JP2009055049A - Multi chamber film-forming apparatus - Google Patents

Multi chamber film-forming apparatus Download PDF

Info

Publication number
JP2009055049A
JP2009055049A JP2008259557A JP2008259557A JP2009055049A JP 2009055049 A JP2009055049 A JP 2009055049A JP 2008259557 A JP2008259557 A JP 2008259557A JP 2008259557 A JP2008259557 A JP 2008259557A JP 2009055049 A JP2009055049 A JP 2009055049A
Authority
JP
Japan
Prior art keywords
chamber
layer
film forming
film
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008259557A
Other languages
Japanese (ja)
Inventor
Koji Tsunekawa
孝二 恒川
Daisuke Nakajima
大輔 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2008259557A priority Critical patent/JP2009055049A/en
Publication of JP2009055049A publication Critical patent/JP2009055049A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-chamber film-forming apparatus capable of manufacturing spin-valve giant magnetoresistive films satisfying both high magnetoresistive change ratio (MR ratio) and low interlayer coupling magnetic field (Hin). <P>SOLUTION: The multi-chamber film-forming apparatus is equipped with a substrate transferring robot for transferring a substrate in the order of a first film-forming chamber 13A to film-form an anti-ferromagnetic layer, a plasma treating chamber 14 for plasma treatment, a first film-forming chamber 13A to film-form a magnetization fixing layer, a plasma treating chamber 14 for plasma treatment, and a second film-forming chamber 13B to film-form a nonmagnetic conduction layer or oxide layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はスピンバルブ型巨大磁気抵抗薄膜の製造方法に関し、特に、磁気ディスク駆動装置の磁気再生ヘッドに適した高性能なスピンバルブ型巨大磁気抵抗薄膜の製造に用いるマルチチャンバ成膜装置に関する。 The present invention relates to a method of manufacturing a spin valve type giant magnetoresistive thin film, and more particularly to a multi-chamber film forming apparatus used for manufacturing a high performance spin valve type giant magnetoresistive thin film suitable for a magnetic reproducing head of a magnetic disk drive.

磁気ディスク駆動装置の磁気再生ヘッドに用いられているスピンバルブ型巨大磁気抵抗薄膜は、反強磁性層、磁化固定層、非磁性伝導層、磁化自由層の複数の層(薄膜)から成る多層膜構造を有する。スピンバルブ型巨大磁気抵抗薄膜の多層膜構造において、磁化固定層と磁化自由層の間には非磁性伝導層が設けられ、当該非磁性伝導層によって隔てられている。また磁化固定層には反強磁性層を隣接させているため、磁化固定層の磁気モーメントは反強磁性層との交換結合によって一方向に固定されている。一方、磁化自由層の磁気モーメントは、外部磁界に応じて自由に回転するようになっている。   A spin-valve giant magnetoresistive thin film used in a magnetic read head of a magnetic disk drive is a multilayer film composed of a plurality of layers (thin films) of an antiferromagnetic layer, a magnetization fixed layer, a nonmagnetic conductive layer, and a magnetization free layer. It has a structure. In the multilayer structure of the spin valve type giant magnetoresistive thin film, a nonmagnetic conductive layer is provided between the magnetization fixed layer and the magnetization free layer, and is separated by the nonmagnetic conductive layer. In addition, since the antiferromagnetic layer is adjacent to the magnetization fixed layer, the magnetic moment of the magnetization fixed layer is fixed in one direction by exchange coupling with the antiferromagnetic layer. On the other hand, the magnetic moment of the magnetization free layer is freely rotated according to the external magnetic field.

スピンバルブ型巨大磁気抵抗薄膜では、磁化固定層の磁気モーメントと磁化自由層の磁気モーメントがなす相対角度によって電気抵抗が変化するという、いわゆる巨大磁気抵抗効果が得られる。巨大磁気抵抗効果による電気抵抗の変化の割合は磁気抵抗変化率(MR比)と呼ばれ、スピンバルブ型巨大磁気抵抗薄膜のMR比は、従来の異方性磁気抵抗薄膜に比べてはるかに高いという特性を有している。   In the spin valve type giant magnetoresistive thin film, a so-called giant magnetoresistive effect is obtained in which the electrical resistance changes depending on the relative angle formed by the magnetic moment of the magnetization fixed layer and the magnetic moment of the magnetization free layer. The rate of change in electrical resistance due to the giant magnetoresistance effect is called magnetoresistance change rate (MR ratio), and the MR ratio of the spin valve type giant magnetoresistive thin film is much higher than that of the conventional anisotropic magnetoresistive thin film. It has the characteristic.

スピンバルブ型巨大磁気抵抗薄膜には3つのタイプがある。第1のタイプは、図17に示されるごとき、基板111側から緩衝層112、反強磁性層113、磁化固定層114、非磁性伝導層115、磁化自由層116、保護層117の順番で連続的に積層されるいわゆるボトムタイプである。第2のタイプは、図18に示されるごとき、基板111側から緩衝層112、磁化自由層116、非磁性伝導層115、磁化固定層114、反強磁性層113、保護層117の順番で連続的に積層されるいわゆるトップタイプである。第3のタイプは、図19に示されるごとき、基板111側から緩衝層112、第1反強磁性層113A、第1磁化固定層114A、第1非磁性伝導層115A、磁化自由層116、第2非磁性伝導層115B、第2磁化固定層114B、第2反強磁性層113B、保護層117の順番で連続的に積層されるいわゆるデュアルタイプである。   There are three types of spin valve type giant magnetoresistive thin films. In the first type, as shown in FIG. 17, the buffer layer 112, the antiferromagnetic layer 113, the magnetization fixed layer 114, the nonmagnetic conductive layer 115, the magnetization free layer 116, and the protective layer 117 are sequentially arranged from the substrate 111 side. It is a so-called bottom type that is laminated. In the second type, as shown in FIG. 18, the buffer layer 112, the magnetization free layer 116, the nonmagnetic conductive layer 115, the magnetization fixed layer 114, the antiferromagnetic layer 113, and the protective layer 117 are sequentially arranged from the substrate 111 side. It is a so-called top type that is laminated. As shown in FIG. 19, the third type includes a buffer layer 112, a first antiferromagnetic layer 113A, a first magnetization fixed layer 114A, a first nonmagnetic conductive layer 115A, a magnetization free layer 116, a first layer from the substrate 111 side. 2 is a so-called dual type in which a nonmagnetic conductive layer 115B, a second magnetization fixed layer 114B, a second antiferromagnetic layer 113B, and a protective layer 117 are successively stacked.

上記の3つのタイプのスピンバルブ型巨大磁気抵抗薄膜において、従来では単層であった磁化固定層114,114A,114Bを、さらに磁化固定層要素、非磁性層、磁化固定層要素から成る積層フェリ構造に置き換えた薄膜も提案されている(米国特許第5465185号公報)。さらに磁化自由層116についても、単層構造のものと多層構造をなすものとがある。磁化自由層と磁化固定層で多層構造のものでは、すべてが磁性膜であるが、異なる磁性膜を積層させた場合、あるいは、非磁性膜を間に挟んだサンドイッチ構造をなす場合がある。   In the above-described three types of spin-valve giant magnetoresistive thin films, the magnetic pinned layers 114, 114A, 114B, which have conventionally been a single layer, are further laminated to a laminated ferrimagnetic layer element including a magnetic pinned layer element, a nonmagnetic layer, and a magnetic pinned layer element. A thin film replaced with a structure has also been proposed (US Pat. No. 5,465,185). Further, the magnetization free layer 116 may be a single layer structure or a multilayer structure. In the multilayer structure of the magnetization free layer and the magnetization fixed layer, all are magnetic films, but different magnetic films may be laminated or a sandwich structure with a nonmagnetic film sandwiched therebetween may be formed.

上記スピンバルブ型巨大磁気抵抗薄膜の巨大磁気抵抗効果は、積層膜の積層界面におけるスピン依存散乱に起因する。そのため、高MR比を得るためには、スピンバルブ膜の製造工程において界面の清浄性や平坦性が重要となる。そこでスピンバルブ型巨大磁気抵抗薄膜では、界面の清浄性や平坦性を達成するために、高真空中で連続的に、かつ層と層の成膜間隔ができるだけ短時間になるように同一真空室中で成膜されることが多い。   The giant magnetoresistive effect of the spin valve giant magnetoresistive thin film is caused by spin-dependent scattering at the laminated interface of the laminated film. Therefore, in order to obtain a high MR ratio, the cleanliness and flatness of the interface are important in the manufacturing process of the spin valve film. Therefore, in the spin valve type giant magnetoresistive thin film, in order to achieve cleanliness and flatness of the interface, the same vacuum chamber is used so that the deposition interval between layers is as short as possible continuously in a high vacuum. Often formed into a film.

真空中における成膜の手法としては、マグネトロンスパッタリング、イオンビームスパッタリング、ECRスパッタリング、対向ターゲットスパッタリング、高周波スパッタリング、電子ビーム蒸着、抵抗加熱蒸着、MBE(Molecular Beam Epitaxy)などがある。   Examples of film forming techniques in vacuum include magnetron sputtering, ion beam sputtering, ECR sputtering, counter target sputtering, high frequency sputtering, electron beam evaporation, resistance heating evaporation, and MBE (Molecular Beam Epitaxy).

高MR比を得るためには、巨大磁気抵抗効果に寄与しない伝導電子の流れ(シャント効果)を抑制するために非磁性伝導層115の膜厚は薄い方が良い。しかしながら、非磁性伝導層115の膜厚を薄くすると磁化固定層114と磁化自由層116が非磁性伝導層115を介して強磁性的に層間結合してしまう。この磁化固定層と磁化自由層の間の層間結合磁界(Hin)は、磁気ディスク駆動装置の磁気再生ヘッドの実用上小さい方が良く、−10〜+10 Oeの範囲内に含まれる値の磁界が望ましい。従来、層間結合磁界を小さくするために非磁性伝導層115の膜厚を2.5〜3.5nmと厚く設定していた。   In order to obtain a high MR ratio, the nonmagnetic conductive layer 115 should be thin in order to suppress the flow of conduction electrons (shunt effect) that does not contribute to the giant magnetoresistance effect. However, if the film thickness of the nonmagnetic conductive layer 115 is reduced, the magnetization fixed layer 114 and the magnetization free layer 116 are ferromagnetically coupled via the nonmagnetic conductive layer 115. The interlayer coupling magnetic field (Hin) between the magnetization fixed layer and the magnetization free layer is preferably small in practical use of the magnetic reproducing head of the magnetic disk drive device, and the magnetic field having a value included in the range of −10 to +10 Oe. desirable. Conventionally, in order to reduce the interlayer coupling magnetic field, the film thickness of the nonmagnetic conductive layer 115 has been set to 2.5 to 3.5 nm.

また従来の技術では、ボトムタイプのスピンバルブ膜において磁化固定層に1nm以下の極薄い酸化層(NOL:Nano oxide layer)を挿入することによって磁化固定層と磁化自由層の間に生じる強磁性的結合を低減する技術も提案されている(Y.Kamiguchi et al.:Digests of INTERMAG '99, DB-01)。その結果、非磁性伝導層が厚みが薄いところ(2〜2.5nm)においても比較的に小さな層間結合磁界が得られ、高いMR比が得られている。   Further, in the conventional technique, in a bottom type spin valve film, a ferromagnetic oxide generated between a magnetization fixed layer and a magnetization free layer by inserting a very thin oxide layer (NOL: Nano oxide layer) of 1 nm or less into the magnetization fixed layer. A technique for reducing binding has also been proposed (Y. Kamiguchi et al .: Digests of INTERMAG '99, DB-01). As a result, a relatively small interlayer coupling magnetic field is obtained even when the nonmagnetic conductive layer is thin (2 to 2.5 nm), and a high MR ratio is obtained.

従来のスピンバルブ型巨大磁気抵抗薄膜では、層間結合磁界を小さくするために非磁性伝導層の膜厚を厚く(2.5〜3.5nm)設定していたが、巨大磁気抵抗効果に寄与しない伝導電子の流れ(シャント効果)が発生し、MR比を低下させてしまうという問題があった。さらに上記の極薄い酸化層の製造工程においては、磁化固定層の成膜の途中に酸化工程を必要とする。酸化工程は複雑な上に再現性が得られにくいという問題があった。   In the conventional spin-valve type giant magnetoresistive thin film, the thickness of the nonmagnetic conductive layer is set to be thick (2.5 to 3.5 nm) in order to reduce the interlayer coupling magnetic field, but this does not contribute to the giant magnetoresistive effect. There is a problem that a flow of conduction electrons (shunt effect) occurs and the MR ratio is lowered. Furthermore, in the manufacturing process of the above-mentioned extremely thin oxide layer, an oxidation process is required during the formation of the magnetization fixed layer. The oxidation process is complicated and reproducibility is difficult to obtain.

本発明の目的は、上記の問題を解決することにあり、非磁性伝導層が薄い場合にも、酸化工程を使用することなく、層間結合磁界を低く維持して高MR比を得ることができるスピンバルブ型巨大磁気抵抗薄膜を製造することができるマルチチャンバ成膜装置を提供することにある。 An object of the present invention is to solve the above-described problem. Even when the nonmagnetic conductive layer is thin, a high MR ratio can be obtained by keeping the interlayer coupling magnetic field low without using an oxidation process. An object of the present invention is to provide a multi-chamber film forming apparatus capable of manufacturing a spin valve type giant magnetoresistive thin film.

本発明に係るマルチチャンバ成膜装置は、上記目的を達成するために次のように構成される。 The multi-chamber film forming apparatus according to the present invention is configured as follows to achieve the above object.

第1のマルチチャンバ装置は、基板を移動させる基板搬送ロボットを備えた真空搬送室、真空搬送室に結合配置され、反強磁性層および磁化固定層を成膜する第1成膜室、並びに、前記真空搬送室に結合配置され、不活性ガスのプラズマを生成するプラズマ処理室を有し、前記基板搬送ロボットは、前記基板を、前記第1成膜室内に搬入し、該第1成膜室内での反強磁性層の成膜終了後、第1成膜室から搬出して前記プラズマ処理室内に搬入し、該プラズマ処理室内でのプラズマ処理終了後、プラズマ処理室から搬出して前記第1成膜室内に搬入し、該第1成膜室内での磁化固定層の成膜終了後、該第1成膜室から搬出するものであることを特徴とする。 The first multi-chamber apparatus, a vacuum transfer chamber having a substrate transfer robot for moving the substrate, coupled arranged in said vacuum transfer chamber, the first film forming chamber you deposited antiferromagnetic layer and the magnetization fixed layer, and, coupled arranged in the vacuum transfer chamber, having a pulp plasma processing chamber to generate a plasma of inert gas, the substrate transfer robot, the substrate was carried into the first film forming chamber, said first after completion of film formation of the antiferromagnetic layer in one deposition chamber, and unloaded from the first film forming chamber is carried into the plasma processing chamber, after the plasma treatment completion in the plasma processing chamber, from the plasma processing chamber out and then carried into the first film forming chamber, characterized in that the post-deposition termination of the first magnetization pinned layer in the film forming chamber is for unloading from the first deposition chamber.

第2のマルチチャンバ装置は、基板を移動させる基板搬送ロボットを備えた真空搬送室、該真空搬送室に結合配置され、反強磁性層および磁化固定層を成膜する第1成膜室、前記真空搬送室に結合配置され、非磁性伝導層または酸化物層を成膜する第2成膜室、並びに、前記真空搬送室に結合配置され、不活性ガスのプラズマを生成するプラズマ処理室を有し、前記基板搬送ロボットは、前記基板を、前記第1成膜室内に搬入し、該第1成膜室内での反強磁性層の成膜終了後、第1成膜室から搬出して前記プラズマ処理室内に搬入し、該プラズマ処理室内でのプラズマ処理終了後、プラズマ処理室から搬出して前記第1成膜室内に搬入し、該第1成膜室内での磁化固定層の成膜終了後、第1成膜室から搬出して前記プラズマ処理室内に搬入し、該プラズマ処理室内でのプラズマ処理終了後、プラズマ処理室から搬出して前記第2成膜室内に搬入し、該第2成膜室内での非磁性伝導層または酸化物層の成膜終了後、第2成膜室から搬出するものであることを特徴とする。 The second multi-chamber apparatus, a vacuum transfer chamber having a substrate transfer robot for moving the substrate, coupled arranged in the vacuum transfer chamber, the first film forming chamber deposited antiferromagnetic layer and the magnetization fixed layer, coupled arranged in the vacuum transfer chamber, a second film forming chamber for forming the non-magnetic conductive layer or an oxide layer as well as the coupled arranged in the vacuum transfer chamber, Help plasma processing to generate plasma of the inert gas has a chamber, the substrate transfer robot, the substrate was carried into the first film forming chamber, after completion of film formation of the antiferromagnetic layer in the first film forming chamber, from the first film forming chamber out and then carried into the plasma processing chamber, after the plasma treatment completion in the plasma processing chamber, and unloaded from the plasma processing chamber is carried into the first film forming chamber, the magnetization fixed in the first film forming chamber after completion deposition layer, to the plasma processing chamber and unloaded from the first film forming chamber Type, after the plasma treatment completion in the plasma processing chamber, and unloaded from the plasma processing chamber is carried into the second film forming chamber, formed of non-magnetic conductive layer or an oxide layer in the second film forming chamber after film ends, characterized in that for unloading from the second film formation chamber.

第3のマルチチャンバ装置は、基板を移動させる基板搬送ロボットを備えた真空搬送室、真空搬送室に結合配置され、緩衝層および反強磁性層を成膜する第1成膜室、並びに、前記真空搬送室に結合配置され、不活性ガスのプラズマを生成するプラズマ処理室を有し、前記基板搬送ロボットは、前記基板を、前記第1成膜室内に搬入し、該第1成膜室内での緩衝層の成膜終了後、第1成膜室から搬出して前記プラズマ処理室内に搬入し、該プラズマ処理室内でのプラズマ処理終了後、プラズマ処理室から搬出して前記第1成膜室内に搬入し、該第1成膜室内での反強磁性層の成膜終了後、第1成膜室から搬出するものであることを特徴とする。 The third multi-chamber apparatus, a vacuum transfer chamber having a substrate transfer robot for moving the substrate, coupled arranged in said vacuum transfer chamber, the first film forming chamber you deposited buffer layer and the antiferromagnetic layer, and coupled arranged in the vacuum transfer chamber, having a pulp plasma processing chamber to generate a plasma of inert gas, the substrate transfer robot, the substrate was carried into the first film forming chamber, said first after completion formation of the buffer layer in the film forming chamber, and unloaded from the first film forming chamber is carried into the plasma processing chamber, after the plasma treatment completion in the plasma processing chamber, and unloaded from the plasma processing chamber carried into the first film forming chamber, characterized in that the post-deposition termination of the antiferromagnetic layer in the first film forming chamber, in which is unloaded from the first film forming chamber.

第4のマルチチャンバ装置は、基板を移動させる基板搬送ロボットを備えた真空搬送室、真空搬送室に結合配置され、磁化自由層を成膜する第1成膜室、前記真空搬送室に結合配置され、緩衝層、および、非磁性伝導層または酸化物層を成膜する第2成膜室、並びに、前記真空搬送室に結合配置され、不活性ガスのプラズマを生成するプラズマ処理室を有し、前記基板搬送ロボットは、前記基板を、前記第2成膜室内に搬入し、該第2成膜室内での緩衝層の成膜終了後、第2成膜室から搬出して前記プラズマ処理室内に搬入し、該プラズマ処理室内でのプラズマ処理終了後、プラズマ処理室から搬出して前記第1成膜室内に搬入し、該第1成膜室内での磁化自由層の成膜終了後、第1成膜室から搬出して前記プラズマ処理室内に搬入し、該プラズマ処理室内でのプラズマ処理終了後、プラズマ処理室から搬出して前記第2成膜室内に搬入し、該第2成膜室内での非磁性伝導層または酸化物層の成膜終了後、第2成膜室から搬出するものであることを特徴とする。 The fourth multi-chamber apparatus, a vacuum transfer chamber having a substrate transfer robot for moving the substrate, coupled arranged in said vacuum transfer chamber, the first film forming chamber you deposited the magnetization free layer, said vacuum transfer chamber coupled arrangement, the buffer layer and the second film forming chamber you deposited nonmagnetic conductive layer or an oxide layer, and, coupled arranged in the vacuum transfer chamber, Help plasma to generate a plasma of inert gas It includes a processing chamber, the substrate transfer robot unloading, the substrate was carried into the second film forming chamber, after completion of film formation of the buffer layer in the second film formation chamber, from the second film formation chamber and then carried into the plasma processing chamber, after the plasma treatment completion in the plasma processing chamber, and unloaded from the plasma processing chamber is carried into the first film forming chamber, the magnetization free layer in the first film forming chamber after completion of the deposition, carried into the plasma processing chamber and unloaded from the first film forming chamber , After the plasma treatment completion in the plasma processing chamber, said plasma processing chamber and unloaded from and carried into the second film forming chamber, the completion of film formation of the non-magnetic conductive layer or an oxide layer at a second deposition chamber after, characterized in that it is intended to be transferred out from the second film formation chamber.

本発明によれば、スピンバルブ型巨大磁気抵抗薄膜の成膜途中において成膜を一時的に中断し所定の界面をプラズマ処理等を行うようにしたため、非磁性伝導層を挟んで成る磁化固定層と磁化自由層の間に働く強磁性的な磁気結合を低減することができ、非磁性伝導層が薄い場合においても磁化固定層と磁化自由層の間の層間結合磁界(Hin)を−10〜+10 Oeの範囲に含まれる磁界に維持し、高いMR比を得ることができる。また本発明によれば、酸素を用いるプロセスや酸化工程は一切使用しないため、安定して再現性良く高いMR比を得ることができる。According to the present invention, since the film formation is temporarily interrupted during the film formation of the spin valve type giant magnetoresistive thin film and the predetermined interface is subjected to the plasma treatment or the like, the magnetization fixed layer formed by sandwiching the nonmagnetic conductive layer And the magnetic coupling between the magnetization fixed layer and the magnetization free layer can be reduced to −10 to −10 even when the nonmagnetic conductive layer is thin. A high MR ratio can be obtained by maintaining the magnetic field within the range of +10 Oe. Further, according to the present invention, since no process using oxygen or oxidation process is used, a high MR ratio can be obtained stably with good reproducibility.

以下に、本発明の好適な実施形態を添付図面に基づいて説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、スピンバルブ型巨大磁気抵抗薄膜の製造方法を実施するのに使用した本発明に係るマルチチャンバ成膜装置の構成図を示す。成膜装置10はマルチチャンバ型成膜装置である。成膜装置10は、基板搬送ロボット11が設けられた真空搬送室12と、真空搬送室12に結合された成膜室13A、成膜室13Bと、プラズマ処理室14と、ロードロック室15とから構成される。成膜室13A,13Bはそれぞれ多種類のカソードを備えたスパッタリング成膜室である。成膜室13Aと成膜室13Bとプラズマ処理室14とロードロック室15の間の基板の移動は、真空搬送室12に設けられた基板搬送ロボット11によって行われる。成膜室13Aと成膜室13Bとプラズマ処理室14とロードロック室15のそれぞれの室の間にはゲートバルブ16が設けられている。 Figure 1 shows a block diagram of a multi-chamber deposition apparatus according to the present invention used in carrying out the manufacturing method of the scan pin valve type giant magnetoresistive film. The film forming apparatus 10 is a multi-chamber type film forming apparatus. The film forming apparatus 10 includes a vacuum transfer chamber 12 in which a substrate transfer robot 11 is provided, a film forming chamber 13A, a film forming chamber 13B, a plasma processing chamber 14 and a load lock chamber 15 coupled to the vacuum transfer chamber 12. Consists of The film forming chambers 13A and 13B are sputtering film forming chambers each provided with various types of cathodes. The movement of the substrate among the film forming chamber 13A, the film forming chamber 13B, the plasma processing chamber 14, and the load lock chamber 15 is performed by the substrate transfer robot 11 provided in the vacuum transfer chamber 12. Gate valves 16 are provided between the film forming chamber 13A, the film forming chamber 13B, the plasma processing chamber 14, and the load lock chamber 15, respectively.

プラズマ処理室14の内部構造が図2に示される。プラズマ処理室14は真空槽21で形成され、この真空槽21内には上部電極22と下部電極23が備えられている。上部電極22は接地され、下部電極23はマッチングボックス24を介してRF電源(高周波電源)25に接続されている。下部電極23の上に基板25が搭載される。プラズマ生成条件が成立した状態で、上部電極22と下部電極23の間でプラズマ26が生成される。   The internal structure of the plasma processing chamber 14 is shown in FIG. The plasma processing chamber 14 is formed of a vacuum chamber 21, and an upper electrode 22 and a lower electrode 23 are provided in the vacuum chamber 21. The upper electrode 22 is grounded, and the lower electrode 23 is connected to an RF power source (high frequency power source) 25 via a matching box 24. A substrate 25 is mounted on the lower electrode 23. Plasma 26 is generated between the upper electrode 22 and the lower electrode 23 in a state where the plasma generation condition is satisfied.

上記プラズマ処理室14の処理動作の代表的な例としては、真空槽21の内部に0.075PaのArガスを導入し、下部電極23に15W(単位面積当たり0.029W/cm)のRF電力を投入してプラズマ26を発生させ、さらに基板バイアス電圧(Vdc)が0Vよりも小さくかつ−300V以上の範囲に含まれる電圧となる条件でプラズマ処理を行うようにしている。基板バイアス電圧の上限値は−2〜−3Vが好ましく、最も好ましい電圧は−15Vから基板バイアス電圧の上限値までの範囲に含まれる電圧である。この電圧はプラズマを発生させることが可能な電圧である。真空槽21に導入されるプロセスガスとしてはArの代わりにKr,Xe,Ne等の不活性ガスあるいはこれに類似するガスを用いることもできる。プラズマ処理室14におけるプロセスガスの圧力としては、0.01〜100Paの範囲の低い圧力に設定される。 As a typical example of the processing operation of the plasma processing chamber 14, 0.075 Pa Ar gas is introduced into the vacuum chamber 21, and RF of 15 W (0.029 W / cm 2 per unit area) is applied to the lower electrode 23. The plasma 26 is generated by applying power, and the plasma treatment is performed under the condition that the substrate bias voltage (Vdc) is smaller than 0V and is in the range of −300V or higher. The upper limit value of the substrate bias voltage is preferably −2 to −3 V, and the most preferable voltage is a voltage included in a range from −15 V to the upper limit value of the substrate bias voltage. This voltage is a voltage capable of generating plasma. As a process gas introduced into the vacuum chamber 21, an inert gas such as Kr, Xe, Ne or the like or a gas similar thereto can be used instead of Ar. The pressure of the process gas in the plasma processing chamber 14 is set to a low pressure in the range of 0.01 to 100 Pa.

成膜室13Aには4種類のターゲット31が設置され、その材質はPtMn,CoFe,NiFeである。また成膜室13Bにも4種類のターゲット32が設置され、その材質はCu,Ta,Ruである。基板搬送ロボット11によって基板25が成膜室13A,13Bおよびプラズマ処理室14の間を移動し、所望の積層構造を有する多層膜が成膜される。   Four types of targets 31 are installed in the film forming chamber 13A, and the materials thereof are PtMn, CoFe, and NiFe. Also, four types of targets 32 are installed in the film forming chamber 13B, and the materials thereof are Cu, Ta, and Ru. The substrate 25 is moved between the film forming chambers 13A and 13B and the plasma processing chamber 14 by the substrate transfer robot 11, and a multilayer film having a desired laminated structure is formed.

一例として図3にボトムタイプのスピンバルブ型巨大磁気抵抗薄膜の積層構造を示す。この積層構造によれば、基板25側からTa(3nm)/NiFe(2nm)/PtMn(12nm)/CoFe(1.8nm)/Ru(0.8nm)/CoFe(2.8nm)/Cu(2.2nm)/CoFe(1.5nm)/NiFe(2.5nm)/Cu(1nm)/Ta(3nm)の順番で連続的に積層される。各層におけるかっこ内に記載された数値は層の厚みであり、単位は「nm(ナノメートル)」である。上記積層構造において、Ta(3nm)とNiFe(2nm)は緩衝層41、PtMn(12nm)は反強磁性層42、CoFe(1.8nm)とRu(0.8nm)とCoFe(2.8nm)は磁化固定層(積層フェリ)43、Cu(2.2nm)は非磁性伝導層44、CoFe(1.5nm)とNiFe(2.5nm)は磁化自由層45、Cu(1nm)はスピンフィルタ46、Ta(3nm)は保護層47である。上記のごときボトムタイプのスピンバルブ膜を成膜するには、初めに成膜室13BでTa(3nm)を成膜し、次に成膜室13AでNiFe(2nm)/PtMn(12nm)/CoFe(1.8nm)を成膜し、次に成膜室13BでRu(0.8nm)を成膜し、次に成膜室13AでCoFe(2.8nm)を成膜し、次に成膜室13BでCu(2.2nm)を成膜し、次に成膜室13AでCoFe(1.5nm)/NiFe(2.5nm)を成膜し、最後に成膜室13BでCu(1nm)/Ta(3nm)を成膜する。   As an example, FIG. 3 shows a laminated structure of a bottom type spin valve type giant magnetoresistive thin film. According to this laminated structure, Ta (3 nm) / NiFe (2 nm) / PtMn (12 nm) / CoFe (1.8 nm) / Ru (0.8 nm) / CoFe (2.8 nm) / Cu (2.2 nm) / The layers are successively laminated in the order of CoFe (1.5 nm) / NiFe (2.5 nm) / Cu (1 nm) / Ta (3 nm). The numerical value described in parentheses in each layer is the thickness of the layer, and the unit is “nm (nanometer)”. In the above laminated structure, Ta (3 nm) and NiFe (2 nm) are buffer layers 41, PtMn (12nm) is an antiferromagnetic layer 42, CoFe (1.8nm), Ru (0.8nm), and CoFe (2.8nm) are fixed magnetization. Layer (laminated ferrimagnetic layer) 43, Cu (2.2 nm) is a nonmagnetic conductive layer 44, CoFe (1.5 nm) and NiFe (2.5 nm) are magnetization free layers 45, Cu (1 nm) is a spin filter 46, Ta (3 nm) is This is a protective layer 47. In order to form a bottom type spin valve film as described above, first, Ta (3 nm) is formed in the film forming chamber 13B, and then NiFe (2 nm) / PtMn (12 nm) / CoFe is formed in the film forming chamber 13A. (1.8 nm) is deposited, then Ru (0.8 nm) is deposited in the deposition chamber 13B, then CoFe (2.8 nm) is deposited in the deposition chamber 13A, and then in the deposition chamber 13B. Cu (2.2 nm) is deposited, then CoFe (1.5 nm) / NiFe (2.5 nm) is deposited in the deposition chamber 13A, and finally Cu (1 nm) / Ta (3 nm) is deposited in the deposition chamber 13B. Form a film.

上記のボトムタイプのスピンバルブ型巨大磁気抵抗薄膜の成膜工程で適宜にプラズマ処理が行われる。プラズマ処理をする場合は、所望の界面で成膜を一時中断して基板25をプラズマ処理室14に搬送し、プラズマ処理を実行する。   Plasma treatment is appropriately performed in the film formation process of the bottom type spin valve type giant magnetoresistive thin film. When plasma processing is performed, film formation is temporarily interrupted at a desired interface, the substrate 25 is transferred to the plasma processing chamber 14, and plasma processing is executed.

上記のボトムタイプスピンバルブ膜の成膜工程において、例えばRu(0.8nm)/CoFe(2.8nm)界面をプラズマ処理する場合には、次の通りである。初めに成膜室13BでTa(3nm)を成膜し、次に成膜室13AでNiFe(2nm)/PtMn(12nm)/CoFe(1.8nm)を成膜し、次に成膜室13BでRu(0.8nm)を成膜した後、プラズマ処理室25に搬送して、前述した処理条件に基づきプラズマ処理を行い、その後、成膜室13AでCoFe(2.8nm)を成膜し、次に成膜室13BでCu(2.2nm)を成膜し、次に成膜室13AでCoFe(1.5nm)/NiFe(2.5nm)を成膜し、最後に成膜室13BでCu(1nm)/Ta(3nm)を成膜する。   In the film forming process of the bottom type spin valve film, for example, when the Ru (0.8 nm) / CoFe (2.8 nm) interface is subjected to plasma treatment, it is as follows. First, Ta (3 nm) is deposited in the deposition chamber 13B, then NiFe (2 nm) / PtMn (12 nm) / CoFe (1.8 nm) is deposited in the deposition chamber 13A, and then in the deposition chamber 13B. After forming the Ru (0.8 nm) film, it is transferred to the plasma processing chamber 25 and subjected to the plasma processing based on the processing conditions described above, and then CoFe (2.8 nm) is formed in the film forming chamber 13A. Cu (2.2 nm) is deposited in the deposition chamber 13B, then CoFe (1.5 nm) / NiFe (2.5 nm) is deposited in the deposition chamber 13A, and finally Cu (1 nm) / is deposited in the deposition chamber 13B. Ta (3 nm) is deposited.

上記の実施形態の説明では、所定の界面を処理する例としてプラズマ処理を行うようにしたが、このプラズマ処理は広い概念であり、界面を不活性ガスによるイオン衝撃で処理するもの、あるいは中性粒子、ラジカル、原子、その他の粒子による処理が含まれる。イオンガンを用いたイオンビームエッチに置き換えても同等の効果が得られる。   In the description of the above embodiment, plasma processing is performed as an example of processing a predetermined interface. However, this plasma processing is a broad concept, and the interface is processed by ion bombardment with an inert gas, or neutral. Includes treatment with particles, radicals, atoms, and other particles. The same effect can be obtained by replacing with ion beam etching using an ion gun.

次に、前述した図1〜図5および後述する各特性図を参照しながら本発明に係るスピンバルブ型巨大磁気抵抗薄膜の製造方法の実施例を詳述する。この実施例の説明では、プラズマ処理される界面が明らかにされる。   Next, an embodiment of a method for manufacturing a spin valve type giant magnetoresistive thin film according to the present invention will be described in detail with reference to FIGS. In the description of this embodiment, the plasma treated interface is revealed.

(実施例1):実施例1は、図3に示したボトムタイプのスピンバルブ型巨大磁気抵抗薄膜の製造方法に関する。すなわち、基板25側からTa(3nm)/NiFe(2nm)/PtMn(12nm)/CoFe(1.8nm)/Ru(0.8nm)/CoFe(2.8nm)/Cu(2.2nm)/CoFe(1.5nm)/NiFe(2.5nm)/Cu(1nm)/Ta(3nm)の積層構造を有するボトムタイプスピンバルブ膜の製造方法で成膜の途中でプラズマ処理を施す例である。図6は、横軸を「プラズマ処理無し」の場合、「PtMn/CoFe界面」、「CoFe/Ru界面」、「Ru/CoFe界面」、「CoFe/Cu界面」の各々でプラズマ処理が行われた場合とし、縦軸をMR比とHinとし、MR比とHinの変化を示した特性図を示している。この実施例ではプラズマ処理の時間を15秒に統一し、プラズマ処理する界面を変えたところ、PtMn/CoFe界面、CoFe/Ru界面、Ru/CoFe界面、CoFe/Cu界面のプラズマ処理によってHinの低減を実現することができた。同時にRu/CoFe界面、CoFe/Cu界面のプラズマ処理ではMR比の向上も達成できた。そのため、本実施例の膜構成ではRu/CoFe界面またはCoFe/Cu界面をプラズマ処理することが好ましく、Ru/CoFe界面とCoFe/Cu界面の両方をプラズマ処理することがより好ましい。   (Example 1): Example 1 relates to a method of manufacturing the bottom type spin valve type giant magnetoresistive thin film shown in FIG. That is, from the substrate 25 side, Ta (3 nm) / NiFe (2 nm) / PtMn (12 nm) / CoFe (1.8 nm) / Ru (0.8 nm) / CoFe (2.8 nm) / Cu (2.2 nm) / CoFe (1.5 nm) This is an example in which plasma processing is performed in the middle of film formation by a manufacturing method of a bottom type spin valve film having a laminated structure of / NiFe (2.5 nm) / Cu (1 nm) / Ta (3 nm). In FIG. 6, when the horizontal axis is “no plasma treatment”, plasma treatment is performed at each of “PtMn / CoFe interface”, “CoFe / Ru interface”, “Ru / CoFe interface”, and “CoFe / Cu interface”. In this case, the vertical axis represents MR ratio and Hin, and a characteristic diagram showing changes in MR ratio and Hin is shown. In this example, the plasma treatment time was unified to 15 seconds, and the plasma treatment interface was changed. As a result, the plasma treatment at the PtMn / CoFe interface, CoFe / Ru interface, Ru / CoFe interface, and CoFe / Cu interface reduced Hin. Was able to be realized. At the same time, the MR ratio was improved by plasma treatment at the Ru / CoFe interface and the CoFe / Cu interface. For this reason, in the film configuration of this example, it is preferable to plasma-treat the Ru / CoFe interface or the CoFe / Cu interface, and more preferably to plasma-treat both the Ru / CoFe interface and the CoFe / Cu interface.

Ta(3nm)/NiFe(2nm)/PtMn(12nm)/CoFe(1.8nm)/Ru(0.8nm)/CoFe(2.8nm)/Cu(2.2nm)/CoFe(1.5nm)/NiFe(2.5nm)/Cu(1nm)/Ta(3nm)の積層構造を有するボトムタイプスピンバルブ膜では、NiFe(2nm)/PtMn(12nm)の界面、PtMn(12nm)/CoFe(1.8nm)の界面、CoFe(1.8nm)/Ru(0.8nm)の界面、Ru(0.8nm)/CoFe(2.8nm)の界面、CoFe(2.8nm)/Cu(2.2nm)の界面でプラズマ処理を施すことにより、Hinの低減とMR比の向上が期待される。図3中、右向きの矢印で指した界面は、プラズマ処理を施すことが望ましい界面である。   Ta (3nm) / NiFe (2nm) / PtMn (12nm) / CoFe (1.8nm) / Ru (0.8nm) / CoFe (2.8nm) / Cu (2.2nm) / CoFe (1.5nm) / NiFe (2.5nm) In the bottom type spin valve film having a stacked structure of / Cu (1 nm) / Ta (3 nm), the interface of NiFe (2 nm) / PtMn (12 nm), the interface of PtMn (12 nm) / CoFe (1.8 nm), CoFe (1.8 nm) nm) / Ru (0.8 nm) interface, Ru (0.8 nm) / CoFe (2.8 nm) interface, and CoFe (2.8 nm) / Cu (2.2 nm) interface to reduce the Hin. An improvement in MR ratio is expected. In FIG. 3, the interface pointed by a right-pointing arrow is an interface that is preferably subjected to plasma treatment.

(実施例2):実施例2は、図4に示したトップタイプのスピンバルブ型巨大磁気抵抗薄膜の製造方法に関する。すなわち、基板25側からTa(3nm)/NiFe(2.5nm)/CoFe(1.5nm)/Cu(2.2nm)/CoFe(2.8nm)/Ru(0.8nm)/CoFe(1.8nm)/PtMn(12nm)/Ta(3nm)の積層構造を有するトップタイプスピンバルブ膜の製造方法で成膜の途中でプラズマ処理を施す例である。この積層構造で、Ta(3nm)は緩衝層41、NiFe(2.5nm)/CoFe(1.5nm)は磁化自由層45、Cu(2.2nm)は非磁性伝導層44、CoFe(2.8nm)/Ru(0.8nm)/CoFe(1.8nm)は磁化固定層(積層フェリ)43、PtMn(12nm)は反強磁性層42、Ta(3nm)は保護層47である。図7は、横軸を「プラズマ処理無し」の場合、「Ta/NiFe界面」、「CoFe/Ru界面」、「Cu/CoFe界面」、「Ru/CoFe界面」の各々でプラズマ処理が行われた場合とし、縦軸をMR比とHinとし、MR比とHinの変化を示した特性図を示している。本実施例でもプラズマ処理の時間を15秒に統一しプラズマ処理する界面を変えたところ、図7に示すごとくTa/NiFe界面、CoFe/Cu界面のプラズマ処理によってHinの低減を実現することができた。またRu/CoFe界面のプラズマ処理ではMR比の向上を達成した。そのため、本実施例の膜構成では、Ta/NiFe界面、CoFe/Cu界面、Ru/CoFe界面の少なくとも1箇所をプラズマ処理することが好ましく、CoFe/Cu界面とRu/CoFe界面の両方をプラズマ処理することがより好ましい。またCoFe/Ru界面をプラズマ処理しても同様な効果を期待することができる。図4中、右向きの矢印で指した界面は、プラズマ処理を施すことが望ましい界面である。   (Example 2): Example 2 relates to a method of manufacturing the top-type spin-valve giant magnetoresistive thin film shown in FIG. That is, from the substrate 25 side, Ta (3 nm) / NiFe (2.5 nm) / CoFe (1.5 nm) / Cu (2.2 nm) / CoFe (2.8 nm) / Ru (0.8 nm) / CoFe (1.8 nm) / PtMn (12 nm ) / Ta (3 nm) is an example in which plasma treatment is performed in the middle of film formation by a method for producing a top type spin valve film having a laminated structure. In this stacked structure, Ta (3 nm) is a buffer layer 41, NiFe (2.5 nm) / CoFe (1.5 nm) is a magnetization free layer 45, Cu (2.2 nm) is a nonmagnetic conductive layer 44, CoFe (2.8 nm) / Ru (0.8 nm) / CoFe (1.8 nm) is a magnetization fixed layer (laminated ferrimagnetic layer) 43, PtMn (12 nm) is an antiferromagnetic layer 42, and Ta (3 nm) is a protective layer 47. In FIG. 7, when the horizontal axis is “no plasma treatment”, plasma treatment is performed at each of “Ta / NiFe interface”, “CoFe / Ru interface”, “Cu / CoFe interface”, and “Ru / CoFe interface”. In this case, the vertical axis represents MR ratio and Hin, and a characteristic diagram showing changes in MR ratio and Hin is shown. In this embodiment, the plasma treatment time is unified to 15 seconds and the plasma treatment interface is changed. As shown in FIG. 7, the reduction of Hin can be realized by the plasma treatment of the Ta / NiFe interface and the CoFe / Cu interface. It was. The MR ratio was improved in the plasma treatment of Ru / CoFe interface. Therefore, in the film configuration of this example, it is preferable to perform plasma treatment on at least one of the Ta / NiFe interface, the CoFe / Cu interface, and the Ru / CoFe interface, and plasma treatment is performed on both the CoFe / Cu interface and the Ru / CoFe interface. More preferably. The same effect can be expected even if the CoFe / Ru interface is plasma treated. In FIG. 4, the interface pointed by a right-pointing arrow is an interface that is preferably subjected to plasma treatment.

(実施例3):実施例3では、図3に示した前述のボトムタイプのスピンバルブ型巨大磁気抵抗薄膜の製造方法におけるプラズマ処理時間を変更した例を説明する。図8は、横軸をプラズマ処理時間(秒;sec)とし、縦軸をMR比とHinとしたときのMR比とHinの変化を示した特性図を示している。図8によれば、ボトムタイプスピンバルブ膜において、Ru/CoFe界面のプラズマ処理の処理時間を変えると、Ru/CoFe界面のプラズマ処理時間は、最も高いMR比が得られる10〜30秒の範囲に含まれる時間が好ましいことが分かる。   Example 3 In Example 3, an example in which the plasma processing time in the method for manufacturing the bottom type spin valve giant magnetoresistive thin film shown in FIG. 3 is changed will be described. FIG. 8 is a characteristic diagram showing changes in MR ratio and Hin when the horizontal axis is the plasma processing time (seconds; sec) and the vertical axis is the MR ratio and Hin. According to FIG. 8, in the bottom type spin valve film, when the processing time of the Ru / CoFe interface is changed, the plasma processing time of the Ru / CoFe interface is in the range of 10 to 30 seconds at which the highest MR ratio can be obtained. It can be seen that the time contained in is preferred.

(実施例4):実施例4は、図5に示したデュアルタイプのスピンバルブ型巨大磁気抵抗薄膜の製造方法に関する。すなわち、基板25側からTa(3nm)/NiFe(2nm)/PtMn(12nm)/CoFe(1.8nm)/Ru(0.8nm)/CoFe(2.8nm) /Cu(2.2nm)/CoFe(0.5nm)/NiFe(3nm)/CoFe(0.5nm)/Cu(2.2nm)/CoFe(2.8nm)/Ru(0.8nm)/CoFe(1.8nm)/PtMn(12nm)/Ta(3nm)の積層構造を有するデュアルタイプスピンバルブ膜の製造方法で成膜の途中でプラズマ処理を施す例である。この積層構造で、Ta(3nm)/NiFe(2nm)は緩衝層41、PtMn(12nm)は第1反強磁性層42A、CoFe(1.8nm)/Ru(0.8nm)/CoFe(2.8nm)は第1磁化固定層(第1積層フェリ)43A、Cu(2.2nm)は第1非磁性伝導層44A、CoFe(0.5nm)/NiFe(3nm)/CoFe(0.5nm)は磁化自由層45、Cu(2.2nm)は第2非磁性伝導層44B、CoFe(2.8nm)/Ru(0.8nm)/CoFe(1.8nm)は第2磁化固定層(第2積層フェリ)43B、PtMn(12nm)は第2反強磁性層42B、Ta(3nm)は保護層47である。図9は、横軸を「Ru/CoFe界面」、「Ru/CoFe界面とCu/CoFe界面」、「Ru/CoFe界面とCu/CoFe界面とRu/CoFe界面」の各々でプラズマ処理が行われた場合とし、縦軸をMR比とHinとし、MR比とHinの変化を示した特性図を示している。本実施例ではプラズマ処理の時間を15秒に統一しプラズマ処理する界面を変えたところ、Ru/CoFe界面とCu/CoFe界面とRu/CoFe界面の3つの界面をプラズマ処理した場合にHinの低減とMR比の向上を実現することができた。そのため、本実施例の膜構成ではRu/CoFe界面とCu/CoFe界面とRu/CoFe界面の3つの界面のいずれかをプラズマ処理することが好ましいが、よりHinを低減しMR比を向上するためにはRu/CoFe界面とCoFe/Cu界面とRu/CoFe界面の3つの界面をすべてプラズマ処理することが好ましい。図5中、右向きの矢印で指した界面は、プラズマ処理を施すことが望ましい界面である。   Example 4 Example 4 relates to a method of manufacturing the dual type spin valve giant magnetoresistive thin film shown in FIG. That is, from the substrate 25 side, Ta (3 nm) / NiFe (2 nm) / PtMn (12 nm) / CoFe (1.8 nm) / Ru (0.8 nm) / CoFe (2.8 nm) / Cu (2.2 nm) / CoFe (0.5 nm) /NiFe(3nm)/CoFe(0.5nm)/Cu(2.2nm)/CoFe(2.8nm)/Ru(0.8nm)/CoFe(1.8nm)/PtMn(12nm)/Ta(3nm) This is an example in which plasma processing is performed in the middle of film formation by a manufacturing method of a dual type spin valve film. In this laminated structure, Ta (3 nm) / NiFe (2 nm) is the buffer layer 41, PtMn (12 nm) is the first antiferromagnetic layer 42A, CoFe (1.8 nm) / Ru (0.8 nm) / CoFe (2.8 nm) is The first magnetization fixed layer (first laminated ferri) 43A, Cu (2.2 nm) is the first nonmagnetic conductive layer 44A, CoFe (0.5 nm) / NiFe (3 nm) / CoFe (0.5 nm) is the magnetization free layer 45, Cu (2.2 nm) is the second nonmagnetic conductive layer 44B, CoFe (2.8 nm) / Ru (0.8 nm) / CoFe (1.8 nm) is the second magnetization fixed layer (second laminated ferri) 43B, and PtMn (12 nm) is the first 2 The antiferromagnetic layer 42B, Ta (3 nm) is the protective layer 47. In FIG. 9, the horizontal axis is “Ru / CoFe interface”, “Ru / CoFe interface and Cu / CoFe interface”, and “Ru / CoFe interface and Cu / CoFe interface and Ru / CoFe interface”. In this case, the vertical axis represents MR ratio and Hin, and a characteristic diagram showing changes in MR ratio and Hin is shown. In this example, the plasma treatment time was unified to 15 seconds and the plasma treatment interface was changed. When the plasma treatment was performed on the three interfaces of the Ru / CoFe interface, the Cu / CoFe interface, and the Ru / CoFe interface, the reduction of Hin was achieved. And improved MR ratio. Therefore, in the film configuration of this example, it is preferable to perform plasma treatment on any of the three interfaces of the Ru / CoFe interface, the Cu / CoFe interface, and the Ru / CoFe interface. However, in order to further reduce the Hin and improve the MR ratio. It is preferable to plasma-treat all three interfaces of the Ru / CoFe interface, the CoFe / Cu interface, and the Ru / CoFe interface. In FIG. 5, the interface pointed by a right-pointing arrow is an interface on which plasma treatment is desirable.

(実施例5):実施例5では、図3に示した前述のボトムタイプのスピンバルブ型巨大磁気抵抗薄膜の製造方法におけるプラズマ処理時間を変更した例を説明する。図10は、横軸をプラズマ処理時間(秒;sec)とし、縦軸をMR比とHinとしたときのMR比とHinの変化を示した特性図を示している。図10によれば、ボトムタイプスピンバルブ膜において、Ru/CoFe界面のプラズマ処理時間を15秒に統一し、さらにCoFe/Cu界面のプラズマ処理時間を変えた例である。この実施例によると、CoFe/Cu界面のプラズマ処理時間は最も低いHinが得られる30秒が好ましいことが分かる。   Example 5 In Example 5, an example in which the plasma processing time in the method for manufacturing the bottom type spin valve giant magnetoresistive thin film shown in FIG. 3 is changed will be described. FIG. 10 is a characteristic diagram showing changes in MR ratio and Hin when the horizontal axis is the plasma processing time (second; sec) and the vertical axis is the MR ratio and Hin. FIG. 10 shows an example in which the plasma processing time at the Ru / CoFe interface is unified to 15 seconds and the plasma processing time at the CoFe / Cu interface is changed in the bottom type spin valve film. According to this example, it can be seen that the plasma treatment time at the CoFe / Cu interface is preferably 30 seconds at which the lowest Hin is obtained.

(実施例6):実施例6は、図3に示した前述のボトムタイプのスピンバルブ型巨大磁気抵抗薄膜の積層構造の製造において、プラズマ処理を行わない場合と、Ru(0.8nm)とCoFe(2.8nm)の間に厚さ1nm以下のCoFeの酸化物層(NOL)を挟んだ場合と、Ru(0.8nm)/CoFe(2.8nm)界面を15秒間プラズマ処理した場合のスピンバルブ膜のMR曲線の比較を示す。図11は、横軸は磁界の強さ、縦軸はMR比を示し、プラズマ処理を行わない場合のMR曲線51と、Ru(0.8nm)とCoFe(2.8nm)の間にNOLを挟んだ場合のMR曲線52と、Ru(0.8nm)/CoFe(2.8nm)界面を15秒間プラズマ処理した場合のMR曲線53を示している。図11によれば、同一膜構造においてNOLを挿入することによりMR比が7.9%から10.4%に向上し、さらにプラズマ処理をした場合では11.2%が得られた。NOLを挿入後、1〜4nmのCoFe層を成膜し、その後にプラズマ処理しても同様の効果が得られる。またプラズマ処理無しの場合のスピンバルブ膜のCoFe(1.5nm)/NiFe(2.5nm)から構成された磁化自由層の保磁力(Hc)が0.6 Oeであったのに対し、NOLを挿入した場合が1.3 Oe、プラズマ処理を行った場合では0.7 Oeであった。CoFeとNiFeの軟磁性材料から構成される磁化自由層のHcは小さいほど好ましく、本実施例のようにプラズマ処理ではHcを劣化させないという副次的効果も得られた。   (Example 6): In Example 6, in the production of the laminated structure of the above-mentioned bottom type spin valve type giant magnetoresistive thin film shown in FIG. 3, no plasma treatment was performed, and Ru (0.8 nm) and CoFe (2.8 nm) of CoFe oxide layer (NOL) with a thickness of 1 nm or less, and Ru (0.8 nm) / CoFe (2.8 nm) interface for 15 seconds plasma treatment A comparison of MR curves is shown. In FIG. 11, the horizontal axis indicates the magnetic field strength, the vertical axis indicates the MR ratio, and the NOL is sandwiched between the MR curve 51 when no plasma treatment is performed and Ru (0.8 nm) and CoFe (2.8 nm). The MR curve 52 in this case and the MR curve 53 when the Ru (0.8 nm) / CoFe (2.8 nm) interface is plasma-treated for 15 seconds are shown. According to FIG. 11, the MR ratio was improved from 7.9% to 10.4% by inserting NOL in the same film structure, and 11.2% was obtained when the plasma treatment was further performed. The same effect can be obtained by forming a CoFe layer having a thickness of 1 to 4 nm after inserting the NOL and then performing plasma treatment. Further, the coercive force (Hc) of the magnetization free layer composed of CoFe (1.5 nm) / NiFe (2.5 nm) of the spin valve film without the plasma treatment was 0.6 Oe, whereas NOL was inserted. When the plasma treatment was performed, the value was 1.3 Oe. The smaller the Hc of the magnetization free layer composed of the soft magnetic material of CoFe and NiFe, the better. The secondary effect that the Hc is not deteriorated by the plasma treatment as in this example was also obtained.

(実施例7):実施例7は、上記の実施例6において、上記ボトムタイプのスピンバルブ膜におけるプラズマ処理無しの場合と、NOLを挿入した場合と、Ru/CoFe界面をプラズマ処理した場合と、Ru/CoFe界面およびCoFe/Cu界面をプラズマ処理した場合のMR比のCu層厚依存性(図12)とHinのCu層厚依存性(図13)を示している。図12で横軸はCu層厚(nm)、縦軸はMR(%)を意味し、図13で横軸はCu層厚(nm)、縦軸はHin(Oe)を意味している。図12および図13に示すように、プラズマ処理無しの場合ではCu層厚を薄くするにつれてHinが増大し、Cu層厚が2.1nm以下に薄くなるとMR比の減少が発生するが、Ru/CoFe界面のみをプラズマ処理した場合、およびRu/CoFe界面とCoFe/Cu界面をプラズマ処理した場合ではHinがCu層厚に対して振動し、Cu層厚が2nm以下に薄くなっても高いMR比を維持する。   (Example 7): Example 7 is the same as in Example 6 described above, in the case of no plasma treatment in the bottom type spin valve film, in the case of inserting NOL, and in the case of plasma treatment of the Ru / CoFe interface. FIG. 9 shows the dependency of the MR ratio on the Cu layer thickness (FIG. 12) and the dependency of Hin on the Cu layer thickness (FIG. 13) when the Ru / CoFe interface and the CoFe / Cu interface are plasma treated. In FIG. 12, the horizontal axis represents the Cu layer thickness (nm), the vertical axis represents MR (%), the horizontal axis in FIG. 13 represents the Cu layer thickness (nm), and the vertical axis represents Hin (Oe). As shown in FIG. 12 and FIG. 13, in the case of no plasma treatment, Hin increases as the Cu layer thickness decreases, and when the Cu layer thickness decreases to 2.1 nm or less, the MR ratio decreases, but Ru / CoFe When only the interface is plasma-treated, and when the Ru / CoFe interface and the CoFe / Cu interface are plasma-treated, Hin vibrates with respect to the Cu layer thickness, and a high MR ratio is obtained even when the Cu layer thickness is reduced to 2 nm or less. maintain.

(実施例8):実施例8は、上記の実施例6において、上記ボトムタイプのスピンバルブ膜におけるRu/CoFe界面をプラズマ処理した場合と、CoFe/Cu界面をプラズマ処理した場合のMR曲線メジャーループ(図14)とMR曲線マイナーループ(図15)を示している。図14と図15で横軸はH(Oe)、縦軸はMR(%)を意味している。この実施例ではRu/CoFe界面を15秒、CoFe/Cu界面を30秒プラズマ処理した場合の例を示している。この実施例によれば12%の高MR比と−4Oeの低Hinと0.5Oeの低Hcが得られた。   (Example 8): Example 8 is an MR curve measure in the case where the Ru / CoFe interface in the bottom type spin valve film is plasma-treated and the CoFe / Cu interface is plasma-treated in Example 6 above. A loop (FIG. 14) and an MR curve minor loop (FIG. 15) are shown. 14 and 15, the horizontal axis represents H (Oe) and the vertical axis represents MR (%). In this example, the Ru / CoFe interface is treated for 15 seconds and the CoFe / Cu interface is treated for 30 seconds. According to this example, a high MR ratio of 12%, a low Hin of −4 Oe, and a low Hc of 0.5 Oe were obtained.

(実施例9):実施例10は、図16で、ボトムタイプのスピンバルブ型巨大磁気抵抗薄膜の製造方法でのRu/CoFe界面のプラズマ処理において、プラズマ条件である基板25へのバイアス電圧Vdcを変えた例を示している。この実施例によれば、基板25に対して負に印加されるバイアス電圧は0に近づくほど低Hinと高MR比が得られることが分かる。   Example 9: In Example 10, the bias voltage Vdc applied to the substrate 25 which is a plasma condition in the plasma processing of the Ru / CoFe interface in the manufacturing method of the bottom type spin-valve giant magnetoresistive thin film shown in FIG. The example which changed is shown. According to this embodiment, it can be seen that the lower the bias voltage applied to the substrate 25 is, the lower Hin and the higher MR ratio are obtained.

前述の実施形態および各実施例において、スピンバルブ膜のCu層をAlの酸化物層(AlOx層)に置き換えたいわゆるTMR膜に置き換えても同等の効果を達成することができる。TMR膜はGMR膜よりもさらに高いMR比が得られるため、次世代の磁気再生ヘッドとして注目されている磁性多層膜であり、さらには次世代の不揮発性メモリとして有望視されている。   In the above-described embodiment and each example, the same effect can be achieved even if the Cu layer of the spin valve film is replaced with a so-called TMR film in which an Al oxide layer (AlOx layer) is replaced. Since the TMR film has a higher MR ratio than the GMR film, it is a magnetic multilayer film that is attracting attention as a next-generation magnetic reproducing head, and is also promising as a next-generation nonvolatile memory.

前述の実施形態および実施例において、積層フェリ型の磁化固定層が、磁性層と磁性層によって挟まれた非磁性層が2種類以上の層によって構成された多層膜である場合には、非磁性層内に存在する界面のうち少なくとも1箇所をプラズマ処理することが好ましい。また磁化自由層が2種類以上の層によって構成された多層膜である場合には、磁化自由層内に存在する界面のうち少なくとも1箇所をプラズマ処理することが好ましい。さらに反強磁性層が2種類以上の層によって構成された多層膜である場合には、反強磁性層内に存在する界面のうちの少なくとも1箇所をプラズマ処理することが好ましい。   In the embodiments and examples described above, when the laminated ferrimagnetic pinned layer is a multilayer film in which a nonmagnetic layer sandwiched between a magnetic layer and a magnetic layer is composed of two or more types of layers, nonmagnetic It is preferable to perform plasma treatment on at least one of the interfaces existing in the layer. Further, when the magnetization free layer is a multilayer film composed of two or more types of layers, it is preferable to perform plasma treatment on at least one of the interfaces existing in the magnetization free layer. Furthermore, when the antiferromagnetic layer is a multilayer film composed of two or more kinds of layers, it is preferable to perform plasma treatment on at least one of the interfaces existing in the antiferromagnetic layer.

前述の実施形態等では、マルチチャンバ式の成膜装置10において、スピンバルブ型巨大磁気抵抗薄膜の多層構造の成膜の途中の適宜な段階でプラズマ処理を行うために、特別にプラズマ処理室14を設けるようにしたが、これに限定されない。例えば、成膜室13A,13Bに、図2に示した平行平板電極構造を設けたり、あるいは、イオン照射構造を設けたりして、成膜室内でプラズマ処理を行うように構成することができる。   In the above-described embodiment, the plasma processing chamber 14 is specially used in the multi-chamber film forming apparatus 10 in order to perform plasma processing at an appropriate stage during the film formation of the multilayer structure of the spin valve type giant magnetoresistive thin film. However, the present invention is not limited to this. For example, the parallel-plate electrode structure shown in FIG. 2 or an ion irradiation structure may be provided in the film forming chambers 13A and 13B, and the plasma treatment may be performed in the film forming chamber.

本発明によるスピンバルブ型巨大磁気抵抗薄膜の製造方法では、スピンバルブ型巨大磁気抵抗薄膜の多層構造において前述したごとく選択された所定の界面にプラズマ処理を施すことにより、当該界面の平坦化および清浄化を図り、これにより、高いMR比を実現するようにしたが、多層膜の構造において、緩衝膜と保護膜の間に存在するすべての界面のうちのいずれか1つ、あるいは任意の組合せで、あるいはすべての界面をプラズマ処理することによって本発明の効果を実現することができるのは勿論である。   In the method of manufacturing a spin valve giant magnetoresistive thin film according to the present invention, the plasma treatment is performed on the predetermined interface selected as described above in the multilayer structure of the spin valve giant magnetoresistive thin film, thereby flattening and cleaning the interface. As a result, a high MR ratio is realized. However, in the multilayer structure, any one of all interfaces existing between the buffer film and the protective film, or any combination thereof is used. Of course, the effects of the present invention can be realized by plasma processing all the interfaces.

上記の説明では、専らスピンバルブ型巨大磁気抵抗薄膜の製造方法の観点で発明を把握してその説明がなされたが、本発明に係る製造方法で作られたスピンバルブ型巨大磁気抵抗薄膜の多層の膜構造自体も、所定の界面がプラズマ処理等により平坦化かつ清浄化されており、独創性を備えた膜構造を有している。   In the above description, the invention has been explained only by grasping the invention from the viewpoint of the manufacturing method of the spin valve type giant magnetoresistive thin film, but the multilayer of the spin valve type giant magnetoresistive thin film made by the manufacturing method according to the present invention has been explained. The film structure itself has a unique film structure in which a predetermined interface is flattened and cleaned by plasma treatment or the like.

本発明に係るマルチチャンバ装置は、次のような製造方法を実現するものである。The multi-chamber apparatus according to the present invention realizes the following manufacturing method.

第1の製造方法は、基板上に堆積される緩衝層と、非磁性伝導層とこれを挟む磁化固定層および磁化自由層と磁化固定層の隣りに形成される反強磁性層とから成る多層部と、最上位に堆積される保護層とから構成されるスピンバルブ型巨大磁気抵抗薄膜の製造方法であり、非磁性伝導層と緩衝層との間に形成された複数の界面のうち少なくとも1箇所をプラズマ処理する方法である。このスピンバルブ型巨大磁気抵抗薄膜の製造方法では、非磁性伝導層の下側に形成される複数の界面を適宜にプラズマ処理を行うことにより、各層の平坦性と清浄性を高め、これによって、高いMR比と低いHinを可能にしている。A first manufacturing method is a multilayer comprising a buffer layer deposited on a substrate, a nonmagnetic conductive layer, a magnetization fixed layer sandwiching the nonmagnetic conductive layer, a magnetization free layer, and an antiferromagnetic layer formed adjacent to the magnetization fixed layer. A spin valve type giant magnetoresistive thin film comprising a protective layer and a protective layer deposited on the uppermost layer, wherein at least one of a plurality of interfaces formed between the nonmagnetic conductive layer and the buffer layer This is a method of plasma-treating the portion. In this spin valve type giant magnetoresistive thin film manufacturing method, a plurality of interfaces formed below the nonmagnetic conductive layer are appropriately subjected to plasma treatment, thereby improving the flatness and cleanliness of each layer. High MR ratio and low Hin are enabled.

第2の製造方法は、上記の第1の製造方法において、好ましくは、多層部で磁化固定層は基板側に形成されかつ磁化自由層は保護層側に形成され、かつ磁化固定層および/または磁化自由層は単層または複数層から成り、非磁性伝導層と緩衝層の間に形成された複数の界面のうち少なくとも1箇所をプラズマ処理することを特徴とする。この方法は、ボトムタイプのスピンバルブ型巨大磁気抵抗薄膜の製造方法である。The second manufacturing method is preferably the above-described first manufacturing method, wherein the magnetization fixed layer is formed on the substrate side and the magnetization free layer is formed on the protective layer side in the multilayer part, and the magnetization fixed layer and / or The magnetization free layer is formed of a single layer or a plurality of layers, and is characterized in that at least one of a plurality of interfaces formed between the nonmagnetic conductive layer and the buffer layer is subjected to plasma treatment. This method is a manufacturing method of a bottom type spin valve type giant magnetoresistive thin film.

第3の製造方法は、上記の第1の製造方法において、好ましくは、多層部で磁化自由層は基板側に形成されかつ磁化固定層は保護層側に形成され、かつ前記磁化固定層および/または前記磁化自由層は単層または複数層から成り、非磁性伝導層と緩衝層の間に形成された複数の界面、および磁化固定層内の複数の界面のうち少なくとも1箇所をプラズマ処理することを特徴とする。この方法は、トップタイプのスピンバルブ型巨大磁気抵抗薄膜の製造方法である。The third manufacturing method is preferably the first manufacturing method, wherein the magnetization free layer is formed on the substrate side and the magnetization fixed layer is formed on the protective layer side in the multilayer part, and the magnetization fixed layer and / or Alternatively, the magnetization free layer is composed of a single layer or a plurality of layers, and plasma treatment is performed on at least one of a plurality of interfaces formed between the nonmagnetic conductive layer and the buffer layer and a plurality of interfaces in the magnetization fixed layer. It is characterized by. This method is a manufacturing method of a top type spin valve type giant magnetoresistive thin film.

第4の製造方法は、上記の第1の製造方法において、好ましくは、多層部で、磁化固定層は下側磁化固定層と上側磁化固定層を含み、非磁性伝導層は下側非磁性伝導層と上側非磁性伝導層を含み、下側非磁性伝導層を挟む下側磁化固定層および磁化自由層と上側非磁性伝導層を挟む磁化自由層および上側磁化固定層とに基づく5層構造が形成され、かつ下側磁化固定層と上側磁化固定層と磁化自由層のうちの少なくとも1つの層は単層または複数層から成り、下側非磁性伝導層と緩衝層との間に形成された複数の界面、および上側非磁性伝導層と磁化自由層の間の界面のうち少なくとも1箇所をプラズマ処理することを特徴とする。この方法はデュアルタイプのスピンバルブ型巨大磁気抵抗薄膜の製造方法である。In the first manufacturing method according to the fourth manufacturing method, preferably, in the multilayer portion, the magnetization fixed layer includes a lower magnetization fixed layer and an upper magnetization fixed layer, and the nonmagnetic conductive layer is a lower nonmagnetic conductive layer. A five-layer structure including a lower magnetization fixed layer and a magnetization free layer sandwiching the lower nonmagnetic conductive layer, and a magnetization free layer and an upper magnetization fixed layer sandwiching the upper nonmagnetic conduction layer. And at least one of the lower magnetization fixed layer, the upper magnetization fixed layer, and the magnetization free layer is formed of a single layer or a plurality of layers, and is formed between the lower nonmagnetic conductive layer and the buffer layer. Plasma treatment is performed on at least one of the plurality of interfaces and the interface between the upper nonmagnetic conductive layer and the magnetization free layer. This method is a method of manufacturing a dual type spin valve type giant magnetoresistive thin film.

第5の製造方法は、基板上に緩衝層、反強磁性層、磁化固定層、非磁性伝導層、磁化自由層、保護層の順番で連続的に積層されるボトムタイプのスピンバルブ型巨大磁気抵抗薄膜の製造方法であり、緩衝層と反強磁性層の界面、反強磁性層と磁化固定層の界面、磁化固定層と非磁性伝導層の界面のうちの少なくとも1箇所をプラズマ処理する方法である。The fifth manufacturing method is a bottom-type spin-valve type giant magnetic layer in which a buffer layer, an antiferromagnetic layer, a magnetization fixed layer, a nonmagnetic conductive layer, a magnetization free layer, and a protective layer are sequentially laminated on a substrate. A method of manufacturing a resistance thin film, wherein a plasma treatment is performed on at least one of an interface between a buffer layer and an antiferromagnetic layer, an interface between an antiferromagnetic layer and a magnetization fixed layer, and an interface between a magnetization fixed layer and a nonmagnetic conductive layer It is.

第6の製造方法は、上記の第5の方法において、好ましくは、磁化固定層は、非磁性層によって隔てられた第1磁化固定層要素と第2磁化固定層要素の3層構造を有する積層フェリ型磁化固定層であり、反強磁性層と1磁化固定層の界面、第1磁化固定層要素と非磁性層の界面、非磁性層と第2磁化固定層要素の界面、第2磁化固定層要素と非磁性伝導層の界面のうちの少なくとも1箇所をプラズマ処理することを特徴とする。  In a sixth manufacturing method according to the fifth method described above, preferably, the magnetization fixed layer has a three-layer structure of a first magnetization fixed layer element and a second magnetization fixed layer element separated by a nonmagnetic layer. This is a ferrimagnetic pinned layer, an interface between the antiferromagnetic layer and one pinned layer, an interface between the first pinned layer element and the nonmagnetic layer, an interface between the nonmagnetic layer and the second pinned layer element, and the second pinned magnetization. Plasma treatment is performed on at least one of the interfaces between the layer element and the nonmagnetic conductive layer.

第7の製造方法は、基板上に緩衝層、磁化自由層、非磁性伝導層、磁化固定層、反強磁性層、保護層の順番で連続的に積層されたトップタイプのスピンバルブ型巨大磁気抵抗薄膜の製造方法であり、緩衝層と磁化自由層の界面、磁化自由層と非磁性伝導層の界面の少なくとも1箇所をプラズマ処理する方法である。The seventh manufacturing method is a top-type spin-valve giant magnetic layer in which a buffer layer, a magnetization free layer, a nonmagnetic conductive layer, a magnetization fixed layer, an antiferromagnetic layer, and a protective layer are sequentially laminated on a substrate. This is a method for manufacturing a resistance thin film, in which at least one part of the interface between the buffer layer and the magnetization free layer and the interface between the magnetization free layer and the nonmagnetic conductive layer is plasma-treated.

第8の製造方法は、上記の第7の方法において、好ましくは、磁化固定層は非磁性層によって隔てられた第1磁化固定層要素と第2磁化固定層要素の3層構造を有する積層フェリ型磁化固定層であり、第1磁化固定層要素と非磁性層の界面、非磁性層と第2磁化固定層要素の界面のうち少なくとも1箇所をプラズマ処理することを特徴とする。In an eighth manufacturing method according to the seventh method described above, preferably, the magnetization fixed layer has a three-layer structure including a first magnetization fixed layer element and a second magnetization fixed layer element separated by a nonmagnetic layer. It is a type magnetization fixed layer, and plasma processing is performed on at least one of the interface between the first magnetization fixed layer element and the nonmagnetic layer and the interface between the nonmagnetic layer and the second magnetization fixed layer element.

第9の製造方法は、基板上に緩衝層、第1反強磁性層、第1磁化固定層、第1非磁性伝導層、磁化自由層、第2非磁性伝導層、第2磁化固定層、第2反強磁性層、保護層の順番で連続的に積層されるデュアルタイプのスピンバルブ型巨大磁気抵抗薄膜の製造方法であり、緩衝層と第1反強磁性層の界面、第1反強磁性層と第1磁化固定層の界面、第1磁化固定層と第1非磁性伝導層の界面、磁化自由層と第2非磁性伝導層の界面のうち少なくとも1箇所をプラズマ処理する方法である。A ninth manufacturing method includes a buffer layer, a first antiferromagnetic layer, a first magnetization fixed layer, a first nonmagnetic conductive layer, a magnetization free layer, a second nonmagnetic conductive layer, a second magnetization fixed layer on a substrate, A method of manufacturing a dual-type spin-valve giant magnetoresistive thin film that is successively laminated in the order of a second antiferromagnetic layer and a protective layer, the interface between the buffer layer and the first antiferromagnetic layer, the first antiferromagnetic layer In this method, at least one of the interface between the magnetic layer and the first magnetization fixed layer, the interface between the first magnetization fixed layer and the first nonmagnetic conductive layer, and the interface between the magnetization free layer and the second nonmagnetic conductive layer is plasma-treated. .

第10の製造方法は、第9の方法において、好ましくは、第1磁化固定層が第1磁化固定層要素、第1非磁性層、第2磁化固定層要素の3層構造となった第1積層フェリであり、第2磁化固定層が第3磁化固定層要素、第2非磁性層、第4磁化固定層要素の3層構造となった第2積層フェリであり、第1反強磁性層と第1磁化固定層要素の界面、第1磁化固定層要素と第1非磁性層の界面、第1非磁性層と第2磁化固定層要素の界面、第2磁化固定層要素と第1非磁性伝導層の界面、第3磁化固定層要素と第2非磁性層の界面、第2非磁性層と第4磁化固定層要素の界面のうち少なくとも1箇所をプラズマ処理することを特徴とする。In a tenth manufacturing method according to the ninth method, preferably, the first magnetization fixed layer has a three-layer structure including a first magnetization fixed layer element, a first nonmagnetic layer, and a second magnetization fixed layer element. A laminated ferri, a second laminated ferrimagnetic structure in which the second magnetization fixed layer has a three-layer structure of a third magnetization fixed layer element, a second nonmagnetic layer, and a fourth magnetization fixed layer element, and the first antiferromagnetic layer And the first magnetization fixed layer element, the interface between the first magnetization fixed layer element and the first nonmagnetic layer, the interface between the first nonmagnetic layer and the second magnetization fixed layer element, the second magnetization fixed layer element and the first nonmagnetic layer Plasma processing is performed on at least one of the interface of the magnetic conductive layer, the interface between the third magnetization fixed layer element and the second nonmagnetic layer, and the interface between the second nonmagnetic layer and the fourth magnetization fixed layer element.

第11の製造方法は、上記の各製造方法において、好ましくは、緩衝層が2種類以上の層によって構成された多層膜であり、緩衝層内に存在する複数の界面のうち少なくとも1箇所にプラズマ処理することを特徴とする。The eleventh manufacturing method is preferably a multilayer film in which the buffer layer is composed of two or more types of layers in each of the manufacturing methods described above, and plasma is applied to at least one of a plurality of interfaces existing in the buffer layer. It is characterized by processing.

第12の製造方法は、上記の各製造方法において、好ましくは、上記のプラズマ処理は、0.01〜100Paの低圧力の不活性ガスであるAr,Kr,Xe,Ne等やこれらに類似するガスのいずれかによるガス雰囲気中において13.56MHzのRF波を用いたプラズマを使用し、電極構造が平行平板の容量結合型であることを特徴とする。A twelfth manufacturing method is the above-described manufacturing method, preferably, the plasma treatment is similar to Ar, Kr, Xe, Ne, or the like, which is an inert gas having a low pressure of 0.01 to 100 Pa. A plasma using a 13.56 MHz RF wave is used in a gas atmosphere of any of the gases, and the electrode structure is a parallel plate capacitive coupling type.

第13の製造方法は、上記第12の製造方法において、好ましくは、電極構造で、RF波を与える側の電極にプラズマ処理の対象となる基板を配置し、RF波による電力が単位面積当たり0.5W/cmIn the thirteenth manufacturing method, in the twelfth manufacturing method, preferably, a substrate to be subjected to plasma processing is disposed on an electrode on the side to which an RF wave is applied in an electrode structure, and the electric power by the RF wave is 0 per unit area. .5W / cm 2 以下、基板に印加されるバイアス電圧が0Vよりも小さく−300V以上の範囲に含まれる電圧である。Hereinafter, the bias voltage applied to the substrate is a voltage included in a range of less than 0V and −300V or more.

第14の製造方法は、上記の第12の製造方法において、好ましくは、プラズマ処理の処理時間が1分を超えない時間であることを特徴とする。In the twelfth manufacturing method, the fourteenth manufacturing method is preferably characterized in that the processing time of the plasma processing is a time not exceeding 1 minute.

本発明のマルチチャンバ成膜装置によるスピンバルブ型巨大磁気抵抗薄膜の製造方法では、多層構造を成すスピンバルブ膜の成膜途中において成膜を一時中断し、界面をイオン衝撃処理、好ましくはプラズマ処理を行い、その後に引き続き成膜を再開するように構成されている。この製造方法では、プラズマ処理は必ずしも成膜室内で行われる必要はなく、隣の真空室または真空搬送室等を介した別の真空室に移動して行ってもよい。In the method for producing a spin valve type giant magnetoresistive thin film by the multi-chamber film forming apparatus of the present invention, the film formation is temporarily interrupted during the film formation of the multi-layered spin valve film, and the interface is subjected to ion bombardment treatment, preferably plasma treatment. And then the film formation is resumed. In this manufacturing method, the plasma treatment is not necessarily performed in the film forming chamber, and may be performed by moving to another vacuum chamber via an adjacent vacuum chamber or a vacuum transfer chamber.

また本発明のマルチチャンバ成膜装置による製造方法では、ボトムタイプ、トップタイプ、デュアルスピンバルブのようなスピンバルブ膜の構造にかかわらず非磁性伝導層にCu層を用い、かつCu層の膜厚を2.1nmに設定した時、Cu層を介した磁化固定層と磁化自由層の間の層間結合磁界(Hin)が最も小さくかつMR比が最も大きくなるように、ボトムタイプ、トップタイプ、デュアルスピンバルブのスピンバルブ膜構造に応じて、プラズマ処理等を行う界面を適宜に選択するものである。またプラズマ処理による成膜の中断は必ずしも一度に限らず、必要に応じて複数回行ってもよい。In the manufacturing method using the multi-chamber film forming apparatus of the present invention, the Cu layer is used for the nonmagnetic conductive layer regardless of the structure of the spin valve film such as the bottom type, the top type, and the dual spin valve, and the film thickness of the Cu layer. When 2.1 is set to 2.1 nm, the bottom type, the top type, and the dual type so that the interlayer coupling magnetic field (Hin) between the magnetization fixed layer and the magnetization free layer via the Cu layer is the smallest and the MR ratio is the largest. In accordance with the spin valve film structure of the spin valve, an interface for performing plasma processing or the like is appropriately selected. The interruption of the film formation by the plasma treatment is not necessarily limited to once, and may be performed a plurality of times as necessary.

さらに本発明のマルチチャンバ成膜装置による製造方法では、プラズマ処理を施す層に用いられる材料によって、プラズマ処理の条件(RF電力、処理時間、Ar等の圧力など)を変え、Hinが小さく、MR比が大きくなるようにしている。さらに本発明のマルチチャンバ成膜装置による製造方法では、酸素を用いるプロセスや酸化工程は一切使用しないことで特徴づけられる。Furthermore, in the manufacturing method using the multi-chamber film forming apparatus of the present invention, the plasma processing conditions (RF power, processing time, Ar pressure, etc.) are changed depending on the material used for the plasma processing layer, Hin is small, MR The ratio is increased. Further, the manufacturing method using the multi-chamber film forming apparatus of the present invention is characterized in that no process using oxygen or oxidation process is used.

ピンバルブ型巨大磁気抵抗薄膜の製造方法を実施する本発明に係るマルチチャンバ成膜装置の平面図である。Carrying out the production method of the scan pin valve type giant magnetoresistive film is a plan view of a multi-chamber deposition apparatus according to the present invention. 成膜装置のプラズマ処理室の内部構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the internal structure of the plasma processing chamber of the film-forming apparatus. 多層膜の一例であるボトムタイプのスピンバルブ型巨大磁気抵抗薄膜の積層構造を示す図である。It is a figure which shows the laminated structure of the bottom type spin-valve type giant magnetoresistive thin film which is an example of a multilayer film. 多層膜の一例であるトップタイプのスピンバルブ型巨大磁気抵抗薄膜の積層構造を示す図である。It is a figure which shows the laminated structure of the top type spin valve type giant magnetoresistive thin film which is an example of a multilayer film. 多層膜の一例であるデュアルタイプのスピンバルブ型巨大磁気抵抗薄膜の積層構造を示す図である。It is a figure which shows the laminated structure of the dual type spin valve type giant magnetoresistive thin film which is an example of a multilayer film. 本発明の第1実施例を示し、ボトムタイプのスピンバルブ型巨大磁気抵抗薄膜でのプラズマ処理する界面の依存性を示す特性図である。FIG. 5 is a characteristic diagram showing the dependency of the interface for plasma processing in the bottom type spin valve type giant magnetoresistive thin film according to the first embodiment of the present invention. 本発明の第2実施例を示し、トップタイプのスピンバルブ型巨大磁気抵抗薄膜でのプラズマ処理する界面の依存性を示す特性図である。FIG. 10 is a characteristic diagram showing the dependency of the interface for plasma processing in a top type spin valve giant magnetoresistive thin film according to the second embodiment of the present invention. 本発明の第3実施例を示し、ボトムタイプのスピンバルブ型巨大磁気抵抗薄膜でのRu/CoFe界面のプラズマ処理時間依存性を示す特性図である。FIG. 9 is a characteristic diagram showing the dependency of the Ru / CoFe interface on the plasma processing time in a bottom type spin-valve giant magnetoresistive thin film according to the third embodiment of the present invention. 本発明の第4実施例を示し、デュアルタイプのスピンバルブ型巨大磁気抵抗薄膜の界面依存性を示す特性図である。It is a characteristic view which shows 4th Example of this invention and shows the interface dependence of a dual type spin valve type giant magnetoresistive thin film. 本発明の第5実施例を示し、ボトムタイプのスピンバルブ型巨大磁気抵抗薄膜でのCoFe/Cu界面のプラズマ処理時間依存性を示す特性図である。FIG. 10 is a characteristic diagram showing the dependency of the CoFe / Cu interface on the plasma processing time in a bottom type spin-valve giant magnetoresistive thin film according to the fifth embodiment of the present invention. 本発明の第6実施例を示し、ボトムタイプのスピンバルブ型巨大磁気抵抗薄膜の標準型と、NOLと、プラズマ処理ありの場合のMR曲線の比較を示す特性図である。FIG. 10 is a characteristic diagram showing a comparison of MR curves in the case of a standard type of a bottom type spin-valve type giant magnetoresistive thin film, NOL, and with plasma treatment according to a sixth embodiment of the present invention. 本発明の第7実施例を示し、ボトムタイプのスピンバルブ型巨大磁気抵抗薄膜におけるプラズマ処理無しの場合と、NOLを挿入した場合と、Ru/CoFe界面をプラズマ処理した場合と、Ru/CoFe界面およびCoFe/Cu界面をプラズマ処理した場合のMR比のCu層厚依存性を示す特性図である。FIG. 7 shows a seventh embodiment of the present invention, in the case of no plasma processing in a bottom type spin-valve giant magnetoresistive thin film, when NOL is inserted, when Ru / CoFe interface is plasma-treated, and Ru / CoFe interface FIG. 5 is a characteristic diagram showing the dependence of the MR ratio on the Cu layer thickness when the CoFe / Cu interface is plasma treated. 本発明の第7実施例を示し、ボトムタイプのスピンバルブ型巨大磁気抵抗薄膜におけるプラズマ処理無しの場合と、NOLを挿入した場合と、Ru/CoFe界面をプラズマ処理した場合と、Ru/CoFe界面およびCoFe/Cu界面をプラズマ処理した場合のHinのCu層厚依存性を示す特性図である。FIG. 7 shows a seventh embodiment of the present invention, in the case of no plasma processing in a bottom type spin-valve giant magnetoresistive thin film, when NOL is inserted, when Ru / CoFe interface is plasma-treated, and Ru / CoFe interface It is a characteristic view which shows the Cu layer thickness dependence of Hin at the time of plasma-processing the CoFe / Cu interface. 本発明の第8実施例を示し、ボトムタイプのスピンバルブ型巨大磁気抵抗薄膜におけるRu/CoFe界面をプラズマ処理した場合と、CoFe/Cu界面をプラズマ処理した場合のMR曲線メジャーループを示す特性図である。The characteristic diagram which shows 8th Example of this invention, and shows the MR curve major loop when the Ru / CoFe interface is plasma-treated in the bottom type spin-valve giant magnetoresistive thin film and when the CoFe / Cu interface is plasma-treated It is. 本発明の第8実施例を示し、ボトムタイプのスピンバルブ型巨大磁気抵抗薄膜におけるRu/CoFe界面をプラズマ処理した場合と、CoFe/Cu界面をプラズマ処理した場合のMR曲線マイナーループを示す特性図である。The characteristic diagram which shows 8th Example of this invention and shows the MR curve minor loop when the Ru / CoFe interface is plasma-treated in the bottom type spin-valve giant magnetoresistive thin film and when the CoFe / Cu interface is plasma-treated It is. 本発明の第9実施例を示し、ボトムタイプのスピンバルブ型巨大磁気抵抗薄膜の製造方法でのRu/CoFe界面のプラズマ処理においてプラズマ条件である基板へのバイアス電圧Vdcの依存性を示す特性図である。The characteristic view which shows 9th Example of this invention and shows the dependence of the bias voltage Vdc to the board | substrate which is a plasma condition in the plasma processing of the Ru / CoFe interface in the manufacturing method of a bottom type spin-valve type giant magnetoresistive thin film It is. ボトムタイプのスピンバルブ型巨大磁気抵抗薄膜の積層構造の一例を示す断面図である。It is sectional drawing which shows an example of the laminated structure of a bottom type spin-valve type giant magnetoresistive thin film. トップタイプのスピンバルブ型巨大磁気抵抗薄膜の積層構造の一例を示す断面図である。It is sectional drawing which shows an example of the laminated structure of a top type spin valve type giant magnetoresistive thin film. デュアルタイプのスピンバルブ型巨大磁気抵抗薄膜の積層構造の一例を示す断面図である。It is sectional drawing which shows an example of the laminated structure of a dual type spin-valve type giant magnetoresistive thin film.

符号の説明Explanation of symbols

10 成膜装置
11 基板搬送ロボット
12 真空搬送室
13A,13B 成膜室
14 プラズマ処理室
15 ロードロック室
21 真空槽
22 上部電極
23 下部電極
25 基板
26 プラズマ
31,32 ターゲット
41 緩衝層
42 反強磁性層
43 磁化固定層
44 非磁性伝導層
45 磁化自由層
47 保護層
DESCRIPTION OF SYMBOLS 10 Film-forming apparatus 11 Substrate transfer robot 12 Vacuum transfer chamber 13A, 13B Film-forming chamber 14 Plasma processing chamber 15 Load lock chamber 21 Vacuum tank 22 Upper electrode 23 Lower electrode 25 Substrate 26 Plasma 31, 32 Target 41 Buffer layer 42 Antiferromagnetic Layer 43 Magnetization fixed layer 44 Nonmagnetic conductive layer 45 Magnetization free layer 47 Protective layer

Claims (4)

基板を移動させる基板搬送ロボットを備えた真空搬送室、真空搬送室に結合配置され、反強磁性層および磁化固定層を成膜する第1成膜室、並びに、前記真空搬送室に結合配置され、不活性ガスのプラズマを生成するプラズマ処理室を有し、
前記基板搬送ロボットは、前記基板を、前記第1成膜室内に搬入し、該第1成膜室内での反強磁性層の成膜終了後、第1成膜室から搬出して前記プラズマ処理室内に搬入し、該プラズマ処理室内でのプラズマ処理終了後、プラズマ処理室から搬出して前記第1成膜室内に搬入し、該第1成膜室内での磁化固定層の成膜終了後、該第1成膜室から搬出するものであることを特徴とするマルチチャンバ成膜装置。
Vacuum transfer chamber including a substrate transfer robot for moving the substrate, coupled arranged in said vacuum transfer chamber, the first film forming chamber you deposited antiferromagnetic layer and the magnetization fixed layer, and, coupled to the vacuum transfer chamber is arranged, has a pulp plasma processing chamber to generate a plasma of inert gas,
The substrate transfer robot, the substrate, the first carried into the deposition chamber, said after completion of film formation of the antiferromagnetic layer in the first film forming chamber, the plasma was carried out from the first film forming chamber was loaded into the process chamber, after the plasma treatment completion in the plasma processing chamber, and unloaded from the plasma processing chamber is carried into the first film formation chamber, the deposition termination of the magnetization fixed layer in the first film forming chamber Thereafter, the multi-chamber film forming apparatus is carried out from the first film forming chamber.
基板を移動させる基板搬送ロボットを備えた真空搬送室、該真空搬送室に結合配置され、反強磁性層および磁化固定層を成膜する第1成膜室、前記真空搬送室に結合配置され、非磁性伝導層または酸化物層を成膜する第2成膜室、並びに、前記真空搬送室に結合配置され、不活性ガスのプラズマを生成するプラズマ処理室を有し、
前記基板搬送ロボットは、前記基板を、前記第1成膜室内に搬入し、該第1成膜室内での反強磁性層の成膜終了後、第1成膜室から搬出して前記プラズマ処理室内に搬入し、該プラズマ処理室内でのプラズマ処理終了後、プラズマ処理室から搬出して前記第1成膜室内に搬入し、該第1成膜室内での磁化固定層の成膜終了後、第1成膜室から搬出して前記プラズマ処理室内に搬入し、該プラズマ処理室内でのプラズマ処理終了後、プラズマ処理室から搬出して前記第2成膜室内に搬入し、該第2成膜室内での非磁性伝導層または酸化物層の成膜終了後、第2成膜室から搬出するものであることを特徴とするマルチチャンバ成膜装置。
Vacuum transfer chamber having a substrate transfer robot for moving the substrate, coupled arranged in the vacuum transfer chamber, the first film forming chamber you deposited antiferromagnetic layer and the magnetization fixed layer, coupled arranged in the vacuum transfer chamber , second film forming chamber for forming the non-magnetic conductive layer or an oxide layer, and, coupled arranged in the vacuum transfer chamber, having a pulp plasma processing chamber to generate a plasma of inert gas,
The substrate transfer robot, the substrate, the first carried into the deposition chamber, said after completion of film formation of the antiferromagnetic layer in the first film forming chamber, the plasma was carried out from the first film forming chamber was loaded into the process chamber, after the plasma treatment completion in the plasma processing chamber, and unloaded from the plasma processing chamber is carried into the first film formation chamber, the deposition termination of the magnetization fixed layer in the first film forming chamber after, the first and unloaded from the deposition chamber were carried into the plasma processing chamber, after the plasma treatment completion in the plasma processing chamber, and unloaded from the plasma processing chamber is carried into the second film forming chamber, said after completion of film formation of the non-magnetic conductive layer or an oxide layer at a second deposition chamber, multi-chamber deposition apparatus, characterized in that for unloading from the second film formation chamber.
基板を移動させる基板搬送ロボットを備えた真空搬送室、真空搬送室に結合配置され、緩衝層および反強磁性層を成膜する第1成膜室、並びに、前記真空搬送室に結合配置され、不活性ガスのプラズマを生成するプラズマ処理室を有し、
前記基板搬送ロボットは、前記基板を、前記第1成膜室内に搬入し、該第1成膜室内での緩衝層の成膜終了後、第1成膜室から搬出して前記プラズマ処理室内に搬入し、該プラズマ処理室内でのプラズマ処理終了後、プラズマ処理室から搬出して前記第1成膜室内に搬入し、該第1成膜室内での反強磁性層の成膜終了後、第1成膜室から搬出するものであることを特徴とするマルチチャンバ成膜装置。
Vacuum transfer chamber having a substrate transfer robot for moving the substrate, coupled arranged in said vacuum transfer chamber, the first film forming chamber you deposited buffer layer and the antiferromagnetic layer, and, coupled arranged in the vacuum transfer chamber is has a Help plasma processing chamber to generate plasma of the inert gas,
The substrate transfer robot, the substrate, the first carried into the deposition chamber, said after completion of film formation of the first buffer layer in the film forming chamber, the plasma processing chamber and unloaded from the first film forming chamber carried in, after the plasma treatment completion in the plasma processing chamber, and unloaded from the plasma processing chamber is carried into the first film forming chamber, after antiferromagnetic layer forming the end of the in the first film forming chamber , a multi-chamber deposition apparatus, characterized in that for unloading from the first film forming chamber.
基板を移動させる基板搬送ロボットを備えた真空搬送室、真空搬送室に結合配置され、磁化自由層を成膜する第1成膜室、前記真空搬送室に結合配置され、緩衝層、および、非磁性伝導層または酸化物層を成膜する第2成膜室、並びに、前記真空搬送室に結合配置され、不活性ガスのプラズマを生成するプラズマ処理室を有し、
前記基板搬送ロボットは、前記基板を、前記第2成膜室内に搬入し、該第2成膜室内での緩衝層の成膜終了後、第2成膜室から搬出して前記プラズマ処理室内に搬入し、該プラズマ処理室内でのプラズマ処理終了後、プラズマ処理室から搬出して前記第1成膜室内に搬入し、該第1成膜室内での磁化自由層の成膜終了後、第1成膜室から搬出して前記プラズマ処理室内に搬入し、該プラズマ処理室内でのプラズマ処理終了後、プラズマ処理室から搬出して前記第2成膜室内に搬入し、該第2成膜室内での非磁性伝導層または酸化物層の成膜終了後、第2成膜室から搬出するものであることを特徴とするマルチチャンバ成膜装置。
Vacuum transfer chamber having a substrate transfer robot for moving the substrate, coupled arranged in said vacuum transfer chamber, the first film forming chamber you deposited the magnetization free layer, coupled arranged in the vacuum transfer chamber, the buffer layer, and , second film forming chamber you deposited nonmagnetic conductive layer or an oxide layer, and, coupled arranged in the vacuum transfer chamber, having a pulp plasma processing chamber to generate a plasma of inert gas,
The substrate transfer robot, the substrate, the second is loaded into the deposition chamber, said after completion of film formation of the second buffer layer in the film forming chamber, the plasma processing chamber and unloaded from the second film formation chamber carried in, after the plasma treatment completion in the plasma processing chamber, said plasma processing chamber and unloaded from the carried into the first film forming chamber, after completion of film formation of the magnetization free layer in the first film forming chamber, and unloaded from the first film forming chamber is carried into the plasma processing chamber, after the plasma treatment completion in the plasma processing chamber, and unloaded from the plasma processing chamber is carried into the second film forming chamber, the second after completion formation of the non-magnetic conductive layer or an oxide layer in the film forming chamber, multi-chamber deposition apparatus, characterized in that for unloading from the second film formation chamber.
JP2008259557A 2008-10-06 2008-10-06 Multi chamber film-forming apparatus Pending JP2009055049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259557A JP2009055049A (en) 2008-10-06 2008-10-06 Multi chamber film-forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259557A JP2009055049A (en) 2008-10-06 2008-10-06 Multi chamber film-forming apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001278723A Division JP2003086866A (en) 2001-09-13 2001-09-13 Method for manufacturing spin valve type large magnetic resistance thin film

Publications (1)

Publication Number Publication Date
JP2009055049A true JP2009055049A (en) 2009-03-12

Family

ID=40505770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259557A Pending JP2009055049A (en) 2008-10-06 2008-10-06 Multi chamber film-forming apparatus

Country Status (1)

Country Link
JP (1) JP2009055049A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298745A (en) * 1997-04-24 1998-11-10 Ken Takahashi Vacuum film forming device
JPH10296666A (en) * 1997-04-24 1998-11-10 Musashino Eng:Kk Carrying robot
JP2000268330A (en) * 1999-03-15 2000-09-29 Victor Co Of Japan Ltd Manufacture of magnetoresistance effect thin-film magnetic head
JP2001023124A (en) * 1999-07-12 2001-01-26 Matsushita Electric Ind Co Ltd Thin film magnetic head and its manufacture
WO2001056090A1 (en) * 2000-01-28 2001-08-02 Sharp Kabushiki Kaisha Magnetoresistance effect device and method for manufacturing the same, base for magnetoresistance effect device and method for manufacturing the same, and magnetoresistance effect sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298745A (en) * 1997-04-24 1998-11-10 Ken Takahashi Vacuum film forming device
JPH10296666A (en) * 1997-04-24 1998-11-10 Musashino Eng:Kk Carrying robot
JP2000268330A (en) * 1999-03-15 2000-09-29 Victor Co Of Japan Ltd Manufacture of magnetoresistance effect thin-film magnetic head
JP2001023124A (en) * 1999-07-12 2001-01-26 Matsushita Electric Ind Co Ltd Thin film magnetic head and its manufacture
WO2001056090A1 (en) * 2000-01-28 2001-08-02 Sharp Kabushiki Kaisha Magnetoresistance effect device and method for manufacturing the same, base for magnetoresistance effect device and method for manufacturing the same, and magnetoresistance effect sensor

Similar Documents

Publication Publication Date Title
US6720036B2 (en) Method of production of spin valve type giant magnetoresistive thin film
US9214170B2 (en) TMR device with low magnetostriction free layer
US9021685B2 (en) Two step annealing process for TMR device with amorphous free layer
JP4908556B2 (en) Method for manufacturing magnetoresistive element
JP5599738B2 (en) Magnetoresistive element and method for forming the same
US7602033B2 (en) Low resistance tunneling magnetoresistive sensor with composite inner pinned layer
US8484830B2 (en) Method of manufacturing a CPP structure with enhanced GMR ratio
JP5815204B2 (en) TMR element and method for forming the same
KR100875844B1 (en) New buffer (seed) layer for fabricating high performance magnetic tunneling junction MRM
JP5674297B2 (en) TMR element and method for forming the same
US20100320076A1 (en) Low resistance tunneling magnetoresistive sensor with natural oxidized double MgO barrier
WO2009157064A1 (en) Method and equipment for manufacturing tunnel magnetoresistive element
JP2011166157A (en) Method for forming magnetoresistive element
JP5247766B2 (en) Magnetoresistive device and manufacturing method thereof
US20120270412A1 (en) Oxidizing method and oxidizing apparatus
JP2009055050A (en) Method for manufacturing spin-valve giant magnetoresistive film or tunnel magnetoresistive film
US20090053833A1 (en) Method of Manufacturing Magnetic Multi-layered Film
JP2009055049A (en) Multi chamber film-forming apparatus
JP2009158089A (en) Method of manufacturing spin valve type massive magnetic reluctance film or tmr film
JP4774092B2 (en) Magnetoresistive element and MRAM using the same
JP2007115745A (en) Tunnel magnetoresistance effect element and method of manufacturing same
JP3843837B2 (en) Method for manufacturing spin valve magnetoresistive sensor and method for manufacturing thin film magnetic head
JP2006134913A (en) Method of forming ruthenium film and tunnel magnetoresistance effect multilayer film
JP2007158137A (en) Surface planarizing method of thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205