JP2009052515A - 複動型流体増圧ポンプ - Google Patents
複動型流体増圧ポンプ Download PDFInfo
- Publication number
- JP2009052515A JP2009052515A JP2007222061A JP2007222061A JP2009052515A JP 2009052515 A JP2009052515 A JP 2009052515A JP 2007222061 A JP2007222061 A JP 2007222061A JP 2007222061 A JP2007222061 A JP 2007222061A JP 2009052515 A JP2009052515 A JP 2009052515A
- Authority
- JP
- Japan
- Prior art keywords
- compression piston
- piston side
- piston
- cylinder
- double
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Details Of Reciprocating Pumps (AREA)
- Reciprocating Pumps (AREA)
Abstract
【課題】熱変位等が引き起こす姿勢変化を吸収し、焼き付きを防ぐことができ、さらに高荷重に耐えて流体の増圧を連続して行うことができる複動型流体増圧ポンプを提供する。
【解決手段】複数のピストンを連続往復させる複動型流体増圧ポンプにおいて、圧縮ピストン側の端面と被圧縮ピストン側の端面の一方を球面状に形成し、他方を平面状に形成して両端面を当接させ、または圧縮ピストン側の端面と被圧縮ピストン側の端面とを対向面の少なくとも一つを平面にして球状部材を介して当接させ、圧縮ピストン側と被圧縮ピストン側の一方に設けた引張バネ材を他方に係合させることで、加工誤差および熱による上下小ピストンのシリンダの姿勢変化を吸収し、ピストンの加圧特性に影響を与えないものとする。
【選択図】図1
【解決手段】複数のピストンを連続往復させる複動型流体増圧ポンプにおいて、圧縮ピストン側の端面と被圧縮ピストン側の端面の一方を球面状に形成し、他方を平面状に形成して両端面を当接させ、または圧縮ピストン側の端面と被圧縮ピストン側の端面とを対向面の少なくとも一つを平面にして球状部材を介して当接させ、圧縮ピストン側と被圧縮ピストン側の一方に設けた引張バネ材を他方に係合させることで、加工誤差および熱による上下小ピストンのシリンダの姿勢変化を吸収し、ピストンの加圧特性に影響を与えないものとする。
【選択図】図1
Description
この発明は、受圧面積の異なるピストンを軸方向に連続往復させて圧縮空気などの流体を用いて低圧流体を高圧流体に増圧して連続的に供給する複動型流体増圧ポンプに関するものであり、燃料噴射試験装置、高圧流体(油圧)試験装置などに好適に利用されるものである。
回転ポンプ、ピストンポンプのように、モータ動力を必要としないで、圧縮空気あるいは低圧の流体(以下圧縮空気)のみでパスカルの原理を用いて高圧流体を供給できる流体増圧ポンプは、基本的には図5に示す構造を有しており、以下のような動作で流体を加圧する。
1)小ピストン(断面積A2)30の下側のシリンダ31に低圧流体を供給する。供給側に逆止弁32を設けることで、供給された低圧流体が加圧時に逆流することを防ぐ。
2)大ピストン(断面積A1)35の上側のシリンダ36に圧縮空気を供給し、流体をP1の圧力に加圧する。このとき、大ピストン35の下側のシリンダ36は大気圧(開放)である。また、シリンダ31側で高圧側に逆止弁33を設けることで、低圧流体供給時に高圧側の圧力が低下することを防ぐ。小ピストン30の最大圧力P1および最大流量Q1は、下記の式で算出される。
小ピストンの最大圧力P1=(大ピストン供給圧力)×(A1)/(A2)
ピストン上昇時の最大流量Q1=(A1)×(ピストンストローク)
小ピストンの最大圧力P1=(大ピストン供給圧力)×(A1)/(A2)
ピストン上昇時の最大流量Q1=(A1)×(ピストンストローク)
3)小ピストン30が下死点(リミットスイッチにより検知)に到達したら、大ピストン35の下側のシリンダ36に圧縮空気を供給し、大ピストン35を戻す。同時に、大ピストン35の上側のシリンダ36に供給された圧縮空気は排気し、大気圧にする。
4)大ピストン35が上死点(リミットスイッチにより検知)に戻った後、1)からの動作を繰り返す。
上記で説明した流体増圧ポンプは、最も基本的な構成(a)であり、その他に概ね以下のような構成が存在する。
b)ピストン上昇時、下降時両方で加圧する構成(b)(図6(b))
この構成では、大ピストン35の下方に小ピストン30を配置し、該小ピストン30の可動域の上下でシリンダ31a、31bに分割し、各シリンダ31a、31bにおいて低圧流体の供給と増圧した高圧流体の取り出しをそれぞれ可能にしたものである。大ピストン35の上昇時には小ピストン30によってシリンダ31b内の低圧流体が圧縮されて増圧され、大ピストン35の下降時には小ピストン30よってシリンダ31a内の低圧流体が圧縮されて増圧される。なお、各シリンダ31a、31bには、上記基本的な構成と同様に低圧側に逆止弁32a、32b、高圧側に逆止弁33a、33bが設けられている。
この構成では、大ピストン35の下方に小ピストン30を配置し、該小ピストン30の可動域の上下でシリンダ31a、31bに分割し、各シリンダ31a、31bにおいて低圧流体の供給と増圧した高圧流体の取り出しをそれぞれ可能にしたものである。大ピストン35の上昇時には小ピストン30によってシリンダ31b内の低圧流体が圧縮されて増圧され、大ピストン35の下降時には小ピストン30よってシリンダ31a内の低圧流体が圧縮されて増圧される。なお、各シリンダ31a、31bには、上記基本的な構成と同様に低圧側に逆止弁32a、32b、高圧側に逆止弁33a、33bが設けられている。
c)ピストン上昇時、下降時両方で加圧する構成(c)(図6(c)、例えば特許文献1、2)
この構成では、大ピストン35の上下にそれぞれ小ピストン30a、30bを配置し、これら小ピストン30a、30bをシリンダ31a、31bに摺動可能に収納し、各シリンダ31a、31bで低圧流体の供給と増圧した高圧流体の取り出しをそれぞれ可能にする。大ピストン35の上昇時には小ピストン30bによってシリンダ31b内の低圧流体が圧縮されて増圧され、大ピストン35の下降時には小ピストン30aによってシリンダ31a内の低圧流体が圧縮されて増圧される。なお、各シリンダ31a、31bには、上記基本的な構成と同様に低圧側に逆止弁32a、32b、高圧側に逆止弁33a、33bが設けられている。
この構成では、大ピストン35の上下にそれぞれ小ピストン30a、30bを配置し、これら小ピストン30a、30bをシリンダ31a、31bに摺動可能に収納し、各シリンダ31a、31bで低圧流体の供給と増圧した高圧流体の取り出しをそれぞれ可能にする。大ピストン35の上昇時には小ピストン30bによってシリンダ31b内の低圧流体が圧縮されて増圧され、大ピストン35の下降時には小ピストン30aによってシリンダ31a内の低圧流体が圧縮されて増圧される。なお、各シリンダ31a、31bには、上記基本的な構成と同様に低圧側に逆止弁32a、32b、高圧側に逆止弁33a、33bが設けられている。
d)2段階に加圧する構成(d)(図6(d))
この構成では、大ピストン35の下方に小ピストン30を配置し、該小ピストン30の可動域の上下でシリンダ31a、31bに分割し、シリンダ31aで低圧流体の供給と増圧した高圧流体の取り出しを可能に、シリンダ31bでは、シリンダ31aで増圧された流体の導入と、該シリンダ31bで増圧された高圧流体の取り出しを可能にしたものである。大ピストン35の下降時には小ピストン30によってシリンダ31a内の低圧流体が圧縮されて増圧され、増圧された高圧流体はシリンダ31bに供給される。大ピストン35の上昇時には小ピストン30よってシリンダ31b内の高圧流体がさらに圧縮されて2段階で増圧される。なお、各シリンダ31a、31bには、上記基本的な構成と同様に低圧側に逆止弁32a、32b、高圧側に逆止弁33a、33bが設けられている。
この構成では、大ピストン35の下方に小ピストン30を配置し、該小ピストン30の可動域の上下でシリンダ31a、31bに分割し、シリンダ31aで低圧流体の供給と増圧した高圧流体の取り出しを可能に、シリンダ31bでは、シリンダ31aで増圧された流体の導入と、該シリンダ31bで増圧された高圧流体の取り出しを可能にしたものである。大ピストン35の下降時には小ピストン30によってシリンダ31a内の低圧流体が圧縮されて増圧され、増圧された高圧流体はシリンダ31bに供給される。大ピストン35の上昇時には小ピストン30よってシリンダ31b内の高圧流体がさらに圧縮されて2段階で増圧される。なお、各シリンダ31a、31bには、上記基本的な構成と同様に低圧側に逆止弁32a、32b、高圧側に逆止弁33a、33bが設けられている。
e)2段階に加圧する構成(e)(図6(e))
この構成では、大ピストン35の上下にそれぞれ小ピストン30a、30bを配置し、これら小ピストン30a、30bをシリンダ31a、31bに摺動可能に収納し、シリンダ31aで低圧流体の供給と増圧した高圧流体の取り出しを可能にし、シリンダ31bでは、シリンダ31aで増圧された流体の導入と、シリンダ31bで増圧された高圧流体の取り出しを可能にしたものである。大ピストン35の下降時には小ピストン30によってシリンダ31a内の低圧流体が圧縮されて増圧され、増圧された高圧流体はシリンダ31bに供給される。大ピストン35の上昇時には小ピストン30よってシリンダ31b内の高圧流体がさらに圧縮されて2段階で増圧される。なお、各シリンダ31a、31bには、上記基本的な構成と同様に低圧側に逆止弁32a、32b、高圧側に逆止弁33a、33bが設けられている。
特開2001−115953号公報
実開昭62−49002号公報
この構成では、大ピストン35の上下にそれぞれ小ピストン30a、30bを配置し、これら小ピストン30a、30bをシリンダ31a、31bに摺動可能に収納し、シリンダ31aで低圧流体の供給と増圧した高圧流体の取り出しを可能にし、シリンダ31bでは、シリンダ31aで増圧された流体の導入と、シリンダ31bで増圧された高圧流体の取り出しを可能にしたものである。大ピストン35の下降時には小ピストン30によってシリンダ31a内の低圧流体が圧縮されて増圧され、増圧された高圧流体はシリンダ31bに供給される。大ピストン35の上昇時には小ピストン30よってシリンダ31b内の高圧流体がさらに圧縮されて2段階で増圧される。なお、各シリンダ31a、31bには、上記基本的な構成と同様に低圧側に逆止弁32a、32b、高圧側に逆止弁33a、33bが設けられている。
しかし、上記構成(a)(d)(e)共通の問題点として、高圧流体は1方向加圧時しか得られないため、高圧流体の連続した供給が得られず、燃料噴射試験装置などに用いる場合はアキュムレータ(蓄圧装置)を必要とする。例え複動型流体増圧ポンプを複数台設置しても、高圧の加圧タイミングが完璧に反転できない場合は、アキュムレータが必要になる。
上記構成(b)の問題点として、ピストン上昇時の圧力P2および流量Q2は、以下のようになり、ピストン下降時と性能が大幅に低下する。ただし、小シリンダ31aの断面積をA1、小シリンダ31bの断面積をB1とする。
小ピストン小の最大圧力P2=(大ピストン供給圧力)×(A1−B1)/(A2)
ピストン上昇時の最大流量Q2=(A1−B1)×(ピストンストローク)
小ピストン小の最大圧力P2=(大ピストン供給圧力)×(A1−B1)/(A2)
ピストン上昇時の最大流量Q2=(A1−B1)×(ピストンストローク)
さらに構成(c)において、100Mpa以上の超高圧を必要とした場合、小ピストンには流体シール用のロッドシールを使用できず、半径隙間を適切に制御し、シール長さを十分確保した上で潤滑とシールを両立させる必要がある。しかし、上下の小ピストンのシリンダ同軸度(大ピストンのシリンダの取り付け面平行度や同軸度も含む)や、熱変形による姿勢変化が発生した場合、適正な隙間が確保できず、焼き付きなどの不具合を引き起こすという問題がある。
上記構成(c)の課題に対しては、小ピストン側と大ピストン側とをボールジョイントで連結した連結シリンダが提案されている(特開2005−114143号公報)。しかし、この構成では、部品点数が多く構造的に高荷重に耐えにくいという問題がある(一般的なボールジョイントでは500〜700kgf程度の荷重までしか耐えられない)。
本発明は、上記事情を背景としてなされたものであり、高精度加工および組み立て部位の限定要求が少なく、熱変位等が引き起こす姿勢変化を吸収し、焼き付きを防ぐことができ、さらに高荷重に耐えて流体の増圧を連続して行うことができる複動型流体増圧ポンプを提供することを目的とする。
すなわち、本発明の複動型流体増圧ポンプのうち、第1の本発明は、複数のピストンをシリンダ内で連続往復させる複動型流体増圧ポンプにおいて、圧縮ピストン側の端面と被圧縮ピストン側の端面の一方を球面状に形成し、他方を平面状に形成して両端面を当接させるとともに、圧縮ピストン側と被圧縮ピストン側の一方に設けた引張バネ材を他方に係合させることを特徴とする。
第2の本発明の複動型流体増圧ポンプは、複数のピストンをシリンダ内で連続往復させる複動型流体増圧ポンプにおいて、圧縮ピストン側の端面と被圧縮ピストン側の端面とを対向面の少なくとも一つを平面にして球状部材を介して当接させるとともに、圧縮ピストン側と被圧縮ピストン側の一方に設けた引張バネ材を他方に係合させることを特徴とする。
本発明によれば、圧縮ピストン側と被圧縮ピストン側とが一方に設けた球面形状または球状部材を介して平面で当接しており、圧縮ピストン側と被圧縮ピストン側との加工誤差や熱による上下小ピストンのシリンダの姿勢変化などを吸収する。圧縮ピストン側と被圧縮ピストン側とは引張バネ材の係合によって、離接することなく連結される。これらの圧縮ピストンと被圧縮ピストンとが複動することで、低圧流体が連続して増圧されて高圧流体が得られる。なお、上記当接は、圧縮ピストンと被圧縮ピストンの一方のピストンと、他方のピストンロッドとの間で行われるものであってもよく、圧縮ピストンと被圧縮ピストンのそれぞれのピストンロッド間でなされるものであってもよい。また、引張バネ材は、通常は圧縮ピストン側に設けられて被圧縮ピストン側に係合されるものであるが、これと逆に被圧縮ピストン側に設けられて圧縮ピストン側に係合されるものも本発明範囲に含まれるものである。
なお、圧縮側ピストンは、加圧力増強とシリンダ内での姿勢の安定のため、2段以上の構成が望ましい。また、被圧縮側ピストンは、引張バネ材により引き戻されることで、低圧流体が十分に供給されなかった場合に、大ピストンとの分離や球状部材の離脱を防ぐ。
被圧縮側シリンダへの低圧流体による力(被圧縮側シリンダ断面積×供給圧)は、圧縮側シリンダにかかる力(圧縮側シリンダ断面積×圧縮空気圧)より小さく、バックラッシュとなって加圧効率を下げるため、当接部分での軸方向隙間は引張バネ材により0とする。なお、引張バネ材には、後述するように板バネなどを用いることができる。
被圧縮側シリンダへの低圧流体による力(被圧縮側シリンダ断面積×供給圧)は、圧縮側シリンダにかかる力(圧縮側シリンダ断面積×圧縮空気圧)より小さく、バックラッシュとなって加圧効率を下げるため、当接部分での軸方向隙間は引張バネ材により0とする。なお、引張バネ材には、後述するように板バネなどを用いることができる。
第3の本発明の複動型流体増圧ポンプは、前記第1または第2の本発明において、前記引張バネ材が板バネであり、該板バネに設けたフックを圧縮ピストン側と被圧縮ピストン側のうち前記係合がなされる側に設けた溝に係合させることを特徴とする。
第4の本発明の複動型流体増圧ポンプは、前記第3の本発明において、前記フックの係合部を前記溝の外周径に合わせた円弧状にしたことを特徴とする。
第5の本発明の複動型流体増圧ポンプは、前記第1〜第4の本発明において、前記引張バネ材は、圧縮ピストン側と被圧縮ピストン側のうち前記係合がなされる側に対し、軸方向近接側で係合し、軸方向遠方側および径方向側において非係合状態にあることを特徴とする。
引張バネ材の係合では、径方向および軸方向の遠方側に隙間を有するなどして非係合の状態にするのが望ましい。径方向隙間は、圧縮ピストン側からの外力を受けないためである。軸方向遠方での隙間は、球面形状または球状部材との位置関係によりバックラッシュを防止する。
すなわち、本発明の複動型流体増圧ポンプによれば、複数のピストンを連続往復させる複動型流体増圧ポンプにおいて、圧縮ピストン側の端面と被圧縮ピストン側の端面の一方を球面状に形成し、他方を平面状に形成して両端面を当接させ、または圧縮ピストン側の端面と被圧縮ピストン側の端面とを対向面の少なくとも一つを平面にして球状部材を介して当接させ、圧縮ピストン側と被圧縮ピストン側の一方に設けた引張バネ材を他方に係合させるので、加工誤差および熱による上下小ピストンのシリンダの姿勢変化を吸収することができ、ピストンの加圧特性に影響を与えることはない。また、圧縮ピストン側と被圧縮ピストン側とが一方に設けた球面形状または球状部材を介して当接するので高荷重にも耐えることができる効果がある。さらに、圧縮ピストン側と被圧縮ピストン側を連結するための部品点数が減ったことから、軸方向にコンパクトな構成にすることができ、かつ耐荷重性が上がる。また分解・点検が容易になる効果がある。
以下に、本発明の一実施形態を図1〜図4に基づいて説明する。
複動型流体増圧ポンプ1は、圧縮側ピストンが摺動する大シリンダ2の上下両側に、小シリンダ20a、20bがそれぞれ連続して設けられたシリンダ構成を有しており、大シリンダ2は、隔壁3によって下側大シリンダ2aと上側大シリンダ2bとに仕切られている。大シリンダ2内には、圧縮側ピストンを固定する大ピストンロッド4が上下方向に沿って配置されており、該大ピストンロッド4の上下端側にそれぞれ下側大シリンダ2a内と上側大シリンダ2b内に位置してこれらシリンダ内壁を僅かな隙間で摺動する大ピストン5a、5bが圧縮側ピストンとして設けられている。
複動型流体増圧ポンプ1は、圧縮側ピストンが摺動する大シリンダ2の上下両側に、小シリンダ20a、20bがそれぞれ連続して設けられたシリンダ構成を有しており、大シリンダ2は、隔壁3によって下側大シリンダ2aと上側大シリンダ2bとに仕切られている。大シリンダ2内には、圧縮側ピストンを固定する大ピストンロッド4が上下方向に沿って配置されており、該大ピストンロッド4の上下端側にそれぞれ下側大シリンダ2a内と上側大シリンダ2b内に位置してこれらシリンダ内壁を僅かな隙間で摺動する大ピストン5a、5bが圧縮側ピストンとして設けられている。
上記大ピストンロッド4の上下両端面には、それぞれ鋼球6の一部が収まるテーパ穴7が端部側程大径となるように形成されており、該鋼球6、6を介して大ピストンロッド4の上下側に軸方向に沿って被圧縮ピストンとなる小ピストン21a、21bが配置されており、小ピストン21a、21bは、大ピストンロッド4に直接当接することなく前記鋼球6、6を介して当接している。なお、小ピストン21a、21bは、小シリンダ20a、20bの内壁を僅かな隙間で摺動して小シリンダ20a、20b内の流体を圧縮できるように配置されている。
上記小ピストン21a、21bの大ピストンロッド4側の端部側面には、周方向に沿って係合溝15、15が形成されており、一方、大ピストンロッド4の上下端部には、引張バネ材として板バネ8…8が対になって固定されており、該板バネ8…8は、図4(a)に示すように、外周端に内周側に向けて円弧状の形状を有するフック9、9が設けられており、該フック9、9は、上記小ピストン21a、21bに形成された上記係合溝15、15の一部に嵌め込まれて係合される。なお、上記フック9、9は、図3(b)に示すように、引張力によって軸方向において大ピストンロッド4側の係止溝面に接触しており、その反対側および径方向では係止溝面に接触することなく小ピストン21a、21b側と隙間を有して非係合状態になっている。
また、下側大シリンダ2aと上側大シリンダ2bとでは、図1に示すように、大ピストン5a、5bの移動域外の上方および下方側に連通するように圧縮空気送排出管10a、10b、11a、11bが接続されている。また、小シリンダ20a、20bでは、図2に示すように、小ピストン21a、21bの移動域外側に連通するように低圧流体供給管22a、22bと高圧流体排出管24a、24bとが接続されており、該低圧流体供給管22a、22bには、それぞれ供給側逆止弁23a、23bが介設されており、前記高圧流体排出管24a、24bには、それぞれ排出側逆止弁25a、25bが介設されている。
さらに、下側大シリンダ2aと上側大シリンダ2bとには、図1に示すように大ピストン5a、5bの下死点および上死点を検知するセンサ17a、17bが設けられており、ピストンの移動制御を行っている。
なお、小シリンダ20a、20bと小ピストン21a、21bの隙間からは、少量の流体が漏れることで潤滑性を得ているため、図2に示すように小ピストン21a、21bの移動域において小シリンダ20a、20bに連通してリーク(漏れ)流体を回収する経路27a、27b(回収溝、穴)を設けておく。このリーク流体が大シリンダ2に混入することを避けるため、小シリンダ20a、20bにおいて、上記回収部より大シリンダ2側の位置にOリングやロッドシールなどからなるシール28a、28bを設けておく。
なお、小シリンダ20a、20bと小ピストン21a、21bの隙間からは、少量の流体が漏れることで潤滑性を得ているため、図2に示すように小ピストン21a、21bの移動域において小シリンダ20a、20bに連通してリーク(漏れ)流体を回収する経路27a、27b(回収溝、穴)を設けておく。このリーク流体が大シリンダ2に混入することを避けるため、小シリンダ20a、20bにおいて、上記回収部より大シリンダ2側の位置にOリングやロッドシールなどからなるシール28a、28bを設けておく。
以下に、上記複動型流体増圧ポンプの動作について説明する。
低圧流体供給管22aより小シリンダ20a内に低圧流体(例えば低圧燃料)を供給し、圧縮空気送排出管10aより下側大シリンダ2aの上方側に、また圧縮空気送排出管11bより上側大シリンダ2bの上方側に圧縮空気を供給し、下側大シリンダ2aおよび上側大シリンダ2bの下方側を圧縮空気送排出管11a、10bを通して大気開放する。これにより大ピストン5a、5bがセンサ17aで下死点が検知されるまで下降し、小シリンダ20a内の低圧流体を圧縮して高圧流体として高圧流体排出管24aから外部に取り出すことができる。この際に、逆止弁23aによって供給された低圧流体が加圧時に逆流することを防ぎ、逆止弁25aによって低圧流体供給時に高圧側の圧力が低下することを防ぐ。
低圧流体供給管22aより小シリンダ20a内に低圧流体(例えば低圧燃料)を供給し、圧縮空気送排出管10aより下側大シリンダ2aの上方側に、また圧縮空気送排出管11bより上側大シリンダ2bの上方側に圧縮空気を供給し、下側大シリンダ2aおよび上側大シリンダ2bの下方側を圧縮空気送排出管11a、10bを通して大気開放する。これにより大ピストン5a、5bがセンサ17aで下死点が検知されるまで下降し、小シリンダ20a内の低圧流体を圧縮して高圧流体として高圧流体排出管24aから外部に取り出すことができる。この際に、逆止弁23aによって供給された低圧流体が加圧時に逆流することを防ぎ、逆止弁25aによって低圧流体供給時に高圧側の圧力が低下することを防ぐ。
引き続き、圧縮空気送排出管11aより下側大シリンダ2aの下方側に、また圧縮空気送排出管10bより上側大シリンダ2bの下方側に圧縮空気を供給し、下側大シリンダ2aおよび上側大シリンダ2bの上方側を圧縮空気送排出管10a、11b通して大気開放して大ピストン5a、5bが上死点がセンサ7bで検知されるまで上昇し、小シリンダ20b内の低圧流体を圧縮して高圧流体として高圧流体排出管24bから外部に取り出すことができる。この際に、逆止弁23bによって供給された低圧流体が加圧時に逆流することを防ぎ、逆止弁25bによって低圧流体供給時に高圧側の圧力が低下することを防ぐ。これら動作により増圧された高圧流体(例えば高圧燃料)が複動型流体増圧ポンプ1から連続して排出され、利用側(例えば燃料噴射試験装置など)に供給される。
上記動作において、大ピストン側と小ピストン側は、鋼球6を介して球面と平面の組み合わせによって軸方向の力のみが伝達されるので、大ピストン側および小ピストン側、シリンダの加工精度、組み立ておよび熱による変形、上下ピストン、シリンダの組み立ておよび熱による相対的変位が、小ピストンの加圧特性に影響を与えることはない。
また、小ピストン側と大ピストン側との接触面を球面状にすることにより高荷重に耐えることができる。
また、フック9は小ピストン21a、21bに対し引っ張り力が作用しており、被圧縮側の小ピストンはフック9により引き戻され、小シリンダ20a、20bに低圧流体が十分に供給されなかった場合にも、大ピストン5a、5b側との分離・鋼球との離脱を防ぐことができる。
また、小ピストン側と大ピストン側との接触面を球面状にすることにより高荷重に耐えることができる。
また、フック9は小ピストン21a、21bに対し引っ張り力が作用しており、被圧縮側の小ピストンはフック9により引き戻され、小シリンダ20a、20bに低圧流体が十分に供給されなかった場合にも、大ピストン5a、5b側との分離・鋼球との離脱を防ぐことができる。
なお、上記板バネ8では、軸方向外側において、フック9が小ピストンの係合溝15と隙間を有して非係合状態にしてバックラッシュを防止するものとしたが、図4(b)(c)に示すように、フック9aまたはフック9bの端部において、小ピストン側に面取りをすることでバックラッシュを防止することができる。
以上、本発明について上記実施形態に基づいて説明を行ったが、本発明は、上記実施形態の内容に限定をされるものではなく、当然に本発明を逸脱しない範囲で適宜の変更が可能である。
以上、本発明について上記実施形態に基づいて説明を行ったが、本発明は、上記実施形態の内容に限定をされるものではなく、当然に本発明を逸脱しない範囲で適宜の変更が可能である。
1 複動型流体増圧ポンプ
2 大シリンダ
2a 下側大シリンダ
2b 上側下シリンダ
4 大ピストンロッド
5a 大ピストン
5b 大ピストン
6 鋼球
7 テーパ穴
8 板バネ
9 フック
15 係合溝
20a 小シリンダ
20b 小シリンダ
21a 小ピストン
21b 小ピストン
2 大シリンダ
2a 下側大シリンダ
2b 上側下シリンダ
4 大ピストンロッド
5a 大ピストン
5b 大ピストン
6 鋼球
7 テーパ穴
8 板バネ
9 フック
15 係合溝
20a 小シリンダ
20b 小シリンダ
21a 小ピストン
21b 小ピストン
Claims (5)
- 複数のピストンをシリンダ内で連続往復させる複動型流体増圧ポンプにおいて、
圧縮ピストン側の端面と被圧縮ピストン側の端面の一方を球面状に形成し、他方を平面状に形成して両端面を当接させるとともに、圧縮ピストン側と被圧縮ピストン側の一方に設けた引張バネ材を他方に係合させることを特徴とする複動型流体増圧ポンプ。 - 複数のピストンをシリンダ内で連続往復させる複動型流体増圧ポンプにおいて、
圧縮ピストン側の端面と被圧縮ピストン側の端面とを対向面の少なくとも一つを平面にして球状部材を介して当接させるとともに、圧縮ピストン側と被圧縮ピストン側の一方に設けた引張バネ材を他方に係合させることを特徴とする複動型流体増圧ポンプ。 - 前記引張バネ材が板バネであり、該板バネに設けたフックを圧縮ピストン側と被圧縮ピストン側のうち前記係合がなされる側に設けた溝に係合させることを特徴とする請求項1または2に記載の複動型流体増圧ポンプ。
- 前記フックの係合部を前記溝の外周径に合わせた円弧状にしたことを特徴とする請求項3記載の複動型流体増圧ポンプ。
- 前記引張バネ材は、圧縮ピストン側と被圧縮ピストン側のうち前記係合がなされる側に対し、軸方向近接側で係合し、軸方向遠方側および径方向側において非係合状態にあることを特徴とする請求項1〜4のいずれかに記載の複動型流体増圧ポンプ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007222061A JP2009052515A (ja) | 2007-08-29 | 2007-08-29 | 複動型流体増圧ポンプ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007222061A JP2009052515A (ja) | 2007-08-29 | 2007-08-29 | 複動型流体増圧ポンプ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009052515A true JP2009052515A (ja) | 2009-03-12 |
Family
ID=40503791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007222061A Pending JP2009052515A (ja) | 2007-08-29 | 2007-08-29 | 複動型流体増圧ポンプ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009052515A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103670990A (zh) * | 2013-11-29 | 2014-03-26 | 南通高盛机械制造有限公司 | 一种气动泵 |
GB2568477A (en) * | 2017-11-15 | 2019-05-22 | Stpape Co Ltd | Double-acting pneumatic pump |
WO2019177072A1 (ja) * | 2018-03-14 | 2019-09-19 | 株式会社エンジニアリング プール ジャパン | 液体濃縮システム及び日本酒濃縮システム |
CN110725826A (zh) * | 2018-07-16 | 2020-01-24 | 简·诺德 | 往复活塞马达、马达-泵组件和驱动泵的方法 |
-
2007
- 2007-08-29 JP JP2007222061A patent/JP2009052515A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103670990A (zh) * | 2013-11-29 | 2014-03-26 | 南通高盛机械制造有限公司 | 一种气动泵 |
GB2568477A (en) * | 2017-11-15 | 2019-05-22 | Stpape Co Ltd | Double-acting pneumatic pump |
WO2019177072A1 (ja) * | 2018-03-14 | 2019-09-19 | 株式会社エンジニアリング プール ジャパン | 液体濃縮システム及び日本酒濃縮システム |
CN110725826A (zh) * | 2018-07-16 | 2020-01-24 | 简·诺德 | 往复活塞马达、马达-泵组件和驱动泵的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201169513Y (zh) | 一种脚踏液压双速兼具气动空载快速的千斤顶 | |
US8449265B2 (en) | Hydraulically actuated reciprocating pump | |
CN104405604A (zh) | 超高压轴向柱塞泵 | |
JP2009052515A (ja) | 複動型流体増圧ポンプ | |
US8403335B2 (en) | Liquid-operated cylinder | |
JP5435245B2 (ja) | 往復圧縮機 | |
CN2924068Y (zh) | 双向生产压缩气体的液压传动机构 | |
JP6605776B1 (ja) | 圧縮機ユニットおよび圧縮機ユニットの停止方法 | |
KR100758040B1 (ko) | 에너지 절약형 유압실린더 내구성 실험 장치 | |
RU2622453C2 (ru) | Горизонтальный поршневой компрессор | |
CN106969002A (zh) | 两级双作用液压油缸 | |
CN101776052A (zh) | 液压空压机 | |
US20170081159A1 (en) | Hydraulic pumping cylinder and method of pumping hydraulic fluid | |
JP2009180090A (ja) | 低温流体用昇圧ポンプのピストンリング | |
JP4925921B2 (ja) | ピストンポンプ | |
RU2578758C1 (ru) | Поршневой насос-компрессор | |
KR101342001B1 (ko) | 공압식 자동 피스톤 펌프 | |
US20180163719A1 (en) | Reciprocating pump | |
JP6969971B2 (ja) | 流体圧シリンダ | |
KR20200111792A (ko) | 주수 펌프 | |
JP2014224544A (ja) | 送液用ポンプ装置 | |
JP6653041B1 (ja) | 圧縮機ユニットおよび圧縮機ユニットの停止方法 | |
US9617129B2 (en) | Hydraulic pumping cylinder and method of pumping hydraulic fluid | |
JP2014095391A (ja) | 倍力機構付きシリンダ装置 | |
CN101549842A (zh) | 兼具气动空载快速的液压双速千斤顶 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100722 |
|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20111129 |