate substantially parallel to the {1-100} plane in the initial stage of crystal growth, compared with the vapor phase method. In particular, it is advantageous in that it is easy to reduce dislocations.

ここで、液相法には、特に制限はないが、転位密度の低い結晶を効率よく成長させる観点から、図3を参照して、III族元素を含む融液32内に下地基板を配置し、融液32中に窒素含有ガス34を供給して、下地基板10の主面10m上にIII族窒化物結晶20を成長させる方法が好ましい。III族窒化物を含む融液32であれば、特に制限はなく、III族元素の融液(セルフフラックス法)、III族元素とIII族元素の溶剤(フラックス)となる金属元素(Na、Liなどのアルカリ金属元素、Caなどのアルカリ土類金属元素、Cu、Ti、Fe、Mn,Crなどの遷移金属元素など)との融液(フラックス法)などが用いられる。特に、結晶内に含まれる固有欠陥濃度の低減および/またはキャリア濃度などの電気特性の制御の観点から、III族元素の純度が高い融液が好ましく、たとえばIII族元素の純度が99モル%以上が好ましく、99.99モル%以上がより好ましく、99.9999モル%以上がさらに好ましい。   Here, the liquid phase method is not particularly limited, but from the viewpoint of efficiently growing a crystal having a low dislocation density, a base substrate is disposed in the melt 32 containing a group III element with reference to FIG. A method of growing a group III nitride crystal 20 on the main surface 10 m of the base substrate 10 by supplying a nitrogen-containing gas 34 into the melt 32 is preferable. If it is the melt 32 containing group III nitride, there will be no restriction | limiting in particular, The metal element (Na, Li which becomes a solvent (flux) of a group III element and a group III element melt (self-flux method) and a group III element For example, a melt (flux method) with an alkali metal element such as Ca, an alkaline earth metal element such as Ca, or a transition metal element such as Cu, Ti, Fe, Mn, or Cr is used. In particular, from the viewpoint of reducing the concentration of intrinsic defects contained in the crystal and / or controlling electrical characteristics such as carrier concentration, a melt having a high purity of the group III element is preferable. For example, the purity of the group III element is 99 mol% or more. Is preferable, more preferably 99.99 mol% or more, and still more preferably 99.9999 mol% or more.

(実施形態2)
本発明にかかるIII族窒化物結晶基板の一実施形態は、図4を参照して実施形態1の成長方法により得られるIII族窒化物結晶20から切り出して得られる。かかるIII族窒化物結晶基板は、その主面における転位密度が低減されている。
(Embodiment 2)
One embodiment of a group III nitride crystal substrate according to the present invention is obtained by cutting out from a group III nitride crystal 20 obtained by the growth method of embodiment 1 with reference to FIG. Such a group III nitride crystal substrate has a reduced dislocation density on its main surface.

ここで、III族窒化物結晶20から基板を切り出す方法には、特に制限なく、ワイヤーソー、内周刃、外周刃、レーザ光などが用いられる。また、切り出されたIII族窒化物結晶基板20pの主面20q,20rは、研磨および/または研削により鏡面化されることが好ましい。   Here, the method of cutting out the substrate from the group III nitride crystal 20 is not particularly limited, and a wire saw, an inner peripheral blade, an outer peripheral blade, laser light, or the like is used. Moreover, it is preferable that the cut main surfaces 20q and 20r of the group III nitride crystal substrate 20p are mirror-finished by polishing and / or grinding.

(実施例1)
図1(a)を参照して、まず、下地基板10として5mm×10mm×厚さ350μmのウルツ鉱型GaN結晶基板を準備した。このGaN基板(下地基板10)は、主面10mが(1−100)面({1−100}面10c)に対して[0001]方向(傾き方向10h)に1°の傾き角θを有しており、その主面10mが研磨加工により鏡面にされている。この下地基板の主面における転位密度をカソードルミネセンス法により暗点として検出し測定したところ、面内平均転位密度は9×106cm-2であった。
(Example 1)
Referring to FIG. 1A, first, a wurtzite GaN crystal substrate having a size of 5 mm × 10 mm × thickness 350 μm was prepared as a base substrate 10. In this GaN substrate (underlying substrate 10), the main surface 10m has an inclination angle θ of 1 ° in the [0001] direction (inclination direction 10h) with respect to the (1-100) surface ({1-100} surface 10c). The main surface 10m is mirror-finished by polishing. When the dislocation density on the main surface of the base substrate was detected and measured as a dark spot by the cathodoluminescence method, the in-plane average dislocation density was 9 × 10 6 cm −2 .

ここで、GaN基板(下地基板10)は、従来の通常の気相法または液相法で厚く成長させた主面を(0001)面とするGaNバルク結晶を、(1−100)面に平行な面でワイヤーソーによりスライスし、スライス面を研磨することよって得られたものである。   Here, the GaN substrate (underlying substrate 10) is a GaN bulk crystal having a (0001) plane as the main surface grown thick by a conventional normal vapor phase method or liquid phase method, and is parallel to the (1-100) plane. It was obtained by slicing with a wire saw on a flat surface and polishing the slice surface.

図1(b)を参照して、次に、高純度Gaを溶媒とする液相法により下地基板10の主面10m上にGaN結晶を400μm成長させた。具体的には、図3を参照して、アルミナ製の坩堝30中に下地基板10をその主面10mを上に向けて坩堝底面に置き、純度が7N(99.99999モル%)である高純度金属Gaを40g秤量し、坩堝内に一緒に入れて950℃まで加熱し、下地基板10に接触する高純度Ga融液(III族元素を含む融液32)を形成した。この高純度Ga融液(融液32)に圧力が8MPaの窒素ガス(窒素含有ガス34)を4000時間供給し、GaN結晶(III族窒化物結晶20)を平均成長厚さ400μmに成長させた。結晶成長後のGaN結晶の成長表面の面方位は(1−100)であった。   Referring to FIG. 1B, next, 400 μm of a GaN crystal was grown on the main surface 10 m of the base substrate 10 by a liquid phase method using high-purity Ga as a solvent. Specifically, referring to FIG. 3, the base substrate 10 is placed on the bottom of the crucible with the main surface 10m facing up in an alumina crucible 30, and the purity is 7N (99.99999 mol%). 40 g of pure metal Ga was weighed and put together in a crucible and heated to 950 ° C. to form a high-purity Ga melt (melt 32 containing a group III element) in contact with the base substrate 10. Nitrogen gas (nitrogen-containing gas 34) having a pressure of 8 MPa was supplied to the high-purity Ga melt (melt 32) for 4000 hours to grow a GaN crystal (Group III nitride crystal 20) to an average growth thickness of 400 μm. . The plane orientation of the growth surface of the GaN crystal after crystal growth was (1-100).

次に、成長させたGaN結晶を坩堝から取り出し、その表面を研磨加工し鏡面化した。この鏡面化されたGaN結晶表面について、下地基板と同様にカソードルミネセンス法により面内平均転位密度を調べたところ、転位密度は7×105cm-2であった。このGaN結晶の転位伝搬の様子を光散乱トモグラフ法により観察したところ、下地基板に近い成長初期において、転位は(1−100)面に対して実質的に平行な方向に伝搬し、結晶外周側面に到達していることが確認された。また、蛍光顕微鏡により結晶内部を観察したところ、液胞は認められなかった。 Next, the grown GaN crystal was taken out of the crucible, and its surface was polished to make a mirror surface. When the in-plane average dislocation density of the mirror-finished GaN crystal surface was examined by the cathodoluminescence method in the same manner as the base substrate, the dislocation density was 7 × 10 5 cm −2 . When the dislocation propagation of the GaN crystal was observed by a light scattering tomography method, the dislocation propagated in a direction substantially parallel to the (1-100) plane in the early growth stage close to the base substrate, It has been confirmed that Further, when the inside of the crystal was observed with a fluorescence microscope, no vacuole was observed.

(実施例2)
下地基板10の主面10mが(1−100)面に対して[0001]方向に3°の傾き角θを有していること以外は、実施例1と同様にしてGaN結晶を成長させ、その表面を鏡面化した。このGaN結晶について、表面における平均転位密度は、3.0×105cm-2であり、下地基板に近い成長初期において転位は(1−100)面に対して実質的に平行な方向に伝搬し結晶外周側面に到達していることが確認され、結晶内部に液胞は認めらなかった。
(Example 2)
A GaN crystal is grown in the same manner as in Example 1 except that the main surface 10m of the base substrate 10 has an inclination angle θ of 3 ° in the [0001] direction with respect to the (1-100) plane. The surface was mirrored. For this GaN crystal, the average dislocation density on the surface is 3.0 × 10 5 cm −2 , and the dislocation propagates in a direction substantially parallel to the (1-100) plane in the early growth stage near the base substrate. It was confirmed that the crystal had reached the outer peripheral side surface of the crystal, and no vacuole was observed inside the crystal.

(実施例3)
下地基板10の主面10mが(1−100)面に対して[0001]方向に6°の傾き角θを有していること以外は、実施例1と同様にしてGaN結晶を成長させ、その表面を鏡面化した。このGaN結晶について、表面における平均転位密度は、1.0×105cm-2であり、下地基板に近い成長初期において転位は(1−100)面に対して実質的に平行な方向に伝搬し結晶外周側面に到達していることが確認され、結晶内部に液胞は認めらなかった。
(Example 3)
A GaN crystal is grown in the same manner as in Example 1 except that the main surface 10m of the base substrate 10 has an inclination angle θ of 6 ° in the [0001] direction with respect to the (1-100) plane. The surface was mirrored. For this GaN crystal, the average dislocation density on the surface is 1.0 × 10 5 cm −2 , and the dislocation propagates in a direction substantially parallel to the (1-100) plane in the early growth stage close to the base substrate. It was confirmed that the crystal had reached the outer peripheral side surface of the crystal, and no vacuole was observed inside the crystal.

(実施例4)
下地基板10の主面10mが(1−100)面に対して[0001]方向に9°の傾き角θを有していること以外は、実施例1と同様にしてGaN結晶を成長させ、その表面を鏡面化した。このGaN結晶について、表面における平均転位密度は、8.0×104cm-2であり、下地基板に近い成長初期において転位は(0001)面に対して実質的に平行な方向に伝搬し結晶外周側面に到達していることが確認され、結晶内部に液胞は認めらなかった。実質上は問題とならないが、結晶内部に極めて少量の液胞が認められた。
Example 4
A GaN crystal is grown in the same manner as in Example 1 except that the main surface 10m of the base substrate 10 has an inclination angle θ of 9 ° in the [0001] direction with respect to the (1-100) plane. The surface was mirrored. For this GaN crystal, the average dislocation density on the surface is 8.0 × 10 4 cm −2 , and the dislocation propagates in a direction substantially parallel to the (0001) plane in the early growth stage close to the base substrate. It was confirmed that it reached the outer peripheral side surface, and no vacuoles were observed inside the crystal. Virtually no problem was observed, but a very small amount of vacuoles were observed inside the crystal.

(比較例1)
下地基板10の主面10mが(1−100)面(傾き角θが0°)であること以外は、実施例1と同様にしてGaN結晶を成長させ、その表面を鏡面化した。このGaN結晶について、表面における平均転位密度は、9.5×106cm-2であり、転位は(1−100)面に対してほぼ垂直な方向に伝搬していることを確認され、結晶内部に液胞は認められなかった。
(Comparative Example 1)
A GaN crystal was grown in the same manner as in Example 1 except that the main surface 10m of the base substrate 10 was a (1-100) plane (inclination angle θ was 0 °), and its surface was mirrored. For this GaN crystal, the average dislocation density at the surface was 9.5 × 10 6 cm −2 , and it was confirmed that the dislocation propagated in a direction substantially perpendicular to the (1-100) plane. No vacuoles were found inside.

(比較例2)
下地基板10の主面10mが(1−100)面に対して[0001]方向に12°の傾き角θを有していること以外は、実施例1と同様にしてGaN結晶を成長させ、その表面を鏡面化した。このGaN結晶について、表面における平均転位密度は、5.0×104cm-2であり、下地基板に近い成長初期において転位は(1−100)面に対して実質的に平行な方向に伝搬し結晶外周側面に到達していることが確認されたが、結晶内部に液胞が認められた。
(Comparative Example 2)
A GaN crystal is grown in the same manner as in Example 1 except that the main surface 10m of the base substrate 10 has an inclination angle θ of 12 ° in the [0001] direction with respect to the (1-100) plane. The surface was mirrored. For this GaN crystal, the average dislocation density at the surface is 5.0 × 10 4 cm −2 , and the dislocation propagates in a direction substantially parallel to the (1-100) plane in the early growth stage near the base substrate. However, although it was confirmed that the crystal reached the outer peripheral side surface, a vacuole was observed inside the crystal.

(実施例5)
図5を参照して、実施例2と同様の下地基板10を準備し、HVPE法により下地基板10の主面10m上にGaN結晶20を成長させ、その表面を鏡面化した。具体的には下地基板をHVPE装置の結晶成長炉内に配置し、結晶成長炉内圧力9.31kPa(70Torr)および結晶成長温度1020℃の条件下で、Ga原料として一塩化ガリウム(GaCl)ガスを、N原料としてアンモニア(NH3)ガスを、キャリアガスとして水素ガスを用いて、一塩化ガリウムガスに対するアンモニアガスのモル比(V/III比)30で、GaN結晶20を平均厚さ420μmに成長させた。このGaN結晶20の結晶成長面を研磨して表面20uが鏡面化された厚さHが400μmのGaN結晶20とした。
(Example 5)
Referring to FIG. 5, base substrate 10 similar to that in Example 2 was prepared, GaN crystal 20 was grown on main surface 10m of base substrate 10 by HVPE, and the surface was mirror-finished. Specifically, a base substrate is placed in a crystal growth furnace of an HVPE apparatus, and gallium monochloride (GaCl) gas is used as a Ga raw material under conditions of a crystal growth furnace pressure of 9.31 kPa (70 Torr) and a crystal growth temperature of 1020 ° C. , Using ammonia (NH 3 ) gas as the N raw material and hydrogen gas as the carrier gas, the molar ratio of ammonia gas to gallium chloride gas (V / III ratio) is 30 and the GaN crystal 20 has an average thickness of 420 μm. Grown up. The crystal growth surface of the GaN crystal 20 was polished to obtain a GaN crystal 20 having a thickness H of 400 μm with the surface 20u mirrored.

このGaN結晶20の鏡面化された表面20uにおける転位密度を調べたところ、下地基板10の傾き方向10hの上手端からの距離Lが400μmまでの領域は平均転位密度が3.0×105cm-2の低転位密度領域20vであったが、それ以外の領域は平均転位密度が9.0×10cm-2の高転位密度領域20wであった(図5(a))。このGaN結晶の転位伝搬の様子を光散乱トモグラフ法により観察したところ、転位は(1−100)面に対して転位伝搬角φが45°の方向に伝搬していた(図5(b))。そのため、このGaN結晶について、下地基板から伝播した転位の過半は結晶表面に貫通し、一部が結晶外周側面に到達しているに留まっていることが確認された。結晶内部に液胞は認めらなかった。 When the dislocation density on the mirror-finished surface 20u of the GaN crystal 20 was examined, the average dislocation density was 3.0 × 10 5 cm in the region where the distance L from the upper edge of the tilt direction 10h of the base substrate 10 was 400 μm. -2 was a low dislocation density region 20v, but the other regions were high dislocation density regions 20w having an average dislocation density of 9.0 × 10 6 cm -2 (FIG. 5 (a)). When the dislocation propagation state of this GaN crystal was observed by the light scattering tomography method, the dislocation propagated in the direction where the dislocation propagation angle φ was 45 ° with respect to the (1-100) plane (FIG. 5B). . Therefore, it was confirmed that the majority of dislocations propagated from the base substrate penetrated the crystal surface and part of the GaN crystal reached the side surface of the crystal outer periphery. No vacuole was observed inside the crystal.

実施例1〜5および比較例1,2から、主面が{1−100}面に対して0.5°以上10°以下の傾き角をする下地基板上に、III族窒化物結晶を成長させることにより、III族窒化物結晶に存在する転位の少なくとも一部が{1−100}面に対して実質的に平行な方向に伝搬してIII族窒化物結晶の外周部に排出され、結晶成長後の結晶成長面における転位密度が低減したIII族窒化物結晶が得られることがわかった。ただし、結晶中の液胞の存在を皆無にする観点からは、傾き角は0.5°以上5°以下にすることがより好ましい。また、結晶成長の初期における{1−100}面に実質的に平行に転位が伝搬するように結晶成長するステップフロー結晶成長をさせやすく、効果的に転位を減少させることができる観点から、液相法で成長することが好ましい。   From Examples 1 to 5 and Comparative Examples 1 and 2, a group III nitride crystal is grown on a base substrate whose main surface has an inclination angle of 0.5 ° to 10 ° with respect to the {1-100} plane By doing so, at least some of the dislocations present in the group III nitride crystal propagate in a direction substantially parallel to the {1-100} plane and are discharged to the outer periphery of the group III nitride crystal. It was found that a group III nitride crystal having a reduced dislocation density on the crystal growth surface after growth was obtained. However, from the viewpoint of eliminating the presence of vacuoles in the crystal, it is more preferable that the tilt angle be 0.5 ° or more and 5 ° or less. Further, from the viewpoint of easy step-flow crystal growth in which crystals grow so that the dislocations propagate substantially parallel to the {1-100} plane in the initial stage of crystal growth, and the dislocations can be effectively reduced. It is preferable to grow by the phase method.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明にかかるIII族窒化物結晶の成長方法の一実施形態を示す概略断面図である。ここで、(a)は下地基板を準備する工程を示し、(b)は下地基板上にIII族窒化物結晶を成長させる工程を示す。It is a schematic sectional drawing which shows one Embodiment of the growth method of the group III nitride crystal concerning this invention. Here, (a) shows a step of preparing a base substrate, and (b) shows a step of growing a group III nitride crystal on the base substrate. 本発明にかかるIII族窒化物結晶の成長方法の一実施形態を示す概略部分拡大断面図である。ここで、(a)は図1(a)におけるIIA部分を拡大したものを示し、(b)は図1(b)におけるIIB部分を拡大したものを示す。It is a general | schematic fragmentary expanded sectional view which shows one Embodiment of the growth method of the group III nitride crystal concerning this invention. Here, (a) shows what expanded the IIA part in Fig.1 (a), (b) shows what expanded the IIB part in FIG.1 (b). 液相法でIII族窒化物結晶を成長させる一例を示す概略断面図である。It is a schematic sectional drawing which shows an example which grows a group III nitride crystal by a liquid phase method. 本発明にかかるIII族窒化物結晶基板の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the group III nitride crystal substrate concerning this invention. 本発明にかかるIII族窒化物結晶の成長方法により得られたIII族窒化物結晶の一例を示す概略図である。ここで、(a)は概略平面図を示し、(b)は(a)におけるVB方向における概略断面図を示す。It is the schematic which shows an example of the group III nitride crystal obtained by the growth method of the group III nitride crystal concerning this invention. Here, (a) shows a schematic plan view, and (b) shows a schematic cross-sectional view in the VB direction in (a).

符号の説明Explanation of symbols

10 下地基板、10a III族窒化物種結晶、10c,10mc,20c,20ac,20bc {1−100}面、10h 傾きの方向、10m,20q,20r 主面、10s,20as,20bs ステップ、10t,20at,20bt ステップ面、20 III族窒化物結晶、20a,20b,20e,20s 結晶成長面、20d 転位伝搬線、20p III族窒化物結晶基板、20u 表面、20v 低転位密度領域、20w 高転位密度領域、30 坩堝、32 融液、34 窒素含有ガス。   10 base substrate, 10a group III nitride seed crystal, 10c, 10mc, 20c, 20ac, 20bc {1-100} plane, 10h tilt direction, 10m, 20q, 20r main surface, 10s, 20as, 20bs step, 10t, 20at , 20 bt step plane, 20 group III nitride crystal, 20a, 20b, 20e, 20s crystal growth plane, 20d dislocation propagation line, 20p group III nitride crystal substrate, 20u surface, 20v low dislocation density region, 20w high dislocation density region , 30 crucible, 32 melt, 34 nitrogen-containing gas.

Claims (5)

少なくとも主面側にIII族窒化物種結晶を含み、前記主面が前記III族窒化物種結晶の{1−100}面に対して0.5°以上10°以下の傾き角を有する下地基板を準備する工程と、
前記下地基板の前記主面上にIII族窒化物結晶を成長させる工程と、を備え、
前記III族窒化物結晶の成長の際に、前記III族窒化物結晶に存在する転位の少なくとも一部が、前記{1−100}面に対して実質的に平行な方向に伝搬して、前記III族窒化物結晶の外周部に排出されるIII族窒化物結晶の成長方法。
A base substrate is prepared that includes a group III nitride seed crystal at least on the main surface side, and the main surface has an inclination angle of 0.5 ° to 10 ° with respect to the {1-100} plane of the group III nitride seed crystal. And a process of
And growing a group III nitride crystal on the main surface of the base substrate,
During the growth of the group III nitride crystal, at least some of the dislocations present in the group III nitride crystal propagate in a direction substantially parallel to the {1-100} plane, and A method for growing a group III nitride crystal discharged to the outer periphery of a group III nitride crystal.
前記下地基板の前記主面における転位密度が1×107cm-2未満であって、
前記III族窒化物結晶の成長後の結晶成長面における転位密度が前記主面における転位密度の1/10以下である請求項1に記載のIII族窒化物結晶の成長方法。
A dislocation density in the main surface of the base substrate is less than 1 × 10 7 cm −2 ;
2. The method for growing a group III nitride crystal according to claim 1, wherein a dislocation density on a crystal growth surface after the growth of the group III nitride crystal is 1/10 or less of a dislocation density on the main surface.
前記III族窒化物結晶を成長させる方法として液相法を用いる請求項1または請求項2に記載のIII族窒化物結晶の成長方法。   The method for growing a group III nitride crystal according to claim 1 or 2, wherein a liquid phase method is used as a method for growing the group III nitride crystal. 前記液相法としてIII族元素を含む融液中に窒素含有ガスを供給する請求項1から請求項3までのいずれかに記載のIII族窒化物結晶の成長方法。   The method for growing a group III nitride crystal according to any one of claims 1 to 3, wherein a nitrogen-containing gas is supplied into a melt containing a group III element as the liquid phase method. 請求項1から請求項4までのいずれかの成長方法により得られるIII族窒化物結晶から切り出して得られるIII族窒化物結晶基板。   A group III nitride crystal substrate obtained by cutting out from a group III nitride crystal obtained by the growth method according to any one of claims 1 to 4.
JP2007226025A 2007-08-31 2007-08-31 Method for growing group iii nitride crystal, and group iii nitride crystal substrate Pending JP2009057247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007226025A JP2009057247A (en) 2007-08-31 2007-08-31 Method for growing group iii nitride crystal, and group iii nitride crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007226025A JP2009057247A (en) 2007-08-31 2007-08-31 Method for growing group iii nitride crystal, and group iii nitride crystal substrate

Publications (1)

Publication Number Publication Date
JP2009057247A true JP2009057247A (en) 2009-03-19

Family

ID=40553334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007226025A Pending JP2009057247A (en) 2007-08-31 2007-08-31 Method for growing group iii nitride crystal, and group iii nitride crystal substrate

Country Status (1)

Country Link
JP (1) JP2009057247A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130597A (en) * 1997-10-24 1999-05-18 Mitsubishi Cable Ind Ltd Control of dislocation line in transmission direction and its use
JP2000223743A (en) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd Nitride semiconductor light emitting element and growth of nitride semiconductor layer
JP2001196632A (en) * 2000-01-14 2001-07-19 Sharp Corp Gallium nitride compound semiconductor light emission and its manufacturing method
JP2004244307A (en) * 2003-01-20 2004-09-02 Matsushita Electric Ind Co Ltd Method for producing group iii nitride substrate, and semiconductor device
JP2005298319A (en) * 2004-03-17 2005-10-27 Sumitomo Electric Ind Ltd METHOD FOR MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE AND GaN SINGLE CRYSTAL SUBSTRATE
JP2006193348A (en) * 2005-01-11 2006-07-27 Sumitomo Electric Ind Ltd Group iii nitride semiconductor substrate and its manufacturing method
JP2007119325A (en) * 2005-10-31 2007-05-17 Sumitomo Electric Ind Ltd Group iii nitride crystal and growing method thereof
JP2007227803A (en) * 2006-02-24 2007-09-06 Kyocera Corp Gas phase growth method of nitride group semiconductor, nitride group semiconductor expitaxial substrate using the same, self-standing substrate, and semiconductor device
JP2007534159A (en) * 2003-11-14 2007-11-22 クリー インコーポレイテッド Finely graded gallium nitride substrate for high quality homoepitaxy
JP2008273768A (en) * 2007-04-26 2008-11-13 Sumitomo Electric Ind Ltd Method for growing group iii nitride crystal, and group iii nitride crystal substrate
JP2009051686A (en) * 2007-08-24 2009-03-12 Sumitomo Electric Ind Ltd Method for growing group iii nitride crystal

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130597A (en) * 1997-10-24 1999-05-18 Mitsubishi Cable Ind Ltd Control of dislocation line in transmission direction and its use
JP2000223743A (en) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd Nitride semiconductor light emitting element and growth of nitride semiconductor layer
JP2001196632A (en) * 2000-01-14 2001-07-19 Sharp Corp Gallium nitride compound semiconductor light emission and its manufacturing method
JP2004244307A (en) * 2003-01-20 2004-09-02 Matsushita Electric Ind Co Ltd Method for producing group iii nitride substrate, and semiconductor device
JP2007534159A (en) * 2003-11-14 2007-11-22 クリー インコーポレイテッド Finely graded gallium nitride substrate for high quality homoepitaxy
JP2005298319A (en) * 2004-03-17 2005-10-27 Sumitomo Electric Ind Ltd METHOD FOR MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE AND GaN SINGLE CRYSTAL SUBSTRATE
JP2006193348A (en) * 2005-01-11 2006-07-27 Sumitomo Electric Ind Ltd Group iii nitride semiconductor substrate and its manufacturing method
JP2007119325A (en) * 2005-10-31 2007-05-17 Sumitomo Electric Ind Ltd Group iii nitride crystal and growing method thereof
JP2007227803A (en) * 2006-02-24 2007-09-06 Kyocera Corp Gas phase growth method of nitride group semiconductor, nitride group semiconductor expitaxial substrate using the same, self-standing substrate, and semiconductor device
JP2008273768A (en) * 2007-04-26 2008-11-13 Sumitomo Electric Ind Ltd Method for growing group iii nitride crystal, and group iii nitride crystal substrate
JP2009051686A (en) * 2007-08-24 2009-03-12 Sumitomo Electric Ind Ltd Method for growing group iii nitride crystal

Similar Documents

Publication Publication Date Title
US9263266B2 (en) Group III nitride articles and methods for making same
KR101060073B1 (en) Template type substrate and its manufacturing method
JP6578570B2 (en) Method for producing group III nitride semiconductor crystal substrate
JP4741506B2 (en) Large area and uniform low dislocation density GaN substrate and its manufacturing process
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
TWI554658B (en) Production method of aluminum nitride crystal
JP4757029B2 (en) Method for producing group III nitride crystal
KR20080075914A (en) Process for growth of low dislocation density gan
JP2006332570A (en) Method for improving surface flatness of group iii nitride crystal, substrate for epitaxial growth and semiconductor device
JP4397695B2 (en) Method for manufacturing group III nitride substrate
JP2007197276A (en) Group iii-v nitride-based semiconductor substrate, its manufacturing method, and group iii-v nitride-based light emitting element
WO2005121418A1 (en) Iii group nitride crystal and method for preparation thereof, and iii group nitride crystal substrate and semiconductor device
JP2009167053A (en) Method for growing group iii nitride crystal
JP6344987B2 (en) Group 13 element nitride crystal layer and functional device
JP2012066983A (en) METHOD FOR GROWING GaN CRYSTAL AND GaN CRYSTAL SUBSTRATE
JP4597534B2 (en) Method for manufacturing group III nitride substrate
JP5144192B2 (en) Group III nitride crystal growth method
JP2010280562A (en) Method for manufacturing group iii nitride crystal, group iii nitride crystal substrate and group iii nitride semiconductor device
WO2020158571A1 (en) Nitride semiconductor substrate, laminated structure, and method for manufacturing nitride semiconductor substrate
JP2008273768A (en) Method for growing group iii nitride crystal, and group iii nitride crystal substrate
US10000864B2 (en) Group 13 element nitride crystal layer and function element
JP2009051686A (en) Method for growing group iii nitride crystal
JP2009057247A (en) Method for growing group iii nitride crystal, and group iii nitride crystal substrate
US20230399770A1 (en) Group iii nitride crystal, group iii nitride semiconductor, group iii nitride substrate, and method for producing group iii nitride crystal
JP5045589B2 (en) Group III nitride crystal growth method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206