JP3908266B2 - Semiconductor pressure sensor and manufacturing method thereof - Google Patents

Semiconductor pressure sensor and manufacturing method thereof Download PDF

Info

Publication number
JP3908266B2
JP3908266B2 JP2006193078A JP2006193078A JP3908266B2 JP 3908266 B2 JP3908266 B2 JP 3908266B2 JP 2006193078 A JP2006193078 A JP 2006193078A JP 2006193078 A JP2006193078 A JP 2006193078A JP 3908266 B2 JP3908266 B2 JP 3908266B2
Authority
JP
Japan
Prior art keywords
pressure
sensitive
layer
opening
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006193078A
Other languages
Japanese (ja)
Other versions
JP2006337378A (en
Inventor
正和 佐藤
達也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006193078A priority Critical patent/JP3908266B2/en
Publication of JP2006337378A publication Critical patent/JP2006337378A/en
Application granted granted Critical
Publication of JP3908266B2 publication Critical patent/JP3908266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Description

本発明は、大気圧またはガス圧の測定等に使用される半導体圧力センサ及びその製造方法に係り、特に、バンプを介した接続により小型化を図るとともに、被接続物の熱膨張差によりバンプに働く応力の影響を緩和して接続及びセンサの信頼性の向上を図った半導体圧力センサ及びその製造方法に関する。   The present invention relates to a semiconductor pressure sensor used for measuring atmospheric pressure or gas pressure, and a method for manufacturing the same, and particularly to miniaturization by connection via a bump and to the bump due to a difference in thermal expansion of an object to be connected. The present invention relates to a semiconductor pressure sensor that mitigates the influence of working stress and improves the reliability of the connection and the sensor, and a manufacturing method thereof.

半導体圧力センサ用感圧チップは、集積回路(IC)部品と同様のシリコン単結晶からできており、そのチップの中央部に、その厚さを薄くすることにより形成されたダイアフラムを備えている。そして、このダイアフラムの表面には、ピエゾ抵抗感圧ゲージ(半導体歪みゲージ)が形成されている。ダイアフラムに圧力が印加されると、ダイアフラムが変形して感圧ゲージの電気抵抗が変化し、この電気抵抗の変化が電気信号として検出され、これにより圧力または圧力の変化が測定される。半導体圧力センサには、相対圧を測定する相対圧型半導体圧力センサと絶対圧を測定する絶対圧型半導体圧力センサとがある。   A pressure-sensitive chip for a semiconductor pressure sensor is made of a silicon single crystal similar to an integrated circuit (IC) component, and includes a diaphragm formed by reducing its thickness at the center of the chip. A piezoresistive pressure sensitive gauge (semiconductor strain gauge) is formed on the surface of the diaphragm. When pressure is applied to the diaphragm, the diaphragm is deformed to change the electric resistance of the pressure sensitive gauge, and the change in the electric resistance is detected as an electric signal, whereby the pressure or the change in pressure is measured. Semiconductor pressure sensors include a relative pressure type semiconductor pressure sensor that measures relative pressure and an absolute pressure type semiconductor pressure sensor that measures absolute pressure.

絶対圧型半導体圧力センサの断面図を図10に示す。感圧チップ21の裏面側にガラス基板23を貼り合わせることにより、ダイアフラム20とガラス基板23の間に真空の空間が形成されている。ダイアフラム20の表面に印加される圧力が、裏面側の真空圧を基準とした絶対圧として測定される。図は、感圧チップ21の表面に印加された圧力によりダイアフラム20が湾曲している状態を示している。   A sectional view of the absolute pressure type semiconductor pressure sensor is shown in FIG. A vacuum space is formed between the diaphragm 20 and the glass substrate 23 by bonding the glass substrate 23 to the back side of the pressure sensitive chip 21. The pressure applied to the surface of the diaphragm 20 is measured as an absolute pressure based on the vacuum pressure on the back side. The figure shows a state in which the diaphragm 20 is curved by the pressure applied to the surface of the pressure sensitive chip 21.

従来の絶対圧型半導体圧カセンサとして、感圧チップ21が筺体で保護されたものが提案されている(例えば、特許文献1を参照)。この圧カセンサの例を図11に示す。シリコン基板にピエゾ抵抗感圧ゲージ(図示せず)が形成されてなる感圧チップ21にガラス基板23が取り付けられ、これらの間に真空室24が形成されている。感圧チップ21とガラス基板23は筐体25で覆われて、感圧チップ21はボンディングワイヤ26を介してリード27に接続されている。   As a conventional absolute pressure type semiconductor pressure sensor, a sensor in which a pressure sensitive chip 21 is protected by a casing has been proposed (for example, see Patent Document 1). An example of this pressure sensor is shown in FIG. A glass substrate 23 is attached to a pressure-sensitive chip 21 in which a piezoresistive pressure-sensitive gauge (not shown) is formed on a silicon substrate, and a vacuum chamber 24 is formed therebetween. The pressure-sensitive chip 21 and the glass substrate 23 are covered with a casing 25, and the pressure-sensitive chip 21 is connected to the leads 27 through bonding wires 26.

このような絶対圧型半導体圧カセンサでは、筐体25の存在により、ボンディングワイヤ26の損傷や感圧ゲージ電極の劣化が防止される。感圧ゲージ電極と外部測定用電子機器とを直接はんだで接続することは、熱膨張差により応力が発生し、センサ出力の変動要因となるため、両者の接続には、ボンディングワイヤ26とリード27が使用されている。その結果、筺体25、ボンディングワイヤ26及びリード27を有する構造では、更なる小型化が困難となっている。   In such an absolute pressure type semiconductor pressure sensor, the presence of the housing 25 prevents damage to the bonding wire 26 and deterioration of the pressure sensitive gauge electrode. Connecting the pressure-sensitive gauge electrode and the external measurement electronic device directly with solder generates stress due to a difference in thermal expansion and causes fluctuations in the sensor output. Is used. As a result, it is difficult to further reduce the size of the structure having the housing 25, the bonding wire 26 and the lead 27.

絶対圧型半導体圧力センサの小型化を図るため、感圧チップとリードとを導電性のバンプで電気的に接続したものが提案されている(例えば、特許文献2を参照)。この圧カセンサの一例を図12に示す。感圧チップ31の一面32に、導電性を有するバンプ33を形成し、感圧チップ31の一面32と基体34の一面35とを対向させた伏態で、バンプ33とリード36とを電気的に接続している。   In order to reduce the size of the absolute pressure type semiconductor pressure sensor, one in which a pressure sensitive chip and a lead are electrically connected by a conductive bump has been proposed (for example, see Patent Document 2). An example of this pressure sensor is shown in FIG. A bump 33 having conductivity is formed on one surface 32 of the pressure-sensitive chip 31, and the bump 33 and the lead 36 are electrically connected in a state where the one surface 32 of the pressure-sensitive chip 31 and the one surface 35 of the base body 34 are opposed to each other. Connected to.

しかしながら、この構造では、感圧チップ31とリード36がバンプ33を介して強固に接続されているため、温度変化が発生した場合、感圧チップ31と測定用電子機器との間の熱膨張差に起因する応力が発生し、バンプ33に応力が集中しやすい。そして、この応力集中によりバンプ33の歪みが大きくなると、電極の剥離や抵抗値の増大等の問題が生じる可能性がある。また、この応力によりピエゾ抵抗感圧ゲージの抵抗値に変動が生じる結果、センサが、圧力の変動が生じたものと誤認してしまう。従って、バンプ33を用いた接続により小型化を図る場合には、バンプ33に何らかの応力緩和機能を付与する必要がある。   However, in this structure, since the pressure-sensitive chip 31 and the lead 36 are firmly connected via the bumps 33, if a temperature change occurs, the difference in thermal expansion between the pressure-sensitive chip 31 and the measurement electronic device. Is generated, and the stress tends to concentrate on the bumps 33. If the distortion of the bumps 33 increases due to this stress concentration, problems such as electrode peeling and increased resistance may occur. Further, as a result of the fluctuation in the resistance value of the piezoresistive pressure-sensitive gauge due to this stress, the sensor mistakes that the fluctuation in pressure has occurred. Therefore, when a reduction in size is achieved by connection using the bumps 33, it is necessary to provide some stress relaxation function to the bumps 33.

一方、近年では、半導体装置の小型化に伴い、半導体パッケージの小型化が図られている。その中に、はんだバンプ部に樹脂ポスト構造を設け、この樹脂ポストによりはんだバンプに集中する応力を緩和させることによって、接続部の信頼性を向上させるとともに小型化を図ったものが提案されている(例えば、特許文献3を参照)。この半導体パッケージの一例を図13に示す。ウェハ41の絶縁層43上に設けられた樹脂製突部44を導電層45で被覆したもので、樹脂製突部44の変形により応力を分散、吸収する構成のポスト46を形成することによって接続の信頼性を向上させるとともに、半導体パッケージの小型化を図っている。
特開2000−88687号公報 特開2002−82009号公報 特開2002−280476号公報
On the other hand, in recent years, with the miniaturization of semiconductor devices, miniaturization of semiconductor packages has been attempted. Among them, a resin post structure is provided in the solder bump portion, and the stress that concentrates on the solder bump is eased by this resin post, thereby improving the reliability of the connection portion and reducing the size. (For example, see Patent Document 3). An example of this semiconductor package is shown in FIG. The resin protrusion 44 provided on the insulating layer 43 of the wafer 41 is covered with a conductive layer 45, and is connected by forming a post 46 configured to disperse and absorb stress by deformation of the resin protrusion 44. The reliability of the semiconductor package is improved, and the semiconductor package is downsized.
JP 2000-88687 A JP 2002-82009 A JP 2002-280476 A

本発明は、前記事情に鑑みてなされたもので、応力緩和機能を有するバンプを用いて感圧チップと測定用電子機器を接続することにより、圧力測定精度と接続の信頼性を損なうことなく小型化を図った半導体圧力センサ及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and by connecting a pressure-sensitive chip and a measurement electronic device using a bump having a stress relaxation function, the pressure measurement accuracy and the reliability of connection can be reduced. An object of the present invention is to provide a semiconductor pressure sensor and a method for manufacturing the same.

この目的を達成するため、本発明に係る第一の発明は、ダイアフラムの領域に配される感圧ゲージと、前記ダイアフラム以外の領域に配される感圧ゲージ電極と、前記感圧ゲージと前記感圧ゲージ電極とを電気的に接続する感圧リードとを備えた感圧チップ、前記感圧チップ上に配され、前記ダイアフラムを露呈させる第一開口部と前記感圧ゲージ電極の一部を露呈させる第二開口部とを備えた絶縁樹脂層、前記絶縁樹脂層上に配され、前記第二開口部を通り前記感圧ゲージ電極と電気的に接続された導電層、及び、前記導電層の上に配されたバンプ、を少なくとも具備したことを特徴としている。 In order to achieve this object, a first invention according to the present invention includes a pressure-sensitive gauge disposed in a region of the diaphragm, a pressure-sensitive gauge electrode disposed in a region other than the diaphragm, the pressure-sensitive gauge, and the A pressure-sensitive chip having a pressure-sensitive lead for electrically connecting the pressure-sensitive gauge electrode; a first opening disposed on the pressure-sensitive chip and exposing the diaphragm; and a part of the pressure-sensitive gauge electrode An insulating resin layer having a second opening to be exposed; a conductive layer disposed on the insulating resin layer and electrically connected to the pressure-sensitive gauge electrode through the second opening; and the conductive layer It is characterized by having at least a bump arranged on the top .

本発明に係る第二の発明は、上記第一の発明において、前記絶縁樹脂層は、感光性樹脂からなることを特徴としている。 According to a second aspect of the present invention, in the first aspect, the insulating resin layer is made of a photosensitive resin .

本発明に係る第三の発明は、ダイアフラムの領域に配される感圧ゲージと、前記ダイアフラム以外の領域に配される感圧ゲージ電極と、前記感圧ゲージと前記感圧ゲージ電極とを電気的に接続する感圧リードとを備えた感圧チップ、前記感圧チップ上に配され、前記ダイアフラムを露呈させる第一開口部と前記感圧ゲージ電極の一部を露呈させる第二開口部とを備えた絶縁樹脂層、前記絶縁樹脂層上に配され、前記第二開口部を通り前記感圧ゲージ電極と電気的に接続された導電層、及び、前記導電層の上に配されたバンプ、を少なくとも具備した半導体圧力センサの製造方法であって、前記感圧ゲージ、前記感圧ゲージ電極及び前記感圧リードを覆うように前記感圧チップ上に感光性樹脂からなる絶縁樹脂層を形成する工程A、前記絶縁樹脂層に、前記ダイアフラムを露呈させる第一開口部と前記感圧ゲージ電極の一部を露呈させる第二開口部を形成する工程B、前記第二開口部を通り前記感圧ゲージ電極と電気的に接続するように導電層を形成する工程C、を少なくとも順に具備したことを特徴としている。 According to a third aspect of the present invention, a pressure sensitive gauge disposed in a region of the diaphragm, a pressure sensitive gauge electrode disposed in a region other than the diaphragm, and the pressure sensitive gauge and the pressure sensitive gauge electrode are electrically connected. A pressure-sensitive chip having a pressure-sensitive lead to be connected, a first opening disposed on the pressure-sensitive chip and exposing the diaphragm, and a second opening exposing a part of the pressure-sensitive gauge electrode; An insulating resin layer, a conductive layer disposed on the insulating resin layer, electrically connected to the pressure-sensitive gauge electrode through the second opening, and a bump disposed on the conductive layer A method of manufacturing a semiconductor pressure sensor comprising at least an insulating resin layer made of a photosensitive resin on the pressure-sensitive chip so as to cover the pressure-sensitive gauge, the pressure-sensitive gauge electrode, and the pressure-sensitive lead. Step A, the insulating tree Forming a first opening for exposing the diaphragm and a second opening for exposing a part of the pressure-sensitive gauge electrode in the layer; electrically passing through the second opening and the pressure-sensitive gauge electrode; It is characterized by comprising at least a step C of forming a conductive layer so as to be connected .

本発明に係る第四の発明は、上記第三の発明において、前記工程Bは、前記第一開口部と前記第二開口部とを同時に形成することを特徴としている。 According to a fourth aspect of the present invention, in the third aspect, the step B forms the first opening and the second opening at the same time .

一の発明に係る半導体圧力センサは、図1に示すように、ダイアフラム2の領域に配される感圧ゲージGと、ダイアフラム2以外の領域に配される感圧ゲージ電極5と、前記感圧ゲージと前記感圧ゲージ電極とを電気的に接続する感圧リードLとを備えた感圧チップ1を有し、この感圧チップ1上には絶縁樹脂層10が配される。この絶縁樹脂層10には、図5に示すような、ダイアフラム2を露呈させる第一開口部と、図6に示すような、感圧ゲージ電極5の一部を露呈させる第二開口部とが設けられる。そして、絶縁樹脂層10の上には、図9に示すような、第二開口部を通り感圧ゲージ電極5と電気的に接続された導電層8が配され、さらに導電層8の上にはバンプ9が配された構成からなる。
この構成によれば、バンプ9の下方がほぼ全て絶縁樹脂層10となっているため、バンプ9が、感圧チップ1と測定用電子機器との接続に伴い生じる応力の影響を受けにくくなる。その結果、測定用電子機器に対するバンプの接続状態を安定に維持できるとともに、接続状態の変化による抵抗値の増大、電極剥離、バンプの極端な変形等の不都合を確実に防止できる。
As shown in FIG. 1 , the semiconductor pressure sensor according to the first aspect of the present invention includes a pressure-sensitive gauge G disposed in a region of the diaphragm 2, a pressure-sensitive gauge electrode 5 disposed in a region other than the diaphragm 2, and the above-described sensitivity. A pressure-sensitive chip 1 having a pressure gauge and a pressure-sensitive lead L that electrically connects the pressure-sensitive gauge electrode is provided, and an insulating resin layer 10 is disposed on the pressure-sensitive chip 1. This insulating resin layer 10 has a first opening for exposing the diaphragm 2 as shown in FIG. 5 and a second opening for exposing a part of the pressure sensitive gauge electrode 5 as shown in FIG. Provided. On the insulating resin layer 10, a conductive layer 8 that is electrically connected to the pressure-sensitive gauge electrode 5 through the second opening as shown in FIG. 9 is disposed. Has a configuration in which bumps 9 are arranged.
According to this configuration, since the insulating resin layer 10 is almost entirely below the bumps 9, the bumps 9 are less susceptible to the stress caused by the connection between the pressure sensitive chip 1 and the measuring electronic device. As a result, the connection state of the bump to the measurement electronic device can be stably maintained, and inconveniences such as an increase in resistance due to a change in the connection state, electrode peeling, and extreme deformation of the bump can be reliably prevented.

また、第一の発明に係る半導体圧力センサは、感圧ゲージ電極と電気的に接続された導電層と、バンプとの接続位置を、前記ピエゾ抵抗感圧ゲージの抵抗値に影響が生じにくい位置とすることにより、応力の影響を受けやすいダイアフラムに対する、バンプを介した接続に起因する応力の影響を排除できるため、半導体圧力センサの測定精度が向上する。更に、測定用電子機器との接続により発生する応力を吸収するための緩衝部材を新たに設ける等の対策が不要となる。その結果、感圧チップと測定用電子機器との接続による圧力センサの厚さの増加が抑制され、半導体圧力センサの小型化が可能となるとともに、低コスト化が可能となる。 In the semiconductor pressure sensor according to the first aspect of the present invention, the connection position between the conductive layer electrically connected to the pressure sensitive gauge electrode and the bump is a position where the resistance value of the piezoresistive pressure sensitive gauge is less likely to be affected. By doing so, it is possible to eliminate the influence of the stress caused by the connection via the bumps on the diaphragm that is susceptible to the influence of the stress, so that the measurement accuracy of the semiconductor pressure sensor is improved. Furthermore, measures such as newly providing a buffer member for absorbing the stress generated by the connection with the measuring electronic device are not required. As a result, an increase in the thickness of the pressure sensor due to the connection between the pressure-sensitive chip and the measurement electronic device is suppressed, and the semiconductor pressure sensor can be reduced in size and cost can be reduced.

本発明に係る半導体圧力センサの製造方法(第三の発明)によれば、導電層と前記バンプとの接続位置は、前記ピエゾ抵抗感圧ゲージの抵抗値に影響が生じにくい位置に作製されるので、上述したように、応力の影響を受けやすいダイアフラムに対する、バンプを介した接続に起因する応力の影響を排除できる半導体圧力センサが得られる。その際、感光性樹脂からなる絶縁樹脂層を利用することによって、図5に示すような、ダイアフラム2を露呈させる第一開口部と、図6に示すような、感圧ゲージ電極5の一部を露呈させる第二開口部とを容易に形成できる。特に、この2つの開口部は同時に形成することも可能なので、これら2つの開口部を形成するための工程数の削滅による形成時間の短縮及び低コスト化が可能となる。その結果、半導体圧力センサの製造能率の向上及び低コスト化が図れるAccording to the method for manufacturing a semiconductor pressure sensor according to the present invention ( third invention ), the connection position between the conductive layer and the bump is formed at a position where the resistance value of the piezoresistive pressure sensitive gauge is unlikely to be affected. Therefore, as described above, it is possible to obtain a semiconductor pressure sensor that can eliminate the influence of the stress caused by the connection via the bump on the diaphragm that is easily affected by the stress. At that time, by using an insulating resin layer made of a photosensitive resin, a first opening for exposing the diaphragm 2 as shown in FIG. 5 and a part of the pressure-sensitive gauge electrode 5 as shown in FIG. It is possible to easily form the second opening that exposes. In particular, since the two openings can be formed at the same time, it is possible to shorten the formation time and reduce the cost by reducing the number of steps for forming the two openings . As a result, the manufacturing efficiency of the semiconductor pressure sensor can be improved and the cost can be reduced .

以下、本発明に係る半導体圧力センサの実施の形態を、添付図面を参照して具体的に説明する。   Embodiments of a semiconductor pressure sensor according to the present invention will be specifically described below with reference to the accompanying drawings.

図1は、本発明に係る半導体圧力センサの構造の例を示す上方斜視図、図2は、本発明に係る絶対圧型半導体圧力センサの断面図、図3は、図2に示す半導体圧力センサの感圧ゲージ電極部の拡大図(図1におけるA−A線に沿った断面図)である。   1 is an upper perspective view showing an example of the structure of a semiconductor pressure sensor according to the present invention, FIG. 2 is a cross-sectional view of an absolute pressure type semiconductor pressure sensor according to the present invention, and FIG. 3 is a diagram of the semiconductor pressure sensor shown in FIG. It is an enlarged view (cross-sectional view along the AA line in FIG. 1) of a pressure-sensitive gauge electrode part.

これらの図において、1は感圧チップである。感圧チップ1は、厚さ200〜300μm程度のシリコン単結晶からなり、感圧チップ1の中央部は、裏面から施されたエッチング等により、20〜50μm程度に薄くなっている。また、この薄い部分は、平面視して例えば円形状をなしている。この薄い部分の表面には、4本のピエゾ抵抗感圧ゲージG及びピエゾ抵抗感圧リードL(図1参照)が拡散形成される。感圧チップ1の外周部には感圧ゲージ電極5が形成されており、感圧ゲージ電極5とピエゾ抵抗感圧ゲージGとは、個々のピエゾ抵抗感圧ゲージGの端部から感圧チップ1の外周部に延びるピエゾ抵抗感圧リードLにより接続されている。これにより、ホイートストンブリッジ回路が形成される。感圧チップ1の裏面側には、感圧チップ1の中央部を薄くすることにより、凹部4が形成されており、感圧チップ1の底部の外周部とガラス基板3とを真空室内で陽極接合することにより、凹部4とガラス基板3とで挟まれ、かつ真空に維持された空間(第一の空間)S内を基準圧とする圧力センサが得られる。また、感圧チップ1の薄い部分(ダイアフラム2)に外力がかかると、ダイアフラム2が変形し、ダイアフラム2の表面に形成された個々のゲージ抵抗が変化する。この、ホイートストンブリッジ回路における抵抗の変化を用いてセンサの出力の変動をモニタし、圧力に換算する。   In these figures, 1 is a pressure sensitive chip. The pressure-sensitive chip 1 is made of a silicon single crystal having a thickness of about 200 to 300 μm, and the central portion of the pressure-sensitive chip 1 is thinned to about 20 to 50 μm by etching or the like applied from the back surface. Further, this thin portion has, for example, a circular shape in plan view. Four piezoresistive pressure-sensitive gauges G and piezoresistive pressure-sensitive leads L (see FIG. 1) are diffused and formed on the surface of the thin portion. A pressure-sensitive gauge electrode 5 is formed on the outer periphery of the pressure-sensitive chip 1. The pressure-sensitive gauge electrode 5 and the piezoresistive pressure-sensitive gauge G are connected to the pressure-sensitive chip from the end of each piezoresistive pressure-sensitive gauge G. 1 is connected by a piezoresistive pressure-sensitive lead L extending to the outer peripheral portion of 1. Thereby, a Wheatstone bridge circuit is formed. A concave portion 4 is formed on the back surface side of the pressure-sensitive chip 1 by thinning the central portion of the pressure-sensitive chip 1. By joining, a pressure sensor is obtained in which the reference pressure is in the space (first space) S sandwiched between the recess 4 and the glass substrate 3 and maintained in a vacuum. Further, when an external force is applied to the thin portion (diaphragm 2) of the pressure-sensitive chip 1, the diaphragm 2 is deformed, and the individual gauge resistance formed on the surface of the diaphragm 2 changes. This change in resistance in the Wheatstone bridge circuit is used to monitor fluctuations in sensor output and convert to pressure.

感圧チップ1の表面は、感圧ゲージ電極5上とダイアフラム2上に開ロ部を有する絶縁樹脂層10で覆われ、感圧ゲージ電極5の一部には、樹脂製突部6が形成されている。樹脂製突部6はシード層7及び導電層8により一部または全体が被覆されてポストPを形成し、このポストPを覆うようにバンプ9が形成されている。バンプ9はシード層7及び導電層8を介して感圧ゲージ電極5と電気導通可能に接続されており、その結果、バンプ9を測定用電子機器 (図示せず)に接続すると、バンプ9を介して測定用電子機器と感圧ゲージ電極5とが電気導通可能に接続される。感圧ゲージ電極5としては、各種の導電性材料が採用可能であるが、ここではアルミニウムが採用されている。なお、ピエゾ抵抗感圧ゲージG及び感圧ゲージ電極5並びにピエゾ抵抗感圧リードLの個数や形状及び取付け位置については各種の形態が採用可能であり、特に限定されない。   The surface of the pressure-sensitive chip 1 is covered with an insulating resin layer 10 having an open portion on the pressure-sensitive gauge electrode 5 and the diaphragm 2, and a resin protrusion 6 is formed on a part of the pressure-sensitive gauge electrode 5. Has been. The resin protrusion 6 is partially or entirely covered with a seed layer 7 and a conductive layer 8 to form a post P, and a bump 9 is formed so as to cover the post P. The bump 9 is connected to the pressure sensitive gauge electrode 5 through the seed layer 7 and the conductive layer 8 so as to be electrically conductive. As a result, when the bump 9 is connected to a measuring electronic device (not shown), the bump 9 is The measurement electronic device and the pressure sensitive gauge electrode 5 are connected so as to be electrically conductive. As the pressure-sensitive gauge electrode 5, various conductive materials can be used, but here, aluminum is used. Various forms can be employed for the number, shape, and mounting position of the piezoresistive pressure-sensitive gauge G, the pressure-sensitive gauge electrode 5, and the piezoresistive pressure-sensitive lead L, and there are no particular limitations.

樹脂製突部6は、感圧ゲージ電極5上に隆起し、断面が台形状あるいは頂上に平坦部を有する半円形状をしている。
樹脂製突部6は、例えば、ポリイミド、エポキシ樹脂、シリコーン樹脂等からなり、その厚さは、例えば25〜100μmであり、回転塗布法(スピンコート)、印刷法、ラミネート法等により形成可能である。
The resin protrusion 6 protrudes from the pressure-sensitive gauge electrode 5 and has a semicircular shape with a trapezoidal cross section or a flat portion at the top.
The resin protrusion 6 is made of, for example, polyimide, epoxy resin, silicone resin or the like, and has a thickness of, for example, 25 to 100 μm, and can be formed by a spin coating method, a printing method, a laminating method, or the like. is there.

また、圧力センサとして使用した際に樹脂製突部6に作用する応力を考慮すると、樹脂製突部6を構成する樹脂の硬度は、ヤング率(弾性率)が5GPa以下であることが望ましい。また、ダイアフラム2を囲む個々の樹脂製突部6は、圧力センサとして使用した際にこれら樹脂製突部6に作用する応力のばらつきを防止するため、平面視した際にダイアフラム2を中心として対称となる位置に配置されることが望ましい。   In consideration of the stress acting on the resin protrusion 6 when used as a pressure sensor, it is desirable that the resin constituting the resin protrusion 6 has a Young's modulus (elastic modulus) of 5 GPa or less. In addition, the individual resin protrusions 6 surrounding the diaphragm 2 are symmetrical with respect to the diaphragm 2 when viewed in plan in order to prevent variations in stress acting on the resin protrusions 6 when used as pressure sensors. It is desirable to be arranged at the position.

樹脂製突部6に被覆された膜状のシード層7は、図3に示すように、樹脂製突部6の周囲に露出している感圧ゲージ電極5上にも形成されて、感圧ゲージ電極5に対して電気導通可能に接続されている。また、シード層7上には、膜状の導電層8が被覆形成されている。   The film-like seed layer 7 covered with the resin protrusion 6 is also formed on the pressure sensitive gauge electrode 5 exposed around the resin protrusion 6 as shown in FIG. The gauge electrode 5 is connected to be electrically conductive. A film-like conductive layer 8 is formed on the seed layer 7 so as to cover it.

シード層7は、導電層8の電解めっき(以下「めっき」と略称する)工程での給電層やUBM(アンダーバンプメタル)としての機能を果たす。 UBMとしての機能とは、導電層8と樹脂製突部6との間の密着性の確保や、感圧ゲージ電極5と導電層8との間の金属拡散を防止する為のバリア等の機能である。シード層7としては、例えばCr、Cu、Ni、Ti、W、Ta、Mg、Auなどの金属或いは合金が採用可能であるが、一層の金属層からなる構成に限定されず、複数の金属層を積層した構成も採用可能である。本実施形態では、樹脂製突部6の底部の周囲に露出している感圧ゲージ電極5や樹脂製突部6の表面を覆う厚さ40nm程度のCr層と、このCr層を覆う厚さ100〜150nm程度のCu層とをスパッタ法によって積層状態に形成した二層構造を採用している。   The seed layer 7 functions as a power supply layer or UBM (under bump metal) in the electrolytic plating (hereinafter referred to as “plating”) process of the conductive layer 8. The function as the UBM is a function such as a barrier for securing adhesion between the conductive layer 8 and the resin protrusion 6 and preventing metal diffusion between the pressure sensitive gauge electrode 5 and the conductive layer 8. It is. As the seed layer 7, for example, a metal or an alloy such as Cr, Cu, Ni, Ti, W, Ta, Mg, or Au can be used, but the seed layer 7 is not limited to a configuration including a single metal layer, and a plurality of metal layers It is also possible to adopt a configuration in which layers are stacked. In the present embodiment, the Cr layer having a thickness of about 40 nm covering the surface of the pressure-sensitive gauge electrode 5 and the resin protrusion 6 exposed around the bottom of the resin protrusion 6, and the thickness covering this Cr layer. A two-layer structure in which a Cu layer of about 100 to 150 nm is formed in a laminated state by a sputtering method is adopted.

導電層8としては、CuやNiなどの金属あるいは合金をめっきしためっき層が採用される。但し、この導電層8としては、一層の金属層(合金層を含む。以下同様)のみからなる構成に限定されず、例えば、複数の金属層が積層された構成も採用可能である。本実施形態では、シード層7を覆う厚さ3〜20μm程度の銅めっき層と、この銅めっき層を覆う厚さ1〜10μm程度のNiめっき層と、更に、このNiめっき層を覆う厚さ0.1〜1.0μm程度のAuめっき層からなる三層構造を採用している。   As the conductive layer 8, a plating layer obtained by plating a metal or alloy such as Cu or Ni is employed. However, the conductive layer 8 is not limited to a configuration including only one metal layer (including an alloy layer; the same applies hereinafter), and for example, a configuration in which a plurality of metal layers are stacked can be employed. In the present embodiment, a copper plating layer having a thickness of about 3 to 20 μm covering the seed layer 7, a Ni plating layer having a thickness of about 1 to 10 μm covering the copper plating layer, and a thickness covering the Ni plating layer. A three-layer structure composed of an Au plating layer of about 0.1 to 1.0 μm is adopted.

この絶対圧型半導体圧力センサは、図4に示すように、バンプ9を介して測定用電子機器(回路基板12)に実装される。また、ダイアフラム2の表面と回路基板12とで挟まれた空間(第二の空間)13は、回路基板12に形成された孔Hを介して、圧力測定の対象となる空間(図示せず)に連通されるとともに、空間13の周囲は、感圧チップ1の周囲を充填材14でシールすることにより遮蔽される。そして、孔H及び空間13を介してダイアフラム2の表面に印加される圧力が、空間S内の真空圧を基準とした絶対圧として測定される。   As shown in FIG. 4, the absolute pressure type semiconductor pressure sensor is mounted on a measurement electronic device (circuit board 12) via bumps 9. In addition, a space (second space) 13 sandwiched between the surface of the diaphragm 2 and the circuit board 12 is a space (not shown) that is an object of pressure measurement through a hole H formed in the circuit board 12. The space 13 is shielded by sealing the periphery of the pressure sensitive chip 1 with a filler 14. Then, the pressure applied to the surface of the diaphragm 2 through the hole H and the space 13 is measured as an absolute pressure based on the vacuum pressure in the space S.

この絶対圧型半導体圧力センサによれば、バンプ9が樹脂製突部6を覆うよう形成されているため、感圧チップ1と測定用電子機器との間の熱膨張差に起因する応力を樹脂製突部6の変形によって吸収することができる。その結果、バンプ9と測定用電子機器との接続状態を安定に維持できるとともに、電極の剥離等の不都合を確実に防止できる。更に、センサへの応力の影響も抑えることができる。また、バンプ9と樹脂製突部6との接触面積が十分確保されるため、バンプ9に作用する応力を、樹脂製突部6に確実に伝達させることが可能となるとともに、バンプ9から樹脂製突部6を介して感圧チップ1側に伝わる固着力が向上し、応力の作用によるバンプ9の剥離等を防止できる。   According to this absolute pressure type semiconductor pressure sensor, since the bump 9 is formed so as to cover the resin protrusion 6, the stress caused by the difference in thermal expansion between the pressure sensitive chip 1 and the measuring electronic device is made of resin. It can be absorbed by the deformation of the protrusion 6. As a result, the connection state between the bump 9 and the measurement electronic device can be stably maintained, and inconveniences such as electrode peeling can be reliably prevented. Furthermore, the influence of stress on the sensor can also be suppressed. Further, since a sufficient contact area between the bump 9 and the resin protrusion 6 is ensured, the stress acting on the bump 9 can be reliably transmitted to the resin protrusion 6, and the resin can be transferred from the bump 9 to the resin. The fixing force transmitted to the pressure-sensitive chip 1 side through the protrusion 6 is improved, and peeling of the bumps 9 due to the action of stress can be prevented.

次に、上記した絶対圧型半導体圧力センサの製造方法の一例を説明する。図5〜図9は、図2に示す絶対圧型半導体圧力センサの製造方法を示す工程図である。なお、本製造方法においては、通常、感圧チップ1はウエハ状で形成されるが、ここでは、個々のチップについて説明する。   Next, an example of a manufacturing method of the absolute pressure type semiconductor pressure sensor described above will be described. 5 to 9 are process diagrams showing a manufacturing method of the absolute pressure type semiconductor pressure sensor shown in FIG. In this manufacturing method, the pressure-sensitive chip 1 is usually formed in a wafer shape, but here, individual chips will be described.

まず、ダイアフラム2が形成され、その表面にピエゾ抵抗感圧ゲージG及びピエゾ抵抗感圧リードLが拡散形成されるとともに、ダイアフラム2の周囲に感圧ゲージ電極5が形成された感圧チップ1を用意し、この感圧チップ1上に絶縁樹脂層10を形成する。絶縁樹脂層10は、感光性ポリイミド等の液状の感光性樹脂をスピンコートすることにより、ピエゾ抵抗感圧ゲージG及び感圧ゲージ電極5を、5〜10μm程度の厚さで覆うよう形成される。   First, the pressure sensitive chip 1 in which the diaphragm 2 is formed, the piezoresistive pressure sensitive gauge G and the piezoresistive pressure sensitive lead L are diffused and formed on the surface, and the pressure sensitive gauge electrode 5 is formed around the diaphragm 2 is formed. An insulating resin layer 10 is formed on the pressure sensitive chip 1. The insulating resin layer 10 is formed so as to cover the piezoresistive pressure-sensitive gauge G and the pressure-sensitive gauge electrode 5 with a thickness of about 5 to 10 μm by spin-coating a liquid photosensitive resin such as photosensitive polyimide. .

次いで、図5に示すように、フォトリソグラフィー技術により、感圧ゲージ電極5上に位置する絶縁樹脂層10の一部を除去し、感圧ゲージ電極5上に平面視してリング状をなす開ロ部(第二開口部)を形成する。これにより感圧ゲージ電極5上に開ロ部(第二開口部)を有する絶縁樹脂層10が形成されるとともに、開ロ部内に樹脂製突部6が形成される。また、これと同時にダイアフラム上の不要な絶縁樹脂層10を除去する。これにより、ダイアフラム2を露呈させる開口部(第一開口部)が得られる。この場合、感圧ゲージ電極5の縁部が絶縁樹脂層10で覆われ、樹脂製突部6の周囲で感圧ゲージ電極5が露出するように絶縁樹脂層10を除去するとともに、ダイアフラム2を囲む個々の樹脂製突部6が、平面視した際にダイアフラム2を中心として対称となる位置に配置されるように絶縁樹脂層10を除去する。 Next, as shown in FIG. 5, a part of the insulating resin layer 10 located on the pressure sensitive gauge electrode 5 is removed by photolithography, and an opening that forms a ring shape in plan view on the pressure sensitive gauge electrode 5 is formed. The second portion (second opening) is formed. As a result, an insulating resin layer 10 having an opening (second opening) is formed on the pressure-sensitive gauge electrode 5, and a resin protrusion 6 is formed in the opening . At the same time, unnecessary insulating resin layer 10 on the diaphragm is removed. Thereby, the opening part (1st opening part) which exposes the diaphragm 2 is obtained. In this case, the edge of the pressure-sensitive gauge electrode 5 is covered with the insulating resin layer 10, and the insulating resin layer 10 is removed so that the pressure-sensitive gauge electrode 5 is exposed around the resin protrusion 6, and the diaphragm 2 is removed. The insulating resin layer 10 is removed so that the individual resin protrusions 6 that are surrounded are arranged at positions that are symmetrical about the diaphragm 2 when viewed in plan.

なお、開口部の平面形状は必ずしもリング状に限定されない。例えば、開口部で囲まれた樹脂製突部6の一部を周囲の絶縁樹脂層10と繋げることにより、上記平面形状がC字状をなす開口部を形成してもよい。   The planar shape of the opening is not necessarily limited to a ring shape. For example, a part of the resin protrusion 6 surrounded by the opening part may be connected to the surrounding insulating resin layer 10 to form an opening part in which the planar shape is C-shaped.

この手法では、絶縁樹脂層10と樹脂製突部6とを同時に形成することができるため、形成時間の短縮や工程数の削減を実現できる。また、この工程では、後の工程で形成するバンプ9の形状に対応して、樹脂製突部6を所望の形状、寸法に形成することができるとともに、ダイアフラム2の形状に対応して、個々の樹脂製突部6を所望の位置に形成することができる。   In this method, since the insulating resin layer 10 and the resin protrusion 6 can be formed at the same time, the formation time and the number of steps can be reduced. Further, in this step, the resin protrusion 6 can be formed in a desired shape and size corresponding to the shape of the bump 9 formed in the subsequent step, and individually corresponding to the shape of the diaphragm 2. The resin protrusion 6 can be formed at a desired position.

絶縁樹脂層10は、感光性ポリイミド等の感光性樹脂から形成されたシートあるいはフィルムの貼り付けによっても形成可能である。この場合も、フォトリソグラフィー技術により感圧ゲージ電極5上に位置する絶縁樹脂層10の一部をリング状に除去して開ロ部を形成することで、絶縁樹脂層10と樹脂製突部6とを同時に短時間で形成することができる。   The insulating resin layer 10 can also be formed by attaching a sheet or film formed from a photosensitive resin such as photosensitive polyimide. Also in this case, the insulating resin layer 10 and the resin protrusion 6 are formed by removing a part of the insulating resin layer 10 located on the pressure-sensitive gauge electrode 5 in a ring shape by a photolithography technique to form an open portion. Can be simultaneously formed in a short time.

次いで、絶縁樹脂層10及び樹脂製突部6の形成後、シード層7を形成する。具体的には、絶縁樹脂層10の開口部内にて、樹脂製突部6の周囲で露出している感圧ゲージ電極5及び樹脂製突部6の表面にスパッタ法により厚さ40nm程度のCr層を形成した後、このCr層を覆う厚さ100〜500nm程度のCu層をスパッタ法により形成する。このシード層7は、図6に示すように、絶縁樹脂層10、樹脂製突部6及び開口部を覆い、感圧チップ表面全体にわたって形成される。   Next, after the insulating resin layer 10 and the resin protrusion 6 are formed, the seed layer 7 is formed. Specifically, in the opening of the insulating resin layer 10, the pressure-sensitive gauge electrode 5 exposed around the resin protrusion 6 and the surface of the resin protrusion 6 are formed on the surface of the resin protrusion 6 with a thickness of about 40 nm by sputtering. After forming the layer, a Cu layer having a thickness of about 100 to 500 nm covering the Cr layer is formed by sputtering. As shown in FIG. 6, the seed layer 7 covers the insulating resin layer 10, the resin protrusion 6 and the opening, and is formed over the entire pressure-sensitive chip surface.

Cr層は、感圧ゲージ電極5、樹脂製突部6及び絶縁樹脂層10に対する密着性に優れている。一方、Cu層は、後述する導電層8のめっき工程の給電層としての機能を果たすとともに、導電層8との密着性にも優れているため、シード層7と導電層8との間を密着させる機能を果たす。   The Cr layer is excellent in adhesion to the pressure sensitive gauge electrode 5, the resin protrusion 6 and the insulating resin layer 10. On the other hand, the Cu layer functions as a power feeding layer in the plating process of the conductive layer 8 to be described later, and also has excellent adhesion to the conductive layer 8, so that the seed layer 7 and the conductive layer 8 are in close contact with each other. Fulfills the function of

なお、シード層7を構成する各金属層(前述のCr層やCu層)は、スパッタ法のほか、蒸着法等によっても形成できる。また、無電解めっき法によって樹脂製突部6に直接金属層(ここではCr層)を被覆させることも可能である。   Each metal layer (the aforementioned Cr layer or Cu layer) constituting the seed layer 7 can be formed not only by sputtering but also by vapor deposition. It is also possible to cover the resin protrusion 6 directly with a metal layer (here, Cr layer) by electroless plating.

シード層7の形成後、めっき法により、シード層7を覆うように導電層8を形成する。この導電層8のめっき工程では、先ず、図6に示すように、絶縁樹脂層10及び樹脂製突部6が形成された感圧チップ1上に、導電層8を形成する領域(ここでは、感圧ゲージ電極5上の開ロ部とその内側の樹脂製突部6とを含む領域)に対応する部分に開口を有するよう、レジスト11を形成することにより、導電層8を形成しない領域を覆い、導電層8を形成する領域のみを露出させる。レジスト11の形成に際しては、例えば、レジスト用の液状の感光性樹脂をスピンコートして、絶縁樹脂層10や樹脂製突部6が形成された感圧チップ1上に樹脂層を形成した後、導電層8を形成する領域に対応する部分の樹脂層を、フォトリソグラフィー技術により除去する。   After the seed layer 7 is formed, the conductive layer 8 is formed so as to cover the seed layer 7 by plating. In the step of plating the conductive layer 8, first, as shown in FIG. 6, on the pressure-sensitive chip 1 on which the insulating resin layer 10 and the resin protrusion 6 are formed, a region for forming the conductive layer 8 (here, A region where the conductive layer 8 is not formed is formed by forming the resist 11 so as to have an opening in a portion corresponding to the open portion on the pressure-sensitive gauge electrode 5 and the resin protrusion 6 inside thereof. Cover and expose only the region where the conductive layer 8 is to be formed. In forming the resist 11, for example, a liquid photosensitive resin for resist is spin coated to form a resin layer on the pressure sensitive chip 1 on which the insulating resin layer 10 and the resin protrusion 6 are formed. A portion of the resin layer corresponding to the region where the conductive layer 8 is to be formed is removed by photolithography.

レジスト11を形成した後、図7に示すように、レジスト11の開ロ部に、導電層8をめっきにより形成する。具体的には、シード層7を覆う厚さ3〜20μm程度の銅めっきを形成した後、この銅めっき層を覆う厚さ1〜10μm程度のNiめっき層を形成し、更に、このNiめっき層を覆う厚さ0.1〜1.0μm程度のAuめっき層を形成することにより、三層構造の導電層8を形成する。   After forming the resist 11, as shown in FIG. 7, the conductive layer 8 is formed on the open portion of the resist 11 by plating. Specifically, after forming a copper plating with a thickness of about 3 to 20 μm covering the seed layer 7, a Ni plating layer with a thickness of about 1 to 10 μm covering the copper plating layer is formed, and further this Ni plating layer A conductive layer 8 having a three-layer structure is formed by forming an Au plating layer having a thickness of about 0.1 to 1.0 μm covering the substrate.

なお、導電層8の形成領域に対応する開口部を有するレジスト11の形成は、フォトリソグラフィー技術による感光性樹脂層の除去に限定されない。例えば、ドライフィルム状のレジストを感圧チップ上にラミネートし、このレジストの前記導電層8の形成領域に対応する部分を、レーザ加工、プラズマエッチング、ウエットエッチング等により除去して、導電層8めっき用の開ロ部を形成する手法等も採用可能である。   Note that the formation of the resist 11 having an opening corresponding to the formation region of the conductive layer 8 is not limited to the removal of the photosensitive resin layer by a photolithography technique. For example, a dry film resist is laminated on a pressure-sensitive chip, and a portion of the resist corresponding to the formation region of the conductive layer 8 is removed by laser processing, plasma etching, wet etching, etc. It is also possible to adopt a method for forming an open portion for use.

導電層8の形成が完了したら、レジスト11を剥離し、不要なシード層7(絶縁樹脂層10上及びダイアフラム2上のシード層7等)をエッチング等により除去する。その後、導電層8の表面上に、例えばはんだ製のバンプ9を形成する。バンプ9の形成方法としては。印刷法、メタルジェット法、またはフラックス上にはんだボールを載置する方法等が挙げられる。このバンプ9により、絶縁樹脂層10の感圧ゲージ電極5上の開口部が封止される。   When the formation of the conductive layer 8 is completed, the resist 11 is removed, and unnecessary seed layers 7 (such as the seed layer 7 on the insulating resin layer 10 and the diaphragm 2) are removed by etching or the like. Thereafter, bumps 9 made of, for example, solder are formed on the surface of the conductive layer 8. As a method of forming the bump 9. Examples thereof include a printing method, a metal jet method, and a method of placing solder balls on a flux. The bump 9 seals the opening of the insulating resin layer 10 on the pressure sensitive gauge electrode 5.

これにより、図3に示すような、応力緩和機能を有するバンプ9付きの絶対圧型半導体圧力センサが形成される。   Thus, an absolute pressure type semiconductor pressure sensor with bumps 9 having a stress relaxation function as shown in FIG. 3 is formed.

なお、本発明は、下記実施の形態に限定されず、各種の変更が可能である。例えば、本発明は、相対圧型半導体圧力センサに対しても適用が可能である。   In addition, this invention is not limited to the following embodiment, A various change is possible. For example, the present invention can be applied to a relative pressure type semiconductor pressure sensor.

図8は、本発明に係る相対圧型半導体圧力センサを、バンプ9を介して測定用電子機器(回路基板12)に実装した状況を示している。この相対圧型半導体圧力センサでは、感圧チップ1の凹部4とガラス基板3とで挟まれた空間Sが、ガラス基板3に形成された孔H2を介して、圧力測定の対象となる空間(図示せず)に連通される。また、回路基板12には、大気と連通する孔Hがあり、その結果、ダイアフラム2の表面と回路基板12とで挟まれた空間13の気圧は、大気圧となっている。そして、孔H2及び空間Sを介してダイアフラム2の裏面に印加される圧力が、上記空間13の気圧(大気圧)を基準とした相対圧として測定される。圧力センサを形成する他の構成、その製造方法、及び作用効果は、上記図1ないし図7に示す実施形態と同様である。   FIG. 8 shows a state in which the relative pressure type semiconductor pressure sensor according to the present invention is mounted on the measurement electronic device (circuit board 12) via the bumps 9. In this relative pressure type semiconductor pressure sensor, a space S sandwiched between the concave portion 4 of the pressure sensitive chip 1 and the glass substrate 3 is a space for pressure measurement via a hole H2 formed in the glass substrate 3 (see FIG. (Not shown). The circuit board 12 has a hole H communicating with the atmosphere. As a result, the air pressure in the space 13 sandwiched between the surface of the diaphragm 2 and the circuit board 12 is atmospheric pressure. Then, the pressure applied to the back surface of the diaphragm 2 through the hole H2 and the space S is measured as a relative pressure based on the atmospheric pressure (atmospheric pressure) of the space 13. The other configuration forming the pressure sensor, the manufacturing method thereof, and the operation and effect are the same as those of the embodiment shown in FIGS.

また、図9は、本発明に係る他の絶対圧型半導体圧力センサの構造の例を示す断面図である。この例では、なお、開口部(第二開口部)で囲まれた樹脂製突部6の一部が周囲の絶縁樹脂層10と繋がっており、この樹脂製突部6の端部(感圧ゲージ電極5の側方に位置する樹脂層10の上部)に延びる導電層8上に、バンプ9が形成されている。この場合、バンプ9の下方がほぼ全て樹脂層10となっているため、バンプ9が、感圧チップ1と測定用電子機器との接続に伴い生じる応力の影響を受けにくくなる。また、導電層8とバンプ9との接続位置を、ピエゾ抵抗感圧ゲージの抵抗値に影響が生じにくい位置(例えばピエゾ抵抗ゲージからなるべく遠い位置)とすることが可能となる。

FIG. 9 is a sectional view showing an example of the structure of another absolute pressure type semiconductor pressure sensor according to the present invention. In this example, a part of the resin protrusion 6 surrounded by the opening (second opening) is connected to the surrounding insulating resin layer 10, and the end of the resin protrusion 6 (pressure-sensitive) Bumps 9 are formed on the conductive layer 8 extending to the upper part of the resin layer 10 located on the side of the gauge electrode 5. In this case, since the resin layer 10 is almost entirely below the bumps 9, the bumps 9 are less susceptible to the stress caused by the connection between the pressure-sensitive chip 1 and the measurement electronic device. In addition, the connection position between the conductive layer 8 and the bump 9 can be set to a position where the resistance value of the piezoresistive pressure sensitive gauge is hardly affected (for example, a position as far as possible from the piezoresistive gauge).

本発明に係る半導体圧力センサの構造の例を示す上方斜視図である。It is an upper perspective view which shows the example of the structure of the semiconductor pressure sensor which concerns on this invention. 本発明に係る絶対圧型半導体圧力センサの構造の例を示す断面図である。It is sectional drawing which shows the example of the structure of the absolute pressure type | mold semiconductor pressure sensor which concerns on this invention. 図2の感圧ゲージ電極部の断面を示す拡大図である。It is an enlarged view which shows the cross section of the pressure sensitive gauge electrode part of FIG. 図2の半導体圧力センサを、バンプを介して測定用電子機器に実装した状況を示す断面図である。It is sectional drawing which shows the condition which mounted the semiconductor pressure sensor of FIG. 2 in the electronic device for a measurement via bump. 図2の半導体圧力センサの製造方法の工程を示す図であって、絶縁樹脂層に開口部を設けた状態を示す。It is a figure which shows the process of the manufacturing method of the semiconductor pressure sensor of FIG. 2, Comprising: The state which provided the opening part in the insulating resin layer is shown. 図2の半導体圧力センサの製造方法の工程を示す図であって、レジストを被覆後、導電層形成部を開口した状態を示す。It is a figure which shows the process of the manufacturing method of the semiconductor pressure sensor of FIG. 2, Comprising: After coat | covering a resist, the state which opened the conductive layer formation part is shown. 図2の半導体圧力センサの製造方法の工程を示す図であって、導電層を形成した状態を示す拡大図である。It is a figure which shows the process of the manufacturing method of the semiconductor pressure sensor of FIG. 2, Comprising: It is an enlarged view which shows the state in which the conductive layer was formed. 本発明に係る相対圧型半導体圧力センサを、バンプを介して測定用電子機器に実装した状況を示す断面図である。It is sectional drawing which shows the condition which mounted the relative pressure type | mold semiconductor pressure sensor which concerns on this invention in the electronic device for a measurement via bump. 本発明に係る絶対圧型半導体圧力センサの構造の例を示す断面図である。It is sectional drawing which shows the example of the structure of the absolute pressure type | mold semiconductor pressure sensor which concerns on this invention. 従来の絶対圧型半導体圧カセンサ内の感圧チップの例を示す断面図である。It is sectional drawing which shows the example of the pressure sensitive chip in the conventional absolute pressure type semiconductor pressure sensor. 従来の絶対圧型半導体圧力センサの例を示す断面図である。It is sectional drawing which shows the example of the conventional absolute pressure type | mold semiconductor pressure sensor. 接続用のバンプを有する従来の半導体圧力センサの例を示す断面図である。It is sectional drawing which shows the example of the conventional semiconductor pressure sensor which has the bump for a connection. 樹脂ポスト付きバンプを有する従来の半導体パッケージの例を示す断面図である。It is sectional drawing which shows the example of the conventional semiconductor package which has bump with a resin post.

Claims (4)

ダイアフラムの領域に配される感圧ゲージと、前記ダイアフラム以外の領域に配される感圧ゲージ電極と、前記感圧ゲージと前記感圧ゲージ電極とを電気的に接続する感圧リードとを備えた感圧チップ、A pressure-sensitive gauge disposed in a diaphragm area; a pressure-sensitive gauge electrode disposed in an area other than the diaphragm; and a pressure-sensitive lead electrically connecting the pressure-sensitive gauge and the pressure-sensitive gauge electrode. Pressure-sensitive chip,
前記感圧チップ上に配され、前記ダイアフラムを露呈させる第一開口部と前記感圧ゲージ電極の一部を露呈させる第二開口部とを備えた絶縁樹脂層、An insulating resin layer provided on the pressure-sensitive chip and having a first opening for exposing the diaphragm and a second opening for exposing a part of the pressure-sensitive gauge electrode;
前記絶縁樹脂層上に配され、前記第二開口部を通り前記感圧ゲージ電極と電気的に接続された導電層、及び、A conductive layer disposed on the insulating resin layer and electrically connected to the pressure-sensitive gauge electrode through the second opening; and
前記導電層の上に配されたバンプ、A bump disposed on the conductive layer;
を少なくとも具備したことを特徴とする半導体圧力センサ。A semiconductor pressure sensor.
前記絶縁樹脂層は、感光性樹脂からなることを特徴とする請求項1に記載の半導体圧力センサ。The semiconductor pressure sensor according to claim 1, wherein the insulating resin layer is made of a photosensitive resin. ダイアフラムの領域に配される感圧ゲージと、前記ダイアフラム以外の領域に配される感圧ゲージ電極と、前記感圧ゲージと前記感圧ゲージ電極とを電気的に接続する感圧リードとを備えた感圧チップ、前記感圧チップ上に配され、前記ダイアフラムを露呈させる第一開口部と前記感圧ゲージ電極の一部を露呈させる第二開口部とを備えた絶縁樹脂層、前記絶縁樹脂層上に配され、前記第二開口部を通り前記感圧ゲージ電極と電気的に接続された導電層、及び、前記導電層の上に配されたバンプ、を少なくとも具備した半導体圧力センサの製造方法であって、A pressure-sensitive gauge disposed in a diaphragm area; a pressure-sensitive gauge electrode disposed in an area other than the diaphragm; and a pressure-sensitive lead electrically connecting the pressure-sensitive gauge and the pressure-sensitive gauge electrode. A pressure-sensitive chip, an insulating resin layer provided on the pressure-sensitive chip and having a first opening for exposing the diaphragm and a second opening for exposing a part of the pressure-sensitive gauge electrode, the insulating resin A semiconductor pressure sensor comprising at least a conductive layer disposed on a layer and electrically connected to the pressure-sensitive gauge electrode through the second opening, and a bump disposed on the conductive layer A method,
前記感圧ゲージ、前記感圧ゲージ電極及び前記感圧リードを覆うように前記感圧チップ上に感光性樹脂からなる絶縁樹脂層を形成する工程A、Forming an insulating resin layer made of a photosensitive resin on the pressure-sensitive chip so as to cover the pressure-sensitive gauge, the pressure-sensitive gauge electrode, and the pressure-sensitive lead;
前記絶縁樹脂層に、前記ダイアフラムを露呈させる第一開口部と前記感圧ゲージ電極の一部を露呈させる第二開口部を形成する工程B、Forming a first opening for exposing the diaphragm and a second opening for exposing a part of the pressure-sensitive gauge electrode in the insulating resin layer;
前記第二開口部を通り前記感圧ゲージ電極と電気的に接続するように導電層を形成する工程C、Forming a conductive layer so as to be electrically connected to the pressure-sensitive gauge electrode through the second opening,
を少なくとも順に具備したことを特徴とする半導体圧力センサの製造方法。At least in order. A method for manufacturing a semiconductor pressure sensor.
前記工程Bは、前記第一開口部と前記第二開口部とを同時に形成することを特徴とする請求項3に記載の半導体圧力センサの製造方法。The said process B forms said 1st opening part and said 2nd opening part simultaneously, The manufacturing method of the semiconductor pressure sensor of Claim 3 characterized by the above-mentioned.
JP2006193078A 2003-01-30 2006-07-13 Semiconductor pressure sensor and manufacturing method thereof Expired - Fee Related JP3908266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193078A JP3908266B2 (en) 2003-01-30 2006-07-13 Semiconductor pressure sensor and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003021284 2003-01-30
JP2006193078A JP3908266B2 (en) 2003-01-30 2006-07-13 Semiconductor pressure sensor and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005504738A Division JP3863171B2 (en) 2003-01-30 2004-01-29 Semiconductor pressure sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006337378A JP2006337378A (en) 2006-12-14
JP3908266B2 true JP3908266B2 (en) 2007-04-25

Family

ID=37558033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193078A Expired - Fee Related JP3908266B2 (en) 2003-01-30 2006-07-13 Semiconductor pressure sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3908266B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052588A (en) * 2013-08-06 2015-03-19 株式会社デンソー Dynamic quantity sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135828B2 (en) * 2007-02-28 2013-02-06 ソニー株式会社 Substrate and manufacturing method thereof, semiconductor package and manufacturing method thereof, and semiconductor device and manufacturing method thereof
JP5157614B2 (en) * 2008-04-21 2013-03-06 株式会社デンソー Pressure sensor and manufacturing method thereof
JP2010060464A (en) * 2008-09-04 2010-03-18 Alps Electric Co Ltd Physical quantity sensor
CN115144122B (en) * 2022-08-31 2022-11-18 南京元感微电子有限公司 High-temperature-resistant pressure sensor with multilayer structure and processing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052588A (en) * 2013-08-06 2015-03-19 株式会社デンソー Dynamic quantity sensor

Also Published As

Publication number Publication date
JP2006337378A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP3863171B2 (en) Semiconductor pressure sensor and manufacturing method thereof
US6583516B2 (en) Semiconductor device and method of manufacturing the same, circuit board, and electronic instrument
US8174090B2 (en) Packaging structure
US9613877B2 (en) Semiconductor packages and methods for forming semiconductor package
US7549344B2 (en) Pressure sensor package and electronic part
JP4973443B2 (en) Sensor device
US20110303993A1 (en) Semiconductor sensor device, method of manufacturing semiconductor sensor device, package, method of manufacturing package, module, method of manufacturing module, and electronic device
JP2007248212A (en) Pressure sensor package and electronic component
JP3908266B2 (en) Semiconductor pressure sensor and manufacturing method thereof
JP4498991B2 (en) Semiconductor device and electronic device
KR20090101435A (en) Semiconductor device
JP3402086B2 (en) Semiconductor device and manufacturing method thereof
KR20080059525A (en) Semiconductor device
WO2010119600A1 (en) Converter module and method for manufacturing same
JP5331584B2 (en) Pressure sensor array, pressure sensor array package, and pressure sensor module and electronic component
JP2002280486A (en) Semiconductor package
WO2001026146A1 (en) Semiconductor device and method of manufacture thereof
CN114270159B (en) Sensor device and method for producing a sensor device
JP5328492B2 (en) Pressure sensor module, pressure sensor package, and manufacturing method thereof
US20240210212A1 (en) Sensor device and method of manufacturing the same
JP2010107215A (en) Pressure sensor, pressure sensor package and method for manufacturing the same, pressure sensor module, and electronic component
US20080041157A1 (en) Acceleration sensor and method of manufacturing the same
JP2008251845A (en) Semiconductor device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees