JP2009055875A - Artificial culture soil - Google Patents

Artificial culture soil Download PDF

Info

Publication number
JP2009055875A
JP2009055875A JP2007227668A JP2007227668A JP2009055875A JP 2009055875 A JP2009055875 A JP 2009055875A JP 2007227668 A JP2007227668 A JP 2007227668A JP 2007227668 A JP2007227668 A JP 2007227668A JP 2009055875 A JP2009055875 A JP 2009055875A
Authority
JP
Japan
Prior art keywords
mica
organic material
water
agent
peat moss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007227668A
Other languages
Japanese (ja)
Other versions
JP4971081B2 (en
Inventor
Mika Ikeda
美香 池田
Takeshi Sanami
武志 差波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Agrotech Co Ltd
Original Assignee
Sumika Agrotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Agrotech Co Ltd filed Critical Sumika Agrotech Co Ltd
Priority to JP2007227668A priority Critical patent/JP4971081B2/en
Publication of JP2009055875A publication Critical patent/JP2009055875A/en
Application granted granted Critical
Publication of JP4971081B2 publication Critical patent/JP4971081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an artificial culture soil containing a vegetative organic material, preventing the development of water-repellency even after drying, keeping low viscosity, having moderate water-retention and air permeability and storable for a long time. <P>SOLUTION: The artificial culture soil contains mica on the surface of a vegetative organic material. The coverage of the surface of the vegetative organic material with mica is preferably ≥1.0% from the viewpoint to efficiently suppress the water-repellency of the vegetative organic material, and the content of the mica in the artificial culture soil is preferably within the range of 0.1 to 30 wt.%. The particle diameter of the mica is preferably ≤125 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は人工培土に関し、より詳細には植物性有機資材を有する人工培土に関するものである。   The present invention relates to an artificial soil, and more particularly to an artificial soil having a plant organic material.

ピートモスやココナッツピート等の植物性有機資材は、軽量で通気性・保水性に優れているため農園芸分野等において広く用いられている。ところが、これらの植物性有機資材は一度乾燥すると変質して撥水性を呈するようになり、その後灌水しても親水性は回復せず、吸水性や保水性等の培土として必要な機能を喪失する。   Plant organic materials such as peat moss and coconut peat are widely used in the field of agriculture and horticulture because they are lightweight and have excellent breathability and water retention. However, once these plant organic materials are dried, they become denatured and exhibit water repellency, and even after irrigation, the hydrophilicity does not recover, and the functions necessary for cultivation such as water absorption and water retention are lost. .

そこで、植物性有機資材の乾燥による撥水性の発現を防止すべくこれまで種々の提案がなされている。例えば、植物性有機資材に粘土鉱物を混合する技術(例えば、特許文献1及び特許文献2を参照。)、植物性有機資材にシリカを含有させる技術(例えば、特許文献3及び特許文献4を参照。)、植物性有機資材に界面活性剤を添加する技術などが提案されている。
特開平9−74896号公報 特開平11−266694号公報 特開平7−41号公報 特開2005−124443号公報
Therefore, various proposals have been made so far to prevent the expression of water repellency due to drying of the plant organic material. For example, a technique for mixing clay minerals with plant organic materials (see, for example, Patent Document 1 and Patent Document 2), a technique for adding vegetable organic materials to silica (for example, see Patent Documents 3 and 4) )), And techniques for adding surfactants to plant organic materials have been proposed.
JP-A-9-74896 JP-A-11-266694 JP-A-7-41 JP 2005-124443 A

しかしながら、植物性有機資材に粘土鉱物を混合する提案技術では、粘性が高くなって流動性が低下し、生産工程における取り扱い性などが大きく低下する。また、植物性有機資材にシリカを含有させる提案技術では、シリカの保水力が高すぎて、過湿による苗の徒長や根の傷み等が発生することがある。そしてまた、植物性有機資材に界面活性剤を添加する提案技術では、植物性有機資材の乾燥後の吸水性の回復には優れているものの、生分解などで失活することが多く、撥水性防止効果が経時的に低下し長期保存に適さないという問題があった。   However, in the proposed technology in which clay minerals are mixed with plant organic materials, the viscosity becomes high, the fluidity is lowered, and the handling property in the production process is greatly lowered. Further, in the proposed technology for adding silica to plant organic materials, the water retention capacity of silica is too high, and seedling length or root damage due to overhumidity may occur. In addition, the proposed technology for adding surfactants to plant organic materials is excellent in recovery of water absorption after drying of plant organic materials, but is often deactivated due to biodegradation, etc. There was a problem that the preventive effect decreased with time and was not suitable for long-term storage.

本発明はこのような従来の問題に鑑みてなされたものであり、その目的とするところは、一旦乾燥しても撥水性が発現することなく、しかも粘性が低く維持され、適度な保水性と通気性とを備え、長期保存が可能な植物性有機資材を有する人工培土を提供することにある。   The present invention has been made in view of such conventional problems, and the object of the present invention is that water repellency does not appear even after drying, and the viscosity is maintained low, and the appropriate water retention is achieved. An object of the present invention is to provide an artificial soil having a breathable and organic plant material that can be stored for a long time.

本発明者等は前記目的を達成すべく鋭意検討を重ねた結果、植物性有機資材の表面に雲母を存在させることにより、一旦乾燥した後に発現する植物性有機資材の撥水性が効果的に抑えられることを見出し本発明に至った。即ち、本発明に係る人工培土は、雲母が表面に付着した植物性有機資材を有することを特徴とする。   As a result of intensive studies to achieve the above object, the present inventors have effectively suppressed the water repellency of the plant organic material that appears after drying once the mica is present on the surface of the plant organic material. As a result, the present invention has been found. That is, the artificial soil according to the present invention is characterized by having a plant organic material with mica attached to the surface.

ここで、植物性有機資材の撥水性を効率的に抑える観点からは、植物性有機資材の表面の雲母による被覆率は1.0%以上とするのが好ましく、人工培土中の前記雲母の含有量は0.1〜30重量%の範囲が好ましい。また、前記雲母の粒径としては125μm以下が好ましい。なお、本明細書において雲母の被覆率は、レーザ顕微鏡「VK−9500」(KEYENCE社製)を用いて撮影した画像から、植物性有機資材の表面に付着している雲母の総面積を算出し、この雲母の総面積を植物性有機資材の表面積で割ったものである。また、本明細書において雲母の粒径は、粒度分布計「LA−300」(堀場製作所製)で測定した算術平均径である。   Here, from the viewpoint of efficiently suppressing the water repellency of the plant organic material, the coverage of the surface of the plant organic material by the mica is preferably 1.0% or more, and the content of the mica in the artificial soil is included. The amount is preferably in the range of 0.1 to 30% by weight. The particle size of the mica is preferably 125 μm or less. In this specification, the coverage of mica is calculated by calculating the total area of mica attached to the surface of the plant organic material from an image taken using a laser microscope “VK-9500” (manufactured by KEYENCE). The total area of this mica is divided by the surface area of the plant organic material. In the present specification, the particle size of mica is an arithmetic average diameter measured by a particle size distribution analyzer “LA-300” (manufactured by Horiba Seisakusho).

そしてまた、前記植物性有機資材として、ピートモス、ココナッツピート、バーク堆肥、チップ堆肥から選択される1種又は2種類以上を含むものを用いるのが好ましい。   And it is preferable to use what contains 1 type, or 2 or more types selected from peat moss, coconut peat, bark compost, and chip compost as the vegetable organic material.

本発明の人工培土では、植物性有機資材の表面に雲母が付着しているので、一旦乾燥しても、その後の撥水性の発現が抑えられる。また、粘性が低く維持されるので、生産性や取り扱い性の低下が防止される。さらには保水性が、シリカを含有させた場合ほど高くなく過湿状態を招くことがない。そしてまた本発明の人工培土は、撥水性抑制効果を長期間保持でき保存安定性に優れる。   In the artificial soil according to the present invention, mica adheres to the surface of the plant organic material, so that even if it is once dried, the subsequent development of water repellency can be suppressed. In addition, since the viscosity is kept low, the productivity and handling properties are prevented from being lowered. Furthermore, the water retention is not as high as when silica is contained, and an overhumid state is not caused. Moreover, the artificial soil of the present invention can maintain the water repellency suppressing effect for a long period of time and is excellent in storage stability.

本発明に係る人工培土は、雲母が表面に付着した植物性有機資材を有する。植物性有機資材の表面に雲母を存在させることにより、植物性有機資材の撥水性が抑制される機構については未だ明らかではないが、今のところ、植物性有機資材の表面の雲母が、吸水点となり、毛細管現象によって雲母相互の空隙から水が浸透し撥水性が抑えられるのではないかと推測している。   The artificial soil according to the present invention has a plant organic material with mica attached to the surface. The mechanism by which the water repellency of the plant organic material is suppressed by the presence of mica on the surface of the plant organic material is not yet clear, but so far the mica on the surface of the plant organic material has a water absorption point. Thus, it is speculated that water may permeate from the gaps between the mica due to the capillary phenomenon to suppress water repellency.

本発明で使用する植物性有機資材に特に限定はなく従来公知のものが使用できる。植物性有機資材としては、例えば、ピートモスやココナッツピート、バーク堆肥、チップ堆肥などが挙げられ、これらの1種又は2種以上を組み合わせて使用すればよい。植物性有機資材の形状としては、例えば、植物繊維が絡み合った形状、樹木の樹皮や木質部を細切りした形状、樹木の樹皮や木質部を破砕したチップ形状などが挙げられる。   There is no limitation in particular in the vegetable organic material used by this invention, A conventionally well-known thing can be used. Examples of plant organic materials include peat moss, coconut peat, bark compost, and chip compost, and these may be used alone or in combination. Examples of the shape of the plant organic material include a shape in which plant fibers are intertwined, a shape in which a bark and a wood part of a tree are shredded, and a chip shape in which the bark and the wood part of a tree are crushed.

人工培土中の植物性有機資材の含有量としては、通常5〜100体積%の範囲が好ましい。より好ましい含有量は20〜100体積%の範囲である。   As content of the vegetable organic material in artificial soil, the range of 5-100 volume% is preferable normally. A more preferable content is in the range of 20 to 100% by volume.

また本発明で使用する雲母に限定はなく従来公知のものが使用できる。雲母としては、例えば、白雲母や金雲母、黒雲母、絹雲母、ソーダ雲母、砥部雲母、鉄雲母、白水雲母、シデロフィライト、イーストナイト、ポリリシオ雲母、トリリシオ雲母、リチア雲母、チンワルド雲母、益富雲母などが挙げられ、これらの1種又は2種以上を組み合わせて使用すればよい。雲母の粒径としては小さい方が本発明の効果が奏されやすく、具体的には125μm以下が好ましい。より好ましい上限値は60μmである。   The mica used in the present invention is not limited, and conventionally known mica can be used. Examples of mica include muscovite, phlogopite, biotite, sericite, soda mica, Tobe mica, iron mica, muscovite, siderophyllite, eastnite, polyricio mica, triricio mica, lithia mica, chinwald mica, and profit wealth mica. These may be used, and one or more of these may be used in combination. The smaller the particle size of the mica, the more easily the effect of the present invention can be achieved, and specifically, 125 m or less is preferable. A more preferable upper limit is 60 μm.

植物性有機資材の表面の雲母による被覆率は1.0%以上とするのが好ましい。雲母による被覆率が1.0%未満であると、本発明の効果が十分には得られないおそれがあるからである。雲母による被覆率のより好ましい下限値は3%である。また、生産性や製造コスト等の観点から、雲母による被覆率の上限値は通常80%である。より具体的には、植物性有機資材がピートモスの場合、後述する実施例で示すように雲母の被覆率は7%以上が好ましい。   The coverage of the surface of the plant organic material with mica is preferably 1.0% or more. This is because if the coverage with mica is less than 1.0%, the effects of the present invention may not be sufficiently obtained. A more preferred lower limit of the coverage with mica is 3%. Further, from the viewpoint of productivity, manufacturing cost, etc., the upper limit value of the coverage with mica is usually 80%. More specifically, when the plant organic material is peat moss, the mica coverage is preferably 7% or more, as shown in the examples described later.

また、人工培土中の雲母の含有量は0.1〜30重量%の範囲が好ましい。人工培土中の雲母の含有量が0.1重量%未満であると、本発明の効果が十分には得られないおそれがある。一方、人工培土中の雲母の含有量が30重量%を超えると、製造工程において粉塵飛散が多くなり、作業環境及び生産性が低下すると共に製造コストが高くなるおそれがある。人工培土中の、より好ましい雲母の含有量は2〜10重量%の範囲である。   The mica content in the artificial soil is preferably in the range of 0.1 to 30% by weight. If the content of mica in the artificial soil is less than 0.1% by weight, the effects of the present invention may not be sufficiently obtained. On the other hand, when the content of mica in the artificial soil exceeds 30% by weight, dust scattering increases in the manufacturing process, and the working environment and productivity may be lowered and the manufacturing cost may be increased. The more preferable content of mica in the artificial soil is in the range of 2 to 10% by weight.

植物性有機資材の表面に雲母を付着させるには、例えば、植物性有機資材と雲母とを混合装置に投入し撹拌混合すればよい。このとき、植物性有機資材表面に雲母を効率的に付着させるには、植物性有機資材の表面を僅かに濡れた状態にするのがよく、含水量の少ない植物性有機資材を用いる場合には加水することが推奨される。加水量としては植物性有機資材の含水量が通常40%以上となるようにするのが好ましい。   In order to attach mica to the surface of the plant organic material, for example, the plant organic material and mica may be put into a mixing device and mixed with stirring. At this time, in order to efficiently attach mica to the surface of the plant organic material, the surface of the plant organic material should be slightly wet, and when using a plant organic material with a low water content It is recommended to hydrate. The amount of water added is preferably such that the water content of the plant organic material is usually 40% or more.

植物性有機資材に対する雲母の添加量は、雲母による被覆率が所望の範囲となるように雲母の種類や粒径などから適宜決定すればよいが、植物性有機資材100重量部に対して通常1〜20重量部の範囲が好ましい。なお、本発明の人工培土において、雲母は、植物性有機資材の表面に付着したもの以外に、遊離状態で存在していてもよい。   The amount of mica added to the plant organic material may be appropriately determined from the type and particle size of the mica so that the coverage with the mica is in a desired range, but is usually 1 per 100 parts by weight of the plant organic material. A range of ˜20 parts by weight is preferred. In the artificial soil of the present invention, mica may exist in a free state other than the one attached to the surface of the plant organic material.

また、植物性有機資材の撥水性を一層抑える観点から、界面活性剤を植物性有機資材にさらに添加してもよい。界面活性剤が粉末の場合は、植物性有機資材と共に界面活性剤を混合装置に投入し植物性有機資材の表面に付着させればよい。界面活性剤が水溶液の場合は、植物性有機資材の表面に当該水溶液を噴霧して植物性有機資材の表面に付着させればよい。界面活性剤としては、例えば、石けん、硫酸化油、ポリオキシエチレンアルキルエーテル硫酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルカンスルホン酸塩、α−オレフィンスルホン酸塩、N−アシルアミノ酸塩、ジアルキルスルホコハク酸塩、アルキルナフタレンスルホン酸塩などのアニオン界面活性剤;アルキルトリメチルアンモニウム塩、アルキルピリジニウム塩などのカチオン界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、多価アルコール脂肪酸エステルなどのノニオン界面活性剤;ベタイン、スルホベタインなどの両性界面活性剤など挙げることができる。   Further, from the viewpoint of further suppressing the water repellency of the plant organic material, a surfactant may be further added to the plant organic material. When the surfactant is powder, the surfactant may be added to the mixing device together with the plant organic material and adhered to the surface of the plant organic material. When the surfactant is an aqueous solution, the aqueous solution may be sprayed on the surface of the plant organic material to adhere to the surface of the plant organic material. Examples of the surfactant include soap, sulfated oil, polyoxyethylene alkyl ether sulfate, alkyl sulfate ester salt, alkylbenzene sulfonate, alkane sulfonate, α-olefin sulfonate, N-acyl amino acid salt, Anionic surfactants such as dialkylsulfosuccinates and alkylnaphthalenesulfonates; Cationic surfactants such as alkyltrimethylammonium salts and alkylpyridinium salts; polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene fatty acid esters And nonionic surfactants such as polyhydric alcohol fatty acid esters; amphoteric surfactants such as betaine and sulfobetaine.

また、植物性有機資材としてピートモスを用いる場合、ピートモスは、一般にpH3.5〜5.5程度の酸性を有するため、消石灰や生石灰、苦土石灰、炭酸カルシウム等をさらに投入・混合してpH調整するのが好ましい。   In addition, when peat moss is used as a plant organic material, peat moss generally has an acidity of about pH 3.5 to 5.5. Therefore, pH is adjusted by further adding and mixing slaked lime, quick lime, bitter lime, calcium carbonate, etc. It is preferable to do this.

混合装置としては従来公知の装置を用いることができ、例えば、パドルミキサーやコンクリートミキサー、平型混合機等が挙げられる。混合条件としては、装置の種類や処理量などから適宜決定すればよい。例えば、平型混合機(桶直径:63cm,桶深さ:35cm)の場合では回転数60回転/分で3分間程度である。   A conventionally known apparatus can be used as the mixing apparatus, and examples thereof include a paddle mixer, a concrete mixer, and a flat mixer. What is necessary is just to determine suitably as mixing conditions from the kind of apparatus, a processing amount, etc. For example, in the case of a flat type mixer (a cocoon diameter: 63 cm, a cocoon depth: 35 cm), it is about 3 minutes at a rotational speed of 60 revolutions / minute.

本発明の人工培土には、本発明の効果を阻害しない範囲において植物性有機資材以外に他の成分を含有させてもよい。当該他の成分としては、例えば、バーミキュライト、パーライト、ゼオライト、黒土、真砂土、鹿沼土、黒ボク土、籾殻くん炭、木炭などが挙げられる。さらには、肥料や農薬などを本発明の人工培土に含有させてもよい。   The artificial soil of the present invention may contain other components in addition to the plant organic material as long as the effects of the present invention are not impaired. Examples of the other components include vermiculite, pearlite, zeolite, black clay, true sand soil, Kanuma soil, Kuroboku soil, rice husk kun charcoal, and charcoal. Further, fertilizers and agricultural chemicals may be contained in the artificial soil of the present invention.

肥料としては、例えば、N、P、K、Ca、Mg、S、B、Fe、Mn、Cu、Zn、Mo、Cl、Si、Na等、特にN、P、K、Ca、Mgの供給源となる無機物及び有機物が挙げられる。そのような無機物としては、硝酸アンモニウム、硝酸カリウム、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、硝酸ソーダ、尿素、炭酸アンモニウム、リン酸カリウム、過リン酸石灰、熔成リン肥(3MgO・CaO・P2O5・3CaSiO2)、硫酸カリウム、塩カリ、硝酸石灰、消石灰、炭酸石灰、硫酸マグネシウム、水酸化マグネシウム、炭酸マグネシウム等が挙げられる。また、有機物としては、鶏フン、牛フン、アミノ酸、ペプトン、ミエキ、発酵エキス、有機酸(クエン酸、グルコン酸、コハク酸等)のカルシウム塩、脂肪酸(ギ酸、酢酸、プロピオン酸、カプリル酸、カプリン酸、カプロン酸等)のカルシウム塩等が挙げられる。   As fertilizers, for example, N, P, K, Ca, Mg, S, B, Fe, Mn, Cu, Zn, Mo, Cl, Si, Na, etc., especially N, P, K, Ca, Mg supply sources And inorganic substances and organic substances. As such inorganic substances, ammonium nitrate, potassium nitrate, ammonium sulfate, ammonium chloride, ammonium phosphate, sodium nitrate, urea, ammonium carbonate, potassium phosphate, superphosphate lime, molten phosphorus fertilizer (3MgO · CaO · P2O5 · 3CaSiO2) Potassium sulfate, potassium salt, lime nitrate, slaked lime, carbonated lime, magnesium sulfate, magnesium hydroxide, magnesium carbonate and the like. Organic substances include chicken dung, beef dung, amino acids, peptone, Mieki, fermented extract, calcium salts of organic acids (citric acid, gluconic acid, succinic acid, etc.), fatty acids (formic acid, acetic acid, propionic acid, caprylic acid, And calcium salts of capric acid, caproic acid and the like.

農薬としては、例えば「農薬ハンドブック2001年版」(第11版、平成13年11月1日、社団法人日本植物防疫協会発行)に記載されたものが挙げられる。その具体例を以下に示すが、これらに限定されるものではない。   Examples of the agrochemicals include those described in “Agricultural Chemicals Handbook 2001 Version” (11th edition, November 1, 2001, issued by the Japan Plant Protection Association). Although the specific example is shown below, it is not limited to these.

殺虫剤としては、例えば、CYAP剤、MPP剤、MEP剤、ECP剤、ピリミホスメチル剤等の有機リン系殺虫剤;NAC剤、MIPC剤、BPMC剤、PHC剤、XMC剤、エチオフェンカルブ剤等のカーバメート系殺虫剤;アレスリン剤、レスメトリン剤、ペルメトリン剤、シペルメトリン剤等のピレスロイド系殺虫剤;カルタップ剤、チオシクラム剤、ベンスルタップ剤等のネライストキシン系殺虫;ミダクロプリド剤、アセタミプリド剤、ニテンピラム剤、チアクロプリド剤、チアメトキサム剤等のネオニコチノイド系殺虫剤;ブプロフェジン剤、イソプロチオラン剤、ジフルベンズロン剤、テフルベンズロン剤等の昆虫成長制御剤;ベンゾエピン剤、フィプロニル剤、ピメトロジン剤、クロルフェナビル剤、ジアフェンチウロン剤等の合成殺虫剤;除虫菊剤、デリス剤、硫酸ニコチン剤、マシン油剤、なたね油剤等の天然殺虫剤;ケルセン剤、フェニソブロモレート剤、テトラジホン剤、BPPS剤等の殺ダニ剤;D−D剤、DCIP剤、メチルイソチオシアネート剤、ダゾメット剤等の殺線虫剤;臭化メチル剤、クロルピクリン剤、カーバム剤、カーバムナトリウム塩剤、青酸剤等のくん蒸剤;BT剤、スピノサド剤、ボーベリア・ブロンニアティ剤、バーティシリウム・レカニ剤等の生物由来の殺虫剤等が挙げられる。   As the insecticide, for example, organophosphorus insecticides such as CYAP agent, MPP agent, MEP agent, ECP agent, and pyrimiphosmethyl agent; carbamate agents such as NAC agent, MIPC agent, BPMC agent, PHC agent, XMC agent, etiophencarb agent Insecticides; Arethrin, Resmethrin, Permethrin, Cypermethrin, and other pyrethroid insecticides; Cartap, thiocyclam, Neristoxin, such as Bensultap, Midacloprid, Acetamiprid, Nitenpyram, Thiacloprid, Neonicotinoid insecticides such as thiamethoxam; insect growth regulators such as buprofezin, isoprothiolane, diflubenzuron, teflubenzuron; benzoepin, fipronil, pymetrozine, chlorfenavir, diafenthiuron Synthetic insecticides such as insecticides, natural insecticides such as pesticides, delices, nicotine sulfate, machine oil, rapeseed oil, etc .; acaricides such as kelsen, phenisobromolate, tetradiphone, BPPS; DD Agents, DCIP agents, methyl isothiocyanate agents, dazomet agents, etc .; fumigants such as methyl bromide agents, chloropicrin agents, carbam agents, carbam sodium salts, cyanide agents; BT agents, spinosad agents, boberia -Biological pesticides such as bronniati and verticillium / recani.

殺菌剤としては、例えば、無機銅剤、有機銅剤、ノニルフェノールスルホン酸銅剤、DBEDC剤等の銅殺菌剤;無機硫黄剤、硫酸亜鉛剤、炭酸水素塩剤、次亜塩素酸塩剤等の無機殺菌剤;ジネブ剤、マンネブ剤、マンゼブ剤、アンバム剤、ポリカーバメート剤等の有機硫黄殺菌剤;IBP剤、EDDP剤、トルクロホスメチル剤、ホセチル剤等の有機リン系殺菌剤;フサライド剤、トリシクラゾール剤、ピロキロン剤等のメラニン生合成阻害剤;チオファネートメチル剤、ベノミル剤、チアベンダゾール剤、ジエトフェンカルブ等のベンゾイミダゾール系殺菌剤;イプロジオン剤、プロシミドン剤等のジカルボキシイミド系殺菌剤;オキシカルボキシン剤、メプロニル剤、フルトラニル剤、フラメトピル剤等の酸アミド系殺菌剤;トリアジメホン剤、ビテルタノール剤、フェンブコナゾール剤、ミクロブタニル剤等のステロール生合成阻害剤;アゾキシストロビン、クレソキシムメチル剤、トリフロキシストロビン剤、メトミノストロビン剤等のメトキシアクリレート系殺菌剤;ピリメタニル剤、メバニピリム剤、シプロジニル剤等のアニリノピリミジン系殺菌剤;テクロフタラム剤、オキソリニック酸剤等の合成抗細菌剤;フルスルファミド剤、ヒドロキシイソキサゾール剤、エクロメゾール剤、タゾメット剤等の土壌殺菌剤;プロペナゾール剤、アシベンゾラルSメチル剤、イソプロチオラン剤、フェリムゾン剤等のその他の合成殺菌剤;プラストサイジンS剤、カスガマイシン剤、ポリオキシン剤、バリダマイシン、ストレプトマイシン剤等の抗生物質殺菌剤;マシン油剤、なたね油剤、大豆レシチン等の天然物殺菌剤;対抗菌剤、シイタケ菌糸体抽出物剤、アグロバクテリウム・ラジオバクター剤等の生物由来の殺菌剤等が挙げられる。   Examples of the bactericides include copper bactericides such as inorganic copper, organic copper, nonylphenol sulfonate, DBEDC, and the like; inorganic sulfur, zinc sulfate, bicarbonate, hypochlorite, etc. Inorganic bactericides; organic sulfur bactericides such as dineb, manneb, manzeb, ambam, and polycarbamate; organophosphorus bactericides such as IBP, EDDP, torquelophosmethyl, fosetyl, etc .; fusalides, tricyclazole Melanin biosynthesis inhibitors such as thiophanate methyl, benomyl, thiabendazole, and dietofencarb; dicarboximide fungicides such as iprodione and procimidone; oxycarboxylin and mepronil Acid amide fungicides such as antibacterial agents, flutolanil agents, and flametopyr agents; Sterol biosynthesis inhibitors such as Hong, Vitertanol, fenbuconazole, and microbutanyl; methoxy acrylate fungicides such as azoxystrobin, cresoxime methyl, trifloxystrobin, and methminostrobin; pyrimethanil, Anilinopyrimidine fungicides such as mevanipyrim and cyprodinil; Synthetic antibacterials such as teclophthalam and oxolinic acid; Soil fungicides such as flusulfamide, hydroxyisoxazole, echromesole, and tazomet; propenazole , Other synthetic fungicides such as acibenzoral S methyl, isoprothiolane, ferrimzone, etc .; antibiotics such as plastosidine S, kasugamycin, polyoxin, validamycin, streptomycin, etc .; machine oil Rapeseed agents, natural product fungicides such as soybean lecithin; versus antimicrobial agents, shiitake mycelium extract, fungicide, etc. from organisms such as Agrobacterium radiobacter agents.

除草剤としては、例えば、2,4−PA剤、MCPA剤、MCPB剤、MCPP剤、トリクロピル剤、クロメプロップ剤等のフェノキシ酸系除草剤;IPC剤、フェンメディファム剤、デスメディファム剤、ベンチオカーブ剤、オルソベンカーブ剤等のカーバメート系除草剤;DCPA剤、アラクロール剤、ブレチラクロール剤、メトラクロール剤等の酸アミド系除草剤;DCMU剤、リニュロン剤、シデュロン剤、ダイムロン剤等の尿素系除草剤;ベンスルフロンメチル剤、エトキシスルフロン剤、ピラゾスルフロンエチル剤等のスルホニル尿素系除草剤;ピリミノバックメチル剤、ビスピリバックナトリウム塩等のピリミジルオキシ安息香酸系除草剤;CAT剤、アトラジン剤、シメトリン剤、アメトリン剤等のトリアジン系除草剤;ターバシル剤、プロマシル剤、ブタフェナシル剤、レナシル剤等のダイアジン系除草剤;ピラゾレート剤、ピラゾキシフェン剤、ベンゾフェナップ剤等のダイアゾール系除草剤;パラコート剤、ジクワット剤等のビピリジリウム系除草剤;ピペロホス剤、アミプロホスメチル剤、ブタミホス剤等の有機リン系除草剤;グリホサート剤、ビアラホス剤、グルホシネート剤等のアミノ酸系除草剤;アイオキシニル剤、ビフェノックス剤、DBN剤等のその他の有機除草剤;塩素酸塩剤、シアン酸塩剤等の無機除草剤;ザントモナス・キャンペストリス剤等の生物由来の除草剤等が挙げられる。   As herbicides, for example, phenoxy acid herbicides such as 2,4-PA agent, MCPA agent, MCPB agent, MCPP agent, triclopyr agent, and clomeprop agent; IPC agent, phenmedifam agent, desmedifam agent, bencho curve And carbamate herbicides such as orthobencarb agent; acid amide herbicides such as DCPA agent, alachlor agent, bretiracrol agent, metolachlor agent; urea such as DCMU agent, linuron agent, ciduron agent, diimron agent Sulfonylurea-based herbicides such as bensulfuron methyl agent, ethoxysulfuron agent, pyrazosulfuron ethyl agent; pyrimidyloxybenzoic acid-based herbicides such as pyriminobac methyl agent and bispyribac sodium salt; CAT agent, Triazine herbicides such as atrazine, simethrin, and amethrin; Diazine-based herbicides such as basil, promacil, butaphenacyl, and lenacyl; diazole-based herbicides such as pyrazolate, pyrazoxifene, and benzophenap; bipyridylium herbicides such as paraquat and diquat; piperophos, Organophosphorus herbicides such as Amiprofos methyl and Butamifos; Amino acid herbicides such as Glyphosate, Bialaphos and Glufosinate; Other organic herbicides such as Ioxinyl, Bifenox and DBN; Chlorates And inorganic herbicides such as humectants and cyanate agents; biological herbicides such as Xanthomonas campestris.

植物成長調整剤としては、例えば、エテホン剤等のエチレン剤;インドール酪酸剤、エチクロゼート剤、クロキシホナック剤等のオーキシン剤;ベンジルアミノプリン剤、ホルクロルフェニュロン剤等のサイトカイニン剤;マレイン酸ヒドラジド剤等のオーキシン拮抗剤;イソプロチオラン剤、オキシン硫酸塩剤、過酸化カルシウム剤等のその他の植物成長調整剤;クロレラ抽出物剤、混合生薬抽出物剤、シイタケ菌糸体抽出物剤等の生物由来の植物成長調整剤等が挙げられる。   Examples of plant growth regulators include, for example, ethylene agents such as ethephone agents; auxin agents such as indole butyric acid agents, ethiclozate agents, and cloxyphonac agents; cytokinin agents such as benzylaminopurine agents and forchlorphenuron agents; maleic acid Auxin antagonists such as hydrazide agents; Other plant growth regulators such as isoprothiolane agents, oxine sulfate agents, calcium peroxide agents; biological origins such as chlorella extract, mixed herbal extract, shiitake mycelium extract Plant growth regulators and the like.

誘引剤としては、例えば、リトルア剤、ビートアーミルア剤、ダイアモルア剤等の昆虫性フェロモン誘引剤;ピネン油剤、メチルオイゲノール剤等のその他の誘引剤が挙げられる。   Examples of the attractant include insect pheromone attractants such as Little A agent, beet armor agent, and Diamo lua agent; and other attractants such as a pinene oil agent and a methyl eugenol agent.

忌避剤としては、例えば、ジラム剤、チウラム剤、石油アスファルト剤、イミノクタジン酢酸塩剤、ビスヒドロキシエチルドデシルアミン剤等が挙げられる。   Examples of the repellent include dilam, thiuram, petroleum asphalt, iminotadine acetate, bishydroxyethyldodecylamine and the like.

殺そ剤としては、モノフルオル酢酸塩剤、クマリン系剤、クロロファシノン剤、ダイファシン系剤、りん化亜鉛剤、タリウム剤等が挙げられる。   Examples of the rodenticide include monofluoroacetate, coumarin, chlorofacinone, difacin, zinc phosphide, thallium and the like.

本発明の人工培土は、例えば、前記の各種成分を混合した後、必要により、乾燥し所定形状に成形されたものであってもよい。成形方法としては圧縮成形など従来公知の方法を用いることができる。また成形形状としては、例えば、球状や円柱状、平板状など挙げられ、用途に応じて適宜決定すればよい。   The artificial soil of the present invention may be, for example, one obtained by mixing the above-described various components and then drying and molding into a predetermined shape as necessary. A conventionally known method such as compression molding can be used as the molding method. Examples of the molded shape include a spherical shape, a cylindrical shape, and a flat plate shape, and may be appropriately determined depending on the application.

あるいは本発明の人工培土は、前記の各種成分のほかにバインダーを加えて混合し造粒した粒状の培土であってもよい。造粒方法に特に限定はないが、例えば、前記の各種成分にバインダーと水分を加えて混合した後、回転ドラムや回転パンに投入し転動させて造粒すればよい。バインダーとしては、例えば、ポリビニルアルコール等のビニル系バインダー、アクリル樹脂系バインダー、ポリカルボン酸系バインダーなどが挙げられる。造粒後の粒の粒径としては、取り扱い性などの点から数mm程度が好ましい。   Alternatively, the artificial soil of the present invention may be a granular soil obtained by adding and mixing a binder in addition to the above-mentioned various components and granulating. The granulation method is not particularly limited. For example, after adding and mixing a binder and moisture to the various components described above, the mixture may be put into a rotating drum or a rotating pan and rolled to be granulated. Examples of the binder include vinyl binders such as polyvinyl alcohol, acrylic resin binders, polycarboxylic acid binders, and the like. The particle size of the granulated particles is preferably about several mm from the viewpoint of handleability.

以下、本発明を実施例によりさらに詳しく説明するが本発明はこれらの例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these examples at all.

実施例1
ピートモス 100重量部をパドルミキサーに投入し、ピートモスが解砕されたところに、金雲母(平均粒径:56μm) 20重量部と、水50重量部をさらに投入・撹拌して、ピートモスの表面に金雲母を付着させた。そして、他の資材としてパーライト25重量部、真砂土50重量部をさらに投入し、均一になるまで混合して人工培土とした。
作製した人工培土を、レーザ顕微鏡「VK−9500」(KEYENCE社製)を用いて撮影し、撮影画像から、ピートモス表面の、雲母による被覆率を算出した。また、作製した人工培土を70℃のオーブンで36時間乾燥させた後、円筒容器(直径:50mm,高さ:25.5mm)に50mL詰めて底面吸水させ、15分後の重量変化から吸水量を算出した。結果を表1に合わせて示す。なお、表中の値は、繰り返し3回測定した平均値である。
Example 1
100 parts by weight of peat moss was put into a paddle mixer, and when peat moss was crushed, 20 parts by weight of phlogopite (average particle size: 56 μm) and 50 parts by weight of water were further added and stirred to the surface of peat moss. Deposited phlogopite. Then, 25 parts by weight of pearlite and 50 parts by weight of pure sand were added as other materials and mixed until uniform to obtain artificial soil.
The produced artificial soil was photographed using a laser microscope “VK-9500” (manufactured by KEYENCE), and the coverage of the peat moss surface with mica was calculated from the photographed image. In addition, after drying the prepared artificial soil for 36 hours in an oven at 70 ° C., 50 mL was packed in a cylindrical container (diameter: 50 mm, height: 25.5 mm) and water was absorbed on the bottom surface. Was calculated. The results are shown in Table 1. In addition, the value in a table | surface is the average value measured repeatedly 3 times.

実施例2
ピートモス 100重量部をパドルミキサーに投入し、ピートモスが解砕されたところに、白雲母(平均粒径:73μm) 5重量部とバーミキュライト40重量部とを投入し、水50重量部をさらに投入・撹拌して、均一になるまで混合して人工培土とした。そして、実施例1と同様にして、ピートモス表面の、雲母による被覆率および吸水量を算出した。結果を表1に合わせて示す。
Example 2
100 parts by weight of peat moss was put into a paddle mixer, and when peat moss was crushed, 5 parts by weight of muscovite (average particle size: 73 μm) and 40 parts by weight of vermiculite were added, and 50 parts by weight of water was further added. Stir and mix until homogenous to make an artificial soil. Then, in the same manner as in Example 1, the coverage ratio and water absorption amount of mica on the peat moss surface were calculated. The results are shown in Table 1.

実施例3
ココナッツピート 100重量部をパドルミキサーに投入し、ココナッツピートが解砕されたところに、金雲母(平均粒径:125μm) 20重量部と、水200重量部をさらに投入・撹拌して、ココナッツピートの表面に金雲母を付着させた。次に、他の資材として木炭20重量部、バーミキュライト20重量部、パーライト20重量部をさらに投入し、均一になるまで混合して人工培土とした。そして、実施例1と同様にして、ココナッツピート表面の、雲母による被覆率および吸水量を算出した。結果を表1に合わせて示す。
Example 3
100 parts by weight of coconut peat is put into a paddle mixer, and 20 parts by weight of phlogopite (average particle size: 125 μm) and 200 parts by weight of water are further added and stirred when coconut peat is crushed. The phlogopite was attached to the surface of the glass. Next, 20 parts by weight of charcoal, 20 parts by weight of vermiculite, and 20 parts by weight of pearlite were further added as other materials and mixed until uniform to obtain artificial soil. Then, in the same manner as in Example 1, the coverage ratio and water absorption amount of mica on the coconut peat surface were calculated. The results are shown in Table 1.

実施例4
ココナッツピート 100重量部を平型混合機に投入し、ココナッツピートが解砕されたところに、金雲母(平均粒径:36μm) 10重量部と、水50重量部をさらに投入・撹拌して、ココナッツピートの表面に金雲母を付着させた。次に、他の資材としてゼオライト35重量部、パーライト10重量部をさらに投入し、均一になるまで混合して人工培土とした。そして、実施例1と同様にして、ココナッツピート表面の、雲母による被覆率および吸水量を算出した。結果を表1に合わせて示す。
Example 4
100 parts by weight of coconut peat was put into a flat mixer, and 10 parts by weight of phlogopite (average particle size: 36 μm) and 50 parts by weight of water were further added and stirred when the coconut peat was crushed. A phlogopite was attached to the surface of the coconut peat. Next, 35 parts by weight of zeolite and 10 parts by weight of pearlite were further added as other materials and mixed until uniform to obtain artificial soil. Then, in the same manner as in Example 1, the coverage ratio and water absorption amount of mica on the coconut peat surface were calculated. The results are shown in Table 1.

実施例5
バーク堆肥100重量部を平型混合機に投入し、バーク堆肥が解砕されたところに、白雲母(平均粒径:23μm) 1重量部を投入・撹拌して人工培土とした。そして、実施例1と同様にして、バーク堆肥表面の、雲母による被覆率および吸水量を算出した。結果を表1に合わせて示す。
Example 5
100 parts by weight of bark compost was put into a flat mixer, and 1 part by weight of muscovite (average particle size: 23 μm) was added and stirred when the bark compost was crushed to obtain artificial soil. Then, in the same manner as in Example 1, the coverage of the bark compost surface with the mica and the amount of water absorption were calculated. The results are shown in Table 1.

実施例6
バーク堆肥100重量部を平型混合機に投入し、バーク堆肥が解砕されたところに、白雲母(平均粒径:40μm) 3重量部を投入・撹拌して、バーク堆肥の表面に白雲母を付着させた。次に、他の資材として籾殻くん炭4重量部、バーミキュライト2重量部をさらに投入し、均一になるまで混合して人工培土とした。そして、実施例1と同様にして、バーク堆肥表面の、雲母による被覆率および吸水量を算出した。結果を表1に合わせて示す。
Example 6
100 parts by weight of bark compost was put into a flat mixer, and 3 parts by weight of muscovite (average particle size: 40 μm) was added and stirred when the bark compost was crushed, and muscovite was applied to the surface of bark compost. Was attached. Next, 4 parts by weight of rice husk kun charcoal and 2 parts by weight of vermiculite were further added as other materials and mixed until uniform to obtain artificial soil. Then, in the same manner as in Example 1, the coverage of the bark compost surface with the mica and the amount of water absorption were calculated. The results are shown in Table 1.

実施例7
チップ堆肥100重量部を平型混合機に投入し、チップ堆肥が解砕されたところに、白雲母(平均粒径:31μm) 2.5重量部を投入・撹拌して、チップ堆肥の表面に白雲母を付着させた。次に、他の資材として鹿沼土5重量部をさらに投入し、均一になるまで混合して人工培土とした。そして、実施例1と同様にして、チップ堆肥表面の、雲母による被覆率および吸水量を算出した。結果を表1に合わせて示す。
Example 7
100 parts by weight of chip compost is put into a flat mixer, and 2.5 parts by weight of muscovite (average particle size: 31 μm) is put into the place where chip compost is crushed and stirred to the surface of chip compost. A muscovite was attached. Next, 5 parts by weight of Kanuma soil was further added as another material and mixed until uniform to obtain artificial soil. Then, in the same manner as in Example 1, the coverage of the chip compost surface by the mica and the water absorption amount were calculated. The results are shown in Table 1.

実施例8
チップ堆肥100重量部を平型混合機に投入し、チップ堆肥が解砕されたところに、白雲母(平均粒径:25μm) 1重量部を投入・撹拌して、チップ堆肥の表面に白雲母を付着させた。次に、他の資材として黒ボク土40重量部をさらに投入し、均一になるまで混合して人工培土とした。そして、実施例1と同様にして、チップ堆肥表面の、雲母による被覆率および吸水量を算出した。結果を表1に合わせて示す。
Example 8
100 parts by weight of chip compost was put into a flat mixer, and 1 part by weight of muscovite (average particle size: 25 μm) was added and stirred when chip compost was crushed, and muscovite on the surface of chip compost Was attached. Next, 40 parts by weight of black clay was added as another material, and mixed until uniform to obtain artificial soil. Then, in the same manner as in Example 1, the coverage of the chip compost surface by the mica and the water absorption amount were calculated. The results are shown in Table 1.

比較例1〜8
雲母を用いなかった以外は実施例1〜8と同様にして人工培土をそれぞれ作製し、実施例と同様に吸水量を算出した。結果を表1に合わせて示す。
Comparative Examples 1-8
Artificial soils were produced in the same manner as in Examples 1 to 8 except that mica was not used, and the water absorption was calculated in the same manner as in the examples. The results are shown in Table 1.

表1から明らかなように、植物性有機資材の表面に雲母を付着させることによって吸水率が大きくなっている。即ち、植物性有機資材の表面に雲母を付着させることによって撥水性が抑えられている。   As is apparent from Table 1, the water absorption is increased by attaching mica to the surface of the plant organic material. That is, water repellency is suppressed by attaching mica to the surface of the plant organic material.

(雲母による被覆率の影響)
ピートモス 100重量部をパドルミキサーに投入し、ピートモスが解砕されたところに、白雲母(平均粒径:23μm)の所定重量部と、水50重量部をさらに投入・撹拌して、均一になるまで混合して人工培土とした。
作製した人工培土を、実施例1と同様にして、ピートモス表面の、雲母による被覆率を算出すると共に、作製した人工培土の吸水量を算出した。結果を表2に合わせて示す。なお、表中の値は、繰り返し3回測定した平均値である。
(Effect of coverage by mica)
100 parts by weight of peat moss is put into a paddle mixer, and when peat moss is crushed, a predetermined part by weight of muscovite (average particle size: 23 μm) and 50 parts by weight of water are further added and stirred to be uniform. To make artificial soil.
The produced artificial soil was calculated in the same manner as in Example 1 to calculate the coverage of the peat moss surface with mica and the water absorption of the produced artificial soil. The results are shown in Table 2. In addition, the value in a table | surface is the average value measured repeatedly 3 times.

表2から理解されるように、雲母によるピートモス表面の被覆率が大きくなるにしたがい、人工培土の吸水量は大きくなった。   As understood from Table 2, as the peat moss surface coverage with mica increased, the amount of water absorbed by the artificial soil increased.

(保存安定性試験)
ピートモス100重量部に対して、表3に示す2種類の雲母(平均粒径5μm、36μm)をそれぞれ所定量添加して、ピートモスの表面に雲母を付着させた。これらのピートモスを70℃のオーブンで24時間乾燥させた。そして、純水100mLを入れた150mLのディスポカップ(水面の面積:23.8cm)に、乾燥させた前記のピートモス5mLを均一な厚さとなるように静かに水面に浮かべ、ピートモスに水が完全に染み込むまでの時間を測定した。結果を表3に示す。なお、表中の測定値は、繰り返し3回測定した平均時間である。
(Storage stability test)
Predetermined amounts of two types of mica shown in Table 3 (average particle diameters 5 μm and 36 μm) were added to 100 parts by weight of peat moss, and mica was adhered to the surface of peat moss. These peat moss were dried in an oven at 70 ° C. for 24 hours. Then, in a 150 mL disposable cup (water surface area: 23.8 cm 2 ) containing 100 mL of pure water, 5 mL of the dried peat moss is gently floated on the water surface to a uniform thickness, and the peat moss is completely filled with water. The time until soaking was measured. The results are shown in Table 3. In addition, the measured value in a table | surface is the average time measured repeatedly 3 times.

比較実験として、雲母を添加する換わりに、界面活性剤(ポリオキシエチレンアルキルフェニルエーテルの5%溶液)0.1mLと純水0.9mLとをピートモス50mLに滴下・混合したものについて、上記と同様にして、ピートモスに水が完全に染み込むまでの時間を測定した。結果を表3に合わせて示す。   As a comparative experiment, instead of adding mica, 0.1 mL of a surfactant (5% solution of polyoxyethylene alkylphenyl ether) and 0.9 mL of pure water were added dropwise to 50 mL of peat moss and mixed as above. Then, the time until water completely penetrates into peat moss was measured. The results are shown in Table 3.

さらに、比較実験として、表面処理を施さないピートモスについて、上記と同様にして、ピートモスに水が完全に染み込むまでの時間を測定した。結果を表3に合わせて示す。   Further, as a comparative experiment, for the peat moss not subjected to the surface treatment, the time until water completely penetrates into the peat moss was measured in the same manner as described above. The results are shown in Table 3.

表3から理解されるように、表面処理を施さないピートモスについては、1800秒後も水は染み込まなかった。また、界面活性剤を表面に添加したピートモスでは、処理後日数が経つに従い水が染み込むまでの時間が長くなった。すなわち、界面活性剤による親水性効果が経時的に失活していった。
これに対して、表面に雲母を付着させたピートモスはいずれも、界面活性剤を表面に添加したピートモスの初期値よりも短い時間で水が染み込み、高い親水性がみられた。しかもその親水性の経時的変化は小さかった。加えて、雲母の添加によるピートモスの親水性は、雲母の粒径が小さいほど、そして添加量が多いほど高かった。
As understood from Table 3, the peat moss not subjected to the surface treatment did not soak water even after 1800 seconds. Moreover, in the peat moss which added surfactant to the surface, the time until water soaked became longer as the number of days after the treatment passed. That is, the hydrophilic effect by the surfactant was deactivated over time.
On the other hand, all of the peat moss with mica attached to the surface soaked water in a shorter time than the initial value of peat moss with the surfactant added to the surface, and high hydrophilicity was observed. Moreover, the change in hydrophilicity over time was small. In addition, the hydrophilicity of peat moss due to the addition of mica was higher as the mica particle size was smaller and the amount added was higher.

(表面処理剤の違いによる植物性有機資材の物性への影響評価)
ピートモス(含水率40%)1000mLと、表面処理剤としての雲母又は粘土資材(ゼオライト、ベントナイト、カオリン)又はシリカの50mLを2Lの袋に投入して混合した。次に、含水率が55%となるように水を加えさらに混合して、表面処理剤が表面に付着したピートモスを作製した。
作製したピートモスについて下記方法によって各種物性を測定した。測定結果を表4に示す。
(Evaluation of physical properties of plant organic materials due to differences in surface treatment agents)
1000 mL of peat moss (water content 40%) and 50 mL of mica or clay material (zeolite, bentonite, kaolin) or silica as a surface treatment agent were put into a 2 L bag and mixed. Next, water was added so as to have a moisture content of 55% and further mixed to prepare peat moss having a surface treatment agent attached to the surface.
Various physical properties of the produced peat moss were measured by the following methods. Table 4 shows the measurement results.

(親水性)
前記作製したピートモスを70℃のオーブンで24時間乾燥させた後、その5mLを、純水100mLを入れた150mLのディスポカップ(水面の面積:23.8cm)に、均一な厚さとなるように静かに水面に浮かべ、15分後に水が染み込んでいる割合を目視により測定した。
(Hydrophilic)
After the prepared peat moss was dried in an oven at 70 ° C. for 24 hours, 5 mL of the peat moss was placed in a 150 mL disposable cup (water surface area: 23.8 cm 2 ) containing 100 mL of pure water so as to have a uniform thickness. Gently floated on the surface of the water, and the ratio of water soaked after 15 minutes was measured visually.

(流動性)
目開きが4.75mmの篩い上に、前記作製したピートモスを載せた後、篩を60秒間振動させた。そして篩を通過した割合を算出し流動性の指標とした。なお、表中の測定値は、繰り返し3回測定した平均値である。
(Liquidity)
After placing the prepared peat moss on a sieve having an opening of 4.75 mm, the sieve was vibrated for 60 seconds. And the ratio which passed the sieve was calculated and it was set as the parameter | index of fluidity | liquidity. In addition, the measured value in a table | surface is an average value measured repeatedly 3 times.

(気相率)
100mLの円筒容器(直径50mm,高さ51mm)を2つ繋げた容器に、前記作製したピートモスを充填し、上面から灌水してピートモス全体に水を染み込ませた。そして、網目0.5mmの網の上に載置し4時間放置した。その後、土壌三相計「DIK−1130」(大起理化工業社製)を用いて、2つ繋げた容器の下側の円筒容器の気相率を測定した。なお、円筒容器を2つ繋げているのは、気相率の測定には100mL以上の体積が必要であるところ、ピートモスが水を含むと体積が減少するからである。また、表中の測定値は、繰り返し2回測定した平均値である。
(Gas phase rate)
The prepared peat moss was filled in a container in which two 100 mL cylindrical containers (diameter 50 mm, height 51 mm) were connected, and water was soaked into the whole peat moss by irrigating from the upper surface. Then, it was placed on a mesh having a mesh size of 0.5 mm and left for 4 hours. Thereafter, using a soil three-phase meter “DIK-1130” (manufactured by Daiki Rika Kogyo Co., Ltd.), the gas phase rate of the lower cylindrical container connected to the two containers was measured. Two cylindrical containers are connected because a volume of 100 mL or more is required for measuring the gas phase rate, but the volume decreases when peat moss contains water. Moreover, the measured value in a table | surface is the average value measured twice repeatedly.

表4から理解されるように、表面処理剤を添加したピートモスの親水性は、表面処理剤の種類によらずいずれも70%以上と高い値を示した。これに対し、表面処理剤を添加しなかったピートモスでは10%と低い値を示した。一方、ピートモスの流動性は、雲母及びシリカを表面添加したものでは44%以上であったのに対し、粘土質材を表面添加したものでは35%以下と低く粘性が高かった。また、ピートモスの気相率は、粘土質材及びシリカを表面添加したものでは3〜5%と低く、表面処理剤を添加しなかったピートモスでは12%と高かったのに対し、雲母を表面添加したピートモスでは8%、9%であった。気相率が低いと、保水性は高いが通気性は低い。反対に、気相率が高いと、保水性は低いが通気性は高い。したがって、雲母を表面添加したピートモスは、保水性と通気性とのバランスがとれていたのに対し、粘土質材とシリカを表面添加したピートモスは、保水性は高いものの通気性が低く、表面処理剤を添加しなかったピートモスでは通気性は高いものの保水性が低いものであった。   As understood from Table 4, the hydrophilicity of peat moss to which the surface treatment agent was added showed a high value of 70% or more regardless of the type of the surface treatment agent. In contrast, peat moss to which no surface treatment agent was added showed a low value of 10%. On the other hand, the fluidity of peat moss was 44% or more when mica and silica were added to the surface, whereas it was as low as 35% or less when clay was added to the surface and the viscosity was high. In addition, the vapor phase rate of peat moss was as low as 3 to 5% in the case of adding clayey material and silica, and as high as 12% in the case of peat moss without the addition of a surface treatment agent. The peat moss was 8% and 9%. When the gas phase ratio is low, the water retention is high but the air permeability is low. On the other hand, when the gas phase rate is high, the water retention is low but the air permeability is high. Therefore, the peat moss with mica added to the surface had a good balance between water retention and air permeability, whereas the peat moss with clay material and silica added to the surface had high water retention but low air permeability. The peat moss to which no agent was added had high air permeability but low water retention.

本発明の人工培土は、一旦乾燥しても撥水性が発現することなく、しかも粘性が低く維持され、適度な保水性と通気性とを備え、長期保存が可能で有用である。   The artificial soil of the present invention is useful because it does not exhibit water repellency even once dried, is kept low in viscosity, has appropriate water retention and air permeability, and can be stored for a long time.

Claims (5)

雲母が表面に付着した植物性有機資材を有することを特徴とする人工培土。   Artificial soil characterized in that mica has plant organic material attached to the surface. 前記植物性有機資材の表面の前記雲母による被覆率が1.0%以上である請求項1記載の人工培土。   The artificial soil according to claim 1, wherein a coverage of the surface of the plant organic material by the mica is 1.0% or more. 人工培土中の前記雲母の含有量が0.1〜30重量%の範囲である請求項1又は2記載の人工培土。   The artificial soil according to claim 1 or 2, wherein the content of the mica in the artificial soil is in the range of 0.1 to 30% by weight. 前記雲母の粒径が125μm以下である請求項1〜3のいずれかの請求項に記載の人工培土。   The artificial soil according to any one of claims 1 to 3, wherein the mica has a particle size of 125 µm or less. 前記植物性有機資材が、ピートモス、ココナッツピート、バーク堆肥、チップ堆肥から選択される1種又は2種類以上を含むものである請求項1〜4のいずれかの請求項に記載の人工培土。   The artificial soil according to any one of claims 1 to 4, wherein the plant organic material includes one or more selected from peat moss, coconut peat, bark compost, and chip compost.
JP2007227668A 2007-09-03 2007-09-03 Artificial soil Active JP4971081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227668A JP4971081B2 (en) 2007-09-03 2007-09-03 Artificial soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227668A JP4971081B2 (en) 2007-09-03 2007-09-03 Artificial soil

Publications (2)

Publication Number Publication Date
JP2009055875A true JP2009055875A (en) 2009-03-19
JP4971081B2 JP4971081B2 (en) 2012-07-11

Family

ID=40552208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227668A Active JP4971081B2 (en) 2007-09-03 2007-09-03 Artificial soil

Country Status (1)

Country Link
JP (1) JP4971081B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231234A (en) * 2010-04-28 2011-11-17 Kureatera:Kk Modifier for diggings
JP2012024006A (en) * 2010-07-22 2012-02-09 Iwate Prefecture Method for producing bark fiber culture soil, and bark fiber culture soil
KR101232290B1 (en) * 2012-11-29 2013-02-12 권오준 Culture soil composition and constructing methods using thereof
JP2020507334A (en) * 2017-02-17 2020-03-12 ヴェリターブル Element for growing at least one plant and method for making the element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5369133A (en) * 1976-11-25 1978-06-20 Topy Ind Cultivating soil for growing nursery plant
JPH0525A (en) * 1990-09-13 1993-01-08 Tatsuno Koruku Kogyo Kk Artificial grain aggregate and production thereof
JP2000139207A (en) * 1998-09-10 2000-05-23 Chisso Corp Granular medium and mixed medium using the same
JP2003199445A (en) * 2002-01-11 2003-07-15 Nippon Paper Industries Co Ltd Biodegradable medium for hydroponic use and method for producing the same
JP2005027615A (en) * 2003-07-11 2005-02-03 Masuoka Yogyo Genryo Kk Artificial soil for roof greening
JP2006028006A (en) * 2004-06-18 2006-02-02 Fumitaka Fujiwara Fired gravel material made of kimachi stone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5369133A (en) * 1976-11-25 1978-06-20 Topy Ind Cultivating soil for growing nursery plant
JPH0525A (en) * 1990-09-13 1993-01-08 Tatsuno Koruku Kogyo Kk Artificial grain aggregate and production thereof
JP2000139207A (en) * 1998-09-10 2000-05-23 Chisso Corp Granular medium and mixed medium using the same
JP2003199445A (en) * 2002-01-11 2003-07-15 Nippon Paper Industries Co Ltd Biodegradable medium for hydroponic use and method for producing the same
JP2005027615A (en) * 2003-07-11 2005-02-03 Masuoka Yogyo Genryo Kk Artificial soil for roof greening
JP2006028006A (en) * 2004-06-18 2006-02-02 Fumitaka Fujiwara Fired gravel material made of kimachi stone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231234A (en) * 2010-04-28 2011-11-17 Kureatera:Kk Modifier for diggings
JP2012024006A (en) * 2010-07-22 2012-02-09 Iwate Prefecture Method for producing bark fiber culture soil, and bark fiber culture soil
KR101232290B1 (en) * 2012-11-29 2013-02-12 권오준 Culture soil composition and constructing methods using thereof
JP2020507334A (en) * 2017-02-17 2020-03-12 ヴェリターブル Element for growing at least one plant and method for making the element

Also Published As

Publication number Publication date
JP4971081B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
US8609145B2 (en) Dispersible struvite particles
US9115307B2 (en) Soil adherent pellet and active agent delivery with same
KR20140005850A (en) Solid herbicide compositions with built-in adjuvant
US8491692B2 (en) Dispersable potash granule
WO2016042379A1 (en) Compositions for the delivery of agrochemicals to the roots of a plant
JP2010268802A (en) Mixture of carrier and additives for use in germinating units containing seeds or similar growth-suited parts of plants as well as method of producing the mixture
US9353019B2 (en) Coated seeds
WO2012102703A1 (en) Dispersible adhesive granules
WO2013154053A1 (en) Plant cultivation material and plant cultivation method using same
JP2014524481A (en) Agrochemical composition having enhanced active ingredient retention in pest control area
EA019580B1 (en) Method of controlling weeds in crops of useful plants
JP4971081B2 (en) Artificial soil
JP2001048705A (en) Briquette of insecticide and fertilizer each subject to controlled release
JP4860056B2 (en) Sustained release pesticide granule and its application method
JP2001247866A (en) Material for imparting plant growth environment, its preparation process, soil composition containing the material and soil conditioning process using the material
JP2003095821A (en) Plant vitality-increasing agent
JP4606650B2 (en) Sustained release pesticide granule and its application method
JP2004166627A (en) Weed growth-suppressing and mulching composition
JP2018117547A (en) Coated seed, production method of coated seed, and dissemination method of coated seed
US8969250B2 (en) Dispersible adhesive granules
JP2011144112A (en) Agrochemical granule for paddy field
JPS5831919A (en) Soil and method for growing pot seedling
JP2005052012A (en) Artificial culture soil
JP2018117550A (en) Coated seed, production method of coated seed, and dissemination method of coated seed
US20230147249A1 (en) Methods of applying a fumigant to reduce fusarium contamination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4971081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250