JP2009054824A - Method of manufacturing substrate with penetrating wiring - Google Patents

Method of manufacturing substrate with penetrating wiring Download PDF

Info

Publication number
JP2009054824A
JP2009054824A JP2007220612A JP2007220612A JP2009054824A JP 2009054824 A JP2009054824 A JP 2009054824A JP 2007220612 A JP2007220612 A JP 2007220612A JP 2007220612 A JP2007220612 A JP 2007220612A JP 2009054824 A JP2009054824 A JP 2009054824A
Authority
JP
Japan
Prior art keywords
substrate
wiring
hole
film
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007220612A
Other languages
Japanese (ja)
Inventor
Kazuo Eda
和夫 江田
Masanao Kamakura
將有 鎌倉
Takumi Taura
巧 田浦
Makoto Morii
誠 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007220612A priority Critical patent/JP2009054824A/en
Publication of JP2009054824A publication Critical patent/JP2009054824A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control the peel-off of penetrating wirings 16a-16c from a substrate 18 and form an insulating film having a uniform film thickness on the internal wall surface of a through-hole 44 with excellent film thickness controllability. <P>SOLUTION: In the method of manufacturing a substrate with a penetrating wiring, a through-hole 44 penetrates the front and rear surfaces of a substrate 18 composed of silicon, the inside of the through-hole 44 is filled with the penetrating wiring 16 composed of wiring metal 47 via a thermally-oxidized film 45, a buffer film 17 is laminated on the front surface of the substrate 18, and the penetrating wiring 16 penetrates the cushion film 17 and is extended on the buffer film 17. The method includes the first step of etching the substrate 18, and thereby forming the through-hole 44, the second step of heating the substrate 18, and thereby forming the thermally-oxidized film 45 on the internal wall of the through-hole 44 formed in the first step, the third step of, after the second step, applying a buffer material 48 onto the front surface of the substrate 18 and heat curing the material, and thereby forming the buffer film 17, and the fourth step of, after the third step, filling the inside of the through-hole 44 with the wiring metal 47, and thereby forming penetrating wirings 16a-16c. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、緩衝膜が基板の一方の主面に成膜され、基板及び緩衝膜を貫通する貫通配線が形成された貫通配線付基板の製造方法に関する。   The present invention relates to a method for manufacturing a substrate with through wiring, in which a buffer film is formed on one main surface of a substrate, and a through wiring penetrating the substrate and the buffer film is formed.

近年、半導体センサ、集積回路、半導体光学素子など半導体装置の小型化の要求を満たすために、配線基板、回路基板又はインターポーザなど(以後、回路基板に例に取る。)を介して素子が形成された半導体基板を実装基板に直接実装するCSP(チップサイズパッケージ)技術が各所で研究開発されている(例えば、特許文献1〜4参照)。   In recent years, in order to satisfy the demand for miniaturization of semiconductor devices such as semiconductor sensors, integrated circuits, and semiconductor optical elements, elements are formed via a wiring board, a circuit board, an interposer, etc. (hereinafter, taken as an example of a circuit board). CSP (chip size package) technology for directly mounting a semiconductor substrate on a mounting substrate has been researched and developed in various places (for example, see Patent Documents 1 to 4).

半導体基板、回路基板及び実装基板は基板面の垂直方向に積層されるため、回路基板にはその表裏面を貫通する貫通配線が形成され、この貫通配線によって半導体基板と実装基板の間が電気的に接続される。なお、貫通配線は回路基板に形成された貫通孔に配線金属を充填することにより形成されるが、貫通孔の内壁面には貫通配線と回路基板の間を電気的に絶縁するための絶縁膜が形成される。   Since the semiconductor substrate, the circuit board, and the mounting board are stacked in a direction perpendicular to the board surface, a through-wiring that penetrates the front and back surfaces is formed on the circuit board, and this through-wiring electrically connects the semiconductor substrate and the mounting board. Connected to. The through wiring is formed by filling the through hole formed in the circuit board with the wiring metal, but the inner wall surface of the through hole has an insulating film for electrically insulating the through wiring from the circuit board. Is formed.

また、回路基板には樹脂から成る緩衝膜又は応力緩和層など(以後、緩衝膜を例に取る。)が形成され、熱処理を伴う実装の際に線膨張係数が異なる半導体基板と実装基板の間の熱膨張や熱収縮による応力を緩和することにより、実装時に発生する外部接続端子のクラックなどによる接続不良を抑制している。
特開2005−317704号公報 特開2006−278906号公報 特開2004−039864号公報 特開2007−134735号公報
In addition, a buffer film made of resin or a stress relaxation layer (hereinafter referred to as a buffer film is taken as an example) is formed on the circuit board, and between the semiconductor substrate and the mounting substrate having different linear expansion coefficients during mounting accompanied by heat treatment. By relieving the stress caused by thermal expansion and contraction, connection failures caused by cracks in the external connection terminals that occur during mounting are suppressed.
JP 2005-317704 A JP 2006-278906 A Japanese Patent Laid-Open No. 2004-039864 JP 2007-134735 A

上記のように、緩衝膜が基板の一方の主面に成膜され、基板及び緩衝膜を貫通する貫通配線が形成された回路基板の製造方法において、先に貫通孔内へ配線金属を充填し、その後に緩衝膜を形成する場合がある(特許文献2及び3参照)。この場合、緩衝膜は樹脂を塗布し熱処理により硬化させることで形成されるので、樹脂の熱硬化時に回路基板と配線金属との線膨張係数の違いに起因した熱膨張又は熱収縮による熱応力が発生し、この回路基板と配線金属間の熱応力は、貫通配線が回路基板から剥離する接続不良の原因となる。   As described above, in the method of manufacturing a circuit board in which the buffer film is formed on one main surface of the substrate and the through wiring penetrating the substrate and the buffer film is formed, the wiring metal is first filled in the through hole. Thereafter, a buffer film may be formed (see Patent Documents 2 and 3). In this case, since the buffer film is formed by applying a resin and curing it by heat treatment, thermal stress due to thermal expansion or contraction due to the difference in the linear expansion coefficient between the circuit board and the wiring metal during the thermal curing of the resin. The thermal stress generated between the circuit board and the wiring metal causes a connection failure in which the through wiring is peeled off from the circuit board.

これに対して、特許文献1の図9等で開示されているように、先ず緩衝膜(配線層)を形成し、その後に貫通孔の形成及び貫通孔への配線金属の充填を行う場合がある。この場合、配線金属が充填される前に緩衝膜を形成しているので、前述した回路基板と配線金属間の熱応力の問題は発生しない。しかしながら、貫通孔の内壁面に形成する絶縁膜は、熱処理による絶縁膜ではなく、プラズマCVD法(化学的気相成長法)により堆積されるTEOS(Si(OC254)膜である(特許文献1、段落0039参照)。このため、熱酸化法や熱窒化法などで形成される熱絶縁膜に比べて、貫通孔の内壁面に均一な膜厚の絶縁膜を膜厚制御性良く形成することができず、貫通配線と回路基板間のショート不良、貫通配線の抵抗増大など貫通配線の信頼性が低下する。 On the other hand, as disclosed in FIG. 9 of Patent Document 1, the buffer film (wiring layer) is first formed, and then the through holes are formed and the through holes are filled with the wiring metal. is there. In this case, since the buffer film is formed before the wiring metal is filled, the above-described problem of thermal stress between the circuit board and the wiring metal does not occur. However, the insulating film formed on the inner wall surface of the through hole is not an insulating film formed by heat treatment, but a TEOS (Si (OC 2 H 5 ) 4 ) film deposited by a plasma CVD method (chemical vapor deposition method). (See Patent Document 1, paragraph 0039). For this reason, an insulating film having a uniform film thickness cannot be formed on the inner wall surface of the through hole with good film thickness controllability compared to a thermal insulating film formed by a thermal oxidation method or a thermal nitridation method. The reliability of the through wiring decreases, such as a short circuit between the circuit board and the circuit board, and an increase in resistance of the through wiring.

本発明は、上記問題点を解決するために成されたものであり、その目的は、貫通配線が回路基板から剥離することを抑制し、且つ貫通孔の内壁面に均一な膜厚の絶縁膜を膜厚制御性良く形成する貫通配線付基板の製造方法を提供することである。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to suppress peeling of the through wiring from the circuit board and to form an insulating film having a uniform thickness on the inner wall surface of the through hole. It is providing the manufacturing method of the board | substrate with a through wiring which forms this with sufficient film thickness controllability.

本発明に係わる貫通配線付基板の製造方法は、半導体基板と、この半導体基板の表裏面を貫通する貫通孔と、この貫通孔の内部に熱絶縁膜を介して充填された配線金属からなる貫通配線と、半導体基板の表面に積層された緩衝膜とを備え、貫通配線が緩衝膜を貫通して緩衝膜上に延長されている貫通配線付基板の製造方法である。この方法は、半導体基板を選択的にエッチングして貫通孔を形成する第1の工程と、半導体基板を加熱することにより、第1の工程で形成された貫通孔の内壁に熱絶縁膜を成膜する第2の工程と、第2の工程の後に、半導体基板の表面に緩衝膜材料を塗布し、この緩衝膜材料を熱硬化させて緩衝膜を形成する第3の工程と、第3の工程の後に、貫通孔の内部に配線金属を充填して貫通配線を形成する第4の工程とを有することを特徴とする。   A method of manufacturing a substrate with a through wiring according to the present invention includes a semiconductor substrate, a through hole penetrating the front and back surfaces of the semiconductor substrate, and a through hole made of a wiring metal filled in the through hole with a thermal insulating film interposed therebetween. This is a method for manufacturing a substrate with through wiring, comprising a wiring and a buffer film laminated on the surface of the semiconductor substrate, wherein the through wiring extends through the buffer film and onto the buffer film. This method includes a first step of selectively etching a semiconductor substrate to form a through hole, and heating the semiconductor substrate to form a thermal insulating film on the inner wall of the through hole formed in the first step. A second step of forming a film, a third step of applying a buffer film material to the surface of the semiconductor substrate after the second step, and thermosetting the buffer film material to form a buffer film; And a fourth step of forming the through wiring by filling the inside of the through hole with the wiring metal after the step.

貫通配線付基板の製造方法は、第1の工程の前に、半導体基板の少なくとも表面に下地絶縁膜を形成する工程を更に有し、第1の工程では、半導体基板の裏面側から表面側に向けてエッチングを開始し、半導体基板の表面側に下地絶縁膜が表出した時点でエッチングを終了し、第3の工程では、下地絶縁膜の上に緩衝膜を形成することが好ましい。これにより、第3の工程において貫通孔の上に残された下地絶縁膜の上にも緩衝膜を形成することができる。   The method for manufacturing the substrate with through wiring further includes a step of forming a base insulating film on at least the surface of the semiconductor substrate before the first step, and in the first step, the semiconductor substrate is moved from the back side to the front side. Etching is started and the etching is terminated when the base insulating film appears on the surface side of the semiconductor substrate. In the third step, it is preferable to form a buffer film on the base insulating film. Thereby, a buffer film can be formed also on the base insulating film left on the through hole in the third step.

第3の工程では、貫通孔の上に塗布された緩衝膜材料を選択的に除去して貫通孔よりも径の小さい開口を形成した後に、緩衝膜材料を熱硬化させて開口を有する緩衝膜を形成し、貫通配線付基板の製造方法は、第3の工程と第4の工程の間に、開口から表出する下地絶縁膜を選択的にエッチングして、貫通孔に連続する開口を形成する工程を更に有することが好ましい。半導体基板の貫通孔と緩衝膜の開口を異なる工程で形成する場合であっても、貫通孔よりも径の小さい開口を形成することによって、半導体基板を露出させること無く、絶縁膜を介して配線金属を充填することができる。   In the third step, after the buffer film material applied on the through hole is selectively removed to form an opening having a diameter smaller than that of the through hole, the buffer film material is thermally cured to have the buffer film having the opening. In the manufacturing method of the substrate with through wiring, the opening that continues to the through hole is formed by selectively etching the base insulating film exposed from the opening between the third step and the fourth step. It is preferable to further include a step of Even when the through hole of the semiconductor substrate and the opening of the buffer film are formed in different processes, the wiring is formed through the insulating film without exposing the semiconductor substrate by forming an opening having a diameter smaller than that of the through hole. Metal can be filled.

本発明によれば、貫通孔内に配線金属を充填する前に緩衝膜材料を熱硬化させることにより、貫通孔に配線金属が充填された状態の半導体基板に熱ストレスを加えることが無くなり、配線金属と半導体基板の熱膨張率の差に起因して貫通配線が半導体基板から剥離することを抑制できる。また、緩衝膜を形成する前に貫通孔を形成するので、熱処理によって貫通孔の内壁に熱絶縁膜を成膜できる。よって、CVD法などで堆積された絶縁膜に比べて、貫通孔内に均一な膜厚の絶縁膜を膜厚制御性良く形成することができる。   According to the present invention, by thermally curing the buffer film material before filling the through hole with the wiring metal, no thermal stress is applied to the semiconductor substrate in which the through hole is filled with the wiring metal. It is possible to suppress the through wiring from being peeled off from the semiconductor substrate due to the difference in thermal expansion coefficient between the metal and the semiconductor substrate. In addition, since the through hole is formed before the buffer film is formed, a heat insulating film can be formed on the inner wall of the through hole by heat treatment. Therefore, an insulating film having a uniform thickness can be formed in the through hole with good film thickness controllability as compared with an insulating film deposited by a CVD method or the like.

以下図面を参照して、本発明の実施の形態を説明する。なお、図面の記載において同一部分には同一符号を付して説明を省略する。
(本発明の実施の形態)
図1(a)は本発明の実施の形態に係わる貫通配線付基板2を備える加速度センサの全体構成を示す断面図であり、図1(b)は、図1(a)のセンサ基板1のA−A面に沿った平面図である。
Embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings, the same parts are denoted by the same reference numerals and description thereof is omitted.
(Embodiment of the present invention)
FIG. 1A is a cross-sectional view showing the overall configuration of an acceleration sensor including a substrate 2 with through wiring according to an embodiment of the present invention, and FIG. 1B is a diagram of the sensor substrate 1 of FIG. It is a top view along the AA plane.

図1(a)に示すように、本発明の実施の形態に係わる加速度センサは、後述のゲージ抵抗が形成された加速度センサ本体であるセンサ基板1と、センサ基板1の一方の主面に接着された貫通配線付基板2と、センサ基板1の前記一方の主面に対向する他方の主面に接着されたカバー基板3とを備える。なお、貫通配線付基板2、カバー基板3は、センサ基板1と同じ外周形状及び外形寸法に形成され、センサ基板1と同じ材質(例えば、シリコンなど)からなる。   As shown in FIG. 1A, an acceleration sensor according to an embodiment of the present invention is bonded to a sensor substrate 1 that is an acceleration sensor body on which a gauge resistance described later is formed, and one main surface of the sensor substrate 1. And a cover substrate 3 bonded to the other main surface opposite to the one main surface of the sensor substrate 1. The through wiring substrate 2 and the cover substrate 3 are formed in the same outer peripheral shape and outer dimensions as the sensor substrate 1 and are made of the same material as the sensor substrate 1 (for example, silicon).

センサ基板1は、貫通配線付基板2及びカバー基板3に機械的及び電気的に接続されるフレーム部11と、フレーム部11の内側に配置された重り部13と、フレーム部11と重り部13の間を接続する短冊状の撓み部12とを備え、重り部13と撓み部12は接続部14において接続している。撓み部12はフレーム部11よりも肉薄に形成され、可撓性を有するため、加速度センサに加わる加速度に応じて撓み部12は撓み、重り部13は変位する。フレーム部11の内側において重り部13が変位できるように、重り部13とフレーム部11の間及び重り部13と撓み部12の間にそれぞれスリット(隙間)が形成されている。   The sensor substrate 1 includes a frame portion 11 that is mechanically and electrically connected to the substrate 2 with penetrating wiring and the cover substrate 3, a weight portion 13 disposed inside the frame portion 11, a frame portion 11, and a weight portion 13. And a strip-like bent portion 12 that connects the two. The weight portion 13 and the bent portion 12 are connected to each other at the connecting portion 14. Since the bending part 12 is formed thinner than the frame part 11 and has flexibility, the bending part 12 bends and the weight part 13 is displaced according to the acceleration applied to the acceleration sensor. A slit (gap) is formed between the weight portion 13 and the frame portion 11 and between the weight portion 13 and the bent portion 12 so that the weight portion 13 can be displaced inside the frame portion 11.

図1(b)に示すように、センサ基板1は、枠状(本実施形態では矩形枠状)のフレーム部11を備え、フレーム部11の内側には重り部13が所定の隙間をおいて配置されている。フレーム部11の各辺の中央から可撓性を有する4つの撓み部12a〜12dが重り部13の中心に向かってそれぞれ延長され、重り部13の中心において4つの撓み部12a〜12dは接続部14を介して重り部13に接続している。このように、枠状のフレーム部11の内側に配置される重り部13が重り部13から四方へ延長された4つの撓み部12a〜12dを介してフレーム部11に揺動自在に支持されている。なお、フレーム部11、撓み部12a〜12d、重り部13及び接続部14は、単結晶シリコン等からなる半導体基板や支持基板上に絶縁層を介してシリコンの活性層が形成されたSOI基板を、既知のリソグラフィ技術及びエッチング技術を用いて加工することにより形成すればよい。   As shown in FIG. 1B, the sensor substrate 1 includes a frame portion 11 having a frame shape (rectangular frame shape in the present embodiment), and a weight portion 13 with a predetermined gap inside the frame portion 11. Has been placed. Four flexible portions 12 a to 12 d having flexibility are extended from the center of each side of the frame portion 11 toward the center of the weight portion 13, and the four flexible portions 12 a to 12 d are connected to the center of the weight portion 13. 14 is connected to the weight part 13 via 14. As described above, the weight portion 13 disposed inside the frame-shaped frame portion 11 is swingably supported by the frame portion 11 via the four flexure portions 12a to 12d extending from the weight portion 13 in four directions. Yes. The frame part 11, the bending parts 12a to 12d, the weight part 13 and the connection part 14 are an SOI substrate in which a silicon active layer is formed on a semiconductor substrate or a support substrate made of single crystal silicon or the like via an insulating layer. What is necessary is just to form by processing using a known lithography technique and an etching technique.

撓み部12a〜12d上の所定の位置に、ピエゾ抵抗Ra1、Ra2、Rb1、Rb2、Rc1、Rc2、Rd1、Rd2がそれぞれ形成されている。撓み部12a〜12dの撓みに伴う各ピエゾ抵抗の抵抗値の変化からX軸方向、Y軸方向及びZ軸方向のそれぞれの加速度を求めることができる。このように、ピエゾ抵抗Ra1、Ra2、Rb1、Rb2、Rc1、Rc2、Rd1、Rd2は、センサ基板1におけるゲージ抵抗を構成している。なお、図示は省略するが、各ピエゾ抵抗はセンサ基板1上に形成された拡散層配線や金属配線などによって接続されて、所定のブリッジ回路を構成している。 Piezoresistors Ra 1 , Ra 2 , Rb 1 , Rb 2 , Rc 1 , Rc 2 , Rd 1 , and Rd 2 are formed at predetermined positions on the flexures 12a to 12d, respectively. The respective accelerations in the X-axis direction, the Y-axis direction, and the Z-axis direction can be obtained from the change in resistance value of each piezoresistor accompanying the bending of the bending portions 12a to 12d. Thus, the piezo resistors Ra 1 , Ra 2 , Rb 1 , Rb 2 , Rc 1 , Rc 2 , Rd 1 , Rd 2 constitute a gauge resistance in the sensor substrate 1. Although not shown, each piezoresistor is connected by a diffusion layer wiring or a metal wiring formed on the sensor substrate 1 to constitute a predetermined bridge circuit.

図1(a)に示すように、カバー基板3のセンサ基板1と対向する面には、重り部13の変位空間を形成する所定深さの凹部22が形成されている。カバー基板3の対向面のうち凹部22が形成されていない部分がセンサ基板1のフレーム部11に接着されている。凹部22は既知のリソグラフィ技術及びエッチング技術を用いて形成すればよい。なお、図1(a)の撓み部12、接続部14及び重り部13の合計厚さを、フレーム部11の厚さに比べて、重り部13の許容変位量分だけ薄くすれば、カバー基板3に凹部22を形成しなくてもよい。   As shown in FIG. 1A, a recess 22 having a predetermined depth that forms a displacement space of the weight 13 is formed on the surface of the cover substrate 3 that faces the sensor substrate 1. A portion of the facing surface of the cover substrate 3 where the recess 22 is not formed is bonded to the frame portion 11 of the sensor substrate 1. The recess 22 may be formed using a known lithography technique and etching technique. If the total thickness of the bent portion 12, the connecting portion 14, and the weight portion 13 in FIG. 1A is made thinner by the allowable displacement amount of the weight portion 13 than the thickness of the frame portion 11, the cover substrate. 3 does not have to be formed with the recess 22.

貫通配線付基板2は、半導体基板18と、半導体基板18の表裏面を貫通する貫通配線16と、半導体基板18の表面に積層された緩衝膜17とを備える。貫通配線16は、センサ基板1に形成されたピエゾ抵抗Ra1、Ra2、Rb1、Rb2、Rc1、Rc2、Rd1、Rd2のブリッジ回路に電気的に接続されている。また、貫通配線16は、緩衝膜17を貫通して緩衝膜17上に延長され、外部接続端子5を介して実装基板4内の電極パッド(図示せず)に接続されている。貫通配線付基板2のセンサ基板1に対向する主面には、撓み部12の変位空間を形成する所定深さの凹部21が形成されている。ここで、貫通配線付基板2及び半導体基板18の「表面」とは実装基板4に対向する主面を示し、貫通配線付基板2及び半導体基板18の「裏面」とはセンサ基板1に対向する主面を示す。外部接続端子5は、例えば、半田、鉛フリー半田等からなる。 The substrate 2 with through wiring includes a semiconductor substrate 18, a through wiring 16 penetrating the front and back surfaces of the semiconductor substrate 18, and a buffer film 17 stacked on the surface of the semiconductor substrate 18. The through wiring 16 is electrically connected to a bridge circuit of piezoresistors Ra 1 , Ra 2 , Rb 1 , Rb 2 , Rc 1 , Rc 2 , Rd 1 , Rd 2 formed on the sensor substrate 1. The through wiring 16 extends through the buffer film 17 and is connected to an electrode pad (not shown) in the mounting substrate 4 via the external connection terminal 5. A concave portion 21 having a predetermined depth that forms a displacement space of the bending portion 12 is formed on the main surface of the substrate 2 with through wiring facing the sensor substrate 1. Here, the “front surface” of the substrate 2 with through wiring and the semiconductor substrate 18 indicates a main surface facing the mounting substrate 4, and the “back surface” of the substrate 2 with through wiring and the semiconductor substrate 18 faces the sensor substrate 1. The main surface is shown. The external connection terminal 5 is made of, for example, solder or lead-free solder.

図2を参照して、図1(a)の貫通配線付基板2の詳細な構成を示す断面図である。半導体基板18の表面には均一膜厚の緩衝膜17が成膜されている。半導体基板18の裏面の中央部分には凹部21が形成されている。半導体基板18の外周部分において半導体基板18の表裏面及び緩衝膜17を貫通するように、半導体基板18内に貫通配線16が埋め込まれている。半導体基板18の表裏面には均一膜厚の絶縁膜(例えばシリコン酸化膜やシリコン窒化膜など)41a、41bがそれぞれ形成され、半導体基板18内に埋め込まされた貫通配線16と半導体基板18の間にも均一膜厚の絶縁膜45が形成されている。   FIG. 2 is a cross-sectional view showing a detailed configuration of substrate 2 with through wiring in FIG. A buffer film 17 having a uniform thickness is formed on the surface of the semiconductor substrate 18. A recess 21 is formed in the central portion of the back surface of the semiconductor substrate 18. A through wiring 16 is embedded in the semiconductor substrate 18 so as to penetrate the front and back surfaces of the semiconductor substrate 18 and the buffer film 17 in the outer peripheral portion of the semiconductor substrate 18. Insulating films (for example, silicon oxide film and silicon nitride film) 41 a and 41 b having a uniform film thickness are formed on the front and back surfaces of the semiconductor substrate 18, respectively, and between the through wiring 16 embedded in the semiconductor substrate 18 and the semiconductor substrate 18. In addition, an insulating film 45 having a uniform thickness is formed.

貫通配線16は、半導体基板18内に埋め込まれた充填部16aと、充填部16aから緩衝膜17を貫通して緩衝膜17上に延長された外部電極パッド部16bと、充填部16aから半導体基板18の裏面上に延長された内部電極パッド部16cとを備える。充填部16a、外部電極パッド部16b及び内部電極パッド部16cは、それぞれ絶縁膜45、41a、41bによって半導体基板18から電気的に絶縁されている。   The through wiring 16 includes a filling portion 16 a embedded in the semiconductor substrate 18, an external electrode pad portion 16 b extending from the filling portion 16 a through the buffer film 17 onto the buffer film 17, and the filling portion 16 a to the semiconductor substrate. 18 and an internal electrode pad portion 16c extended on the back surface. The filling portion 16a, the external electrode pad portion 16b, and the internal electrode pad portion 16c are electrically insulated from the semiconductor substrate 18 by insulating films 45, 41a, and 41b, respectively.

本発明の実施形態において、半導体基板18内に埋め込まれた充填部16aの径は、緩衝膜17内に埋め込まれた充填部16aの径よりも広い。また、外部電極パッド部16bの上には、外部電極パッド部16b上に積層されたNi層とNi層上に積層されたAu層からなるNi/Au層31が形成されている。Ni層の代わりに、例えば、Ti、Cr、Nb、Zr、TiN、TaN等からなる導電層を用いてもよい。   In the embodiment of the present invention, the diameter of the filling portion 16 a embedded in the semiconductor substrate 18 is wider than the diameter of the filling portion 16 a embedded in the buffer film 17. Further, a Ni / Au layer 31 is formed on the external electrode pad portion 16b. The Ni / Au layer 31 includes a Ni layer stacked on the external electrode pad portion 16b and an Au layer stacked on the Ni layer. Instead of the Ni layer, for example, a conductive layer made of Ti, Cr, Nb, Zr, TiN, TaN or the like may be used.

次に、図3(a)〜(h)の各分図を参照して、図2の貫通配線付基板2の製造方法の一例を説明する。   Next, an example of a manufacturing method of the substrate 2 with through wiring of FIG. 2 will be described with reference to the respective drawings of FIGS.

(イ)酸素を含有する雰囲気においてシリコン基板18を加熱して、図3(a)に示すように、シリコン基板18の表面及び裏面にそれぞれ膜厚1μm程度の熱酸化膜41a、41bを形成する。このようにして、半導体基板(シリコン基板)18の少なくとも表面に下地絶縁膜(熱酸化膜)41bを形成する。   (A) The silicon substrate 18 is heated in an atmosphere containing oxygen to form thermal oxide films 41a and 41b each having a thickness of about 1 μm on the front and back surfaces of the silicon substrate 18 as shown in FIG. . In this manner, the base insulating film (thermal oxide film) 41 b is formed on at least the surface of the semiconductor substrate (silicon substrate) 18.

(ロ)熱酸化膜41a、41b上にレジスト膜42a、42bをそれぞれ成膜し、フォトリソグラフィ法により、貫通配線16が形成される領域のレジスト膜42aを選択的に除去して窓43をパターンニングする。窓43から表出する熱酸化膜41aを選択的にエッチングする。エッチング方法はフッ化水素(HF)系溶液によるウェットエッチングでも、CF4等のCF系ガスによるドライエッチングでも良い。このとき、シリコン基板18の表面側の熱酸化膜41bはレジスト膜42bで覆われているのでエッチングされない。図3(b)に示すように、半導体基板18の裏面側のレジスト膜42a及び熱酸化膜41aに、貫通配線16用の貫通孔を形成するためのエッチングマスクが形成される。 (B) Resist films 42a and 42b are formed on the thermal oxide films 41a and 41b, respectively, and the resist film 42a in the region where the through wiring 16 is formed is selectively removed by photolithography to pattern the windows 43. Ning. The thermal oxide film 41a exposed from the window 43 is selectively etched. The etching method may be wet etching using a hydrogen fluoride (HF) solution or dry etching using a CF gas such as CF 4 . At this time, the thermal oxide film 41b on the surface side of the silicon substrate 18 is not etched because it is covered with the resist film 42b. As shown in FIG. 3B, an etching mask for forming a through hole for the through wiring 16 is formed in the resist film 42 a and the thermal oxide film 41 a on the back surface side of the semiconductor substrate 18.

(ハ)レジスト膜42a及び熱酸化膜41aの窓43から表出するシリコン基板18を、Deep−RIE法等の異方性エッチング法を用いて選択的にエッチングして、図3(c)に示すように、貫通配線16を埋め込むための貫通孔44を形成する。このエッチング工程(第1の工程)では、シリコン基板18の裏面側から表面側に向けてエッチングを開始し、シリコン基板18の表面側に熱酸化膜(下地絶縁膜)41bが表出した時点でエッチングを終了する。この時、膜厚1μm程度の熱酸化膜41b上にレジスト膜42bが成膜されているので、熱酸化膜41bは、シリコン基板18と一緒にエッチングされることなく、貫通孔44の上に残存させることができる。   (C) The silicon substrate 18 exposed from the window 43 of the resist film 42a and the thermal oxide film 41a is selectively etched using an anisotropic etching method such as a Deep-RIE method, and the result is shown in FIG. As shown, a through hole 44 for embedding the through wiring 16 is formed. In this etching step (first step), etching starts from the back surface side to the front surface side of the silicon substrate 18, and when the thermal oxide film (underlying insulating film) 41b appears on the front surface side of the silicon substrate 18. The etching is finished. At this time, since the resist film 42b is formed on the thermal oxide film 41b having a thickness of about 1 μm, the thermal oxide film 41b remains on the through hole 44 without being etched together with the silicon substrate 18. Can be made.

(ニ)第1の工程の後に、シリコン基板18の表裏面上のレジスト膜42a、42bを除去する。その後、酸素を含有する雰囲気においてシリコン基板18を加熱する熱酸化処理を行い、図3(d)に示すように、貫通孔44の内壁に膜厚0.5μm程度の熱酸化膜(熱絶縁膜)45を成膜する(第2の工程)。   (D) After the first step, the resist films 42a and 42b on the front and back surfaces of the silicon substrate 18 are removed. Thereafter, a thermal oxidation process is performed to heat the silicon substrate 18 in an atmosphere containing oxygen, and a thermal oxide film (thermal insulating film) having a thickness of about 0.5 μm is formed on the inner wall of the through hole 44 as shown in FIG. ) 45 is formed (second step).

(ホ)第2の工程の後に、シリコン基板18の表面に感光性の熱硬化性樹脂からなる緩衝膜材料48をスピン塗布する。具体的には、図3(e)に示すように、シリコン基板18の表面側の熱酸化膜41b上に緩衝膜材料48を均一膜厚で塗布する。緩衝膜材料48は、貫通孔44の上に残存する熱酸化膜41b上にも塗布される。   (E) After the second step, a buffer film material 48 made of a photosensitive thermosetting resin is spin-coated on the surface of the silicon substrate 18. Specifically, as shown in FIG. 3E, a buffer film material 48 is applied with a uniform film thickness on the thermal oxide film 41 b on the surface side of the silicon substrate 18. The buffer film material 48 is also applied to the thermal oxide film 41 b remaining on the through hole 44.

(へ)フォトリソグラフィ法(露光・現像)を用いて、貫通孔44上に塗布された緩衝膜材料48の一部を選択的に除去して、貫通孔44上の緩衝膜材料48に開口46を形成する。なお、開口46の径は貫通孔44の径よりも狭い。そして、窒素雰囲気において350℃程度まで緩衝膜材料48を加熱することにより緩衝膜材料48が熱硬化して開口46を有する緩衝膜17が形成される(第3の工程)。その後、緩衝膜17をエッチングマスクとして、開口46から表出する熱酸化膜41bを裏面側からCF系ガスによるドライエッチングにより選択的にエッチングする。以上の処理により、図3(f)に示すように、開口46が貫通孔44に繋がる、つまり貫通孔44に連続する開口46が形成される。   (F) Using a photolithography method (exposure / development), a part of the buffer film material 48 applied on the through hole 44 is selectively removed, and the buffer film material 48 on the through hole 44 has an opening 46. Form. The diameter of the opening 46 is narrower than the diameter of the through hole 44. Then, by heating the buffer film material 48 to about 350 ° C. in a nitrogen atmosphere, the buffer film material 48 is thermally cured to form the buffer film 17 having the openings 46 (third step). Thereafter, using the buffer film 17 as an etching mask, the thermal oxide film 41b exposed from the opening 46 is selectively etched from the back surface side by dry etching using a CF-based gas. By the above processing, as shown in FIG. 3 (f), the opening 46 is connected to the through hole 44, that is, the opening 46 continuing to the through hole 44 is formed.

(ト)スパッタリング法により、シリコン基板18の表裏面及び貫通孔44及び開口46の内壁面上に、絶縁膜41a、41b、45を介して銅(Cu)膜を堆積する。この銅膜は後述する電界メッキ法で貫通孔44内に配線金属(銅膜)47を充填する際のシード層となるものである。その後、図3(g)に示すように、電界メッキ法により貫通孔44及び開口46内に配線金属(銅膜)47を充填すると同時に、シリコン基板18の表裏面に配線金属47を堆積する。   (G) A copper (Cu) film is deposited on the front and back surfaces of the silicon substrate 18 and the inner wall surfaces of the through-hole 44 and the opening 46 through the insulating films 41a, 41b, and 45 by sputtering. This copper film serves as a seed layer when the wiring metal (copper film) 47 is filled in the through hole 44 by an electroplating method to be described later. Thereafter, as shown in FIG. 3G, the wiring metal (copper film) 47 is filled in the through hole 44 and the opening 46 by the electroplating method, and at the same time, the wiring metal 47 is deposited on the front and back surfaces of the silicon substrate 18.

(チ)その後、フォトリソグラフィ法によりシリコン基板18の表裏面の配線金属47の上に所定のレジストパターンを形成し、RIEなどの異方性エッチング法により配線金属47を選択的にエッチングして、図3(h)に示すように、外部電極パッド部16b及び内部電極パッド部16cをパターンニングする。以上の処理により、貫通孔44及び開口46の内部に充填された充填部16a、外部電極パッド部16b及び内部電極パッド部16cを備える貫通配線16が形成される(第4の工程)。そして、外部電極パッド部16b上にNi/Au層を形成する。以上の工程を経て、図1(a)及び図2に示した貫通配線付基板2が完成する。   (H) Thereafter, a predetermined resist pattern is formed on the wiring metal 47 on the front and back surfaces of the silicon substrate 18 by a photolithography method, and the wiring metal 47 is selectively etched by an anisotropic etching method such as RIE. As shown in FIG. 3H, the external electrode pad portion 16b and the internal electrode pad portion 16c are patterned. Through the above processing, the through wiring 16 including the filling portion 16a, the external electrode pad portion 16b, and the internal electrode pad portion 16c filled in the through hole 44 and the opening 46 is formed (fourth step). Then, a Ni / Au layer is formed on the external electrode pad portion 16b. Through the above steps, the substrate 2 with through wiring shown in FIGS. 1A and 2 is completed.

以上説明したように、本発明の実施の形態によれば、貫通孔44内に配線金属47を充填する前に緩衝膜材料48を熱硬化させることにより、貫通孔44に配線金属47が充填された状態のシリコン基板18に熱ストレスを加えることが無くなり、配線金属47とシリコン基板18の熱膨張率の差に起因して貫通配線16がシリコン基板18から剥離することを抑制できる。また、緩衝膜17を形成する前に貫通孔44を形成するので、熱処理によって貫通孔44の内壁に熱絶縁膜45を成膜できる。よって、CVD法などで堆積された絶縁膜に比べて、貫通孔44内に均一な膜厚の絶縁膜を膜厚制御性良く形成することができる。   As described above, according to the embodiment of the present invention, the through hole 44 is filled with the wiring metal 47 by thermally curing the buffer film material 48 before filling the through hole 44 with the wiring metal 47. Thermal stress is no longer applied to the silicon substrate 18 in this state, and the through wiring 16 can be prevented from peeling off from the silicon substrate 18 due to the difference in thermal expansion coefficient between the wiring metal 47 and the silicon substrate 18. Further, since the through hole 44 is formed before the buffer film 17 is formed, the thermal insulating film 45 can be formed on the inner wall of the through hole 44 by heat treatment. Therefore, an insulating film having a uniform film thickness can be formed in the through hole 44 with good film thickness controllability as compared with an insulating film deposited by a CVD method or the like.

図3(c)のエッチング工程(第1の工程)の前に、シリコン基板18の少なくとも表面に熱酸化膜41bを形成し、図3(c)のエッチング工程では、シリコン基板18の裏面側から表面側に向けてエッチングを開始し、シリコン基板18の表面側に熱酸化膜41bが表出した時点でエッチングを終了する。そして、図3(f)の第3の工程では、熱酸化膜41bの上に緩衝膜材料48を塗布し熱硬化させて緩衝膜17を形成する。これにより、緩衝膜材料48は、貫通孔44の上に残存する熱酸化膜41b上にも塗布され、貫通孔44の上に残された熱酸化膜41bの上にも緩衝膜17を形成することができる。   Prior to the etching step (first step) in FIG. 3C, a thermal oxide film 41b is formed on at least the surface of the silicon substrate 18. In the etching step in FIG. Etching is started toward the surface side, and is terminated when the thermal oxide film 41b is exposed on the surface side of the silicon substrate 18. In the third step of FIG. 3F, the buffer film material 48 is applied on the thermal oxide film 41b and thermally cured to form the buffer film 17. Thereby, the buffer film material 48 is also applied onto the thermal oxide film 41 b remaining on the through hole 44, and the buffer film 17 is formed also on the thermal oxide film 41 b remaining on the through hole 44. be able to.

図3(f)の第3の工程では、貫通孔44の上に塗布された緩衝膜材料48を選択的に除去して貫通孔44よりも径の小さい開口46を形成した後に、緩衝膜材料48を熱硬化させて開口46を有する緩衝膜17を形成し、開口46から表出する熱酸化膜41bを選択的にエッチングして、貫通孔44に連続する開口46を形成する。シリコン基板18の貫通孔44と緩衝膜17の開口46を異なる工程で形成する場合であっても、貫通孔44よりも径の小さい開口46を形成することによって、シリコン基板18を露出させること無く、絶縁膜を介して配線金属47を充填することができる。
(比較例)
図4(a)〜(h)の各分図を参照して、貫通配線付基板の製造方法の比較例について説明する。
In the third step of FIG. 3F, after the buffer film material 48 applied on the through hole 44 is selectively removed to form an opening 46 having a diameter smaller than that of the through hole 44, the buffer film material is formed. The buffer film 17 having the opening 46 is formed by thermally curing 48, and the thermal oxide film 41 b exposed from the opening 46 is selectively etched to form the opening 46 continuous with the through hole 44. Even when the through hole 44 of the silicon substrate 18 and the opening 46 of the buffer film 17 are formed in different steps, the silicon substrate 18 is not exposed by forming the opening 46 having a diameter smaller than that of the through hole 44. The wiring metal 47 can be filled through the insulating film.
(Comparative example)
A comparative example of a method for manufacturing a substrate with through wiring will be described with reference to the respective drawings of FIGS.

(い)シリコン基板68の熱酸化処理を行い、図4(a)に示すように、シリコン基板68の表裏面にそれぞれ熱酸化膜91a、91bを形成する。   (Ii) Thermal oxidation treatment of the silicon substrate 68 is performed to form thermal oxide films 91a and 91b on the front and back surfaces of the silicon substrate 68, respectively, as shown in FIG.

(ろ)熱酸化膜91a、91b上にレジスト膜92a、92bをそれぞれ成膜し、フォトリソグラフィ法により、貫通配線が形成される領域のレジスト膜92bを選択的に除去して窓93をパターンニングする。窓93から表出する熱酸化膜91bを選択的にエッチングする。図4(b)に示すように、半導体基板68の表面側のレジスト膜92b及び熱酸化膜91bに、貫通配線用の貫通孔を形成するためのエッチングマスクが形成される。   (R) Resist films 92a and 92b are formed on the thermal oxide films 91a and 91b, respectively, and the resist film 92b in the region where the through wiring is formed is selectively removed by photolithography to pattern the window 93. To do. The thermal oxide film 91b exposed from the window 93 is selectively etched. As shown in FIG. 4B, an etching mask for forming a through hole for through wiring is formed in the resist film 92b and the thermal oxide film 91b on the surface side of the semiconductor substrate 68.

(は)レジスト膜92b及び熱酸化膜91bの窓43から表出するシリコン基板68を選択的にエッチングして、図4(c)に示すように、貫通配線を埋め込むための貫通孔94を形成する。貫通孔94上の熱酸化膜91a及びレジスト膜92a、92bを除去する。その後、シリコン基板68の熱酸化処理を行い、図4(d)に示すように、貫通孔94の内壁に熱酸化膜95を成膜する。   The silicon substrate 68 exposed from the window 43 of the resist film 92b and the thermal oxide film 91b is selectively etched to form a through hole 94 for embedding the through wiring as shown in FIG. To do. The thermal oxide film 91a and the resist films 92a and 92b on the through hole 94 are removed. Thereafter, a thermal oxidation process is performed on the silicon substrate 68 to form a thermal oxide film 95 on the inner wall of the through hole 94 as shown in FIG.

(に)図4(e)に示すように、貫通孔94の内部に配線金属(銅膜)97を充填すると同時に、シリコン基板68の表裏面上に配線金属97を堆積する。   (I) As shown in FIG. 4 (e), the wiring metal (copper film) 97 is filled in the through hole 94, and at the same time, the wiring metal 97 is deposited on the front and back surfaces of the silicon substrate 68.

(ほ)シリコン基板68の表裏面の配線金属97を選択的にエッチングして、図4(f)に示すように、外部電極パッド部66b及び内部電極パッド部66cをパターンニングする。貫通孔44の内部に充填された充填部66a、外部電極パッド部66b及び内部電極パッド部66cを備える貫通配線が形成される。   (E) The wiring metal 97 on the front and back surfaces of the silicon substrate 68 is selectively etched to pattern the external electrode pad portion 66b and the internal electrode pad portion 66c as shown in FIG. A through wiring including a filling portion 66a, an external electrode pad portion 66b, and an internal electrode pad portion 66c filled in the through hole 44 is formed.

(へ)シリコン基板68の表面に緩衝膜材料を塗布する。緩衝膜材料は外部電極パッド部66b上にも塗布される。外部電極パッド部66b上に塗布された緩衝膜材料の一部を選択的に除去して、外部電極パッド部66b上の緩衝膜材料に開口96を形成する。そして、図4(e)に示すように、緩衝膜材料48を熱硬化させて開口96を有する緩衝膜67を形成する。   (F) A buffer film material is applied to the surface of the silicon substrate 68. The buffer film material is also applied on the external electrode pad portion 66b. A part of the buffer film material applied on the external electrode pad portion 66b is selectively removed to form an opening 96 in the buffer film material on the external electrode pad portion 66b. Then, as shown in FIG. 4E, the buffer film material 48 is thermally cured to form the buffer film 67 having the openings 96.

(と)開口96の内部及び緩衝膜67の上に電極材料を堆積し、所定の形状にパターンニングすることで、図4(h)に示すように、外部電極パッド部66bに接続された外部電極81(パッド)を形成する。   (And) The electrode material is deposited on the inside of the opening 96 and on the buffer film 67, and patterned into a predetermined shape, whereby the external connected to the external electrode pad portion 66b as shown in FIG. An electrode 81 (pad) is formed.

以上説明したように、比較例では、貫通孔94へ配線金属97を充填した後に緩衝膜67を形成している。このため、緩衝膜67の熱硬化時にシリコン基板68と配線金属97との膨張係数の違いに起因した熱膨張又は熱収縮による熱応力が発生し、このシリコン基板68と配線金属97間の熱応力により、貫通配線66a〜66cがシリコン基板68から剥離する接続不良が発生してしまう。   As described above, in the comparative example, the buffer film 67 is formed after the through hole 94 is filled with the wiring metal 97. For this reason, a thermal stress due to thermal expansion or contraction due to a difference in expansion coefficient between the silicon substrate 68 and the wiring metal 97 is generated when the buffer film 67 is thermally cured, and the thermal stress between the silicon substrate 68 and the wiring metal 97 is generated. As a result, a connection failure occurs in which the through wirings 66 a to 66 c are separated from the silicon substrate 68.

これに対して、本発明の実施の形態では、緩衝膜17を形成した後に貫通孔44へ配線金属47を充填している。このため、配線金属47が緩衝膜17の熱硬化時の熱ストレスを受けることが無く、上記のような熱応力による剥離の問題は発生しない。   On the other hand, in the embodiment of the present invention, the wiring metal 47 is filled into the through hole 44 after the buffer film 17 is formed. For this reason, the wiring metal 47 does not receive the thermal stress at the time of the thermosetting of the buffer film 17, and the problem of peeling due to the thermal stress as described above does not occur.

上記のように、本発明は、1つの実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。   As described above, the present invention has been described according to one embodiment. However, it should not be understood that the description and the drawings, which form a part of this disclosure, limit the present invention. From this disclosure, various alternative embodiments, examples, and operational techniques will be apparent to those skilled in the art.

本発明の実施の形態では、貫通孔44内に成膜される熱絶縁膜として熱酸化膜45(シリコン酸化膜)を例示したが、これ以外にシリコン窒化膜等の熱窒化膜や、シリコン酸窒化膜等の熱酸窒化膜であっても構わない。また、下地絶縁膜として熱酸化膜41b(シリコン酸化膜)を例示したが、これ以外にCVD等などで堆積されたシリコン酸化膜や、シリコン窒化膜、シリコン酸窒化膜であっても構わない。   In the embodiment of the present invention, the thermal oxide film 45 (silicon oxide film) is exemplified as the thermal insulating film formed in the through hole 44. However, other than this, a thermal nitride film such as a silicon nitride film, silicon oxide, etc. A thermal oxynitride film such as a nitride film may be used. In addition, although the thermal oxide film 41b (silicon oxide film) is illustrated as the base insulating film, a silicon oxide film deposited by CVD or the like, a silicon nitride film, or a silicon oxynitride film may be used.

配線金属47として銅(Cu)を例示したが、これ以外にニッケル(Ni)であっても構わない。   Although copper (Cu) was illustrated as the wiring metal 47, nickel (Ni) may be used in addition to this.

本発明の実施の形態では、加速度センサを例に取り貫通配線付基板2を説明したが、これ以外の半導体センサ、集積回路、半導体光学素子などが形成された半導体基板を、配線基板、回路基板又はインターポーザなどを介して実装基板に直接実装するパッケージ技術に対しても本発明を適用することができる。   In the embodiment of the present invention, the substrate 2 with through wiring has been described by taking an acceleration sensor as an example. However, a semiconductor substrate on which other semiconductor sensors, integrated circuits, semiconductor optical elements, and the like are formed is used as a wiring substrate and a circuit substrate. Alternatively, the present invention can also be applied to a packaging technology that directly mounts on a mounting substrate via an interposer or the like.

このように、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲に係る発明特定事項によってのみ限定されるものである。   Thus, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters according to the scope of claims reasonable from this disclosure.

図1(a)は、本発明の実施の形態に係わる貫通配線付基板2を備える加速度センサの全体構成を示す断面図であり、図1(b)は、図1(a)のセンサ基板1のA−A面に沿った平面図である。FIG. 1A is a cross-sectional view showing an overall configuration of an acceleration sensor including a substrate 2 with through wiring according to an embodiment of the present invention, and FIG. 1B is a sensor substrate 1 of FIG. It is a top view along the AA plane. 図1(a)の貫通配線付基板2の詳細な構成を示す断面図である。It is sectional drawing which shows the detailed structure of the board | substrate 2 with a penetration wiring of Fig.1 (a). 図3(a)〜図3(h)は、図2の貫通配線付基板2の製造方法の一例における主要な製造工程を示す工程断面図である。FIG. 3A to FIG. 3H are process cross-sectional views illustrating main manufacturing steps in an example of a method for manufacturing the substrate 2 with through wiring in FIG. 2. 図4(a)〜(h)は、比較例に係わる貫通配線付基板の製造方法における主要な製造工程を示す工程断面図である。4A to 4H are process cross-sectional views illustrating main manufacturing steps in the method for manufacturing a substrate with through wiring according to the comparative example.

符号の説明Explanation of symbols

1…センサ基板
2…貫通配線付基板
3…カバー基板
4…実装基板
5…外部接続端子
11…フレーム部
12a〜12d…撓み部
13…重り部
14…接続部
16…貫通配線
16a…充填部
16b…外部電極パッド部
16c…内部電極パッド部
17…緩衝膜
18…シリコン基板(半導体基板)
21、22…凹部
31…Ni/Au層
41a…熱酸化膜
41b…熱酸化膜(下地絶縁膜)
42a、42b…レジスト膜
43…窓
44…貫通孔
45…熱酸化膜(熱絶縁膜)
46…開口
47…配線金属
48…緩衝膜材料
DESCRIPTION OF SYMBOLS 1 ... Sensor substrate 2 ... Substrate with wiring 3 ... Cover substrate 4 ... Mounting substrate 5 ... External connection terminal 11 ... Frame part 12a-12d ... Deflection part 13 ... Weight part 14 ... Connection part 16 ... Through-wiring 16a ... Filling part 16b ... External electrode pad portion 16c ... Internal electrode pad portion 17 ... Buffer film 18 ... Silicon substrate (semiconductor substrate)
21, 22 ... concave portion 31 ... Ni / Au layer 41 a ... thermal oxide film 41 b ... thermal oxide film (underlying insulating film)
42a, 42b ... resist film 43 ... window 44 ... through hole 45 ... thermal oxide film (thermal insulating film)
46 ... Opening 47 ... Wiring metal 48 ... Buffer film material

Claims (3)

半導体基板と、当該半導体基板の表裏面を貫通する貫通孔と、当該貫通孔の内部に熱絶縁膜を介して充填された配線金属からなる貫通配線と、前記半導体基板の表面に積層された緩衝膜とを備え、前記貫通配線は前記緩衝膜を貫通して前記緩衝膜上に延長されている貫通配線付基板の製造方法であって、
前記半導体基板を選択的にエッチングして前記貫通孔を形成する第1の工程と、
前記半導体基板を加熱することにより、前記第1の工程で形成された前記貫通孔の内壁に前記熱絶縁膜を成膜する第2の工程と、
前記第2の工程の後に、前記半導体基板の表面に緩衝膜材料を塗布し、当該緩衝膜材料を熱硬化させて前記緩衝膜を形成する第3の工程と、
前記第3の工程の後に、前記貫通孔の内部に配線金属を充填して前記貫通配線を形成する第4の工程と
を有することを特徴とする貫通配線付基板の製造方法。
A semiconductor substrate, a through-hole penetrating the front and back surfaces of the semiconductor substrate, a through-wiring made of a wiring metal filled in the through-hole via a thermal insulating film, and a buffer laminated on the surface of the semiconductor substrate A through wiring is a method of manufacturing a substrate with a through wiring that extends through the buffer film and extends over the buffer film,
A first step of selectively etching the semiconductor substrate to form the through hole;
A second step of forming the thermal insulating film on the inner wall of the through hole formed in the first step by heating the semiconductor substrate;
After the second step, a third step of applying a buffer film material to the surface of the semiconductor substrate and thermosetting the buffer film material to form the buffer film;
And a fourth step of forming the through wiring by filling the through hole with a wiring metal after the third step.
前記第1の工程の前に、前記半導体基板の少なくとも表面に下地絶縁膜を形成する工程を更に有し、
第1の工程では、前記半導体基板の裏面側から表面側に向けてエッチングを開始し、前記半導体基板の表面側に前記下地絶縁膜が表出した時点でエッチングを終了し、
第3の工程では、前記下地絶縁膜の上に前記緩衝膜を形成する
ことを特徴とする請求項1記載の貫通配線付基板の製造方法。
Before the first step, further comprising a step of forming a base insulating film on at least the surface of the semiconductor substrate;
In the first step, etching is started from the back surface side to the front surface side of the semiconductor substrate, and the etching is terminated when the base insulating film is exposed on the front surface side of the semiconductor substrate,
In the third step, the buffer film is formed on the base insulating film. The method for manufacturing a substrate with through wiring according to claim 1, wherein:
前記第3の工程では、前記貫通孔の上に塗布された前記緩衝膜材料を選択的に除去して前記貫通孔よりも径の小さい開口を形成した後に、前記緩衝膜材料を熱硬化させて前記開口を有する前記緩衝膜を形成し、
前記第3の工程と前記第4の工程の間に、前記開口から表出する前記下地絶縁膜を選択的にエッチングして、前記貫通孔に連続する開口を形成する工程を更に有することを特徴とする請求項2記載の貫通配線付基板の製造方法。
In the third step, after the buffer film material applied on the through hole is selectively removed to form an opening having a diameter smaller than that of the through hole, the buffer film material is thermally cured. Forming the buffer film having the opening;
The method further includes a step of selectively etching the base insulating film exposed from the opening to form an opening continuous with the through hole between the third step and the fourth step. A method for manufacturing a substrate with through wiring according to claim 2.
JP2007220612A 2007-08-28 2007-08-28 Method of manufacturing substrate with penetrating wiring Pending JP2009054824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007220612A JP2009054824A (en) 2007-08-28 2007-08-28 Method of manufacturing substrate with penetrating wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007220612A JP2009054824A (en) 2007-08-28 2007-08-28 Method of manufacturing substrate with penetrating wiring

Publications (1)

Publication Number Publication Date
JP2009054824A true JP2009054824A (en) 2009-03-12

Family

ID=40505642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007220612A Pending JP2009054824A (en) 2007-08-28 2007-08-28 Method of manufacturing substrate with penetrating wiring

Country Status (1)

Country Link
JP (1) JP2009054824A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225955A (en) * 2009-03-25 2010-10-07 Fujitsu Ltd Interposer
WO2010147000A1 (en) * 2009-06-17 2010-12-23 浜松ホトニクス株式会社 Laminated wiring board
JP2013250133A (en) * 2012-05-31 2013-12-12 Seiko Epson Corp Electronic device, method of manufacturing electronic device, and electronic apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225955A (en) * 2009-03-25 2010-10-07 Fujitsu Ltd Interposer
WO2010147000A1 (en) * 2009-06-17 2010-12-23 浜松ホトニクス株式会社 Laminated wiring board
JP2011003633A (en) * 2009-06-17 2011-01-06 Hamamatsu Photonics Kk Laminated wiring board
CN102460687A (en) * 2009-06-17 2012-05-16 浜松光子学株式会社 Laminated wiring board
US8847080B2 (en) 2009-06-17 2014-09-30 Hamamatsu Photonics K.K. Laminated wiring board
JP2013250133A (en) * 2012-05-31 2013-12-12 Seiko Epson Corp Electronic device, method of manufacturing electronic device, and electronic apparatus
US9520812B2 (en) 2012-05-31 2016-12-13 Seiko Epson Corporation Electronic device, electronic apparatus, and method of manufacturing electronic device

Similar Documents

Publication Publication Date Title
TWI298913B (en)
TW480636B (en) Electronic component and semiconductor device, method for manufacturing and mounting thereof, and circuit board and electronic equipment
JP3863171B2 (en) Semiconductor pressure sensor and manufacturing method thereof
WO2011125935A1 (en) Semiconductor device and manufacturing method thereof
JP2009103530A (en) Sensor device
JP2005049130A (en) Acceleration sensor and method for manufacturing acceleration sensor
JP2007248212A (en) Pressure sensor package and electronic component
JP2009054824A (en) Method of manufacturing substrate with penetrating wiring
JP4750080B2 (en) Wiring board
JP5361264B2 (en) Semiconductor device
JP4486103B2 (en) Acceleration sensor and method of manufacturing acceleration sensor
JP3908266B2 (en) Semiconductor pressure sensor and manufacturing method thereof
JP2009054825A (en) Method of manufacturing substrate with penetrating wiring
JP5475946B2 (en) Sensor module
JPH09116173A (en) Semiconductor sensor and its manufacture
JP7127349B2 (en) Semiconductor device and its manufacturing method
JP4848789B2 (en) Manufacturing method of electronic device
US10260974B2 (en) Electronic part with sensor exposed to ambient air
JP4706634B2 (en) Semiconductor sensor and manufacturing method thereof
JP2010008123A (en) Sensor module
US8387459B2 (en) MEMS sensor
JP5935841B2 (en) Sensor modules and electronics
JP5589731B2 (en) Semiconductor device manufacturing method, semiconductor device, sensor module, electronic device
JP3733077B2 (en) Semiconductor device and manufacturing method thereof
JP2009047650A (en) Sensor device and its manufacturing method