JP2009055871A - Method of spraying hydroponics - Google Patents

Method of spraying hydroponics Download PDF

Info

Publication number
JP2009055871A
JP2009055871A JP2007227491A JP2007227491A JP2009055871A JP 2009055871 A JP2009055871 A JP 2009055871A JP 2007227491 A JP2007227491 A JP 2007227491A JP 2007227491 A JP2007227491 A JP 2007227491A JP 2009055871 A JP2009055871 A JP 2009055871A
Authority
JP
Japan
Prior art keywords
cultivation
roots
house
hydroponics
dry mist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007227491A
Other languages
Japanese (ja)
Inventor
Mikio Ichiyama
幹雄 市山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007227491A priority Critical patent/JP2009055871A/en
Publication of JP2009055871A publication Critical patent/JP2009055871A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02P60/216

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoch-making method of spraying hydroponics which has solved the problematic points of method of spraying hydroponics by using culturing soil as a supporting material, and has been developed further. <P>SOLUTION: This method of spraying hydroponics is provided by installing a cultivation floor installed with a cultivation medium containers having bottom surfaces from which the roots of plants downwardly freely elongate, on a rack in a green house, dividing the space in the house up and down to separate it as an upper layer and a lower layer, installing an air-circulation device to be able to perform three-dimensional ventilation, laying the cultivation medium having been subjected to sterilization treatment including the cultivation soil in the cultivation medium container, covering the opened up surface of the lower space of the rack with a light-shading material to make it a dry mist chamber and spraying liquid fertilizer in a dry mist state to the roots of the plants in the dry mist chamber. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、植物の根に直接ミスト状の液肥(養液)を供給する噴霧水耕栽培法の改良に関し、特に農薬や化学肥料を用いない噴霧水耕栽培法に関する。   The present invention relates to an improvement of spray hydroponics that supplies mist-like liquid fertilizer (nutrient) directly to plant roots, and more particularly, to a spray hydroponics that does not use agricultural chemicals or chemical fertilizers.

現在の農業は、長年に亘る農薬や化学肥料の使用により土壌の活力が失われたため植物の生命力が低下し、益々多くの農薬や化学肥料を必要とするという悪循環に陥っている。昭和20年代と最近との作物の栄養価を比較したところ、産地により差はあるが、総じて1/2〜1/10程度に低下しているという驚くべきデータも報告されている。更に農薬は、環境汚染、農業従事者への直接的薬害、残留農薬を含む作物を食べたことによる免疫力低下などを引き起すため、癌やアレルギー疾患などの原因の一つとなっている可能性も否定できない。従って、一日も早い無農薬、脱化学肥料農業の普及が望まれる。
土壌の劣化に対応可能な植物栽培方法として水耕栽培が知られている(例えば特許文献1〜2など)。水耕栽培は養液栽培とも言い、土壌を使わずに作物を栽培するので「無土壌栽培法」とも呼ばれており、21世紀の植物栽培法の一つとして土耕栽培とは違った分野で脚光を浴びている。今日、作物生産においては従事する人口の減少や高齢化が問題となっており、施設園芸においては塩類集積障害による土壌劣化が深刻なため、その対策として水耕栽培が研究されている。また、企業的な植物増産分野、特にバイオテクノロジーの面でも水耕栽培が注目されている。更に、作物の品質(栄養価の高いものを望む)についても、水耕栽培では高品質、高栄養的栽培を容易に実施できることが判り、益々重要視されつつある。見方によっては水耕栽培は既に普及段階に入っているとも言える。
現在、知られている水耕栽培の種類を示すと図10のようになる。
The current agriculture is in a vicious cycle where the vitality of the soil has been lost due to the use of pesticides and chemical fertilizers for many years, and so the vitality of plants has declined, and more and more pesticides and chemical fertilizers are required. As a result of comparing the nutritional value of crops between the 1950s and the recent period, surprising data have been reported that, although there is a difference depending on the production area, it is generally reduced to about 1/2 to 1/10. In addition, pesticides can cause environmental pollution, direct phytotoxicity to farmers, and decreased immunity caused by eating crops containing residual pesticides, which may be one of the causes of cancer and allergic diseases. Cannot be denied. Therefore, the spread of agricultural chemical-free and dechemical fertilizer agriculture as soon as possible is desired.
Hydroponics is known as a plant cultivation method that can cope with soil degradation (for example, Patent Documents 1 and 2). Hydroponics is also called hydroponics, and it is also called “soilless cultivation” because it cultivates crops without using soil. It is a field different from soil cultivation as one of the plant cultivation methods of the 21st century. In the spotlight. Today, in crop production, the decrease in the population engaged in and the aging of the population are a problem. In the field horticulture, soil degradation due to salt accumulation failure is serious, and hydroponics has been studied as a countermeasure. Hydroponics is also attracting attention in the area of corporate plant production, especially biotechnology. Furthermore, regarding the quality of crops (desiring high nutritional value), it has been found that hydroponic cultivation can easily carry out high-quality and high-nutrient cultivation, and is becoming increasingly important. It can be said that hydroponics has already entered the diffusion stage, depending on how it is viewed.
FIG. 10 shows currently known types of hydroponics.

水耕栽培では土壌の代りに様々な担持体を利用し植物を支持している。それぞれに一長一短があり作物の特性に合わせて選択する必要がある。また、水耕栽培には常に根の呼吸障害が伴うため、様々な工夫がなされているが、根が溶液中に在る限り完全には解決できない。そこで、近年、噴霧水耕栽培法という方式が注目され研究が進められている。噴霧水耕栽培法は、液肥(養液)を噴霧ポンプでミスト状にして根に吹き付ける方式であり、根が溶液中に浸らず空中に支えられているので呼吸障害を回避することができる。
しかし、従来の噴霧水耕栽培法では栽培培地に土壌を用いておらず問題があったため、本発明者は先に土壌を用いた噴霧水耕栽培法に関する発明を出願し(特許文献3参照)、更にその改良発明を出願した(特許文献4参照、以下、先願発明という)。そして全国の圃場で栽培を行ってきた。しかし、その後の検討により、先願発明には更に改善すべき点があることが分った。
Hydroponics supports plants using various supports instead of soil. Each has advantages and disadvantages, and must be selected according to the characteristics of the crop. In addition, hydroponic cultivation always involves root respiratory disturbance, and thus various ideas have been made. However, as long as the root is in solution, it cannot be completely solved. Therefore, in recent years, a method called spray hydroponics has attracted attention and research has been conducted. The spray hydroponic cultivation method is a method in which liquid fertilizer (nutrient solution) is misted with a spray pump and sprayed onto the roots, and the roots are supported in the air without being immersed in the solution, so that respiratory problems can be avoided.
However, the conventional spray hydroponic cultivation method has a problem because the soil is not used for the culture medium, and the present inventor has first applied for an invention relating to the spray hydroponic cultivation method using soil (see Patent Document 3). Furthermore, an application for an improved invention was filed (see Patent Document 4, hereinafter referred to as a prior invention). And it has been cultivated in the fields throughout the country. However, it has been found by subsequent examinations that the invention of the prior application has further improvements.

特開平11−46577号公報JP 11-46577 A 特開平9−275831号公報JP-A-9-275831 特開2003−274774号公報JP 2003-274774 A 特開2006−67999号公報JP 2006-67999 A

本発明は、培養土を支持材とする噴霧水耕栽培法の問題点を解決し更に発展させた画期的な噴霧水耕栽培法の提供を目的とする。   An object of the present invention is to provide an innovative spray hydroponic cultivation method that solves and further develops the problems of the spray hydroponic cultivation method using culture soil as a support material.

上記課題は、次の1)〜2)の発明によって解決される。
1) ハウス内に、植物の根が下方に向かって自由に伸張可能な底面を有する栽培培地容器を架台上に設置した栽培床を設置し、ハウス内の空間を上下に仕切って上層と下層に分離すると共に、空気循環用装置を設けて立体換気を行えるようにし、栽培培地容器に培養土を含有する無菌化処理を施した栽培培地を敷き詰め、架台の下方の空間の開放面を遮光可能な素材で覆ってドライミスト室とし、該ドライミスト室中の植物の根に、液肥をドライミスト状にして散布することを特徴とする噴霧水耕栽培法。
2) 網目状底部を有する栽培培地容器の底に親水処理した不織布を敷き、その上に栽培培地を敷き詰めることを特徴とする1)記載の噴霧水耕栽培法。
The above problems are solved by the following inventions 1) to 2).
1) In the house, a cultivation floor with a cultivation medium container with a bottom that allows the roots of the plants to freely extend downwards is installed on a gantry, and the space inside the house is divided into upper and lower layers. In addition to separation, an air circulation device is provided to enable three-dimensional ventilation, and the cultivation medium container is laid with a sterilized cultivation medium containing culture soil, and the open surface of the space below the gantry can be shielded from light A spray hydroponic cultivation method, characterized in that it is covered with a material to form a dry mist chamber, and liquid fertilizer is sprayed in the form of dry mist on the roots of plants in the dry mist chamber.
2) The spray hydroponics method according to 1), wherein a non-woven fabric that has been subjected to a hydrophilic treatment is laid on the bottom of a cultivation medium container having a mesh-like bottom, and the cultivation medium is spread on the nonwoven fabric.

以下、上記本発明について詳しく説明する。
前述した先願発明では、種々の改善を行ったが、その後の検討により更に改善すべき点があることが分かり、これらの解決を図ったのが本発明である。
図1に、先願発明の噴霧水耕栽培法での養液供給システムのイメージ図を示す。
設備管理上、噴霧水耕栽培法で散布するミストの液滴を50μmよりも小さくすることは容易でなく、先願発明では止むを得ずこの限界値のレベルで努力したが、散布した養液ミストで根の表面が濡れるため根の性状は水中根となってしまう。
また、気温の高い時期には養液が蒸発して根の表面に肥料塩が析出し、塩障害により根の活性が低下し草勢を衰えさせる。塩が逆浸透圧を生じさせ根が枯死する場合もある。
更に、根が濡れると余剰ミストが液化しドレーンを通して養液回収ピットに戻る。回収した養液はリサイクルするため高精密フィルターを通し養液貯槽に戻すが、散布時の各肥料塩濃度と比べて、養液貯槽では各肥料塩の濃度バランスが狂うため、定期的に養液の分析を行い単肥補正を行わなければならず、養液管理に大きなコストが掛かることとなる。
Hereinafter, the present invention will be described in detail.
In the above-mentioned prior application, various improvements have been made. However, it has been found that there are points that should be further improved by subsequent studies, and the present invention has solved these problems.
In FIG. 1, the image figure of the nutrient solution supply system in the spray hydroponics method of invention of a prior application is shown.
For facility management, it is not easy to make the mist droplets sprayed by spray hydroponic cultivation smaller than 50 μm, and in the invention of the prior application, we inevitably made efforts at this limit level. Since the root surface gets wet with mist, the nature of the root becomes an underwater root.
Also, when the temperature is high, the nutrient solution evaporates and fertilizer salt is deposited on the surface of the roots, and salt damage reduces the activity of the roots and weakens the vigor. In some cases, salt causes reverse osmosis and the roots die.
Furthermore, when the roots get wet, excess mist liquefies and returns to the nutrient solution recovery pit through the drain. The collected nutrient solution is returned to the nutrient solution storage tank through a high-precision filter for recycling. However, the concentration balance of each fertilizer salt is incorrect in the nutrient solution storage tank compared to the concentration of each fertilizer salt at the time of spraying. Therefore, it is necessary to perform simple fertilizer correction, and it will take a large cost for nutrient solution management.

そこで上記の問題を解決する新栽培法を開発した。図2に、本発明のドライミストを利用した養液供給システムのイメージ図を示す。主な改善点は次の(1)〜(3)である。
(1)養液を、根を濡らさない極微細なドライミスト状にして散布する。
ドライミストとは乾いた霧のことで、その中に手を入れても濡れることは無く、液滴の質量が極端に小さいため長時間空気中に存在し、少しずつ湿気に変化する。即ち、養液を10μm以下の液滴とすることにより養液は湿気となり、湿気中根を発根させて湿気に含まれる肥料塩と水分を吸収させる。ドライミストは養液を霧吹きと同様の原理で霧化できる2流体ノズル(フォグノズル)を用いれば得られる。その具体例としては、スプレーイングジャパン社のクイックフォガーなどが挙げられる。
雨や霧の粒子径の目安は図3に示す通りである。図中の※は、0.1μm以下になるとブラウン運動により空中に浮遊するようになることを示す。またMVDとは、スプレー液の体積(質量)で粒子径を表示する方法であり、スプレーされた全体積の50%が平均値よりも大きな粒子からなり、残りの50%が平均値よりも小さな粒子からなる値を指す。
Therefore, a new cultivation method that solves the above problems was developed. In FIG. 2, the image figure of the nutrient solution supply system using the dry mist of this invention is shown. The main improvements are the following (1) to (3).
(1) The nutrient solution is sprayed in the form of an extremely fine dry mist that does not wet the roots.
Dry mist is a dry mist that will not get wet even if you put your hand in it, and will remain in the air for a long time because the mass of the droplet is extremely small, and will gradually change to moisture. That is, by making the nutrient solution into droplets of 10 μm or less, the nutrient solution becomes moisture, and roots in the moisture are rooted to absorb the fertilizer salt and moisture contained in the moisture. The dry mist can be obtained by using a two-fluid nozzle (fog nozzle) that can atomize the nutrient solution on the same principle as spraying. Specific examples thereof include a spray fogger manufactured by Spraying Japan.
The rough particle size of rain and fog is as shown in FIG. * In the figure indicates that it becomes floating in the air by Brownian motion when it becomes 0.1 μm or less. MVD is a method of displaying the particle diameter by the volume (mass) of the spray liquid, and 50% of the total sprayed volume consists of particles larger than the average value, and the remaining 50% is smaller than the average value. Refers to the value consisting of particles.

ここで湿気中根について説明すると、先願発明では水中根の状態で栽培するのに対し、本発明では湿気中根の状態で栽培する点で大きく相違する。水中根とは水に濡れた状態の根のことであり、湿気中根とは、前述したドライミスト中にある根のように、湿気中ではあるが乾いた状態の根のことである。
湿気中根を利用した栽培法としては、毛管水耕栽培法(長野農試法)やパッシブ耕が公知である。しかし、何れも噴霧水耕栽培法ではなく、本発明の参考にはならない。
本発明ではドライミストを散布して湿気中根の状態にする。湿気中と水中では、水分、温度、酸素など多くの物理・化学的条件において差異があるが、それらが根の機能や形態に及ぼす影響は明らかではない。そこで、養液中に浸漬して発達した根である「水中根」と、湿ったシート上に発達して空気中に露出している根である「湿気中根」を比較した。結果を図4に示す。図の横軸は根端からの距離(cm)、縦軸は一次側根軸上の根毛発生数(250μmの範囲に生えている毛根数)である。
湿気中根を持つ植物体と水中根を持つ植物体を比べると、地上部の成長については特に差がないが、根の成長については、根毛発生数からも分るように、湿気中根の方が水中根よりも旺盛であり、湿気中根を持つ植物体は「地上部重/地下部重」が小さい。
また、側根のフラクタル次元(構造の見た目の複雑さを表す尺度)は、湿気中根の方が水中根よりも大きく、湿気中根では分枝根が発達している。
しかし湿気中根の単位根重当りの養液吸収能は水中根よりも小さいから、湿気中根では根量が多いことによって養液吸収能が補償されていると考えられる。
Here, the roots in moisture will be explained. In the invention of the prior application, the roots are cultivated in the state of underwater roots. An underwater root is a root in a wet state, and a wet root is a root in a moisture but dry state like the root in the dry mist described above.
As a cultivation method using a root in moisture, a capillary hydroponics method (Nagano agricultural test method) and passive cultivation are known. However, none of them is a spray hydroponics method and is not a reference for the present invention.
In the present invention, dry mist is sprayed to form a root in moisture. Although there are differences in many physical and chemical conditions such as moisture, temperature, oxygen, etc. in moisture and water, their effects on root function and morphology are not clear. Therefore, we compared “underwater roots”, which are roots that have been developed by dipping in a nutrient solution, and “humidity roots”, which are roots that have been developed on a wet sheet and exposed to the air. The results are shown in FIG. In the figure, the horizontal axis represents the distance (cm) from the root tip, and the vertical axis represents the number of root hairs generated on the primary root axis (the number of hair roots growing in the range of 250 μm).
There is no particular difference in the growth of the above-ground part when comparing the plants with the roots in the water and the plants with the roots in the water, but as for the root growth, the roots in the moisture are more so as to be understood from the number of root hairs generated. Plants that are more vigorous than underwater roots and have a moisture-borne root have a lower “overground weight / underground weight”.
In addition, the fractal dimension of the side roots (a measure representing the visual complexity of the structure) is higher for the roots in the moisture than in the roots in the water, and branch roots are developed in the roots in the humidity.
However, since the nutrient solution absorbability per unit weight of the roots in the moisture is smaller than the roots in the water, it is considered that the nutrient solution absorbability is compensated by the large amount of roots in the roots in the moisture.

(2)養液は回収しない。
先願発明では散布した養液ミストの一部が液滴となるため、過剰の養液を回収するシステムが必要であるが、本発明では、養液をドライミスト状にして散布するため液滴が生じることはなく、養液回収システムは不要である。その結果、回収した養液をリサイクルするための養液管理も不要となり、大幅なコストダウンを図ることができる。
広さ20aのハウス内に、図1(先願発明)及び図2(本発明)の栽培設備を設置したときの設備費用の比較データを図5に示す。先願発明では液滴50μmのミストを用い、本発明では8μmのドライミストを用いた。図5から、本発明の方が、養液混合システムと養液循環システム費用の削減により、約22%のコストダウンとなることが分かる。
ドライミスト状の養液を根に散布するための2流体ノズルは、通常、10m間隔程度に配置する。ノズルとノズルの中間点に湿度センサーを設け、湿度が90%になったら散布を中止し、70%まで下がったら散布を行うという制御を行い、高湿度環境を維持する。
(2) Do not collect nutrient solution.
In the prior invention, since a part of the sprayed nutrient solution mist becomes droplets, a system for recovering excess nutrient solution is necessary. In the present invention, the droplets are used to spray the nutrient solution in the form of dry mist. No nutrient solution recovery system is required. As a result, nutrient solution management for recycling the collected nutrient solution becomes unnecessary, and a significant cost reduction can be achieved.
FIG. 5 shows comparison data of facility costs when the cultivation facilities of FIG. 1 (the invention of the prior application) and FIG. 2 (the present invention) are installed in a house having a size of 20a. In the invention of the prior application, a mist with a droplet of 50 μm was used, and in the present invention, a dry mist of 8 μm was used. From FIG. 5, it can be seen that the cost of the present invention is reduced by about 22% due to the reduction of the nutrient solution mixing system and nutrient solution circulation system costs.
The two-fluid nozzle for spraying the dry mist-like nutrient solution on the roots is usually arranged at intervals of about 10 m. A humidity sensor is provided at an intermediate point between the nozzles, and spraying is stopped when the humidity reaches 90%, and spraying is performed when the humidity drops to 70% to maintain a high humidity environment.

(3)作物の病気にはウイルス病とカビ病があるが、ウイルス病の媒介者はタネと害虫である。タネはウイルスフリーの信頼できる種苗メーカーから入手することで対応できる。また、害虫は、進入路を絶つために精度の高い防虫ネット(目開き0.4mm)を用いると共に、ハウスの出入口に付室を設けて外部よりも付室の圧力を高くし、外部と付室との境目の扉が閉まらなければ、付室とハウス内部の境目の扉が開かない構造とする(二重扉とする)ことにより対応できる。これらは先願発明でも実施していたことである。
一方、カビ病は一般に室内の湿度が90%程度を超えると発症する。葉面温度が気温より低いと葉面に結露が生じ、カビが繁殖しやすくなる。しかし、葉面に気流があれば結露は生じないので、気流扇を作動させてハウス内に気流を生じさせているが、葉が繁茂してくると気流扇では葉面に気流を与えることが出来ない。
そこで、本発明では、ハウス内の空間を上下に仕切って上層と下層に分離すると共に、例えばハウスの一方の端部付近に大型換気扇などの空気循環用装置を設けて上層の空気を下層に送り込み、ハウスの他方の端部付近では上下の仕切りに隙間を設けて下層の空気が上層に流れるようにする。これにより、ハウス内で立体換気が可能となり、繁茂した葉面にも気流を与えることができるので、カビ病の発生を防止できる。
(3) Although there are viral diseases and mold diseases in crop diseases, seeds and pests are the vectors of viral diseases. Seeds can be obtained by obtaining virus-free reliable seedling manufacturers. In addition, pests use a high-precision insect-proof net (mesh size 0.4 mm) to cut off the approach path, and provide a room at the entrance of the house to make the pressure in the room higher than the outside. If the door between the room and the room is not closed, the door between the room and the house can be opened (double door). These were also implemented in the prior invention.
On the other hand, mold disease generally develops when indoor humidity exceeds about 90%. If the leaf surface temperature is lower than the air temperature, condensation occurs on the leaf surface, and mold tends to propagate. However, if there is an airflow on the leaf surface, condensation does not occur, so the airflow fan is activated to generate airflow in the house. However, when the leaves overgrow, the airflow fan gives airflow to the leaf surface. I can't.
Therefore, in the present invention, the space in the house is divided into upper and lower layers by dividing the space in the upper and lower sides, and for example, an air circulation device such as a large ventilation fan is provided near one end of the house to send the upper layer air to the lower layer. In the vicinity of the other end of the house, a gap is provided in the upper and lower partitions so that the air in the lower layer flows to the upper layer. As a result, three-dimensional ventilation is possible in the house, and airflow can be given to the overgrown foliage, thereby preventing the occurrence of mold disease.

図6に立体換気による空気循環を可能とするハウスのイメージ図を示す。(a)は側面から見た概要図、(b)は斜視図である。図では保温シートで空間を上下に仕切っている。
この立体換気を行うと、暖房費用を大幅に削減できるというメリットもある。
図13によりハウス内の熱の出入りについて説明すると、昼間は太陽光により熱が供給されてハウス内が温められると同時に、供給された熱の約20%が地中伝熱により地中に蓄えられる。また、供給された熱の約20%が隙間換気伝熱によりハウスの隙間から外に出て行く。逆に夜間は地中伝熱により地中に蓄えられていた熱がハウス内に戻ってくる。しかし、隙間換気伝熱により外に出て行った熱がハウス内に戻ることはない。
更に、ハウス内の温度は通常15℃程度に設定するので、季節や設置場所に応じて夜間暖房をする必要がある。その際、ハウス内の熱貫流により屋根面などから熱が放出されるが、この放出熱量はハウス上部の温度が高いほど大きくなる。
一方、設定温度15℃の場合、先願発明のハウスでは、ハウス上部の温度が栽培床付近の温度よりも7〜9℃位高くなるのに対し、本発明では1〜2℃位高くなるだけである。このとき貫流伝熱に伴う放出熱量は、先願発明では暖房により供給される熱量の約80%であるのに対し、本発明では約60%である。即ち、本発明ではハウス上部の温度上昇が抑えられるため、夜間の放出熱量が非常に少なくなり、約20%のコストダウンとなる。広さ20aのハウスでは、外気温度によらず凡そ8万kcal/日の熱量が節約できる。
FIG. 6 shows an image of a house that enables air circulation by three-dimensional ventilation. (A) is the schematic diagram seen from the side, (b) is a perspective view. In the figure, the space is divided up and down by a heat insulating sheet.
When this three-dimensional ventilation is performed, there is also an advantage that heating costs can be significantly reduced.
Referring to FIG. 13, heat input and output in the house will be described. Heat is supplied by sunlight to warm the house in the daytime, and at the same time, about 20% of the supplied heat is stored in the ground by underground heat transfer. . Moreover, about 20% of the supplied heat goes out of the gap of the house by the gap ventilation heat transfer. Conversely, at night, the heat stored in the ground by underground heat transfer returns to the house. However, the heat generated by the gap ventilation heat transfer does not return to the house.
Furthermore, since the temperature in the house is usually set to about 15 ° C., it is necessary to perform night heating according to the season and installation location. At that time, heat is released from the roof surface or the like due to heat flow in the house, and the amount of released heat increases as the temperature of the upper part of the house increases.
On the other hand, when the set temperature is 15 ° C., in the house of the invention of the prior application, the temperature at the top of the house is higher by about 7-9 ° C. than the temperature near the cultivation floor, whereas in the present invention, it is only about 1-2 ° C. higher. It is. At this time, the amount of heat released due to the through-flow heat transfer is about 80% of the amount of heat supplied by heating in the prior invention, whereas it is about 60% in the present invention. That is, in the present invention, since the temperature rise at the upper part of the house can be suppressed, the amount of heat released at night becomes very small, and the cost is reduced by about 20%. The house with a size of 20a can save about 80,000 kcal / day of heat regardless of the outside air temperature.

上記(1)〜(3)により、次の(イ)〜(ヘ)のような効果が得られる。
(イ)活性の高い湿気中根が旺盛に成長し、高い草勢が維持できる。
(ロ)カビ病の発生を防止できる。
(ハ)養液回収ピット、養液返送ポンプ、高精密フィルター等からなる養液循環システム
が不要になる。
(ニ)養液濃度に狂いが生じないため頻繁な分析や単肥補正が不要になり、養液混合シス
テムが簡略化できる。
(ホ)立体換気によりハウス内の温度ムラが解消でき、暖房コストも低減できる。
(ヘ)立体換気により葉面境界層を作らせないため光合成が促進され草勢が強くなる。
植物の多くは空気の流れの中で二酸化炭素や水蒸気などのガス交換を行いながら生育している。葉と周辺大気との間のガス交換は葉の表面付近に形成された葉面境界層と呼ばれる空気流動の小さな空気層を介して行なわれ、「葉面境界層の厚さ」はガス拡散抵抗としてガス交換速度に対して支配的に作用する。また、栽培ハウス内のような気流速度の小さい条件では、葉面上における二酸化炭素の拡散が抑制される。従って、光合成を促進させるためには、葉内に二酸化炭素を供給するための気流制御が重要である。
By the above (1) to (3), the following effects (a) to (f) are obtained.
(I) Highly active moisture roots grow vigorously and can maintain a high vigor.
(B) The occurrence of mold disease can be prevented.
(C) A nutrient solution circulation system consisting of nutrient solution recovery pits, nutrient solution return pumps, high precision filters, etc. is no longer required.
(D) Since there is no deviation in nutrient solution concentration, frequent analysis and simple fertilizer correction are not required, and the nutrient solution mixing system can be simplified.
(E) Temperature unevenness in the house can be eliminated by three-dimensional ventilation, and heating costs can be reduced.
(F) Since the foliar boundary layer cannot be created by three-dimensional ventilation, photosynthesis is promoted and the vigor is enhanced.
Many plants grow while exchanging gases such as carbon dioxide and water vapor in an air stream. Gas exchange between the leaves and the surrounding atmosphere is carried out through an air layer with a small air flow called the leaf boundary layer formed near the leaf surface, and the “thickness of the leaf boundary layer” is the gas diffusion resistance. As a dominant effect on the gas exchange rate. Moreover, on the conditions with a small air velocity like a cultivation house, the diffusion of carbon dioxide on the leaf surface is suppressed. Therefore, in order to promote photosynthesis, airflow control for supplying carbon dioxide into the leaves is important.

更に、根の褐変を防止するためドライミスト室を遮光することが好ましい。
先願明細書にも記載したように、ドライミスト室を遮光しない従来法では根が褐変して活力が落ち、根の伸張速度が遅くなり、茎葉の成長も鈍くなってしまうのに対し、ドライミスト室の遮蔽用シートを遮光性にして光が入らないようにすると、根が褐色にならず真っ白となり伸張も旺盛で活力のある根となる。光が少しでも入ると褐変するため出来るだけ完全に遮光することが望ましい。また、遮光によりドライミスト室の藻類の発生も防止できる。
この他に、先願発明で開示した、ドライミスト室の覆いを開閉自在とすること、栽培床を可動自在とすることなども適宜採用することができる。
Furthermore, it is preferable to shield the dry mist chamber from light in order to prevent browning of the roots.
As described in the specification of the previous application, in the conventional method in which the dry mist chamber is not shielded from light, the roots are browned, the vitality is reduced, the root elongation rate is slowed, and the growth of the foliage is slow. If the shielding sheet in the mist chamber is made light-shielding so that light does not enter, the roots do not turn brown and become pure white, and the extension becomes vigorous and vigorous. It is desirable to block out light as completely as possible because it will turn brown when light enters. Moreover, generation | occurrence | production of the algae of a dry mist chamber can also be prevented by light-shielding.
In addition to this, it is also possible to appropriately adopt the opening and closing of the cover of the dry mist chamber disclosed in the invention of the prior application and the cultivating floor being movable.

ここで、図を参照しつつ、本発明の噴霧水耕栽培を実施するための施設の概要を簡単に説明するが、本発明の実施の態様はこれらに限られる訳ではない。
図2、図6に示すように、農業用の亜鉛メッキ鋼管などで作製した架台上に栽培培地容器を載せた高設ドライミスト栽培床をハウス内に設置し、栽培床の下部空間に、植物の根にドライミスト状の養液を散布するための設備を設ける。また、農業用保温シート(市販品)などによりハウス内の空間を上下に仕切ると共に、ハウスの端部に大型換気扇を設ける。更に換気用の側窓や巻き上げ式天窓を設けることが好ましい。
栽培培地容器の形状、構造、材質は、植物の根が底面を通り抜けて下方に向って自由に伸張できさえすれば特に限定されず、公知の底面が網目状になったものなどを用いるが、通常は一人で扱うのに便利なように、縦横60〜70cm程度で軽量なプラスチック製とする。但し、栽培培地を敷き詰めるので、容器から栽培培地がこぼれないように、端部に適当な高さ(6〜8cm程度)の側壁を有するものが好ましい。
Here, the outline of the facility for carrying out the spray hydroponics of the present invention will be briefly described with reference to the drawings, but the embodiment of the present invention is not limited thereto.
As shown in FIG. 2 and FIG. 6, an elevated dry mist cultivation floor on which a cultivation medium container is placed on a frame made of galvanized steel pipe for agriculture is installed in the house, and plants are placed in the lower space of the cultivation floor. Equipment for spraying dry mist nutrient solution on the roots will be provided. In addition, the space in the house is divided up and down by an agricultural heat insulation sheet (commercially available product) and a large ventilation fan is provided at the end of the house. Furthermore, it is preferable to provide a side window for ventilation and a roll-up type skylight.
The shape, structure, and material of the culture medium container are not particularly limited as long as the roots of the plant pass through the bottom surface and can be freely extended downward, and those having a known bottom surface in a mesh shape are used. Usually, it is made of a lightweight plastic with a length of 60 to 70 cm, which is convenient for one person. However, since the cultivation medium is spread, it is preferable to have a side wall having an appropriate height (about 6 to 8 cm) at the end so that the cultivation medium does not spill from the container.

また、容器の網目状底部に親水処理した不織布などからなるシートを敷き、栽培培地の流出防止と保水性の向上を図ることが望ましい(図7参照)。シートの目開きは1mm以下、厚さは3〜10mm程度が好ましい。不織布は目開きの融通性が高く、根が成長して太くなっても自在に対応可能であるから、目合いを変えることができない通常のネットよりも優れているし、ネットに比べて培地の流出度合いも大幅に低下する。
容器内に敷き詰める培地の深さは通常4〜6cmとする。浅すぎると支持材としての機能を発揮することができないし、水耕栽培と土耕栽培を組み合わせるメリットがなくなるので好ましくなく、深すぎると水耕栽培の利点が失われるので好ましくない。しかし植物の種類や栽培培地の性質によっても変化するので上記の範囲に限定されるわけではない。架台は、高さ70〜80cm程度、幅60〜100cm程度とするが、作業環境などによって適宜変更可能である。長さはハウスの大きさ、並べる数や配置などによって変わるので任意である。栽培床の下部空間にはドライミスト状養液の散布装置(例えばフォグノズルを一定間隔で有する塩ビ製パイプ)を設ける。栽培床の両側面は遮光性のビニールシートなどで覆い、下部空間を簡易なドライミスト室とする。
図8に、架台と栽培培地容器からなる高設ドライミスト栽培床の一例の詳細組立て図(正面図)を示す。図中の寸法の単位はmmである。この図では、架台底部に洗浄水回収用のドレーンパンを有し、該ドレーンパンの上部に伸張した植物の根がドレーンパンまで降りないようにするためのネット棚を有する。また、架台の下部には不整地に対応するためのベースプレートを有する。
In addition, it is desirable to spread a sheet made of a hydrophilic nonwoven fabric or the like on the mesh bottom of the container to prevent the culture medium from flowing out and improve water retention (see FIG. 7). The opening of the sheet is preferably 1 mm or less and the thickness is preferably about 3 to 10 mm. Nonwoven fabrics have a high degree of openness and can be used freely even when the roots grow and become thicker. The degree of spillage is also greatly reduced.
The depth of the culture medium spread in the container is usually 4 to 6 cm. If it is too shallow, the function as a support material cannot be exhibited, and the merit of combining hydroponics and soil cultivation is lost, which is not preferable, and if it is too deep, the advantages of hydroponics are lost. However, since it varies depending on the type of plant and the nature of the cultivation medium, it is not limited to the above range. The gantry has a height of about 70 to 80 cm and a width of about 60 to 100 cm, but can be appropriately changed depending on the working environment. The length is arbitrary because it varies depending on the size of the house, the number and arrangement of the houses. In the lower space of the cultivation floor, a spray device for dry mist nutrient solution (for example, a PVC pipe having fog nozzles at regular intervals) is provided. Cover both sides of the cultivation floor with a light-shielding vinyl sheet and make the lower space a simple dry mist room.
FIG. 8 shows a detailed assembly diagram (front view) of an example of an elevated dry mist cultivation floor comprising a gantry and a cultivation medium container. The unit of the dimension in the figure is mm. In this figure, a drain pan for collecting washing water is provided at the bottom of the gantry, and a net shelf is provided at the top of the drain pan to prevent plant roots extending down to the drain pan. Moreover, it has the baseplate for respond | corresponding to rough terrain in the lower part of a mount.

本発明及び先願発明の特徴の一つは噴霧水耕栽培に培地を用いることである。
培地の役割は、a)作物の自立を補償すること、b)毛管孔隙に相当する微細な空間があるため保水性を有すること、c)気相率が高く通気性が高いこと、d)有機物が豊富で、共生根圏微生物の生活空間となること、e)豊かなミネラルの供給源であること、などが挙げられる。
培地の原料としては、赤玉土(保水性豊かな培土の中心的原料)、ピートモス(水苔の堆積物で保水性に富み酸性)、パーライト(真珠岩を焼いたもので通気性の改善に使う)、バーミュキュライト(蛭石を焼いたもので保水性改善に使う)、牛糞堆肥や鶏糞堆肥(有機資材)、腐葉土(広葉樹の落ち葉を堆肥化したもの)などがある。
本発明のドライミストを利用した栽培法では、土に、保水性や通気性の改善効果の高い資材と有機肥料(牛糞堆肥、鶏糞堆肥)を配合した培地を用いるとよい。その一例を図9に示す。
更に、最近の土壌に不足している微量ミネラルを補充するため、ミネラル水を用いることが好ましい。微粉砕した玄武岩、流紋岩、花崗岩、蛇紋岩を、100℃に加熱した30%硫酸により1時間かけて抽出するとミネラル原液が得られる。4種類の岩石の混合重量比を変えて抽出を行ったミネラル原液の含有元素の分析結果を図10に示すが、A〜Dのうち、Bの配合が最も好ましい。ミネラル原液をPH6に希釈調整してミネラル水とし、養液の原水又は灌水の原水として用いる。
One of the features of the present invention and the prior invention is that a culture medium is used for spray hydroponics.
The role of the medium is a) to compensate for the independence of crops, b) to have water retention because there is a fine space corresponding to capillary pores, c) to have a high gas phase rate and high air permeability, and d) organic matter And a living space for symbiotic rhizosphere microorganisms, and e) a rich source of minerals.
As materials for the culture medium, akadama soil (a core material for rich soils with rich water retention), peat moss (water moss deposits with high water retention acidity), pearlite (baked pearlite, used to improve air permeability. ), Vermiculite (baked meteorite and used for water retention improvement), cattle manure compost, chicken manure compost (organic material), and humus (composted hardwood fallen leaves).
In the cultivation method using the dry mist of the present invention, it is preferable to use a medium in which soil is mixed with a material having a high effect of improving water retention and air permeability and organic fertilizer (cow manure compost, chicken manure compost). An example is shown in FIG.
Furthermore, it is preferable to use mineral water in order to replenish trace minerals that are lacking in recent soil. Extraction of finely ground basalt, rhyolite, granite and serpentinite with 30% sulfuric acid heated to 100 ° C. over 1 hour gives a mineral stock solution. The analysis result of the elements contained in the mineral stock solution extracted by changing the mixing weight ratio of the four kinds of rocks is shown in FIG. The mineral stock solution is diluted and adjusted to PH6 to obtain mineral water, which is used as raw water for nutrient solution or raw water for irrigation.

本発明は、噴霧水耕栽培が可能な植物であれば全て適用可能であり、代表的なものとして大葉シソ、トマト、ミツバ、レタス、イチゴ、メロン、ホウレン草などが挙げられる。
農薬や化学肥料を用いない栽培法であるから安全な作物が得られるし、市販のものよりも遥かに日持ちがよく栄養価も高い。トマト、イチゴ、メロンなどは糖度が飛躍的に向上するなど極めて高品質の作物が得られる。特に大葉シソでは、硝酸態窒素の残留量を大幅に低減でき、シソの香気成分であるアリルアルデヒドの値も高くなるし、柔らかさと味を保持したままで通常の大葉シソよりも大きいサイズのものが容易に得られる。
The present invention can be applied to any plant that can be spray hydroponically cultivated, and representative examples include large leaf perilla, tomato, honey beet, lettuce, strawberry, melon, spinach and the like.
Because it is a cultivation method that does not use agricultural chemicals or chemical fertilizers, safe crops can be obtained, and it has a longer shelf life and higher nutritional value than commercial ones. For tomatoes, strawberries, melons, etc., extremely high quality crops can be obtained, such as a drastic increase in sugar content. Especially for large leaf perilla, the amount of residual nitrate nitrogen can be greatly reduced, the value of allyl aldehyde, a perfume component of perilla, increases, and it is larger than normal large leaf perilla while maintaining its softness and taste. Is easily obtained.

本発明によれば、噴霧水耕栽培法のメリットと土耕のメリットを併せ持ち、植物は大地にドッシリと根を下ろした樹のようになり、促成効果を有し、収穫期間が伸び、驚異的な収穫量を確保できる上に、栄養価が高く日持ちのよい高品質の作物を、農薬や化学肥料を用いないで病気の発生を防止しつつ生産できるという画期的な栽培法を提供できる。   According to the present invention, it has the merits of spray hydroponics and soil cultivation, and the plant looks like a tree with roots down to the ground, has a forcing effect, extends the harvest period, is amazing Can provide a groundbreaking cultivation method that can produce high-quality crops with high nutritional value and good shelf life while preventing the occurrence of diseases without using agricultural chemicals or chemical fertilizers.

以下、実施例を示して本発明を更に具体的に説明するが、本発明は、この実施例により限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.

実施例1
図2、図6に概要を示した栽培ハウスを用いて大葉シソを栽培した。
ハウス内の上下空間の仕切りには市販の農業用保温シートを用い、空気循環用装置には大型換気扇(松下ナベック製ベルト駆動換気扇、NK−17WA−50、換気風量445m/min、消費電力630W)を用いた。
図7、図8に概要を示した約30mの長さの高設ドライミスト栽培床と栽培培地容器を用い、架台の下方の解放面(側面など)を遮光性のシート(ミカド化工社製の銀・黒ダブルマルチシート)で覆った。栽培培地容器の底には親水処理した不織布(王子キノクロス社製、TDS不織布、厚さ3mm)を敷いた。栽培培地には、図9の組成の土を95℃の高温水蒸気で無菌化処理して用いた。
播種から20日後に栽培床に定植し、栽培培地よりも下方に根が伸びた段階から、ドライミスト状の養液(図12参照)を根に散布した。フォグノズルにはスプレーイングジャパン社のクイックフォガー(YB1/8 MFJ−SU−EA−001−SS、噴霧液量:2.2リットル/時、ノズル当たりのエアー量:39リットル/分、平均粒子径:8μm、噴霧距離:4m)を用い、10m間隔に配置して、隣り合う二つのノズルの中間点に湿度センサーを設け、湿度が90%になったら散布を中止し、70%まで下がったら散布を行うという制御を行った。なお、噴霧距離とは、霧を目視で確認できる距離である。
上記のようにして栽培した結果、農薬や化学肥料を用いることなく、ウイルス病やカビ病が発生することもなく、大葉シソを収穫することができた。
また、図1に係る先願発明のシステムの場合に比べて、設備費用を約22%削減でき、暖房費用も約20%削減できた。
なお、大葉シソは水耕栽培では良質な葉が収穫できないため、豊橋や大分で試験栽培されたことはあったが何れも継続されず、現在の施設加温栽培は全て土耕で行われており、かつ大量に農薬を散布しなければ収穫できないのが実情である。
Example 1
Large leaf perilla was cultivated using the cultivation house outlined in FIGS.
Commercially available thermal insulation sheets are used to partition the upper and lower spaces in the house, and a large ventilation fan (Matsushita Nabek belt-driven ventilation fan, NK-17WA-50, ventilation air volume 445 m 2 / min, power consumption 630 W is used for the air circulation device. ) Was used.
7 and 8 using an approximately 30 m long dry mist cultivation bed and a cultivation medium container, and a light-shielding sheet (manufactured by Mikado Chemical Co., Ltd.) on the lower release surface (side surface, etc.) of the gantry. Silver / black double multi-sheet). The bottom of the culture medium container was laid with a hydrophilic treated nonwoven fabric (manufactured by Oji Kinocross Co., Ltd., TDS nonwoven fabric, thickness 3 mm). For the culture medium, soil having the composition shown in FIG. 9 was sterilized with high-temperature steam at 95 ° C. and used.
Twenty days after sowing, the plants were planted on the cultivation floor, and a dry mist nutrient solution (see FIG. 12) was sprayed on the roots from the stage where the roots extended below the cultivation medium. The fog nozzle has a spraying Japan quick fogger (YB1 / 8 MFJ-SU-EA-001-SS, spray liquid amount: 2.2 liter / hour, air amount per nozzle: 39 liter / minute, average particle size : 8μm, spraying distance: 4m), arranged at 10m intervals, provided a humidity sensor at the midpoint of two adjacent nozzles, spraying was stopped when the humidity reached 90%, and sprayed when it decreased to 70% Control was performed. In addition, spraying distance is distance which can confirm fog visually.
As a result of cultivation as described above, large leaf perilla was able to be harvested without using pesticides and chemical fertilizers, without causing viral diseases and mold diseases.
In addition, compared with the system of the prior invention of FIG. 1, the facility cost could be reduced by about 22%, and the heating cost could be reduced by about 20%.
In addition, large leaf perilla cannot be harvested with good quality by hydroponics, so it has been tested in Toyohashi and Oita, but none of them continue. The fact is that it cannot be harvested unless a large amount of pesticide is applied.

先願発明の噴霧水耕栽培法での養液循環システムのイメージ図。The image figure of the nutrient solution circulation system in the spray hydroponic cultivation method of prior invention. 本発明のドライミストを利用した養液供給システムのイメージ図。The image figure of the nutrient solution supply system using the dry mist of this invention. 雨や霧の粒子径の目安を示す図。The figure which shows the standard of the particle diameter of rain or fog. 水中根及び湿気中根の一次側根軸上の根毛発生数を示す図。The figure which shows the number of root hair generation | occurrence | production on the primary side root axis of an underwater root and a root in moisture. 本発明と先願発明の設備費用を比較した図。The figure which compared the installation expense of this invention and prior application invention. 立体換気による空気循環を可能とするハウスのイメージ図、(a)側面から見た概要図、(b)斜視図。The image figure of the house which enables the air circulation by three-dimensional ventilation, (a) The schematic diagram seen from the side, (b) Perspective view. 栽培培地容器と底部の培地流出防止兼保水シートの一例を示す図。(a)網目状底部を有する栽培培地容器、(b)網目状底部に敷く親水処理したシート、(c)栽培培地容器の底にシートを敷き詰めた状態。The figure which shows an example of the culture medium container and the culture medium outflow prevention and water retention sheet | seat of a bottom part. (A) A cultivation medium container having a mesh-like bottom, (b) a hydrophilically treated sheet placed on the mesh-like bottom, and (c) a state in which a sheet is spread on the bottom of the cultivation medium container. 架台と栽培培地容器からなる高設ドライミスト栽培床の一例の詳細組立て図(正面図)。The detailed assembly figure (front view) of an example of the elevated dry mist cultivation floor which consists of a mount frame and a cultivation culture medium container. 本発明で用いる培地の一例を示す図。The figure which shows an example of the culture medium used by this invention. ミネラル原液の含有元素の分析結果を示す図。The figure which shows the analysis result of the content element of a mineral stock solution. 水耕栽培の分類を示す図。The figure which shows the classification | category of hydroponics. 実施例で用いた養液の組成を示す図。(a)法律に基づく保証成分、(b)配合成分、(c)CSしそアミノに含まれるアミノ酸の組成。The figure which shows the composition of the nutrient solution used in the Example. (A) Assurance component based on law, (b) Compounding component, (c) Composition of amino acids contained in CS shiso amino. 昼間と夜間のハウスの熱の出入りを説明する図。The figure explaining the entrance and exit of the heat of the house at daytime and at night.

Claims (2)

ハウス内に、植物の根が下方に向かって自由に伸張可能な底面を有する栽培培地容器を架台上に設置した栽培床を設置し、ハウス内の空間を上下に仕切って上層と下層に分離すると共に、空気循環用装置を設けて立体換気を行えるようにし、栽培培地容器に培養土を含有する無菌化処理を施した栽培培地を敷き詰め、架台の下方の空間の開放面を遮光可能な素材で覆ってドライミスト室とし、該ドライミスト室中の植物の根に、液肥をドライミスト状にして散布することを特徴とする噴霧水耕栽培法。   In the house, set up a cultivation floor with a cultivation medium container with a bottom that allows the roots of the plants to extend freely downwards, and divide the space in the house into upper and lower layers and separate it into upper and lower layers At the same time, an air circulation device is provided so that three-dimensional ventilation is possible, and the cultivation medium container is laid with a culture medium that has been subjected to sterilization treatment containing culture soil. A spray hydroponic cultivation method characterized in that a dry mist chamber is covered, and liquid fertilizer is sprayed in the form of dry mist on the roots of plants in the dry mist chamber. 網目状底部を有する栽培培地容器の底に親水処理した不織布を敷き、その上に栽培培地を敷き詰めることを特徴とする請求項1記載の噴霧水耕栽培法。   2. The spray hydroponic cultivation method according to claim 1, wherein a non-woven fabric subjected to hydrophilic treatment is laid on the bottom of a cultivation medium container having a mesh bottom and the cultivation medium is spread thereon.
JP2007227491A 2007-09-03 2007-09-03 Method of spraying hydroponics Pending JP2009055871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227491A JP2009055871A (en) 2007-09-03 2007-09-03 Method of spraying hydroponics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227491A JP2009055871A (en) 2007-09-03 2007-09-03 Method of spraying hydroponics

Publications (1)

Publication Number Publication Date
JP2009055871A true JP2009055871A (en) 2009-03-19

Family

ID=40552204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227491A Pending JP2009055871A (en) 2007-09-03 2007-09-03 Method of spraying hydroponics

Country Status (1)

Country Link
JP (1) JP2009055871A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259389A (en) * 2009-05-08 2010-11-18 Majima Kenkyusho:Kk Hydroponics apparatus
JP2012196164A (en) * 2011-03-18 2012-10-18 Ikeuchi:Kk Plant cultivation apparatus
CN103120114A (en) * 2013-01-24 2013-05-29 中国林业科学研究院华北林业实验中心 Air cultivation method of stock plants of colored ornamental coniferous trees
CN106538281A (en) * 2016-09-29 2017-03-29 马艳敏 A kind of rice transplanting Seedling root Timed sterilizing device
WO2021067795A1 (en) * 2019-10-03 2021-04-08 Vertical Irrigation Llc Technologies for aeroponics

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259389A (en) * 2009-05-08 2010-11-18 Majima Kenkyusho:Kk Hydroponics apparatus
JP2012196164A (en) * 2011-03-18 2012-10-18 Ikeuchi:Kk Plant cultivation apparatus
CN103120114A (en) * 2013-01-24 2013-05-29 中国林业科学研究院华北林业实验中心 Air cultivation method of stock plants of colored ornamental coniferous trees
CN103120114B (en) * 2013-01-24 2014-11-05 中国林业科学研究院华北林业实验中心 Air cultivation method of stock plants of colored ornamental coniferous trees
CN106538281A (en) * 2016-09-29 2017-03-29 马艳敏 A kind of rice transplanting Seedling root Timed sterilizing device
CN106538281B (en) * 2016-09-29 2019-09-06 绍兴欣耀机电科技有限公司 A kind of rice transplanting seedling root Timed sterilizing device
WO2021067795A1 (en) * 2019-10-03 2021-04-08 Vertical Irrigation Llc Technologies for aeroponics

Similar Documents

Publication Publication Date Title
KR20100001774A (en) Method for hydroponic cultivation of fresh ginseng root and leaves
JP2011244705A (en) Method for cultivating plant
JP2007166956A (en) Spraying hydroponics of baby leaf
CN104996111A (en) Dendrobium officinale cultivation method
Kubota et al. Greenhouse tomato production
US10182531B2 (en) Continuous cultivation system for organic ginseng using multilevel cultivation tables
JP2006067999A (en) Spraying hydroponic method
US20170000044A1 (en) Crop Guardian - Crop Germinating and Growth in a Lined and Domed Furrow
AU2019316712B2 (en) Horticultural apparatus and methods
JP2009055871A (en) Method of spraying hydroponics
Wootton-Beard Growing without soil: an overview of hydroponics
WO2006013853A1 (en) Spray water culture method
JP2005034043A (en) Plant for cultivating soil culture plant
CN107278705A (en) Ecological vegetable factory
Berlinger et al. Managing the greenhouse, crop and crop environment
JP2011244706A (en) Method for cultivating plant
Lorenzo et al. Responses of cucumbers to mulching in an unheated plastic greenhouse
US8112936B1 (en) Container-based plant husbandry apparatus and controlled horticultural environment for using same
KR101257802B1 (en) An combined facility for agriculture
KR101806267B1 (en) automation system for agricultural hydroponics of glasshouse
JP2007061014A (en) Greenhouse device with dehumidification function
Jha et al. Protected cultivation of horticulture crops
CN210157803U (en) Vertical hydroponic culture equipment
JP2006296297A (en) Closed type plant cultivation method
Singh et al. Horticultural crops

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528