JP2009054704A - Manufacturing method of rare earth permanent magnet - Google Patents

Manufacturing method of rare earth permanent magnet Download PDF

Info

Publication number
JP2009054704A
JP2009054704A JP2007218454A JP2007218454A JP2009054704A JP 2009054704 A JP2009054704 A JP 2009054704A JP 2007218454 A JP2007218454 A JP 2007218454A JP 2007218454 A JP2007218454 A JP 2007218454A JP 2009054704 A JP2009054704 A JP 2009054704A
Authority
JP
Japan
Prior art keywords
mass
permanent magnet
rare earth
magnet
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007218454A
Other languages
Japanese (ja)
Other versions
JP4645854B2 (en
Inventor
Kazuo Tamura
和男 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007218454A priority Critical patent/JP4645854B2/en
Publication of JP2009054704A publication Critical patent/JP2009054704A/en
Application granted granted Critical
Publication of JP4645854B2 publication Critical patent/JP4645854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high oilproof sintered permanent magnet, with ease at a low cost, which has corrosive resistance and hydrogen barrier property even in the atmosphere of high temperature and high pressure of coolant and lubricating oil, by forming a protective film in a thermal process after treating the surface of a processed R-T-B permanent magnet in an alkali solution containing alkanolamine. <P>SOLUTION: In the manufacturing method of the R-T-B rare earth permanent magnet, it is submerged in a coolant and/or lubricating oil for long hours. The R-T-B sintered magnet is cut and/or polished to finish the surface, and then it is submerged in the alkali solution containing alkanolamine for 1-100 hours. Then, it is thermally treated at 200-350°C for 0.5-24 hours in the atmosphere in which the oxygen partial pressure is 1.3×10<SP>3</SP>Pa (10 Torr) or higher. Since the surface of the R-T-B permanent magnet processed is treated in the alkali solution containing alkanolamine and then subjected to a thermal process to form a protective film, the high oilproof sintered permanent magnet having corrosive resistance and hydrogen barrier property even in such atmosphere of high temperature and high pressure of coolant and lubricated oil can be constituted simply at a low cost. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷媒及び/又は潤滑油に長時間浸漬する希土類永久磁石、特に空調用高効率モータに用いられて有効な永久磁石の製造方法に関する。   The present invention relates to a method for producing a rare-earth permanent magnet that is immersed in a refrigerant and / or lubricating oil for a long time, particularly a permanent magnet that is effective for use in a high-efficiency motor for air conditioning.

希土類永久磁石は、その優れた磁気特性と経済性のために、電気・電子機器の多くの分野で利用されており、近年その生産量は急激に増大しつつある。これらのうち希土類系永久磁石は、希土類コバルト磁石(SmCo)に比べて主要元素であるNdがSmより豊富に存在すること、Coを多量に使用しないことから原材料費が安価であり、磁気特性も希土類コバルト磁石をはるかに凌ぐことから、これまで希土類コバルト磁石が使用されてきた小型磁気回路だけでなく、ハードフェライトあるいは電磁石が使われていた分野にも広く応用されている。エアコンや冷蔵庫などのコンプレッサー用モータにおいても、エネルギー効率を上げて電力消費量を少なくすることを目的に、従来の誘導電動機やフェライト磁石を使用した同期型回転機から希土類磁石を使用したDCブラシレスモータへの転換が進みつつある。   Rare earth permanent magnets are used in many fields of electrical and electronic equipment because of their excellent magnetic properties and economy, and their production volume has been increasing rapidly in recent years. Among these, rare earth-based permanent magnets have a lower raw material cost and magnetic properties due to the fact that the main element Nd is more abundant than Sm compared to rare earth cobalt magnets (SmCo), and that a large amount of Co is not used. Since it far surpasses rare earth cobalt magnets, it is widely applied not only to small magnetic circuits where rare earth cobalt magnets have been used, but also to fields where hard ferrites or electromagnets were used. DC brushless motors that use rare earth magnets instead of conventional induction motors and synchronous rotating machines that use ferrite magnets to increase energy efficiency and reduce power consumption in compressor motors such as air conditioners and refrigerators The transition to is progressing.

回転電動機のうち、リラクタンストルクを主に、あるいは補助的に利用するリラクタンストルク応用電動機が注目され、最も効率的な電動機として空調圧縮機などの家電分野や自動車分野を中心にその実用化が急速に進んでいる。特に、一般家庭において使用電力の約25%を空調機器が占めており、空調用モータの高効率化が重要視されている。   Among revolving motors, reluctance torque applied motors that use reluctance torque mainly or in an auxiliary manner are attracting attention, and their practical application is rapidly becoming the most efficient motor mainly in the home appliance field such as air-conditioning compressors and the automobile field. Progressing. In particular, air conditioning equipment accounts for about 25% of the electric power used in general households, and it is important to improve the efficiency of air conditioning motors.

リラクタンストルク応用電動機には、スイッチドリラクタンスモータ(SRM)、シンクロナスリラクタンスモータ(SynRM)及び、埋め込み磁石構造のPMモータ(IPMSM)があるが、リラクタンストルクと永久磁石の磁束と電機子電流との積によって、発生する磁石トルクの割合が異なってくる。磁石トルクとリラクタンストルクがハイブリッドされたIPMSMは、永久磁石を回転子に埋め込み、インダクタンスを大きくして駆動電流を適切にベクトル制御することで、リラクタンストルクの併用に加えて、少ない電流で磁束制御可能となる。従って、IPMSMは低速〜高速まで広い範囲で高効率であること、広い範囲で定出力であること、低速大トルク、小型軽量がはかれるなどの特徴を有する。こうした特徴を活かした高効率空調用モータとすれば、年間電気代の削減、高い暖房能力が達成できるものであると考えられている。   The reluctance torque applied motor includes a switched reluctance motor (SRM), a synchronous reluctance motor (SynRM), and a PM motor (IPMSM) having an embedded magnet structure. The reluctance torque, permanent magnet magnetic flux, and armature current The ratio of the generated magnet torque varies depending on the product. IPMSM, which is a hybrid of magnet torque and reluctance torque, embeds a permanent magnet in the rotor, increases the inductance, and appropriately controls the drive current to control the magnetic flux with less current in addition to using the reluctance torque. It becomes. Accordingly, the IPMSM has characteristics such as high efficiency in a wide range from low speed to high speed, constant output in a wide range, high speed low torque, small size and light weight. It is considered that a high-efficiency air-conditioning motor that takes advantage of these characteristics can achieve a reduction in annual electricity costs and high heating capacity.

R−T−B系永久磁石は、主成分として希土類元素及び鉄を含有するため、湿度を帯びた空気中では短時間のうちに容易に酸化するという欠点を有している。磁気回路に組み込んだ場合には、これらの酸化腐食により磁気回路の出力を低下させたり、発生した錆等によって周辺機器を汚染するなどの問題があった。このため、一般に希土類磁石は表面処理を行って使用されている。希土類磁石における表面処理法には、電気メッキや無電解メッキ、更にはAlイオンプレーティング法や各種の塗装などを行って使用されている。   Since the RTB-based permanent magnet contains rare earth elements and iron as main components, it has a drawback that it easily oxidizes in a short time in humid air. When incorporated in a magnetic circuit, there have been problems such as a reduction in the output of the magnetic circuit due to these oxidative corrosions, and contamination of peripheral equipment due to the generated rust. For this reason, in general, rare earth magnets are used after surface treatment. As surface treatment methods for rare earth magnets, electroplating, electroless plating, Al ion plating, and various types of coating are used.

冷媒や潤滑油又はそれらの混合系内で使用されるエアコン用コンプレッサーモータにおいて使用される希土類永久磁石は、これら冷媒及び冷凍機油の混合系での高温・高圧力下での耐食性が求められる。   A rare earth permanent magnet used in a compressor motor for an air conditioner used in a refrigerant, lubricating oil, or a mixed system thereof is required to have corrosion resistance under high temperature and high pressure in a mixed system of these refrigerant and refrigeration oil.

例えば、特開平11−150930号公報(特許文献1)において、冷媒圧縮機内回転子の鉄心内の希土類磁石では、表面処理を行わない磁石材を用いることが提案されている。しかし、HFC冷媒と冷凍機油であるエーテル系又はエステル系の組み合わせにより、高温長時間の運転によって、組み込まれた磁石の磁気特性が低下する可能性がある。   For example, Japanese Patent Application Laid-Open No. 11-150930 (Patent Document 1) proposes to use a magnet material that is not subjected to surface treatment for a rare earth magnet in an iron core of a rotor in a refrigerant compressor. However, the combination of the HFC refrigerant and the ether-based or ester-based refrigerating machine oil may reduce the magnetic characteristics of the incorporated magnet due to high-temperature and long-time operation.

従って、これらの用途においては、上述の各種表面処理の適用が検討される訳であるが、例えばAlイオンプレーティング法ではコストが高くて工業的には問題があり、塗装は溶媒や油と反応するために使えず、またメッキ法ではローターとシャフトの焼き嵌め温度でメッキ膜が剥がれたりするなど、高温での安定性に問題があるために使用できず、またこれらの表面処理は大型の磁石には工業化が難しく、メッキの不良品が多く発生してしまう。   Therefore, in these applications, the application of the above-mentioned various surface treatments is considered. For example, the Al ion plating method is expensive and industrially problematic, and the coating reacts with a solvent or oil. In addition, the plating method cannot be used due to problems with stability at high temperatures, such as the plating film peeling off at the shrink fitting temperature of the rotor and shaft, and these surface treatments are large magnets Is difficult to industrialize, and many plating defects occur.

このように、高効率モータに使用される希土類永久磁石は、高温高圧の冷媒又は潤滑油あるいはその両方に長時間浸漬することによって、それらと反応したり腐食したりして磁気特性が劣化する問題がある。   Thus, rare earth permanent magnets used in high-efficiency motors have a problem that their magnetic properties deteriorate when they are immersed in a high-temperature / high-pressure refrigerant and / or lubricating oil for a long time and react or corrode with them. There is.

こうした特殊な使用環境に対して高い信頼性を持つR−T−B系永久磁石として、特開2002−57052号公報(特許文献2)において、得られた焼結磁石を酸素分圧が10-6〜100Torrであるアルゴン、窒素、又は低圧真空雰囲気にて、10分〜10時間熱処理する製法が提案されている。しかしながら、均一な熱処理雰囲気のために高価な雰囲気炉を必要とし、このためより安価で簡便な手法が求められていた。 As the R-T-B-based permanent magnet having a high reliability against these special operating environment, JP at 2002-57052 (Patent Document 2), an oxygen partial pressure of the sintered magnet was obtained 10 - 6-10 argon is 0 Torr, nitrogen, or at a low pressure vacuum atmosphere, method of heat treating 10 minutes to 10 hours have been proposed. However, an expensive atmosphere furnace is required for a uniform heat treatment atmosphere, and therefore, a cheaper and simpler method has been demanded.

特開平11−150930号公報Japanese Patent Laid-Open No. 11-150930 特開2002−57052号公報JP 2002-57052 A

本発明は、上記問題点を解決したもので、上記のような過酷な使用条件下においても、優れた安定性と高耐食性及び水素バリアー性を有する希土類永久磁石のより安価で簡便な製造方法を提供するものである。   The present invention solves the above-mentioned problems, and provides a cheaper and simpler method for producing a rare earth permanent magnet having excellent stability, high corrosion resistance and hydrogen barrier properties even under the severe use conditions as described above. It is to provide.

本発明は、上記目的を達成するため、
(1)冷媒及び/又は潤滑油に長時間浸漬する希土類永久磁石を製造する方法において、主成分をR(Rは希土類元素の1種又は2種以上の組み合わせ)、T(TはFe、又はFe及びCo)、及びBとし、Rが26.8〜33.5質量%、Bが0.78〜1.25質量%、Ni,Ga,Zr,Nb,Hf,Ta,Mn,Sn,Mo,Zn,Pb,Sb,Al,Si,V,Cr,Ti,Cu,Ca,Mgから選ばれる1種又は2種以上の元素の合計量が0.05〜3.5質量%、残部がT及び不可避の不純物からなる合金を鋳造し、アルゴン、窒素又は真空の無酸素雰囲気中で粉砕した後、微粉砕、磁場中成型、焼結、時効を順次行って焼結磁石とし、その酸素濃度が0.3〜0.8質量%で、磁気特性がBrで12.0kG以上14.8kG以下、iHcが11kOe以上35kOe以下である焼結磁石を切断及び/又は研磨して表面を加工仕上げした後、アルカノールアミン類を含むアルカリ溶液に1〜100時間浸漬させ、引き続き酸素分圧が1.3×103Pa(10Torr)以上の雰囲気において、200〜350℃にて0.5〜24時間熱処理することを特徴とする希土類永久磁石の製造方法、
(2)冷媒及び/又は潤滑油に長時間浸漬する希土類永久磁石を製造する方法において、主成分をR(Rは希土類元素の1種又は2種以上の組み合わせ)、T(TはFe、又はFe及びCo)、及びBとし、Rが26.8〜33.5質量%、Bが0.78〜1.25質量%、Ni,Ga,Zr,Nb,Hf,Ta,Mn,Sn,Mo,Zn,Pb,Sb,Al,Si,V,Cr,Ti,Cu,Ca,Mgから選ばれる1種又は2種以上の元素の合計量が0.05〜3.5質量%、残部がT及び不可避の不純物からなる合金を母合金とし、R’(R’は希土類元素の1種又は2種以上の組み合わせ)が28〜70質量%、Bが0〜1.5質量%、Ni,Ga,Zr,Nb,Hf,Ta,Mo,Al,Si,V,Cr,Ti,Cuから選ばれる1種又は2種以上の元素の合計量が0.05〜10質量%、残部がT(Tの中でCoの割合が10質量%以上でFeの割合が90質量%以下)及び不可避の不純物からなる合金を助材とし、アルゴン、窒素又は真空の無酸素雰囲気中で水素化粉砕した母合金を85〜99質量%、助材を1〜15質量%の割合で混合した後、微粉砕、磁場中成型、焼結、時効を順次行って焼結磁石とし、その酸素濃度が0.3〜0.8質量%で、磁気特性がBrで12.0kG以上14.8kG以下、iHcが11kOe以上35kOe以下である焼結磁石を切断及び/又は研磨して表面を加工仕上げした後、アルカノールアミン類を含むアルカリ溶液に1〜100時間浸漬させ、引き続き酸素分圧が1.3×103Pa(10Torr)以上の雰囲気において、200〜350℃にて0.5〜24時間熱処理することを特徴とする希土類永久磁石の製造方法
を提供する。この場合、この希土類永久磁石は、当該磁石を冷媒及び/又は潤滑油に浸漬する高効率モータ用として好適である。
In order to achieve the above object, the present invention
(1) In the method for producing a rare earth permanent magnet immersed in a refrigerant and / or lubricating oil for a long time, the main component is R (R is a combination of one or more rare earth elements), T (T is Fe, or Fe and Co), and B, R is 26.8 to 33.5 mass%, B is 0.78 to 1.25 mass%, Ni, Ga, Zr, Nb, Hf, Ta, Mn, Sn, Mo , Zn, Pb, Sb, Al, Si, V, Cr, Ti, Cu, Ca, Mg, the total amount of one or more elements selected from 0.05 to 3.5 mass%, the balance being T Cast an alloy consisting of inevitable impurities and pulverize it in an oxygen, nitrogen, or vacuum oxygen-free atmosphere, and then perform fine pulverization, molding in a magnetic field, sintering, and aging in order to obtain a sintered magnet whose oxygen concentration is 0.3 to 0.8% by mass, and magnetic properties of Br are 12.0 kG or more and 14.8 k Thereafter, a sintered magnet having an iHc of 11 kOe or more and 35 kOe or less is cut and / or polished to finish the surface, and then immersed in an alkaline solution containing alkanolamines for 1 to 100 hours. A method for producing a rare earth permanent magnet, characterized by heat treatment at 200 to 350 ° C. for 0.5 to 24 hours in an atmosphere of 3 × 10 3 Pa (10 Torr) or more,
(2) In the method for producing a rare earth permanent magnet immersed in a refrigerant and / or lubricating oil for a long time, the main component is R (R is a combination of one or more rare earth elements), T (T is Fe, or Fe and Co), and B, R is 26.8 to 33.5 mass%, B is 0.78 to 1.25 mass%, Ni, Ga, Zr, Nb, Hf, Ta, Mn, Sn, Mo , Zn, Pb, Sb, Al, Si, V, Cr, Ti, Cu, Ca, Mg, the total amount of one or more elements selected from 0.05 to 3.5 mass%, the balance being T And an alloy composed of inevitable impurities is a mother alloy, R ′ (R ′ is one or a combination of two or more rare earth elements) is 28 to 70% by mass, B is 0 to 1.5% by mass, Ni, Ga , Zr, Nb, Hf, Ta, Mo, Al, Si, V, Cr, Ti, Cu The total amount of two or more elements is 0.05 to 10% by mass, the balance is T (the proportion of Co in T is 10% by mass or more and the proportion of Fe is 90% by mass or less) and inevitable impurities. An alloy is used as an auxiliary material, and a mother alloy obtained by hydrogenation and pulverization in an oxygen, argon, or vacuum oxygen-free atmosphere is mixed at a ratio of 85 to 99% by mass and the auxiliary material is mixed at a rate of 1 to 15% by mass, and then finely pulverized Molding, sintering, and aging are sequentially performed to obtain a sintered magnet having an oxygen concentration of 0.3 to 0.8 mass%, a magnetic property of 12.0 kG to 14.8 kG in Br, and iHc of 11 kOe to 35 kOe. The sintered magnet is cut and / or polished to finish the surface, and then immersed in an alkaline solution containing alkanolamines for 1 to 100 hours. Subsequently, the oxygen partial pressure is 1.3 × 10 3 Pa (10 Torr) In the above atmosphere, 2 Provides a method for preparing a rare earth permanent magnet, characterized in that the heat treatment for 0.5 to 24 hours at 0 to 350 ° C.. In this case, the rare earth permanent magnet is suitable for a high efficiency motor in which the magnet is immersed in a refrigerant and / or lubricating oil.

即ち、本発明者は、上記問題点を解決するため鋭意検討を行った結果、高効率の各種モータ(改正省エネ法に準拠できるモータ)に使用され、その運転条件下でHFC系等の冷媒及び/又は潤滑油に長時間浸漬する希土類磁石において、上記表面加工仕上げした磁石に対し、アルカノールアミン類を含むアルカリ溶液に1〜100時間浸漬させる。引き続き200〜350℃の温度範囲で酸素分圧が1.3×103Pa(10Torr)以上の雰囲気において、0.5〜24時間熱処理することによって、耐食性が向上することを知見し、本発明を完成したものである。 That is, as a result of intensive studies to solve the above problems, the present inventor has been used in various high-efficiency motors (motors that can comply with the revised Energy Conservation Law). In a rare earth magnet immersed in a lubricating oil for a long time, the surface-finished magnet is immersed in an alkaline solution containing alkanolamines for 1 to 100 hours. Subsequently, it was found that the corrosion resistance is improved by heat treatment for 0.5 to 24 hours in an atmosphere having an oxygen partial pressure of 1.3 × 10 3 Pa (10 Torr) or more in a temperature range of 200 to 350 ° C. Is completed.

本発明によれば、加工処理を施したR−T−B系永久磁石表面をアルカノールアミンを含むアルカリ溶液により処理した後、熱処理による保護膜形成を行うことにより、冷媒及び潤滑油による高温高圧という雰囲気においても耐食性及び水素バリアー性を有する高耐油性焼結永久磁石を簡便かつ安価に提供することができ、産業上その利用価値は極めて高い。   According to the present invention, the surface of the RTB-based permanent magnet subjected to the processing treatment is treated with an alkali solution containing alkanolamine, and then a protective film is formed by heat treatment. A highly oil-resistant sintered permanent magnet having corrosion resistance and hydrogen barrier properties even in an atmosphere can be provided simply and inexpensively, and its utility value is extremely high in industry.

以下、本発明につき更に詳しく説明する。
本発明の希土類永久磁石の製造方法においては、まず、主成分をR(Rは希土類元素の1種又は2種以上の組み合わせ)、T(TはFe、又はFe及びCo)、及びBとし、Rが26.8〜33.5質量%、Bが0.78〜1.25質量%、Ni,Ga,Zr,Nb,Hf,Ta,Mn、Sn,Mo,Zn,Pb,Sb,Al,Si,V,Cr,Ti,Cu,Ca,Mgから選ばれる1種又は2種以上の元素の合計量が0.05〜3.5質量%、残部がT及び不可避の不純物からなる合金を鋳造する。
Hereinafter, the present invention will be described in more detail.
In the method for producing a rare earth permanent magnet of the present invention, first, the main component is R (R is one or a combination of two or more rare earth elements), T (T is Fe, or Fe and Co), and B. R is 26.8-33.5% by mass, B is 0.78-1.25% by mass, Ni, Ga, Zr, Nb, Hf, Ta, Mn, Sn, Mo, Zn, Pb, Sb, Al, Casting an alloy in which the total amount of one or more elements selected from Si, V, Cr, Ti, Cu, Ca, Mg is 0.05 to 3.5% by mass, the balance being T and inevitable impurities To do.

ここで、上記R−T−B系永久磁石に用いるRは、Yを包含する希土類元素であり、組成の26.8〜33.5質量%を占めるが、RとしてはY,La,Ce,Pr,Nd、Sm,Gd,Tb,Dy,Ho,Er,Lu,Ybの内から選択される1種もしくは2種以上が使用されるが、中でもCe,La,Nd,Pr,Dy,Tbの内少なくとも1種以上を含むのが好ましい。Bは0.78〜1.25質量%の範囲とする。残部であるTはFe、又はFe及びCoであり、特にFeは合金中に50〜90質量%の範囲である。この場合、Feの一部をCoで置換することにより温度特性を改善することができる。但し、Coの添加量が0.1質量%未満では十分な効果が得られず、一方15質量%を超えると、保磁力が低下し、コストも上昇する場合があるので、その量は0.1〜15質量%が好ましい。また、磁気特性の改善、あるいは、コスト低減のために、Ni,Ga,Zr,Nb,Hf,Ta,Mn,Sn,Mo,Zn,Pb,Sb,Al,Si,V,Cr,Ti,Cu,Ca,Mgから選ばれる少なくとも1種を添加することができる。このような組成の合金は合金の融点以上で溶湯化させ、金型鋳造法、ロール急冷法、アトマイズ法等の鋳造方法により得ることができる。   Here, R used for the RTB-based permanent magnet is a rare earth element including Y and occupies 26.8 to 33.5% by mass of the composition, and as R, Y, La, Ce, One or two or more selected from Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Lu, Yb are used. Among these, Ce, La, Nd, Pr, Dy, Tb are used. It is preferable to include at least one of them. B is in the range of 0.78 to 1.25% by mass. The balance T is Fe, or Fe and Co. In particular, Fe is in the range of 50 to 90% by mass in the alloy. In this case, the temperature characteristics can be improved by replacing part of Fe with Co. However, if the amount of Co added is less than 0.1% by mass, a sufficient effect cannot be obtained. On the other hand, if it exceeds 15% by mass, the coercive force may decrease and the cost may increase. 1-15 mass% is preferable. Further, in order to improve magnetic characteristics or reduce costs, Ni, Ga, Zr, Nb, Hf, Ta, Mn, Sn, Mo, Zn, Pb, Sb, Al, Si, V, Cr, Ti, Cu At least one selected from Ca, Mg can be added. An alloy having such a composition can be obtained by melting it above the melting point of the alloy and by a casting method such as a die casting method, a roll quenching method, or an atomizing method.

上記組成の合金をアルゴン、窒素又は真空の無酸素雰囲気中で粉砕した後、好ましくは平均粒径1〜30μmに微粉砕し、磁場中配向圧縮成型あるいは非磁場中圧縮成型、焼結、溶体化、時効することによりバルク化し、研削、研磨加工して所望の実用形状を有する永久磁石が得られる。   After the alloy having the above composition is pulverized in an oxygen-free atmosphere of argon, nitrogen or vacuum, it is preferably finely pulverized to an average particle size of 1 to 30 μm, and oriented compression molding in a magnetic field or compression molding in a non-magnetic field, sintering, solution treatment A permanent magnet having a desired practical shape can be obtained by bulking by aging, grinding and polishing.

また、上記の希土類磁石は、主成分をR(Rは上記のYを包含する希土類元素の1種又は2種以上の組み合わせ)、T(TはFe、又はFe及びCo)、及びBとし、Rが26.8〜33.5質量%、Bが0.78〜1.25質量%、Ni,Ga,Zr,Nb,Hf,Ta,Mn,Sn,Mo,Zn,Pb,Sb,Al,Si,V,Cr,Ti,Cu,Ca,Mgから選ばれる1種又は2種以上の元素の合計量が0.05〜3.5質量%、残部がT及び不可避の不純物からなる合金を母合金とし、R’(R’はRと同様のYを包含する希土類元素の1種又は2種以上の組み合わせ)が28〜70質量%、Bが0〜1.5質量%、Ni,Ga,Zr,Nb,Hf,Ta,Mo,Al,Si,V,Cr,Ti,Cuから選ばれる1種又は2種以上の元素の合計量が0.05〜10質量%、残部がT(Tの中でCoの割合が10質量%以上でFeの割合が90質量%以下)及び不可避の不純物からなる合金を助材とし、アルゴン、窒素又は真空の無酸素雰囲気中で水素化粉砕した母合金を85〜99質量%、助材を1〜15質量%の割合で、混合した後、微粉砕、磁場中成型、焼結、時効を順次行い、更に、切断及び/又は研磨して表面を加工仕上げすること(いわゆる二合金法)により得ることもできる。   The rare earth magnet has R as a main component (R is one or a combination of two or more rare earth elements including Y), T (T is Fe, or Fe and Co), and B. R is 26.8 to 33.5 mass%, B is 0.78 to 1.25 mass%, Ni, Ga, Zr, Nb, Hf, Ta, Mn, Sn, Mo, Zn, Pb, Sb, Al, An alloy composed of 0.05 to 3.5% by mass of one or more elements selected from Si, V, Cr, Ti, Cu, Ca, and Mg, with the balance being T and the inevitable impurities. R ′ (R ′ is one or a combination of two or more rare earth elements including Y similar to R) is 28 to 70% by mass, B is 0 to 1.5% by mass, Ni, Ga, One or more selected from Zr, Nb, Hf, Ta, Mo, Al, Si, V, Cr, Ti, Cu A total of 0.05 to 10% by mass of elements, the balance being T (the proportion of Co in T being 10% by mass or more and the proportion of Fe being 90% by mass or less) and an alloy consisting of inevitable impurities are used as auxiliary materials. After mixing the master alloy hydrogenated and pulverized in an oxygen-free atmosphere of argon, nitrogen or vacuum at a ratio of 85 to 99% by mass and auxiliary material at a rate of 1 to 15% by mass, pulverization, molding in a magnetic field, sintering It can also be obtained by sequentially performing aging, and further cutting and / or polishing to finish the surface (so-called two-alloy method).

ここで得られた焼結磁石(永久磁石)は、その酸素濃度が0.3〜0.8質量%で、磁気特性がBrで12.0kG以上14.8kG以下、iHcが11kOe以上35kOe以下である。   The sintered magnet (permanent magnet) obtained here has an oxygen concentration of 0.3 to 0.8% by mass, a magnetic property of 12.0 kG to 14.8 kG in Br, and iHc of 11 kOe to 35 kOe. is there.

本発明においては、上記のように表面を加工仕上げした後、アルカノールアミンを含むアルカリ溶液にて浸漬処理した後、熱処理を行うものである。
この場合、R−T−B系永久磁石の表面は、大気中で非常に錆びやすい性質を有する。事実、例えば、Nd−Fe−B系磁石の場合、大気中に長時間放置すれば錆成分である鉄酸化物と共に水酸化ネオジウムが生じてくる。機械加工後にアルカノールアミン類と必要により界面活性剤0.5〜20質量%等を含んだアルカリ液に浸漬させると、R−T−B希土類系永久磁石表面にほぼ均一に水酸化ネオジムNd(OH)3等のRの水酸化物を生成させることができる。アルカリ液に浸漬している時間は、1〜100時間、好ましくは8〜72時間、より好ましくは12〜24時間、室温(例えば20℃)から40℃にて浸漬させるのがよい。
In the present invention, the surface is processed and finished as described above, and then immersed in an alkaline solution containing alkanolamine, followed by heat treatment.
In this case, the surface of the R-T-B system permanent magnet has a property of being easily rusted in the atmosphere. In fact, for example, in the case of an Nd—Fe—B magnet, neodymium hydroxide is produced together with iron oxide which is a rust component if left in the atmosphere for a long time. When immersed in an alkaline solution containing alkanolamines and optionally a surfactant of 0.5 to 20% by mass after machining, neodymium hydroxide Nd (OH) is almost uniformly formed on the surface of the RTB rare earth permanent magnet. 3 ) R hydroxide such as 3 can be generated. The immersion time in the alkaline solution is 1-100 hours, preferably 8-72 hours, more preferably 12-24 hours, and it may be immersed at room temperature (for example, 20 ° C.) to 40 ° C.

機械加工後にR−T−B系永久磁石を浸漬する溶液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムから選ばれる1種以上のアルカリを更に溶解させたアルカノールアミン濃度が0.01〜2.0モル/L、特に0.05〜0.5モル/Lの水溶液がよい。なお、上記アルカリの濃度は1〜10質量%、特に2〜8質量%が好ましい。好ましくは、モノエタノールアミン、ジエタノールアミン等のアルカノールアミン類と界面活性剤等を含んだアルカリ液(pH8.5以上、より好ましくはpH8.5〜11.5)に浸漬させる。   The solution in which the R-T-B permanent magnet is immersed after machining has an alkanolamine concentration of 0.1 or more selected from sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate and further dissolved. An aqueous solution of 01 to 2.0 mol / L, particularly 0.05 to 0.5 mol / L is preferable. The alkali concentration is preferably 1 to 10% by mass, particularly 2 to 8% by mass. Preferably, it is immersed in an alkaline solution (pH 8.5 or more, more preferably pH 8.5 to 11.5) containing an alkanolamine such as monoethanolamine or diethanolamine and a surfactant.

本発明で用いるアルカノールアミンは、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、トリイソプロパノールアミン、メチルエタノールアミン、モノイソプロパノールアミン等を1種もしくは2種以上選択でき、必要によっては、アニオン系の界面活性剤を添加することが好ましい。   As the alkanolamine used in the present invention, one or more of monoethanolamine, diethanolamine, triethanolamine, triisopropanolamine, methylethanolamine, monoisopropanolamine and the like can be selected. If necessary, an anionic surfactant Is preferably added.

アニオン系界面活性剤としては、直鎖アルキルベンゼンスルホン酸ナトリウム等の直鎖アルキルベンゼン系、アルファオレフィンスルホン酸ナトリウム等のアルファオレフィン系、脂肪酸ナトリウム、脂肪酸カリウム等の脂肪酸系等が挙げられる。   Examples of the anionic surfactant include linear alkyl benzenes such as sodium linear alkyl benzene sulfonate, alpha olefins such as sodium alpha olefin sulfonate, and fatty acids such as fatty acid sodium and fatty acid potassium.

アルカリ液に浸した後には洗浄してもよく、純水等を用いた超音波洗浄のみではなく、エチルアルコール等の有機溶液への浸漬による溶剤洗浄を併用してもよい。引き続き、R−T−B系永久磁石表面をドライヤーなどで十分に乾燥させる。   It may be washed after being immersed in an alkaline solution, and may be used in combination with not only ultrasonic cleaning using pure water but also solvent cleaning by immersion in an organic solution such as ethyl alcohol. Subsequently, the surface of the R-T-B system permanent magnet is sufficiently dried with a dryer or the like.

本発明においては、次いで上記永久磁石に対して熱処理を行い、これによって耐食性を向上させる。この場合、熱処理温度は200〜350℃であり、好ましくは250〜330℃、更に好ましくは280〜300℃である。熱処理温度が高すぎると磁気特性劣化が起こり、また低すぎると潤滑油に対する耐久性が悪くなる。   In the present invention, the permanent magnet is then heat-treated, thereby improving the corrosion resistance. In this case, the heat treatment temperature is 200 to 350 ° C, preferably 250 to 330 ° C, more preferably 280 to 300 ° C. If the heat treatment temperature is too high, the magnetic properties are deteriorated, and if it is too low, the durability against the lubricating oil is deteriorated.

熱処理の雰囲気は、酸素分圧が1.3×103Pa(10Torr)以上、より好ましくは2.1×104Pa以上である酸素雰囲気下であり、熱処理時間は0.5〜24時間、より好ましくは0.5〜6時間、更に好ましくは1〜2時間である。酸素分圧が1.3×103Pa未満では均一な変色が出ないので好ましくない。なお、酸素分圧の上限は2.1×106Pa以下、特に2×105Pa以下であることが好ましい。 The atmosphere of the heat treatment is an oxygen atmosphere having an oxygen partial pressure of 1.3 × 10 3 Pa (10 Torr) or more, more preferably 2.1 × 10 4 Pa or more, and the heat treatment time is 0.5 to 24 hours, More preferably, it is 0.5-6 hours, More preferably, it is 1-2 hours. An oxygen partial pressure of less than 1.3 × 10 3 Pa is not preferable because uniform discoloration does not occur. The upper limit of the oxygen partial pressure is preferably 2.1 × 10 6 Pa or less, particularly 2 × 10 5 Pa or less.

R−T−B系希土類永久磁石表面にほぼ均一にNd(OH)3等のRの水酸化物が生成されたものを熱処理することにより、均一な複合酸化物層が生成し、磁石表面は濃い青色に変化する。逆に、R−T−B系希土類永久磁石を機械加工後所望の寸法にした後、すぐに熱処理を行うと、磁石表面は均一な濃い青色にはならず、茶色〜茶青色を呈する。 A heat treatment is performed on the surface of the R-T-B rare earth permanent magnet, in which an R hydroxide such as Nd (OH) 3 is generated, whereby a uniform composite oxide layer is formed. It turns dark blue. On the other hand, if the R-T-B rare earth permanent magnet is machined to a desired size and then immediately heat treated, the magnet surface does not become a uniform dark blue color but exhibits a brown to brown color.

一般に熱処理における雰囲気を酸素があれば「酸化雰囲気」、逆に酸素が少ない場合は「還元雰囲気」とよぶ。本発明では、R−T−B系永久磁石の表面層に水酸化ネオジム等のRの水酸化物を生成させており、これを熱処理により複合酸化物を生成させることは、より高い酸素分圧の酸化雰囲気にて熱処理を行うことと等価である。   Generally, the atmosphere in the heat treatment is called “oxidizing atmosphere” if oxygen is present, and conversely, “reducing atmosphere” if oxygen is small. In the present invention, a hydroxide of R such as neodymium hydroxide is generated on the surface layer of the R-T-B system permanent magnet, and the formation of a composite oxide by heat treatment of this produces a higher oxygen partial pressure. This is equivalent to performing heat treatment in an oxidizing atmosphere.

従って、R−T−B系希土類永久磁石をアルカノールアミン類が入ったpH8.5以上、特にpH9以上のアルカリ溶液に浸漬しない場合、熱処理後表面に均一な低級酸化物皮膜を形成するためには、酸素分圧を例えば6.5×104Pa以上に上げる必要が出てくる。しかしながら、アルカノールアミン類の入った、好ましくはpH8.5以上、特にpH9以上のアルカリ溶液に浸漬した場合、1.3×103Pa以上というより低い酸素分圧で処理することができ、より簡便で、しかも熱処理時の安全性からもその意義はとても大きい。 Therefore, in order to form a uniform lower oxide film on the surface after heat treatment when the R-T-B system rare earth permanent magnet is not immersed in an alkaline solution containing alkanolamines at pH 8.5 or higher, particularly pH 9 or higher. Therefore, it is necessary to increase the oxygen partial pressure to, for example, 6.5 × 10 4 Pa or more. However, when immersed in an alkaline solution containing alkanolamines, preferably pH 8.5 or higher, particularly pH 9 or higher, the treatment can be performed at a lower oxygen partial pressure of 1.3 × 10 3 Pa or more, which is more convenient. Moreover, its significance is very great from the viewpoint of safety during heat treatment.

なお、所望の雰囲気及び温度で熱処理されたR−T−B系永久磁石は10〜2,000℃/minの冷却速度で冷却してもよい。場合によっては多段にわたる熱処理を行うことも可能である。必要であれば、熱処理を施したR−T−B系永久磁石を冷水あるいは冷却媒体などによるいわゆる急冷焼入れ処理を行ってもよい。急冷焼入れ処理に用いる冷却媒体は、冷水だけでなく、リン酸、クエン酸、シュウ酸等を溶解させた弱酸溶液あるいは炭酸カリウム等を溶解させた弱アルカリ溶液等も使用することもできる。   In addition, you may cool the RTB type | system | group permanent magnet heat-processed by desired atmosphere and temperature at the cooling rate of 10-2000 degrees C / min. In some cases, it is possible to perform heat treatment in multiple stages. If necessary, a heat-treated RTB-based permanent magnet may be subjected to a so-called rapid quenching treatment with cold water or a cooling medium. As the cooling medium used for the quenching and quenching treatment, not only cold water but also a weak acid solution in which phosphoric acid, citric acid, oxalic acid and the like are dissolved, or a weak alkali solution in which potassium carbonate and the like are dissolved can be used.

このように熱処理することにより、R−T−B系永久磁石の表面に低級酸化物(通常の大気雰囲気下では形成されにくい希土類及び鉄もしくは希土類及び鉄、希土類水酸化物及び水和物等の混在した複合酸化物によりなる薄い層を形成させることができ、耐蝕性のよい高効率モータ用希土類永久磁石が得られる。XPS(X線光電子分光)分析によれば、その表面処理膜厚みは60〜140ナノメートルと非常に薄い。本表面処理膜は、高温・高湿度の環境試験で代表されるように単に酸化を防止するだけでなく、非常に薄い膜でかつ水素バリアー性を持つ、優れた薄膜の表面処理方法である。   By performing the heat treatment in this manner, the surface of the R-T-B permanent magnet has a lower oxide (such as rare earth and iron, rare earth and iron, rare earth hydroxide and hydrate which are difficult to be formed in a normal atmospheric atmosphere). A thin layer made of mixed complex oxide can be formed, and a high-efficiency rare earth permanent magnet for motors with good corrosion resistance can be obtained.According to XPS (X-ray photoelectron spectroscopy) analysis, the surface treatment film thickness is 60 This surface-treated film not only prevents oxidation as typified by high-temperature and high-humidity environmental tests, but it is also a very thin film with excellent hydrogen barrier properties. This is a surface treatment method for a thin film.

なお、本発明で得られる磁石は、特にHFC系(例えば、R410A,R134a,R125、R407c、R404A等)やHCFC(R22,R32等)及び自然冷媒(炭酸ガス(R−744))等の冷媒及び潤滑油(冷凍機油:鉱物油、エステル油、エーテル油、ポリエチレングリコール等)に高い耐食性を示し、100〜150℃の高温下、2.0〜6.0MPaの高圧下にて500時間以上保持しても磁気特性の低下がないことを特徴とするものである。従って、使用する冷媒の種類や冷凍機油の種類、化学構造等に何ら影響されないことを特徴とする。   The magnets obtained by the present invention are particularly refrigerants such as HFC (for example, R410A, R134a, R125, R407c, R404A, etc.), HCFC (R22, R32, etc.) and natural refrigerant (carbon dioxide (R-744)). And high corrosion resistance to lubricating oils (refrigeration oils: mineral oils, ester oils, ether oils, polyethylene glycols, etc.) and maintained at high temperatures of 100 to 150 ° C. and high pressures of 2.0 to 6.0 MPa for 500 hours or more. However, the magnetic characteristics are not deteriorated. Therefore, it is characterized in that it is not affected at all by the type of refrigerant used, the type of refrigerating machine oil, the chemical structure and the like.

空調モータ、即ち圧縮機(コンプレッサー)用モータは、密閉容器の中で冷暖房するための媒体である冷媒(いわゆるフロン類等)と、冷凍機油といわれる専用の潤滑油が常に高温(〜100℃程度)でかつ高圧環境に晒されているのが大きな特徴である。   Air conditioning motors, that is, compressor (compressor) motors, are constantly heated to a high temperature (up to about 100 ° C). ) And is exposed to a high-pressure environment.

冷凍機油としてエステル油(主成分ポリオールエステル)を空調用モータに使用する場合、エステル油自身の吸湿性が高いため十分な管理をしないと油中に水分が混入してくる。この混入した水分により、高温に晒されると徐々に加水分解が進行し、ひいては金属石鹸の生成が危惧され、最悪の場合、キャピラリーを閉塞することが考えられる。実際に空調用モ−タ内部には、冷凍機油中に数百ppmの水分が混入してくる。こうしたことから冷凍機油中に2,000ppmの水分を故意に混入させ、空調用モ−タ使用環境を模擬した高温・高圧環境での信頼性が確保されていれば、実用上R−T−B系永久磁石は何ら問題がないと考えられる。また実機に対する長期信頼性を短時間で評価することも可能となる。   When ester oil (main component polyol ester) is used as a refrigerating machine oil for an air conditioning motor, the ester oil itself has high hygroscopicity, and moisture is mixed into the oil unless it is sufficiently managed. Due to this mixed water, when it is exposed to a high temperature, hydrolysis proceeds gradually, and as a result, metal soap may be generated, and in the worst case, the capillary may be blocked. Actually, several hundred ppm of moisture is mixed in the refrigerating machine oil inside the air conditioning motor. Therefore, if 2,000 ppm of water is intentionally mixed in the refrigerating machine oil and reliability in a high-temperature / high-pressure environment simulating the environment where the air-conditioning motor is used is ensured, it is practically RTB. The system permanent magnet is considered to have no problem. It is also possible to evaluate the long-term reliability of an actual machine in a short time.

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
Ar雰囲気の高周波溶解により質量比で32Nd−1.2B−59.8Fe−7Coなる組成の鋳塊を作製した。このインゴットをジョークラッシャーで粗粉砕し、更に窒素ガスによるジェットミルで微粉砕を行って、平均粒径が3.5μmの微粉末を得た。次に、この微粉末を10kOe磁界が印加された金型内に充填し1.0t/cm2の圧力で成形した。次いで真空中1,100℃で2時間焼結し、更に550℃で1時間時効処理を施して永久磁石とした。得られた永久磁石から縦6.0mm×横6.0mm×厚さ2.0mm寸法、酸素濃度0.61質量%、Br=12.0kG、iHc=21.02kOeの磁石片を切り出し、バレル研磨処理を行なった後、30%トリエタノールアミン水溶液に室温にて24時間浸漬させ、引き続き純水にて超音波水洗を行った。その後、R−T−B系永久磁石を300℃に加熱した装置にて2時間熱処理させ(酸素分圧2.1×104Pa)、これを試験片とした。なお、酸素量は不活性ガス融解赤外法(ヘリウム気流中、C坩堝内で約2,450℃に加熱、COガスの赤外吸収を濃度換算)により測定した。
[Example 1]
An ingot having a composition of 32Nd-1.2B-59.8Fe-7Co by mass ratio was produced by high-frequency melting in an Ar atmosphere. This ingot was coarsely pulverized with a jaw crusher and further finely pulverized with a jet mill using nitrogen gas to obtain a fine powder having an average particle size of 3.5 μm. Next, this fine powder was filled into a mold to which a 10 kOe magnetic field was applied and molded at a pressure of 1.0 t / cm 2 . Next, sintering was performed in vacuum at 1,100 ° C. for 2 hours, and further aging treatment was performed at 550 ° C. for 1 hour to obtain a permanent magnet. From the obtained permanent magnet, a magnet piece of length 6.0 mm × width 6.0 mm × thickness 2.0 mm, oxygen concentration 0.61 mass%, Br = 12.0 kG, iHc = 21.02 kOe was cut out and barrel-polished. After the treatment, the substrate was immersed in a 30% aqueous triethanolamine solution at room temperature for 24 hours, and then ultrasonically washed with pure water. Thereafter, the RTB permanent magnet was heat-treated for 2 hours in an apparatus heated to 300 ° C. (oxygen partial pressure 2.1 × 10 4 Pa), and this was used as a test piece. The amount of oxygen was measured by an inert gas melting infrared method (in a helium stream, heated to about 2,450 ° C. in a C crucible, and infrared absorption of CO gas was converted to a concentration).

圧力容器としてキャップボルト式耐圧容器[容量200ml(耐圧硝子工業(株)TPR型N2タイプ)]に市販のエステル系冷凍機油(RB−68P 株式会社ジャパンエナジー製)を20g計量した後、カールフィッシャー法で求めた油中水分量より所定の油中水分量となるようマイクロシリンジにて純水を注入した。引き続き、試験片のR−T−B系永久磁石を入れ、容器を締結した。キャップボルト式耐圧容器全体をドライアイス並びにエタノール寒剤により冷却し、冷媒となるフロンガスR410Aを液体のまま注入した。耐圧容器全体の質量増から注入したフロンガス量を計量し、フロンガスR410Aを質量20gになるよう、即ち冷媒と冷凍機油の質量比が1となるよう設定した。一般にこれら手法はチューブテストとよばれる圧縮機の耐食性評価の方法である。油中水分量を200ppm、1,000ppm、2,000ppmになるように調整し、これを150±0.5℃に制御された恒温装置に耐圧容器全体を入れ、所定時間(500時間)加熱した後、耐圧容器を開封しR−T−B系磁石を取り出し、その磁気特性変化を調べた。結果を図1に示す。なお、磁気特性はVSMによって測定した。   After weighing 20 g of commercially available ester refrigerating machine oil (RB-68P manufactured by Japan Energy Co., Ltd.) in a cap bolt type pressure vessel [capacity 200 ml (pressure glass industry TPR type N2 type)] as a pressure vessel, Karl Fischer method Pure water was injected with a microsyringe so that the predetermined amount of water in oil was obtained from the amount of water in oil determined in step 1. Subsequently, the R-T-B permanent magnet of the test piece was put and the container was fastened. The entire cap bolt type pressure vessel was cooled with dry ice and ethanol cryogen, and chlorofluorocarbon R410A as a refrigerant was injected as a liquid. The amount of the chlorofluorocarbon injected from the increase in the mass of the entire pressure vessel was measured, and the chlorofluorocarbon gas R410A was set to a mass of 20 g, that is, the mass ratio of the refrigerant to the refrigerating machine oil was set to 1. In general, these methods are a method of evaluating corrosion resistance of a compressor called a tube test. The moisture content in the oil was adjusted to 200 ppm, 1,000 ppm, and 2,000 ppm, and the whole pressure vessel was placed in a thermostat controlled at 150 ± 0.5 ° C. and heated for a predetermined time (500 hours). Thereafter, the pressure vessel was opened, the R-T-B magnet was taken out, and the change in its magnetic characteristics was examined. The results are shown in FIG. Magnetic properties were measured by VSM.

[比較例1]
熱処理を行わない以外は、実施例1と同様のR−Fe−B系永久磁石を試験片として用い、油中水分量を200ppm、1,000ppm、2,000ppmになるように調整し、150±0.5℃に制御された恒温装置に耐圧容器全体を入れ、500時間加熱した後、耐圧容器を開封し、R−T−B系磁石を取り出し、その磁気特性変化を調べる同様のチューブテストを行った。結果を図2に示す。
[Comparative Example 1]
Except for not performing heat treatment, the same R—Fe—B permanent magnet as in Example 1 was used as a test piece, and the water content in oil was adjusted to 200 ppm, 1,000 ppm, and 2,000 ppm, and 150 ± Place the entire pressure vessel in a thermostatic device controlled at 0.5 ° C and heat for 500 hours, then open the pressure vessel, take out the R-T-B magnet, and perform a similar tube test to examine the change in its magnetic properties. went. The results are shown in FIG.

[実施例2]
本発明において二合金法を利用することで更なる高特性化を試みた。出発原料として、Nd,Dy、電解鉄、Co,フェロボロン、Al、Cuを使用し、表1に示す組成のように母合金と助材の秤量組成とした。
[Example 2]
In the present invention, an attempt was made to further improve the characteristics by utilizing the two-alloy method. As starting materials, Nd, Dy, electrolytic iron, Co, ferroboron, Al, and Cu were used, and the mother alloy and auxiliary material were weighed as shown in Table 1.

Figure 2009054704
Figure 2009054704

次に、母合金を92質量%と助材を8質量%秤量し、潤滑剤として0.05質量%のステアリン酸亜鉛をVミキサーで混合し、更に窒素気流中ジェットミルにて処理し,平均粒径4μm程度の微粉を得た。その後、これらの微粉を成形装置の金型に充填し、12kOeの磁界中で配向し、磁界に垂直方向に0.5トン/cm2の圧力で、その成形体を1,020℃から10℃毎に1,100℃まで2時間、10-4Torr以下の真空雰囲気で焼結し、更に冷却した後、500℃で1時間、10-2Tott以下の真空雰囲気中で時効処理し、永久磁石材料を得た。なお、R−T−B系永久磁石材料における炭素、酸素含有量は、それぞれ0.063質量%、0.457質量%であった。このとき、Brは12.8kG、iHcは22.8kOeであった。 Next, 92% by mass of the master alloy and 8% by mass of the auxiliary material were weighed, 0.05% by mass of zinc stearate as a lubricant was mixed with a V mixer, and further treated with a jet mill in a nitrogen stream, and the average A fine powder having a particle size of about 4 μm was obtained. Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 12 kOe, and the compact is subjected to 1,020 ° C. to 10 ° C. at a pressure of 0.5 ton / cm 2 in a direction perpendicular to the magnetic field. Each sintered to 1,100 ° C for 2 hours in a vacuum atmosphere of 10 -4 Torr or less, further cooled, and then aged at 500 ° C for 1 hour in a vacuum atmosphere of 10 -2 Tott or less Obtained material. Note that the carbon and oxygen contents in the RTB-based permanent magnet material were 0.063 mass% and 0.457 mass%, respectively. At this time, Br was 12.8 kG and iHc was 22.8 kOe.

実施例2について、実施例1と同様の手法にて、エステル油中の油中水分量を2,000ppmに調整し、これを150±0.5℃に制御された恒温装置に耐圧容器全体を入れ、所定時間(500時間)加熱した後、耐圧容器を開封しR−T−B系永久磁石を取り出し、その磁気特性変化を調べた。その結果を図3に示す。   About Example 2, in the same manner as in Example 1, the moisture content in the ester oil was adjusted to 2,000 ppm, and the entire pressure vessel was placed in a thermostatic device controlled at 150 ± 0.5 ° C. Then, after heating for a predetermined time (500 hours), the pressure vessel was opened, the R-T-B permanent magnet was taken out, and the change in its magnetic characteristics was examined. The result is shown in FIG.

実施例1及び比較例1の油中水分量2,000ppmにおける150℃×500時間加熱後の磁気特性変化を図4に示す。図4から明らかなように、熱処理を行わないと、冷凍機油中の水分量に依存してR−T−B系永久磁石の特性が大きく劣化する。実施例1では、油中の水分量にかかわらず磁気特性の劣化は全く見られない。実際の空調用モータにおける冷凍機油の水分量をはるかに超える水分量2,000ppmに対して全く磁気特性の劣化は見られない。   FIG. 4 shows changes in the magnetic properties after heating at 150 ° C. for 500 hours at a water content of 2,000 ppm in oil of Example 1 and Comparative Example 1. As is apparent from FIG. 4, the characteristics of the R-T-B permanent magnet greatly deteriorate depending on the amount of water in the refrigerating machine oil if heat treatment is not performed. In Example 1, no deterioration of the magnetic properties is observed regardless of the amount of water in the oil. No deterioration of the magnetic properties is observed with respect to a water content of 2,000 ppm far exceeding the water content of the refrigerating machine oil in an actual air conditioning motor.

[比較例2]
比較例2は、次のように評価サンプルを作製した。実施例1と同様の手法にて焼結磁石を作製し、所望の磁石形状に加工した。前出のトリエタノールアミン水溶液に室温にて24時間浸漬させ、引き続き純水にて超音波水洗を行った。これを酸素分圧0.8×103Paにおいて加熱処理(300℃×2時間)を行った。油中水分量2,000ppmになるように調整し、150±0.5℃に制御された恒温装置に耐圧容器全体を入れ、所定時間(500時間)加熱した後、耐圧容器を開封し、R−T−B系磁石を取り出し、その磁気特性変化を調べる同様のチューブテストを行った。結果を図5に示す。
[Comparative Example 2]
In Comparative Example 2, an evaluation sample was prepared as follows. A sintered magnet was produced by the same method as in Example 1 and processed into a desired magnet shape. It was immersed in the above-mentioned triethanolamine aqueous solution at room temperature for 24 hours, and then ultrasonically washed with pure water. This was subjected to heat treatment (300 ° C. × 2 hours) at an oxygen partial pressure of 0.8 × 10 3 Pa. Adjust the moisture content in the oil to 2,000 ppm, put the whole pressure vessel in a thermostatic device controlled at 150 ± 0.5 ° C, heat for a predetermined time (500 hours), open the pressure vessel, -T-B magnet was taken out and a similar tube test was conducted to examine the change in its magnetic properties. The results are shown in FIG.

実施例1において、チューブテストを行う際、市販のエステル冷凍機油の水分量を200ppm、1,000ppm、2,000ppmに調整したものを用い、冷媒としてR410Aを使用して150℃で500時間試験を行った後のR−T−B系永久磁石の磁気特性を示すグラフである。In Example 1, when performing a tube test, a commercially available ester refrigerating machine oil whose water content was adjusted to 200 ppm, 1,000 ppm, and 2,000 ppm was used, and a test was conducted at 150 ° C. for 500 hours using R410A as a refrigerant. It is a graph which shows the magnetic characteristic of the RTB system permanent magnet after performing. 比較例1において、チュ−ブテストを行う際、市販のエステル冷凍機油の水分量を200ppm、1,000ppm、2,000ppmに調整したものを用い、150℃にて500時間試験を行った場合のR−T−B系永久磁石の磁気特性を示すグラフである。In Comparative Example 1, when the tube test was performed, R in the case where the water content of the commercially available ester refrigerating machine oil was adjusted to 200 ppm, 1,000 ppm, and 2,000 ppm and the test was performed at 150 ° C. for 500 hours. It is a graph which shows the magnetic characteristic of -TB system permanent magnet. 実施例2において、チュ−ブテストを行う際、市販のエステル冷凍機油の水分量を2,000ppmに調整したものを用い、150℃にて500時間試験を行った場合のR−T−B系永久磁石の磁気特性を示すグラフである。In Example 2, when the tube test was performed, a commercially available ester refrigerating machine oil whose water content was adjusted to 2,000 ppm was used, and the RTB-based permanent when tested at 150 ° C. for 500 hours. It is a graph which shows the magnetic characteristic of a magnet. 実施例1及び比較例1において油中水分量2,000ppmにおける150℃×500時間チューブテスト実施後の磁気特性変化を示すグラフである。It is a graph which shows the magnetic characteristic change after 150 degreeC * 500-hour tube test implementation in Example 1 and Comparative Example 1 in water | moisture content in oil of 2,000 ppm. 比較例2において、チュ−ブテストを行う際、市販のエステル冷凍機油の水分量を2,000ppmに調整したものを用い、150℃にて500時間試験を行った場合のR−T−B系永久磁石の磁気特性を示すグラフである。In Comparative Example 2, when the tube test is performed, a commercially available ester refrigerating machine oil whose water content is adjusted to 2,000 ppm is used, and the R-T-B system permanent when the test is performed at 150 ° C. for 500 hours. It is a graph which shows the magnetic characteristic of a magnet.

Claims (3)

冷媒及び/又は潤滑油に長時間浸漬する希土類永久磁石を製造する方法において、主成分をR(Rは希土類元素の1種又は2種以上の組み合わせ)、T(TはFe、又はFe及びCo)、及びBとし、Rが26.8〜33.5質量%、Bが0.78〜1.25質量%、Ni,Ga,Zr,Nb,Hf,Ta,Mn,Sn,Mo,Zn,Pb,Sb,Al,Si,V,Cr,Ti,Cu,Ca,Mgから選ばれる1種又は2種以上の元素の合計量が0.05〜3.5質量%、残部がT及び不可避の不純物からなる合金を鋳造し、アルゴン、窒素又は真空の無酸素雰囲気中で粉砕した後、微粉砕、磁場中成型、焼結、時効を順次行って焼結磁石とし、その酸素濃度が0.3〜0.8質量%で、磁気特性がBrで12.0kG以上14.8kG以下、iHcが11kOe以上35kOe以下である磁石を切断及び/又は研磨して表面を加工仕上げした後、アルカノールアミン類を含むアルカリ溶液に1〜100時間浸漬させ、引き続き酸素分圧が1.3×103Pa(10Torr)以上の雰囲気下において、200〜350℃にて0.5〜24時間熱処理することを特徴とする希土類永久磁石の製造方法。 In a method for producing a rare earth permanent magnet immersed in a refrigerant and / or lubricating oil for a long time, the main component is R (R is one or a combination of two or more rare earth elements), T (T is Fe, or Fe and Co) ) And B, R is 26.8-33.5% by mass, B is 0.78-1.25% by mass, Ni, Ga, Zr, Nb, Hf, Ta, Mn, Sn, Mo, Zn, The total amount of one or more elements selected from Pb, Sb, Al, Si, V, Cr, Ti, Cu, Ca, and Mg is 0.05 to 3.5% by mass, and the balance is T and inevitable. After casting an alloy made of impurities and pulverizing it in an oxygen-free atmosphere of argon, nitrogen or vacuum, it is finely pulverized, molded in a magnetic field, sintered and aged sequentially to form a sintered magnet, and its oxygen concentration is 0.3 ~ 0.8% by mass, and magnetic properties of Br are 12.0 kG or more and 14.8 kG or less After iHc was finishing the cutting and / or polishing the surface of the magnet is less than 35kOe above 11KOe, immersed 1-100 hours in an alkaline solution containing alkanolamines, subsequently oxygen partial pressure 1.3 × 10 3 A method for producing a rare earth permanent magnet, comprising performing heat treatment at 200 to 350 ° C. for 0.5 to 24 hours in an atmosphere of Pa (10 Torr) or more. 冷媒及び/又は潤滑油に長時間浸漬する希土類永久磁石を製造する方法において、主成分をR(Rは希土類元素の1種又は2種以上の組み合わせ)、T(TはFe、又はFe及びCo)、及びBとし、Rが26.8〜33.5質量%、Bが0.78〜1.25質量%、Ni,Ga,Zr,Nb,Hf,Ta,Mn,Sn,Mo,Zn,Pb,Sb,Al,Si,V,Cr,Ti,Cu,Ca,Mgから選ばれる1種又は2種以上の元素の合計量が0.05〜3.5質量%、残部がT及び不可避の不純物からなる合金を母合金とし、R’(R’は希土類元素の1種又は2種以上の組合せ)が28〜70質量%、Bが0〜1.5質量%、Ni,Ga,Zr,Nb,Hf,Ta,Mo,Al,Si,V,Cr,Ti,Cuから選ばれる1種又は2種以上の元素の合計量が0.05〜10質量%、残部がT(Tの中でCoの割合が10質量%以上でFeの割合が90質量%以下)及び不可避の不純物からなる合金を助材とし、アルゴン、窒素又は真空の無酸素雰囲気中で水素化粉砕した母合金を85〜99質量%、助材を1〜15質量%の割合で混合した後、微粉砕、磁場中成型、焼結、時効を順次行って焼結磁石とし、その酸素濃度が0.3〜0.8質量%で、磁気特性がBrで12.0kG以上14.8kG以下、iHcが11kOe以上35kOe以下である磁石を切断及び/又は研磨して表面を加工仕上げした後、アルカノールアミン類を含むアルカリ溶液に1〜100時間浸漬させ、引き続き酸素分圧が1.3×103Pa(10Torr)以上の雰囲気において、200〜350℃にて0.5〜24時間熱処理することを特徴とする希土類永久磁石の製造方法。 In a method for producing a rare earth permanent magnet immersed in a refrigerant and / or lubricating oil for a long time, the main component is R (R is one or a combination of two or more rare earth elements), T (T is Fe, or Fe and Co) ) And B, R is 26.8-33.5% by mass, B is 0.78-1.25% by mass, Ni, Ga, Zr, Nb, Hf, Ta, Mn, Sn, Mo, Zn, The total amount of one or more elements selected from Pb, Sb, Al, Si, V, Cr, Ti, Cu, Ca, and Mg is 0.05 to 3.5% by mass, and the balance is T and inevitable. An alloy made of impurities is a mother alloy, R ′ (R ′ is one or a combination of two or more rare earth elements) is 28 to 70 mass%, B is 0 to 1.5 mass%, Ni, Ga, Zr, One or more selected from Nb, Hf, Ta, Mo, Al, Si, V, Cr, Ti, Cu A total of 0.05 to 10% by mass of the elements, and the balance is T (the proportion of Co is 10% by mass or more and the proportion of Fe is 90% by mass or less in T) and an inevitable impurity alloy. After mixing the master alloy hydrogenated and pulverized in an oxygen, argon or vacuum oxygen-free atmosphere at a ratio of 85 to 99 mass% and auxiliary material at a ratio of 1 to 15 mass%, finely pulverized, molded in a magnetic field, sintered A sintered magnet is formed by sequentially aging, a magnet having an oxygen concentration of 0.3 to 0.8% by mass, a magnetic property of Br of 12.0 kG to 14.8 kG, and iHc of 11 kOe to 35 kOe. After cutting and / or polishing to finish the surface, the surface is immersed in an alkali solution containing alkanolamines for 1 to 100 hours, and subsequently in an atmosphere having an oxygen partial pressure of 1.3 × 10 3 Pa (10 Torr) or more, 200 ~ 350 ° C A method for preparing a rare earth permanent magnet, characterized in that the heat treatment for 0.5 to 24 hours Te. 希土類永久磁石が、当該磁石を冷媒及び/又は潤滑油に浸漬する高効率モータ用である請求項1又は2記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein the rare earth permanent magnet is for a high efficiency motor in which the magnet is immersed in a refrigerant and / or lubricating oil.
JP2007218454A 2007-08-24 2007-08-24 Rare earth permanent magnet manufacturing method Active JP4645854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007218454A JP4645854B2 (en) 2007-08-24 2007-08-24 Rare earth permanent magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007218454A JP4645854B2 (en) 2007-08-24 2007-08-24 Rare earth permanent magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2009054704A true JP2009054704A (en) 2009-03-12
JP4645854B2 JP4645854B2 (en) 2011-03-09

Family

ID=40505542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218454A Active JP4645854B2 (en) 2007-08-24 2007-08-24 Rare earth permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP4645854B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070827A1 (en) * 2009-12-09 2011-06-16 愛知製鋼株式会社 Rare earth anisotropic magnet and process for production thereof
JP2012142400A (en) * 2010-12-28 2012-07-26 Hitachi Metals Ltd METHOD OF MANUFACTURING ANTICORROSIVE R-Fe-B-BASED SINTERED MAGNET
CN103366939A (en) * 2012-03-29 2013-10-23 通用电气公司 Permanent magnet manufacturing method
US9640319B2 (en) 2009-12-09 2017-05-02 Aichi Steel Corporation Anisotropic rare earth magnet powder, method for producing the same, and bonded magnet
JP2017532444A (en) * 2014-08-15 2017-11-02 アーバン マイニング カンパニー Grain boundary engineering

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124816A (en) * 1992-10-13 1994-05-06 Hitachi Metals Ltd Rare earth sintered magnet, its manufacture, and alloy powder for it
JPH06140225A (en) * 1992-10-22 1994-05-20 Sumitomo Special Metals Co Ltd Corrosion-resistant permanent magnet
JP2002057052A (en) * 2000-05-31 2002-02-22 Shin Etsu Chem Co Ltd Method for manufacturing rare-earth permanent magnet
JP2003217914A (en) * 2002-01-22 2003-07-31 Sumitomo Special Metals Co Ltd Rare-earth permanent magnet having anticorrosive coating on surface, and its manufacturing method
JP2003257768A (en) * 2001-12-28 2003-09-12 Shin Etsu Chem Co Ltd Manufacturing method for rare earth sintered magnet
JP2004039917A (en) * 2002-07-04 2004-02-05 Tdk Corp Permanent magnet and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124816A (en) * 1992-10-13 1994-05-06 Hitachi Metals Ltd Rare earth sintered magnet, its manufacture, and alloy powder for it
JPH06140225A (en) * 1992-10-22 1994-05-20 Sumitomo Special Metals Co Ltd Corrosion-resistant permanent magnet
JP2002057052A (en) * 2000-05-31 2002-02-22 Shin Etsu Chem Co Ltd Method for manufacturing rare-earth permanent magnet
JP2003257768A (en) * 2001-12-28 2003-09-12 Shin Etsu Chem Co Ltd Manufacturing method for rare earth sintered magnet
JP2003217914A (en) * 2002-01-22 2003-07-31 Sumitomo Special Metals Co Ltd Rare-earth permanent magnet having anticorrosive coating on surface, and its manufacturing method
JP2004039917A (en) * 2002-07-04 2004-02-05 Tdk Corp Permanent magnet and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070827A1 (en) * 2009-12-09 2011-06-16 愛知製鋼株式会社 Rare earth anisotropic magnet and process for production thereof
US9640319B2 (en) 2009-12-09 2017-05-02 Aichi Steel Corporation Anisotropic rare earth magnet powder, method for producing the same, and bonded magnet
US10607755B2 (en) 2009-12-09 2020-03-31 Aichi Steel Corporation Anisotropic rare earth magnet powder, method for producing the same, and bonded magnet
JP2012142400A (en) * 2010-12-28 2012-07-26 Hitachi Metals Ltd METHOD OF MANUFACTURING ANTICORROSIVE R-Fe-B-BASED SINTERED MAGNET
CN103366939A (en) * 2012-03-29 2013-10-23 通用电气公司 Permanent magnet manufacturing method
JP2017532444A (en) * 2014-08-15 2017-11-02 アーバン マイニング カンパニー Grain boundary engineering
JP2020204096A (en) * 2014-08-15 2020-12-24 アーバン マイニング カンパニー Grain boundary alloy and production method thereof
US11270841B2 (en) 2014-08-15 2022-03-08 Urban Mining Company Grain boundary engineering

Also Published As

Publication number Publication date
JP4645854B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4190743B2 (en) Rare earth permanent magnet manufacturing method
KR102028607B1 (en) Rare Earth Sintered Magnet and Making Method
EP2110823B1 (en) Process for producing highly anticorrosive rare earth permanent magnet and method of using the same
JP4656323B2 (en) Method for producing rare earth permanent magnet material
EP2808877A1 (en) Method for preparing R-Fe-B based sintered magnet
TW202121452A (en) Ndfeb magnet material, raw material composition, preparation method and application
US11527356B2 (en) Method for producing heavy rare earth grain-boundary-diffused RE—Fe—B-based rare earth magnet and heavy rare earth grain-boundary-diffused RE—Fe—B-based rare earth magnet produced thereby
JP4645854B2 (en) Rare earth permanent magnet manufacturing method
WO2007119553A1 (en) Process for producing rare-earth permanent magnet material
KR102574303B1 (en) Neodymium iron boron magnetic material, raw material composition and manufacturing method and application
BRPI0702848B1 (en) METHOD FOR PREPARING PERMANENT RARE LAND MAGNETO MATERIAL
KR102589802B1 (en) Neodymium iron boron magnetic material, raw material composition, manufacturing method and application
US6746545B2 (en) Preparation of rare earth permanent magnets
CN111326306B (en) R-T-B series permanent magnetic material and preparation method and application thereof
JP5501829B2 (en) Rare earth permanent magnet manufacturing method
KR20170013744A (en) Method for manufacturing rare earth sintered magnet using low melting point elements
JP2007324461A (en) High corrosion resistant rare-earth permanent magnet and its manufacturing method
WO2016058132A1 (en) Method for preparing rare earth permanent magnet
CN111312463B (en) Rare earth permanent magnetic material and preparation method and application thereof
WO2021169898A1 (en) Neodymium iron boron material, and preparation method therefor and application thereof
JP2008063641A (en) R-t-b-based rare earth permanent magnet and production method therefor
KR20170045184A (en) Method for manufacturing rare earth sintered magnet using low melting point elements
EP3889979A1 (en) Method for manufacturing rare earth magnet
JP2011097004A (en) Method for manufacturing surface-modified rare earth based sintered magnet
JP4372105B2 (en) High corrosion resistance permanent magnet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4645854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150