JP2009055284A - Waveform equalizing circuit - Google Patents

Waveform equalizing circuit Download PDF

Info

Publication number
JP2009055284A
JP2009055284A JP2007219479A JP2007219479A JP2009055284A JP 2009055284 A JP2009055284 A JP 2009055284A JP 2007219479 A JP2007219479 A JP 2007219479A JP 2007219479 A JP2007219479 A JP 2007219479A JP 2009055284 A JP2009055284 A JP 2009055284A
Authority
JP
Japan
Prior art keywords
differential transmission
differential
transmission line
transmission lines
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007219479A
Other languages
Japanese (ja)
Inventor
Daisuke Iguchi
大介 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2007219479A priority Critical patent/JP2009055284A/en
Publication of JP2009055284A publication Critical patent/JP2009055284A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0292Arrangements specific to the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waveform equalizing circuit for improving waveform deterioration in differential signal transmission without using additional components. <P>SOLUTION: A transmitter 10 for outputting the differential signal is connected with a first differential transmission line 11, while the first differential transmission line 11 is connected with second differential transmission lines 22A, 22B provided on a substrate 21 and the termination end of the first differential transmission line is connected with a termination resistance 24. At the lower side of the second differential transmission lines 22A, 22B, the third differential transmission lines 23A, 23B of the same shape are provided overlappingly at a predetermined distance and the termination end part is connected with a termination resistance 25 and a receiver 30. The second and third differential transmission lines 22A, 22B, 23A, and 23B show flat frequency characteristics depending on the shape of the lines in the case where these lines have characteristics to compensate for attenuation characteristic of the first differential transmission line 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、波形等化回路に関する。   The present invention relates to a waveform equalization circuit.

バックプレーン基板上の長い配線や長距離ケーブルを伝搬するアナログ信号は、周波数が高くなるほど減衰が大きくなる。従って、平坦な周波数特性の信号を送信しても、受信端では高域側が減衰して受信される。その理由は、高周波損失、特に、誘電体損と表皮効果にあり、この減衰による特性は、概ね信号の周波数及び線路長に比例して大きくなるため、一般に、「ルートf特性」などと呼ばれている。   An analog signal propagating through a long wiring or long-distance cable on the backplane substrate is attenuated as the frequency increases. Therefore, even if a signal having a flat frequency characteristic is transmitted, the receiving end attenuates and receives the high frequency side. The reason is high-frequency loss, particularly dielectric loss and skin effect, and the characteristics due to this attenuation increase generally in proportion to the signal frequency and line length, and are generally called “route f characteristics”. ing.

ディジタル伝送の高速化においても、上記した高周波損失が阻害要因になる。そこで、一般には、非特許文献1に記載されるように、低域遮断特性の受動素子によるイコライザを伝送経路に挿入し、周波数特性の補償を行っている。   The high-frequency loss described above also becomes an obstacle to speeding up digital transmission. Therefore, generally, as described in Non-Patent Document 1, an equalizer using a passive element having a low-frequency cutoff characteristic is inserted into a transmission path to compensate for frequency characteristics.

また、伝送信号の周波数の減衰帯域を設定する第1の抵抗及び第1のコンデンサを並列接続し、第1の抵抗及び第1のコンデンサに上記周波数の減衰帯域の傾きを設定する第2の抵抗を並列接続し、且つ第1の抵抗に他端を接地する第1のコイルを直列接続してなる第1のフィルタと、この第1のフィルタと同一構成を有して第1のフィルタに直列接続された第2のフィルタとを有する等化フィルタを備えた信号送信装置が知られている(例えば、特許文献1参照)。   In addition, a first resistor for setting the attenuation band of the frequency of the transmission signal and a first capacitor are connected in parallel, and a second resistor for setting the slope of the attenuation band of the frequency to the first resistor and the first capacitor. Are connected in parallel, and a first filter is connected in series to a first resistor and the other end is grounded. The first filter has the same configuration as the first filter and is connected in series to the first filter. A signal transmission device including an equalization filter having a connected second filter is known (see, for example, Patent Document 1).

また、信号経路に対して直列接続された2つの可変抵抗とコンデンサを並列接続し、可変抵抗の中間接続点とアース間に可変抵抗とインダクタを直列接続したイコライザ回路も知られている(例えば、特許文献2参照)。
特開平10−136028号公報 特開2003−168944号公報 MAXIM社 データシート「MAX3787バックプレーン及びケーブル用1Gbps〜12.5Gbpsパッシブイコライザ」
There is also known an equalizer circuit in which two variable resistors and capacitors connected in series with respect to a signal path are connected in parallel, and a variable resistor and an inductor are connected in series between an intermediate connection point of the variable resistors and the ground (for example, Patent Document 2).
Japanese Patent Laid-Open No. 10-136028 JP 2003-168944 A MAXIM Data Sheet "MAX3787 Backplane and Cable 1Gbps to 12.5Gbps Passive Equalizer"

本発明の目的は、付加的な部品を用いることなく、差動信号の伝送における波形劣化を改善することができる波形等化回路を提供することにある。   An object of the present invention is to provide a waveform equalization circuit that can improve waveform deterioration in transmission of differential signals without using additional components.

本発明の一態様は、上記目的を達成するため、以下の波形等化回路を提供する。   In order to achieve the above object, one embodiment of the present invention provides the following waveform equalization circuit.

[1]送信デバイスに接続され、前記送信デバイスからの差動信号を伝送する第1の差動伝送線路と、同一形状を有して同一平面上に平行配置されると共に前記第1の差動伝送線路に接続された一対の導体線路からなる第2の差動伝送線路と、前記第2の差動伝送線路の終端間に接続された終端抵抗と、前記第2の差動伝送線路に電磁結合または静電結合もしくは両方が形成されるように配置されると共に、一端に受信デバイスが接続された一対の導体線路からなる第3の差動伝送線路と、を備えたことを特徴とする波形等化回路。 [1] A first differential transmission line that is connected to a transmission device and transmits a differential signal from the transmission device, has the same shape and is arranged in parallel on the same plane, and the first differential line. A second differential transmission line composed of a pair of conductor lines connected to the transmission line; a termination resistor connected between terminations of the second differential transmission line; and an electromagnetic wave connected to the second differential transmission line. And a third differential transmission line composed of a pair of conductor lines having one end connected to a receiving device and arranged so as to form a coupling or electrostatic coupling or both. Equalization circuit.

[2]前記第2及び第3の差動伝送線路は、同一基板に設けられていることを特徴とする前記[1]に記載の波形等価回路。 [2] The waveform equivalent circuit according to [1], wherein the second and third differential transmission lines are provided on the same substrate.

[3]前記第2及び第3の差動伝送線路は、空間を介して対向配置された異なるデバイスに分けて設けられていることを特徴とする前記[1]に記載の波形等価回路。 [3] The waveform equivalent circuit according to [1], wherein the second and third differential transmission lines are separately provided in different devices arranged to face each other through a space.

[4]前記第2及び第3の差動伝送線路は、前記第1の差動伝送線路の減衰特性と逆特性になるように線路幅、線路長、間隔が設定されていることを特徴とする前記[1]に記載の波形等価回路。 [4] The second and third differential transmission lines are characterized in that a line width, a line length, and an interval are set so as to be opposite to the attenuation characteristics of the first differential transmission line. The waveform equivalent circuit according to [1].

[5]前記第3の差動伝送線路は、ケーブルであることを特徴とする前記[1]に記載の波形等価回路。 [5] The waveform equivalent circuit according to [1], wherein the third differential transmission line is a cable.

[6]前記第3の差動伝送線路は、線路の途中が長さ方向に分割されており、前記分割間にスイッチが接続され、前記スイッチが前記第1の差動伝送線路の特性に応じで切り替えられることを特徴とする前記[1]に記載の波形等価回路。 [6] In the third differential transmission line, the middle of the line is divided in the length direction, a switch is connected between the divisions, and the switch corresponds to the characteristics of the first differential transmission line. The waveform equivalent circuit as described in [1] above, wherein the waveform equivalent circuit is switched.

請求項1の波形等価回路によれば、付加的な部品を用いることなく、差動信号の伝送における波形劣化を改善することができる。   According to the waveform equivalent circuit of the first aspect, it is possible to improve the waveform deterioration in the transmission of the differential signal without using an additional component.

請求項2の波形等価回路によれば、配線パターン等により、1枚の基板に構成することができる。   According to the waveform equivalent circuit of the second aspect, the circuit board can be formed on a single substrate by a wiring pattern or the like.

請求項3の波形等価回路によれば、空間を介して配設されたデバイス間に差動伝送線路を構築することができる。   According to the waveform equivalent circuit of the third aspect, a differential transmission line can be constructed between devices arranged through a space.

請求項4の波形等価回路によれば、第1の差動伝送線路の特性を把握することにより、容易に波形等価回路を構成することができる。 According to the waveform equivalent circuit of the fourth aspect, the waveform equivalent circuit can be easily configured by grasping the characteristics of the first differential transmission line.

請求項5の波形等価回路によれば、第3の差動伝送線路に受信側から布線したケーブルを用いることができる。   According to the waveform equivalent circuit of the fifth aspect, a cable wired from the receiving side to the third differential transmission line can be used.

請求項6の波形等価回路によれば、第1の伝送線路の特性に応じた最適な周波数特性を得ることができる。   According to the waveform equivalent circuit of the sixth aspect, it is possible to obtain an optimum frequency characteristic corresponding to the characteristic of the first transmission line.

[第1の実施の形態]
(信号伝送装置の構成)
図1は、本発明の第1の実施の形態に係る信号伝送装置を模式的に示した斜視図である。
[First Embodiment]
(Configuration of signal transmission device)
FIG. 1 is a perspective view schematically showing a signal transmission device according to a first embodiment of the present invention.

信号伝送装置100は、送信器(送信デバイス)10と、送信器10に第1の差動伝送線路11を介して接続された伝送線路部20と、伝送線路部20に伝送線路31を介して接続された受信器(受信デバイス)30とを備えて構成されている。   The signal transmission device 100 includes a transmitter (transmission device) 10, a transmission line unit 20 connected to the transmitter 10 via a first differential transmission line 11, and a transmission line unit 20 via a transmission line 31. And a receiver (receiving device) 30 connected thereto.

送信器10は、例えば、電気信号を差動出力する差動増幅器等を備えて構成されたドライバICからなる。   The transmitter 10 includes, for example, a driver IC that includes a differential amplifier that differentially outputs electrical signals.

第1の差動伝送線路11は、例えば、ツイストペアケーブルであり、平行2線の伝送線路31に比べて長い線路長を有している。   The first differential transmission line 11 is, for example, a twisted pair cable, and has a longer line length than the parallel two-line transmission line 31.

伝送線路部20は、絶縁性を有する基板21と、基板21の表面21aに設けられた第2の差動伝送線路22(22A,22B)と、基板21の裏面21bに設けられた第3の差動伝送線路23(23A,23B)と、第2の差動伝送線路22A,22Bの終端間に接続された終端抵抗24と、第3の差動伝送線路23A,23Bの終端(受信端)間に接続された終端抵抗25とを備えて構成されている。   The transmission line unit 20 includes an insulating substrate 21, a second differential transmission line 22 (22 </ b> A, 22 </ b> B) provided on the front surface 21 a of the substrate 21, and a third differential electrode provided on the back surface 21 b of the substrate 21. The differential transmission line 23 (23A, 23B), the termination resistor 24 connected between the terminations of the second differential transmission lines 22A, 22B, and the terminations (reception ends) of the third differential transmission lines 23A, 23B And a terminating resistor 25 connected therebetween.

第2,第3の差動伝送線路22A,22B,23A,23Bは、4つが同一の長さを有すると共に、銅箔等による帯状の配線パターン(導体線路)からなる。この配線パターンは、例えば、エッチングにより設けることができる。また、第3の差動伝送線路23A,23Bは、第2の差動伝送線路22A,22Bに所定の距離、例えば、25μmを隔てて対向配置され、且つ平行になるように設けられている。尚、図1においては、形状及び配置を分かり易くするため、第2,第3の差動伝送線路22A,22B,23A,23Bの厚みを誇張して図示している。   The four second and third differential transmission lines 22A, 22B, 23A, and 23B have the same length, and are formed of a strip-like wiring pattern (conductor line) made of copper foil or the like. This wiring pattern can be provided by etching, for example. Further, the third differential transmission lines 23A and 23B are arranged to face and be parallel to the second differential transmission lines 22A and 22B with a predetermined distance, for example, 25 μm. In FIG. 1, the thicknesses of the second and third differential transmission lines 22A, 22B, 23A, and 23B are exaggerated for easy understanding of the shape and arrangement.

第3の差動伝送線路23A,23Bは、この第3の差動伝送線路23A,23Bを流れる電流が第2の差動伝送線路22A,22Bに流れる電流と平行になるように、受信器30が接続されている。   The third differential transmission line 23A, 23B is connected to the receiver 30 so that the current flowing through the third differential transmission line 23A, 23B is parallel to the current flowing through the second differential transmission line 22A, 22B. Is connected.

終端抵抗24,25は、第2,第3の差動伝送線路22A,22B,23A,23Bの特性インピーダンスと同一のインピーダンスであり、例えば、50Ωの抵抗を用いている。   The termination resistors 24 and 25 have the same impedance as the characteristic impedances of the second and third differential transmission lines 22A, 22B, 23A, and 23B. For example, 50Ω resistors are used.

受信器30は、例えば、差動増幅器等を用いて構成され、送信器10からの差動信号を所定のレベルに増幅して出力する。   The receiver 30 is configured using, for example, a differential amplifier, and amplifies the differential signal from the transmitter 10 to a predetermined level and outputs it.

図2は、図1の信号伝送装置の結合線路部の単位長あたりの等価回路である。本波形等価回路は集中定数回路ではなく分布定数系をなしており、単位長あたりの等価回路が連なったものとして記述される。   FIG. 2 is an equivalent circuit per unit length of the coupled line portion of the signal transmission device of FIG. This waveform equivalent circuit is not a lumped constant circuit but a distributed constant system, and is described as a series of equivalent circuits per unit length.

すなわち第2および第3の差動線路4本の線路全てについて、単位長あたりの自己インダクタンス、抵抗、全ての組み合わせの相互インダクタンス、線間容量を定義した梯子モデルとなる。   That is, the ladder model defines the self-inductance per unit length, the resistance, the mutual inductance of all combinations, and the line-to-line capacitance for all of the four second and third differential lines.

等価回路は、第2の差動伝送線路22Aに含む抵抗41A及びインダクタ43A、第2の差動伝送線路22Bに含む抵抗41B及びインダクタ43B、第3の差動伝送線路23Aに含む抵抗41C及びインダクタ43C、第3の差動伝送線路23Bに含む抵抗41D及びインダクタ43D、第2の差動伝送線路22A,22B間に存在するコンデンサ42A、第2の差動伝送線路22Aと第3の差動伝送線路23A,23Bとの間に存在するコンデンサ42B,42Cと、第2の差動伝送線路22Bと第3の差動伝送線路23A,23Bとの間に存在するコンデンサ42D,42E、第3の差動伝送線路23A,23B間に存在するコンデンサ42Fとをもって表すことができる。各インダクタ43A〜43Dは、他の各インダクタとの間に相互インダクタンスを有している。   The equivalent circuit includes a resistor 41A and an inductor 43A included in the second differential transmission line 22A, a resistor 41B and an inductor 43B included in the second differential transmission line 22B, and a resistor 41C and an inductor included in the third differential transmission line 23A. 43C, resistor 41D and inductor 43D included in the third differential transmission line 23B, capacitor 42A existing between the second differential transmission lines 22A and 22B, the second differential transmission line 22A and the third differential transmission Capacitors 42B and 42C existing between the lines 23A and 23B, capacitors 42D and 42E existing between the second differential transmission line 22B and the third differential transmission lines 23A and 23B, the third difference. It can be represented by a capacitor 42F existing between the dynamic transmission lines 23A and 23B. Each inductor 43A-43D has a mutual inductance between each other inductor.

図2から明らかなように、等価回路は、第2の差動伝送線路22A,22Bと第3の差動伝送線路23A,23B自身及び他の線路との間に存在する抵抗、コンデンサ及びインダクタによって表され、別途追加した部品は存在しない。従って、等価回路の各定数は、第2,第3の差動伝送線路23A,22B,23A,23Bの寸法、形状、基板21の材料、線間距離等によって決定することができる。   As is apparent from FIG. 2, the equivalent circuit is constituted by resistors, capacitors and inductors existing between the second differential transmission lines 22A and 22B and the third differential transmission lines 23A and 23B themselves and other lines. There are no additional parts. Therefore, each constant of the equivalent circuit can be determined by the dimensions and shape of the second and third differential transmission lines 23A, 22B, 23A, and 23B, the material of the substrate 21, the distance between the lines, and the like.

(信号伝送装置の動作)
次に、信号伝送装置100の動作を説明する。送信器10から送信信号(差動信号)が出力されると、差動信号は、第1の差動伝送線路11を介して第2の差動伝送線路22A,22Bに印加される。
(Operation of signal transmission device)
Next, the operation of the signal transmission device 100 will be described. When a transmission signal (differential signal) is output from the transmitter 10, the differential signal is applied to the second differential transmission lines 22 </ b> A and 22 </ b> B via the first differential transmission line 11.

第2の差動伝送線路22A,22Bに印加された差動信号は、第2の差動伝送線路22A,22Bの終端に向かって進行し、整合負荷となる終端抵抗24に到達する。   The differential signal applied to the second differential transmission lines 22A and 22B travels toward the termination of the second differential transmission lines 22A and 22B, and reaches the termination resistor 24 serving as a matching load.

同時に、差動信号は、第2の差動伝送線路22A,22Bを伝送する過程で、第3の差動伝送線路23A,23Bとの間の誘導性結合または容量性結合、もしくは誘導性結合および容量性結合の両方により第2の差動伝送線路22A,22Bから第3の差動伝送線路23A,23Bに伝達し、第3の差動伝送線路23A,23Bを伝搬して終端抵抗25により終端されると共に、受信器30に入力する。受信器30に入力した差動信号は、受信器30で増幅された後、図示しない波形整形回路等へ出力される。   At the same time, in the process of transmitting the differential signal through the second differential transmission lines 22A and 22B, inductive coupling or capacitive coupling with the third differential transmission lines 23A and 23B, or inductive coupling and The signals are transmitted from the second differential transmission lines 22A and 22B to the third differential transmission lines 23A and 23B by both capacitive couplings, propagate through the third differential transmission lines 23A and 23B, and are terminated by the termination resistor 25. And input to the receiver 30. The differential signal input to the receiver 30 is amplified by the receiver 30 and then output to a waveform shaping circuit (not shown) or the like.

図3は、図2の等価回路の減衰特性を示す特性図である。図3において、特性aは、第1の差動伝送線路11の減衰量−周波数特性を示し、特性bは、第2,第3の差動伝送線路22A,22B,23A,23Bの減衰量−周波数特性を示している。そして、特性cは、特性aと特性bを合成した減衰量−周波数特性である。   FIG. 3 is a characteristic diagram showing the attenuation characteristic of the equivalent circuit of FIG. In FIG. 3, the characteristic a indicates the attenuation amount-frequency characteristic of the first differential transmission line 11, and the characteristic b indicates the attenuation amount of the second and third differential transmission lines 22A, 22B, 23A, 23B. The frequency characteristics are shown. The characteristic c is an attenuation-frequency characteristic obtained by combining the characteristic a and the characteristic b.

特性aに示すように、第1の差動伝送線路11は周波数fが高くなるにつれて減衰量が徐々に増大する。一方、特性bに示すように、第2,第3の差動伝送線路22A,22B,23A,23Bは、周波数fが高くなるにつれて第2の差動伝送線路22A,22Bと第3の差動伝送線路23A,23Bとの間の静電結合や電磁結合が大きくなるために減衰量が徐々に減少し、或る周波数fh以上では、ほぼ一定になる。   As shown by the characteristic a, the attenuation amount of the first differential transmission line 11 gradually increases as the frequency f increases. On the other hand, as shown in the characteristic b, the second and third differential transmission lines 22A, 22B, 23A, and 23B are different from the second differential transmission lines 22A and 22B and the third differential transmission line as the frequency f increases. Since the electrostatic coupling and electromagnetic coupling between the transmission lines 23A and 23B increase, the attenuation amount gradually decreases, and becomes substantially constant at a certain frequency fh or higher.

以上のように、特性aと特性bとでは、特性が逆であるため、両者を組み合わせると、数kz帯(fl)から800MHz帯(fh)まで平坦で、且つ、それ以上の周波数域でもほぼ平坦な特性cが得られ、全周波数でほぼ平坦な減衰量の特性を得ることができる。   As described above, since the characteristics a and characteristics b are opposite, when they are combined, they are flat from several kz band (fl) to 800 MHz band (fh), and almost in the frequency range beyond that. A flat characteristic c is obtained, and a substantially flat attenuation characteristic can be obtained at all frequencies.

特性bの低周波数域の減衰量は、第2,第3の差動伝送線路22A,22B,23A,23Bのそれぞれの幅、長さ、ペア線路間の間隔、第2の差動伝送線路22A,22Bと第3の差動伝送線路23A,23Bとの間の距離等を適宜変更することにより、調整することができる。   The attenuation amount in the low frequency region of the characteristic b is as follows: the width and length of each of the second and third differential transmission lines 22A, 22B, 23A, and 23B, the distance between the pair lines, and the second differential transmission line 22A. , 22B and the third differential transmission lines 23A, 23B can be adjusted by appropriately changing the distance and the like.

[第2の実施の形態]
(信号伝送装置の構成)
図4は、本発明の第2の実施の形態に係る信号伝送装置を示す断面図である。尚、図4においては、図1に示す第2の差動伝送線路22A,22Bに接続される終端抵抗24と、第3の差動伝送線路23A,23Bに接続される終端抵抗25の図示を省略している。
[Second Embodiment]
(Configuration of signal transmission device)
FIG. 4 is a sectional view showing a signal transmission apparatus according to the second embodiment of the present invention. In FIG. 4, the termination resistor 24 connected to the second differential transmission lines 22A and 22B and the termination resistor 25 connected to the third differential transmission lines 23A and 23B shown in FIG. 1 are illustrated. Omitted.

信号伝送装置100は、送信部50と、この送信部50に実装されたパッケージ60と、このパッケージ60に空隙gを持たせて結合されたLSI70とを備えて構成されている。   The signal transmission apparatus 100 includes a transmission unit 50, a package 60 mounted on the transmission unit 50, and an LSI 70 coupled to the package 60 with a gap g.

送信部50は、上記送信器10と、送信器10に接続された第4の差動伝送線路51A,51Bと、第4の差動伝送線路51A,51Bの端部に接続された第5の差動伝送線路52A,52Bと、第5の差動伝送線路52A,52Bの端部に接続された第6の差動伝送線路53A,53Bと、これらを実装したセラミック等の材料を用いて構成された基板54と、基板54の表面に設けられた複数の電極パッド55と、を備えて構成されている。尚、送信部50においては、形状及び配置を分かり易くするため、各差動伝送線路の厚みを誇張して図示している。   The transmitter 50 includes the transmitter 10, the fourth differential transmission lines 51A and 51B connected to the transmitter 10, and the fifth differential transmission lines 51A and 51B connected to the ends of the fourth differential transmission lines 51A and 51B. The differential transmission lines 52A and 52B, the sixth differential transmission lines 53A and 53B connected to the ends of the fifth differential transmission lines 52A and 52B, and a material such as ceramic on which these are mounted And a plurality of electrode pads 55 provided on the surface of the substrate 54. In the transmitter 50, the thickness of each differential transmission line is exaggerated for easy understanding of the shape and arrangement.

第4の差動伝送線路51A,51B及び第6の差動伝送線路53A,53Bは、基板54内に厚み方向に設けられており、第6の差動伝送線路53A,53Bの終端(上端)は、複数の電極パッド55の内の2つに接続されている。   The fourth differential transmission lines 51A and 51B and the sixth differential transmission lines 53A and 53B are provided in the thickness direction in the substrate 54, and are terminated (upper ends) of the sixth differential transmission lines 53A and 53B. Are connected to two of the plurality of electrode pads 55.

第5の差動伝送線路52A,52Bは、第2の差動伝送線路22A,22Bと同様の形状を有し、第4の差動伝送線路51A,51Bと第6の差動伝送線路53A,53Bに連結させて基板54内に設けられている。   The fifth differential transmission lines 52A and 52B have the same shape as the second differential transmission lines 22A and 22B, and the fourth differential transmission lines 51A and 51B and the sixth differential transmission lines 53A, It is connected to 53B and provided in the substrate 54.

パッケージ60は、セラミック等の絶縁体による本体61と、本体61の下面に設けられた複数のはんだボール62と、第6の差動伝送線路53A,53Bに対向させて本体61の下面に設けられた電極パッド63A,63Bと、電極パッド63A,63Bに接続させて本体61の内部に設けられた第7の差動伝送線路64A,64Bと、第7の差動伝送線路64A,64Bの終端に接続されると共に本体61の表面に設けられた図1と同様の第3の差動伝送線路23A,23Bとを備えて構成されている。尚、パッケージ60においては、形状及び配置を分かり易くするため、各差動伝送線路の厚みを誇張して図示している。   The package 60 is provided on the lower surface of the main body 61 so as to face the main body 61 made of an insulator such as ceramic, the plurality of solder balls 62 provided on the lower surface of the main body 61, and the sixth differential transmission lines 53A and 53B. The electrode pads 63A and 63B, the seventh differential transmission lines 64A and 64B connected to the electrode pads 63A and 63B and provided inside the main body 61, and the ends of the seventh differential transmission lines 64A and 64B. The third differential transmission lines 23 </ b> A and 23 </ b> B are connected and are provided on the surface of the main body 61 as in FIG. 1. In the package 60, the thickness of each differential transmission line is exaggerated for easy understanding of the shape and arrangement.

LSI70は、メタル配線層70aと絶縁層70bの2層からなる半導体装置である。メタル配線層70aは、第3の差動伝送線路23A,23Bに対向させて下面に設けられた図1と同様の第2の差動伝送線路22A,22Bと、第2の差動伝送線路22A,22Bと受信器30を接続する第8の差動伝送線路71A,71Bとが設けられている。また、絶縁層70bは、内部に受信器30及び伝送線路31が設けられている。尚、LSI70においては、形状及び配置を分かり易くするため、各差動伝送線路の厚みを誇張して図示している。   The LSI 70 is a semiconductor device composed of two layers, a metal wiring layer 70a and an insulating layer 70b. The metal wiring layer 70a includes second differential transmission lines 22A and 22B similar to those in FIG. 1 provided on the lower surface facing the third differential transmission lines 23A and 23B, and the second differential transmission line 22A. , 22B and the eighth differential transmission lines 71A, 71B for connecting the receiver 30 are provided. The insulating layer 70b is provided with the receiver 30 and the transmission line 31 therein. In the LSI 70, the thickness of each differential transmission line is exaggerated for easy understanding of the shape and arrangement.

(信号伝送装置の動作)
次に、第2の実施の形態に係る信号伝送装置100の動作を説明する。送信器10から送信信号(差動信号)が出力されると、差動信号は、第4の差動伝送線路51A,51B及び第5の差動伝送線路52A,52Bを介して電極パッド55に印加される。
(Operation of signal transmission device)
Next, the operation of the signal transmission device 100 according to the second embodiment will be described. When a transmission signal (differential signal) is output from the transmitter 10, the differential signal is transmitted to the electrode pad 55 via the fourth differential transmission lines 51A and 51B and the fifth differential transmission lines 52A and 52B. Applied.

更に、差動信号は、電極パッド55の内の2つを介し、更に、はんだボール62、電極パッド63A,63B及び第7の差動伝送線路64A,64Bを介して第3の差動伝送線路23A,23Bに到達する。第3の差動伝送線路23A,23Bに印加された差動信号は、その終端に向かって図4の左側へ進行する。   Further, the differential signal passes through two of the electrode pads 55, and further passes through the solder ball 62, the electrode pads 63A and 63B, and the seventh differential transmission lines 64A and 64B to form a third differential transmission line. 23A and 23B are reached. The differential signals applied to the third differential transmission lines 23A and 23B travel to the left side of FIG.

同時に、差動信号は、第3の差動伝送線路23A,23Bを伝送する過程で、第2の差動伝送線路22A,22Bとの間の誘導性結合または容量性結合、もしくは誘導性結合と容量性結合の両方により第3の差動伝送線路23A,23Bから第2の差動伝送線路22A,22Bに伝達し、第2の差動伝送線路22A,22Bを伝搬した後、伝送線路31を介して受信器30に入力する。受信器30に入力された差動信号は、受信器30で増幅された後、図示しない波形整形回路等へ出力される。   At the same time, in the process of transmitting the differential signal through the third differential transmission lines 23A and 23B, inductive coupling, capacitive coupling, or inductive coupling between the second differential transmission lines 22A and 22B. The transmission line 31 is transmitted from the third differential transmission line 23A, 23B to the second differential transmission line 22A, 22B by both capacitive coupling and propagated through the second differential transmission line 22A, 22B. To the receiver 30. The differential signal input to the receiver 30 is amplified by the receiver 30 and then output to a waveform shaping circuit or the like (not shown).

[第3の実施の形態]
(信号伝送装置の構成)
図5は、本発明の第3の実施の形態に係る信号伝送装置を模式的に示した斜視図である。
[Third Embodiment]
(Configuration of signal transmission device)
FIG. 5 is a perspective view schematically showing a signal transmission apparatus according to the third embodiment of the present invention.

本実施の形態は、第1の実施の形態において、受信器30の接続位置を第3の差動伝送線路23A,23Bの終端から始端に変更すると共に、受信器30の入力端に終端抵抗26を接続したものであり、その他の構成は第1の実施の形態と同様である。   In the present embodiment, in the first embodiment, the connection position of the receiver 30 is changed from the terminal end of the third differential transmission lines 23A and 23B to the starting end, and the terminal resistor 26 is connected to the input end of the receiver 30. The other configurations are the same as those in the first embodiment.

(信号伝送装置の動作)
本実施の形態においては、送信器10から送信信号(差動信号)が出力されると、差動信号は、第1の差動伝送線路11を介して第2の差動伝送線路22A,22Bに印加される。
(Operation of signal transmission device)
In the present embodiment, when a transmission signal (differential signal) is output from the transmitter 10, the differential signal is transmitted through the first differential transmission line 11 to the second differential transmission lines 22A and 22B. To be applied.

第2の差動伝送線路22A,22Bに印加された差動信号は、その終端に向かって進行し、整合負荷となる終端抵抗24に到達する。   The differential signal applied to the second differential transmission lines 22A and 22B travels toward the termination and reaches the termination resistor 24 serving as a matching load.

同時に、差動信号は、第2の差動伝送線路22A,22Bを伝送する過程で、第3の差動伝送線路23A,23Bとの間の誘導性結合または容量性結合、もしくは誘導性結合と容量性結合の両方により第2の差動伝送線路22A,22Bから第3の差動伝送線路23A,23Bに伝達し、第3の差動伝送線路23A,23Bを伝搬して、その一端に接続された終端抵抗25で終端されると共に第3の差動伝送線路23A,23Bの他端に接続された受信器30に入力する。受信器30に入力した差動信号は、受信器30で増幅された後、図示しない波形整形回路等へ出力される。   At the same time, the differential signal is transmitted through the second differential transmission lines 22A and 22B, inductive coupling or capacitive coupling with the third differential transmission lines 23A and 23B, or inductive coupling. Transmitted from the second differential transmission lines 22A and 22B to the third differential transmission lines 23A and 23B by both capacitive couplings, propagated through the third differential transmission lines 23A and 23B, and connected to one end thereof The signal is input to the receiver 30 that is terminated by the terminated termination resistor 25 and connected to the other ends of the third differential transmission lines 23A and 23B. The differential signal input to the receiver 30 is amplified by the receiver 30 and then output to a waveform shaping circuit (not shown) or the like.

[第4の実施の形態]
図6は、本発明の第4の実施の形態に係る信号伝送装置を模式的に示した斜視図である。
[Fourth Embodiment]
FIG. 6 is a perspective view schematically showing a signal transmission apparatus according to the fourth embodiment of the present invention.

本実施の形態は、第1の実施の形態において、第3の差動伝送線路23A,23Bのそれぞれの途中を長さ方向に分割し、その分割箇所にMOS(Metal Oxide Semiconductorスイッチ81A,81Bを接続し、第3の差動伝送線路23A,23Bの線路長を可変できるようにしたものであり、その他の構成は第1の実施の形態と同様である。なお、図6においては、第2の差動伝送線路22A,22Bと第3の差動伝送線路23A,23Bは、第1の実施の形態とは、逆の配置により図示している。 In the present embodiment, in the first embodiment, the middle of each of the third differential transmission lines 23A and 23B is divided in the length direction, and MOS (Metal Oxide Semiconductor ) switches 81A and 81B are divided at the divided portions. Are connected so that the line lengths of the third differential transmission lines 23A and 23B can be varied, and the other configurations are the same as those of the first embodiment. In FIG. 6, the second differential transmission lines 22A and 22B and the third differential transmission lines 23A and 23B are illustrated in an arrangement opposite to that of the first embodiment.

MOSスイッチ81A,81Bは、例えば、受信器30のチップ上に設けられている。   The MOS switches 81A and 81B are provided on the chip of the receiver 30, for example.

この構成によれば、ON/OFF信号SsによってMOSスイッチ81A,81Bを選択的に制御することにより第3の差動伝送線路23A,23Bの線路長を選択でき、従って、第2の差動伝送線路22A,22Bと第3の差動伝送線路23A,23Bが電磁界で結合する部分の長さをMOSスイッチ81A,81Bによって容易に変えることができる。   According to this configuration, the line lengths of the third differential transmission lines 23A and 23B can be selected by selectively controlling the MOS switches 81A and 81B with the ON / OFF signal Ss, and accordingly, the second differential transmission is performed. The length of the portion where the lines 22A and 22B and the third differential transmission lines 23A and 23B are coupled by an electromagnetic field can be easily changed by the MOS switches 81A and 81B.

次に、本発明の実施例について説明する。図7は、実施例1における第2,第3の差動伝送線路の寸法及び配置を示す図である。また、図8は、送受信のシミュレーション波形を示し、(a)は差動伝送信号の送信波形図、(b)は第1の差動伝送線路の出力端の波形図、(c)は第3の差動伝送線路の出力端の波形図である。尚、図8において、例えば、差動信号Sd1は第2の差動伝送線路22Aに印加され、差動信号Sd2は第2の差動伝送線路22Bに印加されるが、両信号は差動関係にあるため、相互の位相は逆になっている。 Next, examples of the present invention will be described. FIG. 7 is a diagram illustrating the dimensions and arrangement of the second and third differential transmission lines according to the first embodiment. 8A and 8B show simulation waveforms of transmission and reception, where FIG. 8A is a transmission waveform diagram of a differential transmission signal, FIG. 8B is a waveform diagram of an output end of the first differential transmission line, and FIG. It is a wave form diagram of the output end of this differential transmission line. In FIG. 8, for example, the differential signal S d1 is applied to the second differential transmission line 22A, and the differential signal S d2 is applied to the second differential transmission line 22B. Due to the dynamic relationship, the phases are reversed.

図7に示すように、第2,第3の差動伝送線路22A,22B,23A,23Bは、同一断面寸法及び同一長(約5mm)であり、その断面寸法は、100(幅)×36(厚み)μmである。第2の差動伝送線路22A,22Bの相互の間隔は100μmであり、この第2の差動伝送線路22A,22Bに対向させ、且つ25μmの距離をもたせて第3の差動伝送線路23A,23Bが配設されている。   As shown in FIG. 7, the second and third differential transmission lines 22A, 22B, 23A, and 23B have the same cross-sectional dimensions and the same length (about 5 mm), and the cross-sectional dimensions are 100 (width) × 36. (Thickness) μm. The distance between the second differential transmission lines 22A and 22B is 100 μm. The third differential transmission lines 23A and 23B are opposed to the second differential transmission lines 22A and 22B and have a distance of 25 μm. 23B is provided.

このような構成の第2,第3の差動伝送線路22A,22B,23A,23Bの1線路当たりの奇モードインピーダンスZoddは45.48Ωであり、従って、差動での特性インピーダンスは、第2の差動伝送線路22A,22B及び第3の差動伝送線路23A,23B共に約91Ωとなる。   The odd-mode impedance Zodd per line of the second and third differential transmission lines 22A, 22B, 23A, and 23B having such a configuration is 45.48Ω. Therefore, the differential characteristic impedance is the second characteristic impedance. The differential transmission lines 22A and 22B and the third differential transmission lines 23A and 23B are about 91Ω.

本発明者は、第1の差動伝送線路11として、インピーダンスが100Ω、長さが30mの差動平衡ケーブルを用い、基板21は、誘電率4.4の特性を有するものを用いて、図8(a)に示す2GHzの送信波形によりシミュレーションを実施した。   The present inventor uses a differential balanced cable having an impedance of 100Ω and a length of 30 m as the first differential transmission line 11, and the substrate 21 has a dielectric constant of 4.4. A simulation was performed using a 2 GHz transmission waveform shown in FIG.

まず、図8(a)に示す矩形波による波形の差動信号Sd1,Sd2を上記差動平衡ケーブルに印加し、該差動平衡ケーブルの終端で波形を観測したところ、図8(b)に示すように、差動信号Sd1,Sd2の波形は訛り、三角波になった。 First, the differential signals S d1 and S d2 having a rectangular waveform shown in FIG. 8A are applied to the differential balanced cable, and the waveform is observed at the end of the differential balanced cable. ), The waveforms of the differential signals S d1 and S d2 turned and became a triangular wave.

次に、上記差動平衡ケーブルに対し、図1に示すように第2,第3の差動伝送線路22A,22B,23A,23Bを配置及び接続して、図8(a)に示す差動信号Sd1,Sd2を差動平衡ケーブルに印加したところ、図8(c)に示すように、ピーク及びボトムで若干の訛りが生じたものの、差動信号Sd1,Sd2は送信波形に近いものとなった。このように、本発明により、受信信号は、対称性のよい台形波に補償できることが分かった。 Next, as shown in FIG. 1, second and third differential transmission lines 22A, 22B, 23A, and 23B are arranged and connected to the differential balanced cable, and the differential shown in FIG. When the signals S d1 and S d2 are applied to the differential balanced cable, as shown in FIG. 8 (c), although some distorting occurs at the peak and the bottom, the differential signals S d1 and S d2 have a transmission waveform. It was close. Thus, according to the present invention, it was found that the received signal can be compensated for a trapezoidal wave with good symmetry.

次に、本発明の実施例2について説明する。図9は、プリント基板上での10Gbps超の超高速伝送を想定した解析結果を示す特性図である。図9は、第2,第3の差動信号線路22A,22B,23A,23Bのそれぞれの長さを75μmから500μmまで変化させたときの送信器10から受信器30への伝達特性を示している。尚、図9において、「S21」は20log(out/in)を示し、1milは25.4μである。   Next, a second embodiment of the present invention will be described. FIG. 9 is a characteristic diagram showing an analysis result assuming ultra-high-speed transmission exceeding 10 Gbps on a printed circuit board. FIG. 9 shows transfer characteristics from the transmitter 10 to the receiver 30 when the lengths of the second and third differential signal lines 22A, 22B, 23A, and 23B are changed from 75 μm to 500 μm. Yes. In FIG. 9, “S21” indicates 20 log (out / in), and 1 mil is 25.4 μm.

解析に際しては、第2,第3の差動伝送線路22A,22B,23A,23Bは、共に厚さ25μm、線幅50μmとし、第2の差動伝送線路22A,22Bの相互間及び第3の差動伝送線路23A,23Bの相互間の間隔を50μmとした。また、第2の差動信号線路22A,22Bと第3の差動信号線路23A,23Bとの間の距離は、25μmとした。   In the analysis, each of the second and third differential transmission lines 22A, 22B, 23A, and 23B has a thickness of 25 μm and a line width of 50 μm, and between the second differential transmission lines 22A and 22B and the third The distance between the differential transmission lines 23A and 23B was set to 50 μm. The distance between the second differential signal lines 22A and 22B and the third differential signal lines 23A and 23B was set to 25 μm.

図9の特性aに示すように、第2,第3の差動伝送線路22A,22B,23A,23Bの長さ(結合長)が500μmであれば、10GHz以上の周波数域では、伝達損失を生じることなく伝達される。更に、10GHz未満の周波数域は、図3の特性aを補償するように減衰している。   As shown by the characteristic a in FIG. 9, if the length (coupling length) of the second and third differential transmission lines 22A, 22B, 23A, and 23B is 500 μm, transmission loss is reduced in a frequency range of 10 GHz or more. It is transmitted without occurring. Furthermore, the frequency region below 10 GHz is attenuated so as to compensate for the characteristic a in FIG.

解析結果から、伝送する波形のエッジが十分に伝送され、且つ台形波に戻る条件は、信号が伝搬する時間と送信波形の元のエッジの立ち上がり時間とが等しいか、或いは、それ以上であることである。この条件以下の場合、等化後の信号に減衰が生じ、また、上記条件以上では低域の減衰が小さくなる。   From the analysis result, the condition that the edge of the waveform to be transmitted is sufficiently transmitted and returns to the trapezoidal wave is that the signal propagation time is equal to or longer than the rise time of the original edge of the transmission waveform. It is. Below this condition, the equalized signal is attenuated, and above this condition, the low-frequency attenuation is small.

尚、本発明では、伝送する2値データ“0”及び“1”の連続数があまりに多くなると、伝達されなくなる恐れがある。そこで、例えば、予め8B(8ビット)/10B(10ビット)符号化のような“0”及び“1”の連続する数を制限する符号化を行うのが望ましい。   In the present invention, if the number of consecutive binary data “0” and “1” to be transmitted is too large, there is a possibility that it will not be transmitted. Therefore, for example, it is desirable to perform encoding that limits the number of consecutive “0” and “1” such as 8B (8 bits) / 10B (10 bits) encoding in advance.

8B/10B符号化は、10ビットの符号空間の中から、“0”と“1”の数が同じになるようなパターンを256個(8ビット分)選び、送信時には8ビットを10ビットに変換し、受信時には10ビットを8ビットに変換する符号化方式である。   8B / 10B encoding selects 256 patterns (equivalent to 8 bits) that have the same number of “0” and “1” from the 10-bit code space, and changes 8 bits to 10 bits during transmission. This is an encoding method in which 10 bits are converted into 8 bits at the time of reception.

[他の実施の形態]
尚、本発明は、上記各実施の形態に限定されず、その要旨を変更しない範囲内で種々な変形が可能である。
[Other embodiments]
In addition, this invention is not limited to said each embodiment, A various deformation | transformation is possible within the range which does not change the summary.

例えば、第3の差動伝送線路23A,23Bは、配線パターンによるものとしたが、ケーブルであってもよい。   For example, the third differential transmission lines 23A and 23B are based on the wiring pattern, but may be cables.

また、第2の差動伝送線路22A,22B及び第3の差動伝送線路23A,23Bは、共に特性が相互に異なる3つ以上とし、差動伝送線路の組み合わせが3つ以上になるようにして、これらを選択するスイッチを第2,第3の差動伝送線路22A,22B,23A,23Bに接続し、第1の伝送線路の特性に応じてスイッチにより第2,第3の差動伝送線路の各々の内の2線路がペアで選択される構成にすれば、最適な周波数特性を得ることができる。   Further, the second differential transmission lines 22A and 22B and the third differential transmission lines 23A and 23B have three or more different characteristics, and the number of combinations of the differential transmission lines is three or more. The switches for selecting these are connected to the second and third differential transmission lines 22A, 22B, 23A, and 23B, and the second and third differential transmissions are performed by the switches according to the characteristics of the first transmission line. If the configuration is such that two of the lines are selected as a pair, an optimum frequency characteristic can be obtained.

更に、受信器30で受信した受信信号のレベルに基づいて差動伝送線路の減衰特性を判別し、上記冗長配線部による周波数特性の制御や、上記スイッチによる周波数特性の制御を行う構成も可能である。   Further, it is possible to determine the attenuation characteristic of the differential transmission line based on the level of the received signal received by the receiver 30, and to control the frequency characteristic by the redundant wiring part or the frequency characteristic by the switch. is there.

図1は、本発明の第1の実施の形態に係る信号伝送装置を模式的に示した斜視図である。FIG. 1 is a perspective view schematically showing a signal transmission device according to a first embodiment of the present invention. 図2は、従来技術による波形等化回路の等価回路図である。FIG. 2 is an equivalent circuit diagram of a conventional waveform equalization circuit. 図3は、図2の等価回路の減衰特性を示す特性図である。FIG. 3 is a characteristic diagram showing the attenuation characteristic of the equivalent circuit of FIG. 図4は、本発明の第2の実施の形態に係る信号伝送装置を示す断面図である。FIG. 4 is a sectional view showing a signal transmission apparatus according to the second embodiment of the present invention. 図5は、本発明の第3の実施の形態に係る信号伝送装置を模式的に示した斜視図である。FIG. 5 is a perspective view schematically showing a signal transmission apparatus according to the third embodiment of the present invention. 図6は、本発明の第4の実施の形態に係る信号伝送装置を模式的に示した斜視図である。FIG. 6 is a perspective view schematically showing a signal transmission apparatus according to the fourth embodiment of the present invention. 図7は、実施例1における第2,第3の差動伝送線路の寸法及び配置を示す図である。FIG. 7 is a diagram illustrating the dimensions and arrangement of the second and third differential transmission lines in the first embodiment. 図8は、送受信のシミュレーション波形を示し、(a)は差動伝送信号の送信波形図、(b)は第1の差動伝送線路の出力端の受信波形図、(c)は第3の差動伝送線路の出力端の波形図である。8A and 8B show simulation waveforms for transmission and reception, where FIG. 8A is a transmission waveform diagram of a differential transmission signal, FIG. 8B is a reception waveform diagram of the output terminal of the first differential transmission line, and FIG. It is a wave form diagram of the output end of a differential transmission line. 図9は、実施例2に対応し、プリント基板上での10Gbps超の超高速伝送を想定した解析結果を示す特性図である。FIG. 9 is a characteristic diagram corresponding to Example 2 and showing an analysis result assuming an ultrahigh-speed transmission exceeding 10 Gbps on a printed circuit board.

符号の説明Explanation of symbols

10 送信器
11 第1の差動伝送線路
20 伝送線路部
21 基板
21a 表面
21b 裏面
22A,22B 第2の差動信号線路
23A,23B 第3の差動伝送線路
24,25,26 終端抵抗
30 受信器
31 伝送線路
41A〜41D 抵抗
42A〜42F コンデンサ
43A〜43D インダクタ
50 送信部
51A,51B 第4の差動伝送線路
52 電極パッド
52A,52B 第5の差動伝送線路
53A,53B 第6の差動伝送線路
54 基板
55 電極パッド
60 パッケージ
61 本体
62 はんだボール
63A,63B 電極パッド
64A,64B 第7の差動伝送線路
70 LSI
70a メタル配線層
70b 絶縁層
71A,71B 第8の差動伝送線路
81A,81B MOSスイッチ
100 信号伝送装置
DESCRIPTION OF SYMBOLS 10 Transmitter 11 1st differential transmission line 20 Transmission line part 21 Board | substrate 21a Front surface 21b Back surface 22A, 22B 2nd differential signal line 23A, 23B 3rd differential transmission line 24, 25, 26 Termination resistance 30 Reception Unit 31 Transmission lines 41A to 41D Resistors 42A to 42F Capacitors 43A to 43D Inductor 50 Transmitters 51A and 51B Fourth differential transmission line 52 Electrode pads 52A and 52B Fifth differential transmission lines 53A and 53B Sixth differential Transmission line 54 Substrate 55 Electrode pad 60 Package 61 Body 62 Solder balls 63A and 63B Electrode pads 64A and 64B Seventh differential transmission line 70 LSI
70a Metal wiring layer 70b Insulating layers 71A and 71B Eighth differential transmission lines 81A and 81B MOS switch 100 Signal transmission device

Claims (6)

送信デバイスに接続され、前記送信デバイスからの差動信号を伝送する第1の差動伝送線路と、
同一形状を有して同一平面上に平行配置されると共に前記第1の差動伝送線路に接続された一対の導体線路からなる第2の差動伝送線路と、
前記第2の差動伝送線路の終端間に接続された終端抵抗と、
前記第2の差動伝送線路に電磁結合または静電結合もしくは両方が形成されるように配置されると共に、一端に受信デバイスが接続された一対の導体線路からなる第3の差動伝送線路と、
を備えたことを特徴とする波形等化回路。
A first differential transmission line connected to the transmission device and transmitting a differential signal from the transmission device;
A second differential transmission line comprising a pair of conductor lines having the same shape and arranged in parallel on the same plane and connected to the first differential transmission line;
A termination resistor connected between terminations of the second differential transmission line;
A third differential transmission line comprising a pair of conductor lines arranged so that electromagnetic coupling or electrostatic coupling or both are formed in the second differential transmission line, and having a receiving device connected to one end; ,
A waveform equalization circuit comprising:
前記第2及び第3の差動伝送線路は、同一基板に設けられていることを特徴とする請求項1に記載の波形等価回路。   The waveform equivalent circuit according to claim 1, wherein the second and third differential transmission lines are provided on the same substrate. 前記第2及び第3の差動伝送線路は、空間を介して対向配置された異なるデバイスに分けて設けられていることを特徴とする請求項1に記載の波形等価回路。   2. The waveform equivalent circuit according to claim 1, wherein the second and third differential transmission lines are separately provided in different devices arranged to face each other through a space. 前記第2及び第3の差動伝送線路は、前記第1の差動伝送線路の減衰特性と逆特性になるように線路幅、線路長、間隔が設定されていることを特徴とする請求項1に記載の波形等価回路。   The line width, line length, and interval are set so that the second and third differential transmission lines have characteristics opposite to the attenuation characteristics of the first differential transmission line. 2. The waveform equivalent circuit according to 1. 前記第3の差動伝送線路は、ケーブルであることを特徴とする請求項1に記載の波形等価回路。   The waveform equivalent circuit according to claim 1, wherein the third differential transmission line is a cable. 前記第3の差動伝送線路は、線路の途中が長さ方向に分割されており、前記分割間にスイッチが接続され、前記スイッチが前記第1の差動伝送線路の特性に応じで切り替えられることを特徴とする請求項1に記載の波形等価回路。   In the third differential transmission line, the middle of the line is divided in the length direction, a switch is connected between the divisions, and the switch is switched according to the characteristics of the first differential transmission line. The waveform equivalent circuit according to claim 1.
JP2007219479A 2007-08-27 2007-08-27 Waveform equalizing circuit Withdrawn JP2009055284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007219479A JP2009055284A (en) 2007-08-27 2007-08-27 Waveform equalizing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007219479A JP2009055284A (en) 2007-08-27 2007-08-27 Waveform equalizing circuit

Publications (1)

Publication Number Publication Date
JP2009055284A true JP2009055284A (en) 2009-03-12

Family

ID=40505954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007219479A Withdrawn JP2009055284A (en) 2007-08-27 2007-08-27 Waveform equalizing circuit

Country Status (1)

Country Link
JP (1) JP2009055284A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091534A1 (en) * 2012-12-10 2014-06-19 松江エルメック株式会社 Passive equalizer
CN104716920A (en) * 2013-12-12 2015-06-17 松江Elmec株式会社 Passive equalizer
WO2015140976A1 (en) * 2014-03-20 2015-09-24 三菱電機株式会社 Processing circuit and signal correction method
WO2017002167A1 (en) * 2015-06-29 2017-01-05 株式会社日立製作所 Substrate, server comprising substrate, and system comprising server

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091534A1 (en) * 2012-12-10 2014-06-19 松江エルメック株式会社 Passive equalizer
CN104541484A (en) * 2012-12-10 2015-04-22 松江Elmec株式会社 Passive equalizer
US9401688B2 (en) 2012-12-10 2016-07-26 Matsue Elmec Corporation Passive equalizer
JPWO2014091534A1 (en) * 2012-12-10 2017-01-05 松江エルメック株式会社 Passive equalizer
CN104541484B (en) * 2012-12-10 2017-09-08 松江Elmec株式会社 Passive balanced device
CN104716920A (en) * 2013-12-12 2015-06-17 松江Elmec株式会社 Passive equalizer
WO2015140976A1 (en) * 2014-03-20 2015-09-24 三菱電機株式会社 Processing circuit and signal correction method
JPWO2015140976A1 (en) * 2014-03-20 2017-04-06 三菱電機株式会社 Processing circuit and signal correction method
US10084618B2 (en) 2014-03-20 2018-09-25 Mitsubishi Electric Corporation Processing circuit and signal correction method
WO2017002167A1 (en) * 2015-06-29 2017-01-05 株式会社日立製作所 Substrate, server comprising substrate, and system comprising server

Similar Documents

Publication Publication Date Title
JP4371065B2 (en) Transmission line, communication apparatus, and wiring formation method
JP5670251B2 (en) Common mode noise suppression circuit
JP5213087B2 (en) Inter-module communication device
CN101594729B (en) Circuit board capable of compensating capacitance characteristics of via stump
TW201138563A (en) Reducing far-end crosstalk in chip-to-chip communication systems and components
JP6388667B2 (en) Apparatus and method for transmitting differential data signals
JP2008294837A (en) Signal transmission circuit and system
JP2006352347A (en) High-frequency transmission line
KR100923928B1 (en) A micro-strip transmission line structure of a serpentine type
US20140022030A1 (en) Signal transmission circuit and signal transmission cell thereof
JP2009055284A (en) Waveform equalizing circuit
KR20140125936A (en) Passive equalizer and system for transmission of high speed digital signal using the same
CN105244713A (en) Cable for transmitting signal
JP4210248B2 (en) Parallel wiring of integrated circuits
US8878627B2 (en) Monolithic power splitter for differential signal
JP2016066946A (en) Signal transmission cable
JP6385316B2 (en) Transmission equipment
US20040103383A1 (en) Design, layout and method of manufacture for a circuit that taps a differential signal
JP4739178B2 (en) Signal equalizer
JP4508037B2 (en) Attenuator
JP6649195B2 (en) Differential signal transmission device
CN106025471A (en) Balanced filter branch line coupler
US9148114B2 (en) Monolithic power splitter for differential signal
JP6452332B2 (en) Printed circuit board
US9236645B2 (en) Serpentine delay line structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100713

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111004