JP2009049177A - Method for rapidly evaluating surface quality of semiconductor substrate in packing state - Google Patents

Method for rapidly evaluating surface quality of semiconductor substrate in packing state Download PDF

Info

Publication number
JP2009049177A
JP2009049177A JP2007213661A JP2007213661A JP2009049177A JP 2009049177 A JP2009049177 A JP 2009049177A JP 2007213661 A JP2007213661 A JP 2007213661A JP 2007213661 A JP2007213661 A JP 2007213661A JP 2009049177 A JP2009049177 A JP 2009049177A
Authority
JP
Japan
Prior art keywords
thi
temperature
semiconductor substrate
time
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007213661A
Other languages
Japanese (ja)
Inventor
Akira Miyahara
亮 宮原
Shinobu Nakamoto
忍 中本
Masanori Takiyama
真功 滝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siltronic Japan Corp
Original Assignee
Siltronic Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siltronic Japan Corp filed Critical Siltronic Japan Corp
Priority to JP2007213661A priority Critical patent/JP2009049177A/en
Priority to PCT/JP2008/064695 priority patent/WO2009025254A1/en
Publication of JP2009049177A publication Critical patent/JP2009049177A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for rapidly evaluating the surface quality of a semiconductor substrate in a packing state. <P>SOLUTION: The method packs a semiconductor substrate with a packing material at ambient temperature Tam, and (1) increases the temperature Tam up to high temperature Thi and keeps the high temperature Thi for a time period thi, (2) decreases the high temperature Thi down to low temperature Tlow and keeps the low temperature Tlow for a time period tlow, (3) increases the temperature Tlow up to the ambient temperature Tam and keeps the ambient temperature Tam for a time period tam, and then checks the semiconductor substrate for deterioration in the surface quality. Therefore, the method allows rapid evaluation for the degree of deterioration in the surface quality of the semiconductor substrate in a packing state, estimation of a prior-to-use storage time limit for the semiconductor substrate, evaluation for deterioration in the quality of a packing material, and identification of the deterioration factors. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

半導体基板やガラス基板(以下本明細書では「半導体基板」とする。)をクリーンルームの外で、当該半導体基板の表面品質を保持したまま移動、運搬又は保存する目的で、通常、半導体基板用のケース、キャリア、カセット等が使用され、またさらに環境の影響を避けるために、当該ケース、キャリア、カセット等は適当な包装材で包装されている。   For the purpose of moving, transporting or storing a semiconductor substrate or glass substrate (hereinafter referred to as “semiconductor substrate” in this specification) outside a clean room while maintaining the surface quality of the semiconductor substrate, Cases, carriers, cassettes, and the like are used, and the cases, carriers, cassettes, and the like are packaged with appropriate packaging materials in order to avoid environmental influences.

半導体基板はこのような包装状態で、種々の手段(例えば陸、海、空路)、種々の環境条件(例えば温度、湿度、圧力)の下で、運搬、移動、保存されている。また、一定期間保存の後使用の際に初めて包装材が解かれ、実施に使用される際に半導体基板の表面品質が検査される。   The semiconductor substrate is transported, moved, and stored in such a packaged state under various means (for example, land, sea, air route) and various environmental conditions (for example, temperature, humidity, pressure). In addition, the packaging material is first unwound after use for a certain period of storage, and the surface quality of the semiconductor substrate is inspected when used for implementation.

半導体基板は出荷の際には表面品質は検査の結果、欠陥のないこと(劣化なし)が確認されていることから、使用の際に見いだされる表面品質の劣化は、包装状態で一定期間保持された結果生じたものである。   Since the surface quality of semiconductor substrates is confirmed to be defect-free (no degradation) as a result of inspection, the surface quality degradation found during use is maintained for a certain period in the packaged state. As a result.

しかし、かかる表面品質の劣化は種々の原因が複合的に作用しあう結果生じるものであり、これまで包装状態での半導体基板の表面品質の劣化の程度を直接的に、かつ迅速に評価し、またそれにより半導体基板の使用前保存期限を推定することは極めて困難であった。また、かかる包装状態での半導体基板の表面品質の劣化因子を同定することは際めて困難であった(非特許文献1、2参照。)。   However, such deterioration of surface quality is caused by various causes acting in a complex manner, so far the degree of deterioration of the surface quality of the semiconductor substrate in the packaged state has been evaluated directly and quickly, In addition, it has been extremely difficult to estimate the shelf life of the semiconductor substrate before use. Moreover, it has been extremely difficult to identify a deterioration factor of the surface quality of the semiconductor substrate in such a packaged state (see Non-Patent Documents 1 and 2).

そこで、包装状態での半導体基板の表面品質の劣化の程度を迅速(かつ直接的)に評価する方法の開発が強く望まれている。
Larry W. Shive, Richard Blank and Karen Lamb:"Investigating the Formation of Time−Dependent Haze on Stored Wafers", Micro Magazine,(March,2001) N. Muenter, B.O. Kolbesen, W. Storm, and T. Mueller:"Analysis of Time−Dependent Haze on Silicon Surfaces", Journal of The Electrochemical Society, 150 (3) G192‐G197 (2003)
Therefore, development of a method for quickly (and directly) evaluating the degree of deterioration of the surface quality of the semiconductor substrate in the packaged state is strongly desired.
Larry W. Shive, Richard Blank and Karen Lamb: “Investigating the Formation of Time-Dependent Haze on Stored Wafers”, Micro Magazine, (March, 2001). N. Muenter, B.M. O. Kolbesen, W.M. Storm, and T.M. Mueller: "Analysis of Time-Dependent Haze on Silicon Surfaces", Journal of The Electrochemical Society, 150 (3) G192-G197 (2003)

本発明はかかる要望を満たす新たな方法であって、包装状態での半導体基板の表面品質を迅速に評価し、それにより半導体基板の使用前保存期限を推定する方法、さらには包装材料の品質の劣化の評価及び劣化因子の同定方法を提供する。   The present invention is a new method for satisfying such a demand, and a method for quickly evaluating the surface quality of a semiconductor substrate in a packaged state, thereby estimating the shelf life before use of the semiconductor substrate, and further improving the quality of the packaging material. A method for evaluating degradation and identifying a degradation factor is provided.

本発明者はかかる課題を解決すべく鋭意研究した結果、包装状態での半導体基板の表面品質の劣化の直接原因を定量的に同定する方法を見いだすことに成功し、本発明を完成した。   As a result of diligent research to solve such problems, the present inventor succeeded in finding a method for quantitatively identifying the direct cause of the deterioration of the surface quality of the semiconductor substrate in the packaged state, and completed the present invention.

すなわち、本発明1は、包装状態での半導体基板の表面品質の劣化の程度を迅速に評価する方法であって、
半導体基板を室温Tamで包装材料にて包装し、
(1)温度Tamより昇温して高温度Thiで時間thi維持し、
(2)降温して低温度Tlowで時間tlow維持し、
(3)昇温して室温Tamで時間tam時間維持した後、
半導体基板の表面品質の劣化を検査することを特徴とする。
That is, the present invention 1 is a method for quickly evaluating the degree of deterioration of the surface quality of a semiconductor substrate in a packaged state,
Package the semiconductor substrate with packaging material at room temperature Tam,
(1) The temperature is raised from the temperature Tam and maintained at the high temperature Thi for a time thi.
(2) The temperature is lowered and maintained at a low temperature Tlow for a time tlow,
(3) After raising the temperature and maintaining at the room temperature Tam for a time tam time,
It is characterized by inspecting deterioration of the surface quality of the semiconductor substrate.

さらに本発明1は、前記表面品質の劣化の検査が、半導体基板表面のヘイズ値、又は異物付着量の測定であることを特徴とする。   Further, the present invention 1 is characterized in that the inspection of the deterioration of the surface quality is a measurement of a haze value of a semiconductor substrate surface or a foreign matter adhesion amount.

また本発明2は、半導体基板の使用前保存期限を推定する方法であって、
半導体基板を室温Tamで包装材料にて包装し、
(1)温度Tamより昇温して高温度Thiで時間thi維持し、
(2)降温して低温度Tlowで時間tlow維持し、
(3)昇温して室温Tamで時間tam時間維持した後、
(4)半導体基板の表面品質の劣化を検査してThiでの表面品質の劣化までの維持時間thiを決定し、
(5)Thiとthiとの関係式に基づき、任意のThiにおけるthiを決定し、
(6)半導体基板の使用前保存期限を推定することを特徴とする。
In addition, the present invention 2 is a method for estimating a storage period before use of a semiconductor substrate,
Package the semiconductor substrate with packaging material at room temperature Tam,
(1) The temperature is raised from the temperature Tam and maintained at the high temperature Thi for a time thi.
(2) The temperature is lowered and maintained at a low temperature Tlow for a time tlow,
(3) After raising the temperature and maintaining at the room temperature Tam for a time tam time,
(4) The deterioration of the surface quality of the semiconductor substrate is inspected to determine the maintenance time thi until the deterioration of the surface quality at Thi,
(5) Based on the relational expression between Thi and thi, determine thi in any Thi,
(6) It is characterized in that the storage period before use of the semiconductor substrate is estimated.

さらに本発明2は、前記(5)の関係式が、Thiの逆数を横軸に、劣化までの維持時間thiの対数を縦軸にプロットして、直線関係式を得ることを特徴とする。   Further, the present invention 2 is characterized in that the relational expression (5) is obtained by plotting the reciprocal of Thi on the horizontal axis and the logarithm of the maintenance time thi until deterioration on the vertical axis to obtain a linear relational expression.

また本発明3は、包装材料に起因した半導体基板表面の品質劣化因子を同定する方法であって、
半導体基板を室温Tamで包装材料にて包装し、
(i)温度Tamより昇温して高温度Thiで時間thi維持し、
(ii)降温して低温度Tlowで時間tlow維持し、
(iii)昇温して室温Tamで時間tam時間維持した後、
(iv)半導体基板の表面品質の劣化を検査してThiでの表面品質の劣化まの維持時間thiを決定し、
(v)Thiとthiとの関係式をThiの逆数を横軸に、劣化までの維持時間thiの対数を縦軸にプロットして直線関係式として直線の傾きを決定し、
包装材料を、
(vi)温度Tamより昇温して高温度Thiで時間thi維持した後、
(vii)包装材料の、各脱ガス成分Gaの脱ガス量MGaを決定し、
(viii)Thiの逆数を横軸に、各MGaの対数を縦軸にプロットして、直線関係式として各脱成分の直線の傾きを決定し、
(ix)(v)で得られた傾きと、(viii)で得られた各成分の傾きとを比較して、
半導体基板の表面品質の劣化因子である包装材料の脱ガス成分を同定することを特徴とする。
Further, the present invention 3 is a method for identifying a quality deterioration factor of a semiconductor substrate surface caused by a packaging material,
Package the semiconductor substrate with packaging material at room temperature Tam,
(I) The temperature is raised from the temperature Tam and maintained at the high temperature Thi for a time thi,
(Ii) The temperature is lowered and maintained at the low temperature Tlow for a time tlow,
(Iii) After heating and maintaining at room temperature Tam for a time tam time,
(Iv) Inspecting the deterioration of the surface quality of the semiconductor substrate to determine the maintenance time thi until the deterioration of the surface quality at Thi,
(V) The relational expression between Thi and thi is plotted with the reciprocal of Thi on the horizontal axis and the logarithm of the maintenance time thi until deterioration on the vertical axis to determine the slope of the straight line as a linear relational expression,
Packaging materials
(Vi) After raising the temperature from the temperature Tam and maintaining the time thi at the high temperature Thi,
(Vii) determining the degassing amount MGa of each degassing component Ga of the packaging material;
(Viii) plotting the reciprocal of Thi on the horizontal axis and the logarithm of each MGa on the vertical axis, and determining the slope of each decomponent straight line as a linear relational expression;
(Ix) Compare the slope obtained in (v) with the slope of each component obtained in (viii),
The degassing component of the packaging material which is a deterioration factor of the surface quality of a semiconductor substrate is identified.

本発明の方法により、包装状態での半導体基板の表面品質の劣化の程度を迅速に評価すること、半導体基板の使用前保存期限を推定すること、包装材料の品質の劣化の評価すること、及び劣化因子の同定することが可能となる。   By the method of the present invention, quickly assessing the degree of deterioration of the surface quality of the semiconductor substrate in the packaged state, estimating the shelf life before use of the semiconductor substrate, evaluating the deterioration of the quality of the packaging material, and It becomes possible to identify the deterioration factor.

基板
本発明により表面品質の劣化が評価可能な半導体基板の材質について特に制限はなく、公知の種々の金属、非金属材質の半導体基板が含まれる。特に金属材質の半導体基板としてはシリコン、炭化シリコン、ガリウム砒素系化合物半導体基板、窒化ガリウム系化合物半導体基板が挙げられる。特に本発明においてはシリコン基板について好ましく適用可能である。また非金属材質基板としては、二酸化珪素系ガラス基板について好ましく適用可能である。
Substrate There is no particular limitation on the material of the semiconductor substrate whose surface quality can be evaluated by the present invention, and various known metal and non-metal semiconductor substrates are included. In particular, examples of the metal substrate include silicon, silicon carbide, gallium arsenide compound semiconductor substrate, and gallium nitride compound semiconductor substrate. In particular, the present invention is preferably applicable to a silicon substrate. The non-metallic material substrate is preferably applicable to a silicon dioxide glass substrate.

本発明により表面品質の劣化が評価可能な半導体基板の形状についても特に制限はなく、通常使用されている種々の形状が含まれる。具体的には、円形状、楕円形状、板状、棒状が挙げられ、特に円形状の基板へ適用可能である。またサイズについても特に制限はなく、通常使用されている種々のサイズが含まれる。例えば円形状の場合、直径が100mm〜300mmの基板へ好ましく適用可能である。   There is no particular limitation on the shape of the semiconductor substrate that can be evaluated for deterioration in surface quality according to the present invention, and various shapes that are usually used are included. Specific examples include a circular shape, an elliptical shape, a plate shape, and a rod shape, and are particularly applicable to a circular substrate. The size is not particularly limited, and various sizes that are usually used are included. For example, in the case of a circular shape, it can be preferably applied to a substrate having a diameter of 100 mm to 300 mm.

包装材料、包装状態
本発明において意味する包装材料とは、半導体基板用のケース、キャリア、カセット等のみならず、半導体基板自体を包装する材料、さらには半導体基板を収容した半導体基板用のケース、キャリア、カセット等を包装する材料を意味する。半導体基板用のケース、キャリア、カセット等としては、具体的には樹脂材材料又は金属材料又はそれらの複合材質の半導体基板用のケース、キャリア、カセット等が挙げられる。
Packaging material, packaging state Packaging material as used in the present invention means not only a semiconductor substrate case, carrier, cassette, etc., but also a material for packaging a semiconductor substrate itself, and a semiconductor substrate case containing a semiconductor substrate, It means a material for packaging carriers, cassettes and the like. Specific examples of the case, carrier, cassette and the like for the semiconductor substrate include a case, carrier, cassette and the like for a semiconductor substrate made of a resin material, a metal material, or a composite material thereof.

ここでケース、キャリア、カセットの形状、サイズについては特に制限はなく、本発明は、通常公知のサイズ、形状の半導体基板用のケース、キャリア、カセット等について適用可能である。   Here, there are no particular limitations on the shape and size of the case, carrier, and cassette, and the present invention can be applied to a case, carrier, cassette, and the like for a semiconductor substrate of a generally known size and shape.

また樹脂材料についても特に制限はなく通常公知の材料である、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、ポリカーボネート系樹脂、ポリプロピレン系樹脂、ポリエチレン系樹脂、PBT系樹脂、ポリエーテルエーテルケトン樹脂が上げられる。またこれらの樹脂には種々の機能を付加するために種々の添加剤が含有されているものも含む。添加剤としては可塑剤、酸化防止剤、難燃剤、紫外線吸収剤、帯電防止剤、離型剤が挙げられる。   Resin materials are not particularly limited and are generally known materials such as polyolefin resins, polyester resins, polyamide resins, polyether resins, polycarbonate resins, polypropylene resins, polyethylene resins, PBT resins, poly resins. Ether ether ketone resin is raised. These resins include those containing various additives for adding various functions. Examples of the additive include a plasticizer, an antioxidant, a flame retardant, an ultraviolet absorber, an antistatic agent, and a release agent.

さらに金属材料についても特に制限はなく通常公知の材料である、ステンレス、アルミニウム、チタンが挙げられる。   Furthermore, there are no particular limitations on the metal material, and examples thereof include stainless steel, aluminum, and titanium, which are commonly known materials.

半導体基板自体を包装する材料とは、半導体基板の表面に直接触れる包装材料を意味し、具体的にはケース、キャリア、カセット中で半導体基板の位置を保持するために使用される押さえ部材を意味する。具体的には通常公知の樹脂材料が挙げられ、例えばポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、ポリカーボネート系樹脂、ポリプロピレン系樹脂、ポリエチレン系樹脂、PBT系樹脂、ポリエーテルエーテルケトン樹脂である。またこれらの樹脂には種々の機能を付加するために種々の添加剤が含有されているものも含む。添加剤としては可塑剤、酸化防止剤、難燃剤、紫外線吸収剤、帯電防止剤、離型剤が挙げられる。   The material for packaging the semiconductor substrate itself means a packaging material that directly touches the surface of the semiconductor substrate, and specifically means a pressing member used to hold the position of the semiconductor substrate in the case, carrier, or cassette. To do. Specific examples include generally known resin materials, such as polyolefin resins, polyester resins, polyamide resins, polyether resins, polycarbonate resins, polypropylene resins, polyethylene resins, PBT resins, polyether ethers. It is a ketone resin. These resins include those containing various additives for adding various functions. Examples of the additive include a plasticizer, an antioxidant, a flame retardant, an ultraviolet absorber, an antistatic agent, and a release agent.

本発明において意味する包装状態とは、半導体基板がケース、キャリア、カセット中で半導体基板の位置を保持するために押さえ部材を用いて保持され、かつ当該ケース等全体を包装材料で包装することを意味する(以下「外部包装材料」とする)。ここで外部包装材料は特に制限はなく、通常公知の材質、形状が含まれる。かかる材質としては、例えばポリエステル系樹脂、ポリエチレン系樹脂、ナイロン系樹脂、PET樹脂、シリカ蒸着膜である。またこれらの樹脂には種々の機能を付加するために種々の添加剤が含有されているものも含む。添加剤としては可塑剤、酸化防止剤、難燃剤、紫外線吸収剤、帯電防止剤、スリップ剤が挙げられる。また形状としてはフィルム状、袋状が挙げられる。外部包装材料で包装する方法についても特に制限はなく、通常公知の包装方法であって、自動包装か手動包装を問わず、ケース等に保持された半導体基板が外部の環境に直接晒されて汚染されないような方法であればよい。   In the present invention, the packaging state means that the semiconductor substrate is held using a pressing member to hold the position of the semiconductor substrate in the case, carrier, and cassette, and the entire case and the like are packaged with the packaging material. Means (hereinafter “external packaging material”). Here, the external packaging material is not particularly limited, and usually includes known materials and shapes. Examples of such materials include polyester resins, polyethylene resins, nylon resins, PET resins, and silica deposited films. These resins include those containing various additives for adding various functions. Examples of the additive include a plasticizer, an antioxidant, a flame retardant, an ultraviolet absorber, an antistatic agent, and a slip agent. Examples of the shape include a film shape and a bag shape. There are no particular restrictions on the method of packaging with external packaging materials, which are generally known packaging methods, regardless of whether automatic packaging or manual packaging, the semiconductor substrate held in the case etc. is directly exposed to the external environment and contaminated. Any method that does not work.

本発明において半導体基板の表面品質とは、特に限定されるものではなく、従来公知の種々の定性的及び定量的に規定される、半導体基板の表面状態について満たされるべき品質項目を意味する。これらの品質項目は半導体基板の包装する前に検査評価され、クリアされるべき項目である。例えば表面に生じる曇りの発生やパーティクル付着、有機ガスの付着、無機イオンの付着、金属成分の付着が挙げられる。本発明の方法においては特に、半導体基板表面に生じる曇りの発生やパーティクル付着があげられる。これらの品質が半導体基板の包装する前と比較して許容できない程度の値を示す場合、表面の品質が劣化したものとされる。   In the present invention, the surface quality of the semiconductor substrate is not particularly limited, and means a quality item to be satisfied with respect to the surface state of the semiconductor substrate, which is defined in various known qualitative and quantitative methods. These quality items are items that should be inspected and cleared before packaging the semiconductor substrate. For example, generation of fogging on the surface, adhesion of particles, adhesion of organic gas, adhesion of inorganic ions, adhesion of metal components can be mentioned. In the method of the present invention, the generation of haze and particle adhesion generated on the surface of the semiconductor substrate are particularly mentioned. If these qualities show values that are unacceptable compared to before the semiconductor substrate is packaged, the quality of the surface is considered to have deteriorated.

本発明において上記劣化の程度の評価の方法については特に制限はなく、評価対象の表面品質項目に適した種々の測定方法を用いて、必要な場合定量的な測定により劣化の程度を評価することが可能である。具体的には、半導体基板表面に生じる曇りの発生についての評価方法は、目視確認と表面異物検査装置による自動測定方法が挙げられる。本発明においては定性的には目視法が好ましく適用可能であり、さらに定量的な評価が必要な場合には光学的計測原理に基づく表面異物測定装置、および測定方法が適用可能である。また、表面に付着するパーティクル付着の評価については、目視確認と表面異物検査装置による自動測定方法が挙げられる。本発明においては粒径が0.3μm以上の大粒径のパーティクル確認には目視法が好ましく適用可能であり、さらに定量的な評価が必要な場合には光学的計測原理に基づく測定装置、および測定方法が適用可能である他のあらゆる評価方法があげられる。   In the present invention, the method for evaluating the degree of deterioration is not particularly limited, and various measurement methods suitable for the surface quality item to be evaluated are used, and the degree of deterioration is evaluated by quantitative measurement when necessary. Is possible. Specifically, examples of the evaluation method for occurrence of fogging on the surface of the semiconductor substrate include visual confirmation and an automatic measurement method using a surface foreign matter inspection apparatus. In the present invention, the visual method is preferably applicable qualitatively, and when a quantitative evaluation is required, a surface foreign matter measuring device and a measuring method based on the optical measurement principle can be applied. Moreover, about the evaluation of the particle adhesion which adheres to the surface, the visual measurement and the automatic measuring method by a surface foreign material inspection apparatus are mentioned. In the present invention, a visual method is preferably applicable for confirmation of particles having a large particle diameter of 0.3 μm or more, and when a quantitative evaluation is necessary, a measuring device based on an optical measurement principle, and All other evaluation methods to which the measurement method can be applied are listed.

(包装状態での半導体基板の表面品質の劣化の程度を迅速に評価する方法)
本発明の包装状態での半導体基板の表面品質の劣化の程度を迅速に評価する方法は、半導体基板の製造後、半導体基板の表面品質が要求を満たすことを確認した後、特定の包装材料で包装された状態で、所定の期間、所定の保存状態(特に保存温度)で保持されることを前提とした場合、半導体基板の表面品質の劣化の程度を、当該期間の経過を待って、かつ当該包装を開封して直接半導体基板を取り出し、表面劣化の程度を測定することなく、より早い時期(例えば出荷前)に、迅速に評価する方法である。
(Method of quickly evaluating the degree of deterioration of the surface quality of the semiconductor substrate in the packaged state)
The method for quickly evaluating the degree of deterioration of the surface quality of the semiconductor substrate in the packaging state of the present invention is based on a specific packaging material after confirming that the surface quality of the semiconductor substrate satisfies the requirements after manufacturing the semiconductor substrate. When packaged and presupposed to be held in a predetermined storage state (especially storage temperature) for a predetermined period, the degree of deterioration of the surface quality of the semiconductor substrate is awaited for the passage of the period, and In this method, the package is opened, the semiconductor substrate is directly taken out, and the degree of surface degradation is not measured, and the evaluation is quickly performed at an earlier time (for example, before shipment).

すなわちかかる本発明の方法は、表面品質の劣化がないことを確認した後、半導体基板を室温Tamで包装材料にて包装し、
(1)温度Tamより昇温して高温度Thiで時間thi維持し、
(2)降温して低温度Tlowで時間tlow維持し、
(3)昇温して室温Tamで時間tam時間維持した後、
半導体基板の表面品質の劣化を検査する、各工程からなる。
That is, according to the method of the present invention, after confirming that there is no deterioration of the surface quality, the semiconductor substrate is packaged with a packaging material at room temperature Tam,
(1) The temperature is raised from the temperature Tam and maintained at the high temperature Thi for a time thi.
(2) The temperature is lowered and maintained at a low temperature Tlow for a time tlow,
(3) After raising the temperature and maintaining at the room temperature Tam for a time tam time,
Each step is for inspecting the deterioration of the surface quality of the semiconductor substrate.

ここで前記表面品質の劣化の検査には例えば、半導体基板表面のヘイズ値、又は異物付着量の測定である。   Here, the inspection of the deterioration of the surface quality is, for example, measurement of a haze value of the semiconductor substrate surface or a foreign matter adhesion amount.

包装の際の温度(Tam)は通常包装工程の工場内温度であり、20〜25℃の範囲に設定維持されている。   The temperature (Tam) at the time of packaging is usually the temperature in the factory of the packaging process, and is set and maintained in the range of 20 to 25 ° C.

(1)〜(3)は、包装状態での半導体基板が実際に受けるであろう移転、運搬保存の際に受けるであろう温度変化及び期間を想定した工程である。従って、本発明においては温度と時間のみを規定しているがそれに限定されるものではなく、必要ならば湿度、圧力も変化を加えた工程も含まれる。   (1) to (3) are processes assuming a temperature change and a period that the semiconductor substrate in a packaged state will receive during transfer and transportation and storage. Therefore, in the present invention, only the temperature and time are defined, but the present invention is not limited to this, and includes a step of changing the humidity and pressure if necessary.

(1)は包装時の温度から、包装状態での半導体基板が受ける可能性のある最大温度(Thi)、すなわち包装材の耐温度までであれば特に制限はない。具体的には30〜100℃の範囲であればよい。本発明においてはThiとしては、包装時の温度(Tam)より約5℃高い温度以上、約100℃以下であることが好ましい。この温度範囲より低い場合は評価するための時間が長くなり、またこの範囲より高い場合には、評価の精度が十分でないことがある。また、維持時間についても特に制限はなく、温度Thiにおいて劣化が生じるまでの時間をはさむ範囲であればよい。通常数日〜1年である。かかる高温状態により半導体基板の表面を劣化させる因子が活性され劣化現象が加速されることとなる。   (1) is not particularly limited as long as it is from the packaging temperature to the maximum temperature (Thi) that the semiconductor substrate in the packaging state may receive, that is, the temperature resistance of the packaging material. Specifically, it may be in the range of 30 to 100 ° C. In the present invention, as Thi, it is preferable that the temperature is about 5 ° C. or higher and about 100 ° C. or lower than the packaging temperature (Tam). When the temperature is lower than this range, the time for evaluation becomes longer. When the temperature is higher than this range, the accuracy of evaluation may not be sufficient. Further, the maintenance time is not particularly limited, and may be in a range sandwiching the time until deterioration occurs at the temperature Thi. Usually several days to a year. Such a high temperature condition activates a factor that degrades the surface of the semiconductor substrate and accelerates the degradation phenomenon.

(2)は包装時の温度から、包装状態での半導体基板が受ける可能性のある最低温度(Tlow)、すなわち包装材の耐冷温度までであれば特に制限はない。具体的には−60〜10℃の範囲であればよい。本発明においてはTlowとしては、−40〜−20℃、特に約−30℃程度であることが好ましい。この温度範囲では包装状態の内部水蒸気がほぼ完全に凝結する状態となる。また、維持時間についても特に制限はなく、温度Tlowおいて凝結水による劣化が生じるまでの時間をはさむ範囲であればよい。通常数日〜1年である。かかる低温状態により半導体基板の表面に凝集した水(又はその他の揮発成分)により劣化現象が生じることとなる。   (2) is not particularly limited as long as it is from the packaging temperature to the lowest temperature (Tlow) that the semiconductor substrate in the packaging state may receive, that is, the cold resistance temperature of the packaging material. Specifically, it may be in the range of −60 to 10 ° C. In the present invention, Tlow is preferably -40 to -20 ° C, particularly about -30 ° C. In this temperature range, the packaged internal water vapor is almost completely condensed. Further, the maintenance time is not particularly limited, and may be in a range sandwiching the time until deterioration due to condensed water occurs at the temperature Tlow. Usually several days to a year. The deterioration phenomenon occurs due to water (or other volatile components) aggregated on the surface of the semiconductor substrate due to such a low temperature state.

(3)の時間tamは、(1)〜(2)の処理にて生じた半導体基板の表面の劣化を評価するために温度をTamに戻すに十分な時間である。通常1時間〜4時間であればよい。この時間の経過後、包装材料を破壊して半導体基板を取り出し、表面品質の劣化を評価する。   The time tam (3) is a time sufficient to return the temperature to Tam in order to evaluate the deterioration of the surface of the semiconductor substrate caused by the processes (1) to (2). Usually, it may be 1 hour to 4 hours. After the elapse of this time, the packaging material is destroyed, the semiconductor substrate is taken out, and the deterioration of the surface quality is evaluated.

本発明の方法は、劣化の程度をより正確に、またより迅速に行うため、上の各工程(1)〜(3)を一度行うのみならず、同じ温度、時間で繰り返し行う方法、種々の温度及び時間を変え一回、又は複数回繰り返す方法が含まれる。   In the method of the present invention, the above steps (1) to (3) are performed not only once but also repeatedly at the same temperature and time in order to perform the degree of deterioration more accurately and more quickly. A method of changing the temperature and time and repeating once or a plurality of times is included.

(半導体基板の使用前保存期限を推定する方法)
本発明の半導体基板の使用前保存期限を推定する方法は、半導体基板の製造後、半導体基板の表面品質が要求を満たすことを確認した後、特定の包装材料で包装された状態で、どの程度の期間、所定の保存状態(特に保存温度)で保持され、後開封された場合半導体基板の表面品質に劣化がなくそのまま使用できるのかを推定する方法である。
(Method of estimating the shelf life of semiconductor substrates before use)
The method for estimating the pre-use shelf life of the semiconductor substrate according to the present invention is to confirm how much the surface quality of the semiconductor substrate satisfies the requirements after manufacturing the semiconductor substrate, and how much is in a state of being packaged with a specific packaging material. This is a method for estimating whether the semiconductor substrate can be used as it is without deterioration in the surface quality of the semiconductor substrate when it is held in a predetermined storage state (particularly storage temperature) and later opened.

すなわちかかる方法は、上で説明した本発明の応用であり、包装状態での半導体基板の表面品質の劣化の程度を迅速に評価する方法の(1)〜(3)を適用し、さらに半導体基板の表面品質の劣化を検査した結果見られたThiでの表面品質の劣化までの維持時間thiを決定し、Thiとthiとの関係を表現する経験式を作成し、その関係式に基づき、任意のThiにおけるthiを決定することにより、半導体基板の使用前保存期限を推定する。   That is, this method is an application of the present invention described above, applies (1) to (3) of the method for rapidly evaluating the degree of deterioration of the surface quality of the semiconductor substrate in the packaged state, and further the semiconductor substrate. Determine the maintenance time thi until the surface quality degradation at Thi seen as a result of the inspection of the surface quality degradation, and create an empirical formula that expresses the relationship between Thi and thi. By determining thi in Th i, the shelf life before use of the semiconductor substrate is estimated.

ここで前記関係式の作成方法には何ら限定はなく、Thiとthiとの相関性を導く公知の種々の統計的手法により決定することができる。かかる手法によりこれらの2つの値の関連性が統計学的に表現することが可能となり、任意のThiにおけるthiを統計学的な誤差を含めて推定することができる。本発明においては具体的にはアレニウスの手法やアイリングの手法を適用することが好ましい。   Here, the method of creating the relational expression is not limited in any way, and can be determined by various known statistical methods for deriving the correlation between Thi and thi. With this method, the relationship between these two values can be statistically expressed, and thi at any Thi can be estimated including a statistical error. Specifically, in the present invention, it is preferable to apply the Arrhenius method or the Eyring method.

本発明においてはThiの逆数を横軸に、劣化までの維持時間thiの対数を縦軸にプロットすると相関性の良好な直線関係式が得られることが多い。この場合得られる直線の傾きは、特定材料自体の熱加速試験により得られるアレニウスプロットから導かれる活性化エネルギーと似ているがその技術的意味は異なる。本発明方法においては半導体基板自体の劣化を評価しているものではないからである。   In the present invention, when the inverse of Thi is plotted on the horizontal axis and the logarithm of the maintenance time thi until deterioration is plotted on the vertical axis, a linear relational expression with good correlation is often obtained. In this case, the slope of the straight line obtained is similar to the activation energy derived from the Arrhenius plot obtained by the thermal acceleration test of the specific material itself, but its technical meaning is different. This is because the method of the present invention does not evaluate the deterioration of the semiconductor substrate itself.

本発明方法により、半導体基板が製造工場から、包装状態で出荷された後、どのような移動、運搬、保存条件に晒されるかがあらかじめ与えられた場合(特に晒される温度、その時間)、どの程度の期間、包装状態の半導体基板表面が劣化しないかを定量的に計算でき、従って半導体基板使用前保存期間を推定することができる。かかる結果は半導体基板の使用前保存期限を推定する目的において極めて重要である。   According to the method of the present invention, when a semiconductor substrate is shipped from a manufacturing factory in a packaged state, it is given in advance what kind of movement, transportation and storage conditions it will be exposed to (especially the exposure temperature and time). It is possible to quantitatively calculate whether or not the surface of the packaged semiconductor substrate has deteriorated for a certain period of time, and thus it is possible to estimate the storage period before using the semiconductor substrate. Such a result is extremely important for the purpose of estimating the shelf life before use of the semiconductor substrate.

(包装材料に起因した半導体基板表面の品質劣化因子を同定する方法)
本発明は、包装状態での半導体基板の表面品質が包装材料に起因して劣化した場合の劣化因子を同定する方法である。すなわち、本発明の前保存期限を推定する方法包装材料の品質の劣化を評価する方法により得られた、Thiとthiとの関係式をThiの逆数を横軸に、劣化までの維持時間thiの対数を縦軸にプロットして直線関係式として直線の傾きと、包装材料を、温度Tamより昇温して高温度Thiで時間thi維持し後、包装材料からの脱ガス成分の脱ガス量を測定して得た直線の傾きの比較・検証からなる手法である。
(Method of identifying quality degradation factors on the surface of semiconductor substrates caused by packaging materials)
The present invention is a method for identifying a deterioration factor when the surface quality of a semiconductor substrate in a packaged state is deteriorated due to a packaging material. That is, the method for estimating the pre-storing period of the present invention The relational expression between Thi and thi obtained by the method for evaluating the deterioration of the quality of the packaging material, the reciprocal number of Thi and the maintenance time thi until deterioration is shown. The logarithm is plotted on the vertical axis, the slope of the line as a linear relational expression, and the packaging material is heated from the temperature Tam and maintained at the high temperature Thi for a time thi, and then the degassing amount of the degassing component from the packaging material is determined. This method consists of comparing and verifying the slopes of the straight lines obtained by measurement.

ここで包装材料からの脱ガス成分は包装材料に固有のものであり、その成分の同定方法、また定量方法については特に制限はなく従来公知のガス成分分析装置、方法が好ましく使用できる。具体的には、ガスクロマトグラフ装置、質量分析装置、またそれらを組み合わせた分析装置が挙げられる。かかる測定により得られる結果に基づき、各成分の温度Thiに依存する脱ガス成分・脱ガス量が決定される。   Here, the degassed component from the packaging material is unique to the packaging material, and there is no particular limitation on the identification method and quantitative method of the component, and conventionally known gas component analyzers and methods can be preferably used. Specific examples include a gas chromatograph device, a mass spectrometer, and an analyzer that combines them. Based on the result obtained by such measurement, the degassing component / degassing amount depending on the temperature Thi of each component is determined.

よく知られた方法として、Thiの逆数を横軸に、各脱ガス成分の放出量の対数を縦軸にプロットすると相関性の良好な直線関係式が得られることが多い。この場合得られる直線の傾きは、各脱ガス成分の揮発・拡散のアレニウスプロットとして知られており、得られる活性化エネルギーの値の技術的意味はよく理解されている(大木、大沢、田中、千原編集:化学大辞典、「アレニウスの式」の項、東京化学同人(1989年)、G.M.BARROW著、藤代亮一訳:物理化学(下)第4版、p.664‐647、東京化学同人、P.W.ATKINS著、千原秀昭・中村亘男訳:物理化学(下)第2版、p.1056、東京化学同人)。   As a well-known method, when the inverse of Thi is plotted on the horizontal axis and the logarithm of the release amount of each degassed component is plotted on the vertical axis, a linear relational expression with good correlation is often obtained. The slope of the straight line obtained in this case is known as the Arrhenius plot of volatilization / diffusion of each degassed component, and the technical meaning of the obtained activation energy value is well understood (Oki, Osawa, Tanaka, Edited by Chihara: Dictionary of Chemistry, “Arrhenius Formula”, Tokyo Kagaku Doujin (1989), by GM BARROW, written by Ryoichi Fujishiro: Physical Chemistry (below), 4th edition, pages 664-647, Tokyo Chemistry Doujin, PW ATKINS, Hideaki Chihara and Nobuo Nakamura: Physical Chemistry (bottom) 2nd edition, p. 1056, Tokyo Chemical Doujin).

そこで、本発明の前保存期限を推定する方法包装材料の品質の劣化を評価する方法により得られた、Thiとthiとの関係式をThiの逆数を横軸に、劣化までの維持時間thiの対数を縦軸にプロットして直線関係式として直線の傾きと、包装材料の品質の劣化を評価する方法により得られた、各脱ガス成分の直線の傾きとを比較し、特定の脱ガス成分の傾きが一致した場合、包装状態での半導体基板の表面品質を劣化させる因子として決定することができる。   Therefore, the method of estimating the pre-storing time limit of the present invention, the relational expression between Thi and thi obtained by the method of evaluating the deterioration of the quality of the packaging material, the reciprocal of Thi on the horizontal axis, The logarithm is plotted on the vertical axis to compare the slope of the straight line as a linear relational expression with the slope of the straight line of each degassing component obtained by the method of evaluating deterioration of the quality of the packaging material. Can be determined as a factor that degrades the surface quality of the semiconductor substrate in the packaged state.

以下本発明につきさらに具体的に実施例に則して説明する。ただし本発明はこれらの実施例の限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(発明1:包装状態での半導体基板の表面品質劣化の程度を迅速に評価する方法)
まず、評価に使用する直径200mmのウェーハを所定の枚数収集し、製品ウェーハを出荷前に洗浄するのと同等の条件、例えばRCA洗浄方法で洗浄した。その後、KLA‐Tencor社製のウェーハ表面異物検査装置SurfScan‐SP1‐TBIで100nm以上の粒径を有するウェーハ表面欠陥数を100nm以上、120nm以上、160nm以上、200nm以上、280nm以上、大規模異物(俗称:エリアカウント)の各グレードに分けて計測した。これは、ウェーハ上に現れる品質劣化がどのくらいのサイズに典型的に出現するかを理解するためであり、その時代において可能な限り計測可能限界までの粒径を計測することが好ましい。この、洗浄後に計測された欠陥数が本評価開始前の初期条件値であり、この値からの増減数が保管による表面品質への影響として認識されることになる。
(Example 1)
(Invention 1: Method for quickly evaluating the degree of surface quality degradation of a semiconductor substrate in a packaged state)
First, a predetermined number of wafers having a diameter of 200 mm used for evaluation were collected, and the product wafer was cleaned under the same conditions as for cleaning before shipment, for example, the RCA cleaning method. After that, the number of wafer surface defects having a particle diameter of 100 nm or more is 100 nm or more, 120 nm or more, 160 nm or more, 200 nm or more, 280 nm or more, large-scale foreign matter (SurfScan-SP1-TBI manufactured by KLA-Tencor) It was measured separately for each grade (common name: area count). This is in order to understand the size at which quality degradation that appears on the wafer typically appears, and it is preferable to measure the particle size to the measurable limit as much as possible in that era. The number of defects measured after cleaning is an initial condition value before the start of the evaluation, and the number of increase / decrease from this value is recognized as an effect on the surface quality due to storage.

次に、上記ウェーハを評価対象材であるウェーハ収納容器にセットした。最初の評価対象材として、当社オリジナルの収納容器と外国大手メーカ製の収納容器を用いた。通常、収納容器には25枚のウェーハを収納できるように25本の溝がある。評価では、ウェーハ25枚を収納した場合と、ウェーハを1溝(最初の溝)、13溝(収納容器の中央)、25溝(最後の溝)の3枚のみ収納した場合を併用したが、得られた結果に大差がなかったため、実験の簡便性のためにウェーハを上述したように各収納容器に3枚のみ収納する方法を用いた。   Next, the wafer was set in a wafer storage container as an evaluation target material. As the first material to be evaluated, we used our original storage container and a storage container made by a major foreign manufacturer. Usually, the storage container has 25 grooves so that 25 wafers can be stored. In the evaluation, the case where 25 wafers were stored and the case where only 3 wafers of 1 groove (first groove), 13 grooves (center of the storage container) and 25 grooves (last groove) were stored were used in combination. Since the obtained results were not significantly different, a method of storing only three wafers in each storage container as described above was used for the convenience of the experiment.

ウェーハ収納後、容器のフタを閉めて、製品ウェーハと同様に収納容器を常圧下で二重に包装した。まず、外環境からの粒子状の異物付着を根絶するために収納容器をポリエチレンを主体とする無色透明なガゼット袋(俗称:内袋)で包装後、引き続き、外環境からの水分や無機イオンなどによるウェーハの汚染を根絶するためにアルミニウムフィルムとポリエチレンフィルムを積層したガゼット袋(俗称:外袋)で包装した。この二重包装により、収納容器内の環境は外界と完全に隔絶される。ちなみに、内袋と外袋の間に袋内環境中に存在する水分を吸収するためにゼオライトを主体とした乾燥剤を設置する場合があるが、それを設置するか否かは、製品出荷の荷姿と同様にすれば良く、今回の評価では乾燥剤は一切用いなかった。また、今回の評価では包装条件を常圧下としたが、減圧包装でも良く、製品出荷の荷姿と同様にすることが重要である。なお、包装袋は、昭和電工パッケージング社製の特殊グレード品を用いて、包装袋から発生する無機イオン、金属イオン、有機アウトガスが本評価に及ぼす影響を極力排除した。   After storing the wafer, the lid of the container was closed, and the storage container was double-packed under normal pressure in the same manner as the product wafer. First, in order to eradicate particulate foreign substances from the external environment, the storage container is packed with a colorless and transparent gusset bag (common name: inner bag) mainly composed of polyethylene, and then water and inorganic ions from the external environment are continuously used. In order to eradicate the contamination of the wafer due to the above, it was wrapped in a gusset bag (common name: outer bag) in which an aluminum film and a polyethylene film were laminated. By this double packaging, the environment inside the storage container is completely isolated from the outside world. By the way, a desiccant mainly composed of zeolite may be installed between the inner bag and the outer bag to absorb the moisture present in the bag's environment. Whether or not it is installed depends on the product shipment. It should be the same as the packing form, and no desiccant was used in this evaluation. In this evaluation, the packaging conditions were normal pressure, but reduced pressure packaging may be used, and it is important that the packaging conditions be the same as the product shipment. In addition, the packaging bag used a special grade product made by Showa Denko Packaging Co., Ltd., and the influence of inorganic ions, metal ions and organic outgas generated from the packaging bag on this evaluation was eliminated as much as possible.

上記のウェーハ収集から包装完了までは、当然のことながら、製品ウェーハを検査・包装するのと同じクリーンルームで実施し、包装袋内に内在する製造環境を製品ウェーハと評価ウェーハで同等とした。ちなみに、本評価で用いたクリーンルームは、温度23±1℃・相対湿度40±10%で常時管理されている。   From the wafer collection to the completion of packaging, as a matter of course, it was carried out in the same clean room as inspecting and packaging the product wafer, and the production environment inherent in the packaging bag was made equal between the product wafer and the evaluation wafer. Incidentally, the clean room used in this evaluation is always managed at a temperature of 23 ± 1 ° C. and a relative humidity of 40 ± 10%.

包装完了後、収納容器をクリーンルーム外に持ち出し、ヤマト科学製の恒温槽IG‐46H(到達最高温度:85℃、温度制御精度:±0.5℃)内に静置し、恒温槽ドアを閉めた。なお、恒温槽は評価に用いる温度に予め予熱しておき、恒温槽の昇温時間を極力短縮した。この恒温槽での加熱温度は、実施例1では主たる実験温度は60℃とし、主たる加熱時間は168時間とした。   After packaging is completed, take the storage container out of the clean room, leave it in the constant temperature bath IG-46H manufactured by Yamato Scientific (maximum temperature reached: 85 ° C, temperature control accuracy: ± 0.5 ° C), and close the temperature chamber door. It was. In addition, the thermostat was preheated to the temperature used for evaluation beforehand, and the temperature rising time of the thermostat was shortened as much as possible. As for the heating temperature in this thermostat, in Example 1, the main experimental temperature was 60 ° C., and the main heating time was 168 hours.

恒温槽での加熱終了後、直ちに収納容器を日立製冷凍庫RS‐M30(到達最低温度:−32℃、温度制御精度:±1℃)に投入した。この冷凍庫は、いわゆるアイスキャンディーを駄菓子屋で保管しておくような汎用的なもので十分であり、冷凍庫は常時−30℃にセットしておき、収納容器を投入後、直ちに所定の温度に冷却できるようにした。本評価では冷却時間を12時間としたが、これは、80℃に加熱された収納容器を直ちに冷凍庫に静置した場合の80℃から−30℃への温度遷移時間を除外しても2時間の冷却がされるように配慮された。この冷却時間はもちろん冷凍庫の能力で決定されるものであるが、評価結果を安定させるために最低でも2時間は所定の冷却温度に保定することが好ましい。   Immediately after the heating in the thermostatic bath, the storage container was put into a Hitachi freezer RS-M30 (minimum temperature reached: -32 ° C, temperature control accuracy: ± 1 ° C). This freezer is sufficient to be a general-purpose storage of so-called ice candy in a candy store. The freezer is always set to -30 ° C and immediately cooled to a predetermined temperature after the storage container is put in. I was able to do it. In this evaluation, the cooling time was 12 hours, but this was 2 hours even if the temperature transition time from 80 ° C. to −30 ° C. when the storage container heated to 80 ° C. was immediately left in the freezer was excluded. Considered to be cooled. Of course, this cooling time is determined by the capacity of the freezer. In order to stabilize the evaluation result, it is preferable to keep the cooling temperature at a predetermined cooling temperature for at least two hours.

所定の時間の冷却完了後、収納容器を冷凍庫から取り出し、その場で約2時間放置して収納容器の温度を室温近傍まで上昇させた。引き続き、収納容器をクリーンルームに持ち込み、更に2時間、収納容器をクリーンルーム室温になじませてから包装袋を開包し、収納容器を取り出した。そして、収納容器のフタを開けてウェーハを取り出し、KLA‐Tencor社製のウェーハ表面異物検査装置SurfScan‐SP1‐TBIで100nm以上の粒径を有するウェーハ表面欠陥数を100nm以上、120nm以上、160nm以上、200nm以上、280nm以上、大規模異物(俗称:エリアカウント)の各グレードに分けて再計測した。なお、再計測に用いる測定条件は、初期条件値を測定した条件と同等である必要がある。   After completion of cooling for a predetermined time, the storage container was taken out of the freezer and left on the spot for about 2 hours to raise the temperature of the storage container to near room temperature. Subsequently, the storage container was brought into the clean room, and after further accommodating the storage container to room temperature for 2 hours, the packaging bag was opened and the storage container was taken out. And the lid of the storage container is opened, the wafer is taken out, and the number of wafer surface defects having a particle diameter of 100 nm or more is 100 nm or more, 120 nm or more, 160 nm or more with a wafer surface foreign substance inspection apparatus SurfScan-SP1-TBI manufactured by KLA-Tencor. 200 nm or more, 280 nm or more, and remeasured for each grade of large-scale foreign matter (common name: area count). Note that the measurement conditions used for remeasurement need to be the same as the conditions under which the initial condition values were measured.

次に初期条件値と再測定値を比較し、計測された表面欠陥数に差異があるかどうかを検証した。当社製オリジナル収納容器で得られた評価後の表面欠陥出現状況を図1に示した。図にはウェーハの輪郭とウェーハ上に計測された表面欠陥がドットで示されている。図1(a)に示した評価前のウェーハにはウェーハ輪郭内に表面欠陥の存在を示すドットはほとんどないが、図1(b)に示した本評価法適用後のウェーハには、特定部位に欠陥が集中して出現していることがわかる。   Next, the initial condition value was compared with the remeasured value, and it was verified whether there was a difference in the number of surface defects measured. FIG. 1 shows the appearance of surface defects after evaluation obtained with our original storage container. In the figure, the outline of the wafer and the surface defects measured on the wafer are indicated by dots. The wafer before evaluation shown in FIG. 1A has few dots indicating the presence of surface defects in the wafer outline, but the wafer after application of this evaluation method shown in FIG. It can be seen that defects are concentrated and appear.

一方、外国大手メーカ製の収納容器で得られた評価後の表面欠陥出現状況を図2に示すが、図2(a)に示した評価前のウェーハと図2(b)に示した本評価法適用後のウェーハでは、ウェーハの輪郭内に表面欠陥の存在を示すドットに差がみられない、即ち、表面欠陥が全く増加していないことがわかる。   On the other hand, the appearance state of surface defects after evaluation obtained in a storage container made by a major foreign manufacturer is shown in FIG. 2, but the wafer before evaluation shown in FIG. 2 (a) and the main evaluation shown in FIG. 2 (b). In the wafer after application of the method, it can be seen that there is no difference in the dots indicating the presence of surface defects in the outline of the wafer, that is, the surface defects are not increased at all.

以上より、本評価でウェーハ収納容器に起因するウェーハ保管中に発生する表面欠陥の収納容器に依存する形で温度加速的手法により出現させることができた。   From the above, in this evaluation, it was possible to make the surface defect generated during wafer storage caused by the wafer storage container appear by the temperature acceleration method in a form depending on the storage container.

(実施例2)(発明の2:半導体基板の使用前保存期限を推定する方法)
まず、評価に使用する直径200mmのウェーハを所定の枚数収集し、製品ウェーハを出荷前に洗浄するのと同等の条件、例えばRCA洗浄方法で洗浄した。その後、KLA‐Tencor社製のウェーハ表面異物検査装置SurfScan‐SP1‐TBIで100nm以上の粒径を有するウェーハ表面欠陥数を100nm以上、120nm以上、160nm以上、200nm以上、280nm以上、大規模異物(俗称:エリアカウント)の各グレードに分けて計測した。これは、ウェーハ上に現れる品質劣化がどのくらいのサイズに典型的に出現するかを理解するためであり、その時代において可能な限り計測可能限界までの粒径を計測することが好ましい。この、洗浄後に計測された欠陥数が本評価開始前の初期条件値であり、この値からの増減数が保管による表面品質への影響として認識されることになる。
(Embodiment 2) (Invention 2: Method for Estimating Storage Period before Use of Semiconductor Substrate)
First, a predetermined number of wafers having a diameter of 200 mm used for evaluation were collected, and the product wafer was cleaned under the same conditions as for cleaning before shipment, for example, the RCA cleaning method. After that, the number of wafer surface defects having a particle diameter of 100 nm or more is 100 nm or more, 120 nm or more, 160 nm or more, 200 nm or more, 280 nm or more, large-scale foreign matter (SurfScan-SP1-TBI manufactured by KLA-Tencor) It was measured separately for each grade (common name: area count). This is in order to understand the size at which quality degradation that appears on the wafer typically appears, and it is preferable to measure the particle size to the measurable limit as much as possible in that era. The number of defects measured after cleaning is an initial condition value before the start of this evaluation, and the number of increase / decrease from this value is recognized as an effect on the surface quality due to storage.

次に、上記ウェーハを評価対象材であるウェーハ収納容器にセットした。評価対象材として、当社製オリジナルの収納容器を用いた。通常、収納容器には25枚のウェーハを収納できるように25本の溝がある。評価では、ウェーハ25枚を収納した場合と、ウェーハを1溝(最初の溝)、13溝(収納容器の中央)、25溝(最後の溝)の3枚のみ収納した場合を併用したが、得られた結果に大差がなかったため、実験の簡便性のためにウェーハを上述したように3枚のみ収納する方法を用いた。   Next, the wafer was set in a wafer storage container as an evaluation target material. An original storage container made by our company was used as an evaluation target material. Usually, the storage container has 25 grooves so that 25 wafers can be stored. In the evaluation, the case where 25 wafers were stored and the case where only 3 wafers of 1 groove (first groove), 13 grooves (center of the storage container) and 25 grooves (last groove) were stored were used in combination. Since there was not much difference in the obtained results, a method of storing only three wafers as described above was used for the convenience of the experiment.

ウェーハ収納後、収納容器のフタを閉めて、製品ウェーハと同様に収納容器を常圧下で二重に包装した。まず、外環境からの粒子状の異物付着を根絶するために収納容器をポリエチレンを主体とする無色透明なガゼット袋(俗称:内袋)で包装後、引き続き、外環境からの水分や無機イオンなどによるウェーハの汚染を根絶するためにアルミニウムフィルムとポリエチレンフィルムを積層したガゼット袋(俗称:外袋)で包装した。この二重包装により、収納容器内の環境は外界と完全に隔絶される。ちなみに、内袋と外袋の間に袋内環境中に存在する水分を吸収するためにゼオライトを主体とした乾燥剤を設置する場合があるが、それを設置するか否かは、製品出荷の荷姿と同様にすれば良く、今回の評価では乾燥剤は一切用いなかった。また、今回の評価では包装条件を常圧下としたが、減圧包装でも良く、製品出荷の荷姿と同様にすることが重要である。なお、包装袋は、昭和電工パッケージング社製の特殊グレード品を用いて、包装袋から発生する無機イオン、金属イオン、有機アウトガスが本評価に及ぼす影響を極力排除した。   After storing the wafer, the lid of the storage container was closed, and the storage container was double-packed under normal pressure in the same manner as the product wafer. First, in order to eradicate particulate foreign substances from the external environment, the storage container is packed with a colorless and transparent gusset bag (common name: inner bag) mainly composed of polyethylene, and then water and inorganic ions from the external environment are continuously used. In order to eradicate the contamination of the wafer due to the above, it was wrapped in a gusset bag (common name: outer bag) in which an aluminum film and a polyethylene film were laminated. By this double packaging, the environment inside the storage container is completely isolated from the outside world. By the way, a desiccant mainly composed of zeolite may be installed between the inner bag and the outer bag to absorb the moisture present in the bag's environment. Whether or not it is installed depends on the product shipment. It should be the same as the packing form, and no desiccant was used in this evaluation. In this evaluation, the packaging conditions were normal pressure, but reduced pressure packaging may be used, and it is important that the packaging conditions be the same as the product shipment. In addition, the packaging bag used a special grade product made by Showa Denko Packaging Co., Ltd., and the influence of inorganic ions, metal ions and organic outgas generated from the packaging bag on this evaluation was eliminated as much as possible.

上記のウェーハ収集から包装完了までは、当然のことながら、製品ウェーハを検査・包装するのと同じクリーンルームで実施し、包装袋内に内在する製造環境を製品ウェーハと評価ウェーハで同等とした。ちなみに、本評価で用いたクリーンルームは、温度23±1℃・相対湿度40±10%で常時管理されている。   From the wafer collection to the completion of packaging, as a matter of course, it was carried out in the same clean room as inspecting and packaging the product wafer, and the production environment inherent in the packaging bag was made equal between the product wafer and the evaluation wafer. Incidentally, the clean room used in this evaluation is always managed at a temperature of 23 ± 1 ° C. and a relative humidity of 40 ± 10%.

包装完了後、収納容器をクリーンルーム外に持ち出し、ヤマト科学製の恒温槽IG‐46H(到達最高温度:85℃、温度制御精度:±0.5℃)内に静置し、恒温槽ドアを閉めた。なお、恒温槽は評価に用いる温度に予熱しておき、恒温槽の昇温時間を極力短縮した。この恒温槽での加熱温度は、上限を80℃とし、主たる実験温度は、40℃,60℃,80℃としたが、本評価の妥当性を検証する目的、あるいは40℃では評価時間が長くなりすぎる場合などには、30℃と50℃での評価も追加実施した。また、主たる加熱時間は12時間から744時間とし、まず、60℃で12時間の加熱という条件から評価を開始した。   After packaging is completed, take the storage container out of the clean room, leave it in the constant temperature bath IG-46H manufactured by Yamato Scientific (maximum temperature reached: 85 ° C, temperature control accuracy: ± 0.5 ° C), and close the temperature chamber door. It was. In addition, the thermostat was preheated to the temperature used for evaluation, and the temperature rising time of the thermostat was shortened as much as possible. The heating temperature in this constant temperature bath is set to 80 ° C., and the main experimental temperatures are 40 ° C., 60 ° C., and 80 ° C. However, the evaluation time is long at 40 ° C. for the purpose of verifying the validity of this evaluation. When it became too much, evaluation at 30 ° C. and 50 ° C. was additionally performed. The main heating time was 12 hours to 744 hours, and evaluation was started from the condition of heating at 60 ° C. for 12 hours.

恒温槽での加熱終了後、直ちに収納容器を日立製冷凍庫RS‐M30(到達最低温度:−32℃、温度制御精度:±1℃)に投入した。この冷凍庫は、いわゆるアイスキャンディーを駄菓子屋で保管しておくような汎用的なもので十分であり、冷凍庫は常時−30℃にセットしておき、収納容器を投入後、直ちに所定の温度に冷却できるようにした。本評価では冷却時間を12時間としたが、これは、80℃に加熱された収納容器を直ちに冷凍庫に静置した場合の80℃から−30℃への温度遷移時間を除外しても2時間の冷却がされるように配慮された。この冷却時間はもちろん冷凍庫の能力で決定されるものであるが、評価結果を安定させるために最低でも2時間は所定の冷却温度に保定することが好ましい。   Immediately after the heating in the thermostatic bath, the storage container was put into a Hitachi freezer RS-M30 (minimum temperature reached: -32 ° C, temperature control accuracy: ± 1 ° C). This freezer is sufficient to be a general-purpose storage of so-called ice candy in a candy store. The freezer is always set to -30 ° C and immediately cooled to a predetermined temperature after the storage container is put in. I was able to do it. In this evaluation, the cooling time was 12 hours, but this was 2 hours even if the temperature transition time from 80 ° C. to −30 ° C. when the storage container heated to 80 ° C. was immediately left in the freezer was excluded. Considered to be cooled. Of course, this cooling time is determined by the capacity of the freezer. In order to stabilize the evaluation result, it is preferable to keep the cooling temperature at a predetermined cooling temperature for at least two hours.

所定の時間の冷却完了後、収納容器を冷凍庫から取り出し、その場で約2時間放置して収納容器の温度を室温近傍まで上昇させた。引き続き、収納容器をクリーンルームに持ち込み、更に2時間、収納容器をクリーンルーム室温になじませてから包装袋を開包し、収納容器を取り出した。そして、収納容器のフタを開けてウェーハを取り出し、KLA‐Tencor社製のウェーハ表面異物検査装置SurfScan‐SP1‐TBIで100nm以上の粒径を有するウェーハ表面欠陥数を100nm以上、120nm以上、160nm以上、200nm以上、280nm以上、大規模異物(俗称:エリアカウント)の各グレードに分けて再計測した。なお、再計測時の測定条件は、初期条件値を測定した条件と同等である必要がある。   After completion of cooling for a predetermined time, the storage container was taken out of the freezer and left on the spot for about 2 hours to raise the temperature of the storage container to near room temperature. Subsequently, the storage container was brought into the clean room, and after further accommodating the storage container to room temperature for 2 hours, the packaging bag was opened and the storage container was taken out. And the lid of the storage container is opened, the wafer is taken out, and the number of wafer surface defects having a particle diameter of 100 nm or more is 100 nm or more, 120 nm or more, 160 nm or more with a wafer surface foreign substance inspection apparatus SurfScan-SP1-TBI manufactured by KLA-Tencor. 200 nm or more, 280 nm or more, and remeasured for each grade of large-scale foreign matter (common name: area count). Note that the measurement conditions at the time of remeasurement need to be the same as the conditions under which the initial condition values were measured.

次に初期条件値と再測定値を比較し、計測された表面欠陥数に差異があるかどうかを検証した。60℃で12時間という加熱条件では明確な表面欠陥の増加が認められなかったので、次の評価では60℃での加熱時間を24時間、48時間、72時間と延長し、明確な差異が現れるまで時間を延長した。本評価における明確な表面欠陥の増加はエリアカウントに現れ、それは、図1においてはドットで示された。エリアカウントの増加は、新たなエリアカウントの出現、または、初期条件値では微小な粒径の表面欠陥がエリアカウントに変化した場合の双方があったが、その両者を区別せずにエリアカウントの増加として取り扱い、エリアカウントが1つでも増加したらウェーハ使用前保管限度期日に到達したと認定した。なお、収納容器とウェーハは1回の加熱・冷却サイクルを適用後は再利用されないため、評価全体の工期を短縮するには、一度に数個(4〜8個)の収納容器を静置できる容量の恒温槽を用い、所定の加熱時間終了後に1つの収納容器を恒温槽から取り出すという作業をすることが望ましい。実際に評価数が増えるにつれ、我々も評価の効率化のためにそうした。   Next, the initial condition value was compared with the remeasured value, and it was verified whether there was a difference in the number of surface defects measured. Since no obvious increase in surface defects was observed under the heating condition of 60 ° C. for 12 hours, in the next evaluation, the heating time at 60 ° C. was extended to 24 hours, 48 hours and 72 hours, and a clear difference appeared. Extended the time. A clear increase in surface defects in this evaluation appeared in the area count, which is indicated by dots in FIG. The area count increased either when a new area count appeared or when the initial condition value changed a surface defect with a small particle size to an area count. When the area count was increased by one, it was determined that the storage limit date before using the wafer was reached. Since the storage container and the wafer are not reused after one heating / cooling cycle is applied, several (4 to 8) storage containers can be left at a time to shorten the overall evaluation period. It is desirable to use a constant-temperature bath having a capacity and to take out one storage container from the thermostat after a predetermined heating time. As the number of evaluations actually increased, we did so to make the evaluation more efficient.

60℃では96時間までエリアカウントを含む表面欠陥の明確な増加が確認できず、120時間でエリアカウントが明確に増加した。したがって、60℃におけるウェーハの使用前保管限界期日は、96時間(4日)〜120時間(5日)までの間ということがわかった。そこで次に収納容器の加熱温度を80℃に上昇させることを除いては、前述までと同様の手順を繰り返した。加熱時間が12時間では表面欠陥の増加が明確に認められなかったので、18時間、24時間、36時間、48時間、72時間、168時間、と加熱時間を延長した。その結果、24時間〜48時間では、3枚のうちの1枚でエリアカウントが1〜2個増加したが、72時間以上では3枚のウェーハともエリアカウントが明確に増加した。したがって、80℃におけるウェーハ使用前保管限度期日は48時間(2日)〜72時間(3日)であることがわかった。次に加熱温度を40℃として上述の評価手法を繰り返した。その結果、336時間と504時間の加熱時間においてはエリアカウントの増加が見られなかったが、加熱時間が744時間の場合にはエリアカウントが明確に増加した。したがって、40℃におけるウェーハ使用前保管限度期日は504時間(21日)〜744時間(31日)であることがわかった。   At 60 ° C., a clear increase in surface defects including an area count could not be confirmed until 96 hours, and the area count clearly increased after 120 hours. Therefore, it was found that the storage limit date before use of the wafer at 60 ° C. was between 96 hours (4 days) and 120 hours (5 days). Therefore, the same procedure as described above was repeated except that the heating temperature of the storage container was raised to 80 ° C. Since the increase in surface defects was not clearly observed when the heating time was 12 hours, the heating time was extended to 18 hours, 24 hours, 36 hours, 48 hours, 72 hours, 168 hours. As a result, from 24 hours to 48 hours, one of the three sheets increased the area count by one to two. However, after 72 hours or more, the three wafers clearly increased the area count. Therefore, it was found that the storage limit date before wafer use at 80 ° C. was 48 hours (2 days) to 72 hours (3 days). Next, the above-described evaluation method was repeated at a heating temperature of 40 ° C. As a result, the area count did not increase during the heating time of 336 hours and 504 hours, but the area count increased clearly when the heating time was 744 hours. Therefore, it was found that the storage limit date before using the wafer at 40 ° C. is 504 hours (21 days) to 744 hours (31 days).

上述の結果から、ウェーハ使用前保管限度期日は加熱温度が低下すると加速度的に長くなることがわかる。このことから、ウェーハの実保管温度である20℃〜30℃においては、推定されるウェーハ使用前保管限度期日は数ヶ月以上となることは明白である。この80℃,60℃,40℃におけるウェーハ使用前保管限度期日からウェーハの実保管温度におけるウェーハ使用前保管限度期日を推定するために、上述の各加熱温度におけるウェーハ使用前保管限度期日を加熱温度を絶対温度に換算した逆数に対してプロットすることを試みた。その結果を図3に示した。   From the above-mentioned results, it can be seen that the storage limit date before use of the wafer is accelerated as the heating temperature decreases. From this, it is clear that the estimated storage limit date before use of the wafer is several months or more at 20 to 30 ° C. which is the actual storage temperature of the wafer. In order to estimate the storage limit date before wafer use at the actual storage temperature of the wafer from the storage limit dates before wafer use at 80 ° C., 60 ° C., and 40 ° C., the storage limit date before wafer use at each heating temperature described above is used as the heating temperature. Was plotted against the inverse of the absolute temperature. The results are shown in FIG.

図3は、横軸が加熱温度を絶対温度に換算した逆数を1000倍した値を示しており、縦軸はウェーハ使用前保管限界時間である。図中のプロットは、○印がエリアカウントの増加なし、△印は一部のウェーハにエリアカウントの増加あり、×印は3枚のウェーハにエリアカウントの増加あり、ということを示している。また図中には、当社の出荷倉庫で保管したウェーハを検査した、ウェーハの実保管温度(20℃)におけるウェーハ使用前保管限度期日のデータも併せて示した。○印の範囲内はウェーハの品質を保障できる保管期日であり、×印の範囲はウェーハの品質を保障できない保管期日であることから、○印と×印(あるいは△印)の境界を各加熱温度で繋いでいくと、ほぼ直線となることがわかる。そこでその直線を低温側(ウェーハ保管温度に近い方向)に延長していくことで、ウェーハの実保管温度におけるウェーハ使用前保管限度期日を推定できた。推定の結果は、30℃において約2ヶ月、25℃において約4ヶ月、20℃において約7ヶ月となった。   In FIG. 3, the horizontal axis indicates a value obtained by multiplying the reciprocal of the heating temperature converted into the absolute temperature by 1000, and the vertical axis indicates the storage limit time before using the wafer. The plots in the figure indicate that the circle mark indicates that the area count does not increase, the triangle mark indicates that the area count has increased for some wafers, and the x mark indicates that the area count has increased for three wafers. The figure also shows data on the storage limit date before using the wafer at the actual storage temperature of the wafer (20 ° C.), in which the wafers stored in our shipping warehouse were inspected. The range marked with ○ is the storage date that guarantees the quality of the wafer, and the range marked with X is the storage date that cannot guarantee the quality of the wafer. It turns out that it becomes a straight line when connected by temperature. Therefore, by extending the straight line to the low temperature side (in the direction closer to the wafer storage temperature), it was possible to estimate the storage limit date before using the wafer at the actual wafer storage temperature. The estimation results were about 2 months at 30 ° C, about 4 months at 25 ° C, and about 7 months at 20 ° C.

図1において、この直線を低温側に延長した結果が、当社の出荷倉庫で保管したウェーハを検査した、ウェーハの実保管温度におけるウェーハ使用前保管限度期日のデータと良く一致していることがわかり、本評価方法の妥当性が示された。なお、図3における外挿直線の傾き、即ち活性化エネルギーは、大よそ1.05±0.05eVと計算された。   In Fig. 1, it can be seen that the result of extending this straight line to the low temperature side is in good agreement with the data on the storage limit date before using the wafer at the actual storage temperature of the wafer that was inspected for the wafer stored in our shipping warehouse. The validity of this evaluation method was demonstrated. Note that the slope of the extrapolated line in FIG. 3, that is, the activation energy, was calculated to be approximately 1.05 ± 0.05 eV.

(実施例3)(発明の3:包装材料に起因した劣化因子を同定する方法)
当社製オリジナル収納容器内におけるウェーハ保管限度期日は実施例2で示した通りである。
Example 3 (Invention 3: Method for Identifying Degradation Factors Caused by Packaging Materials)
The wafer storage limit date in our original storage container is as shown in Example 2.

その後、当社製オリジナル収納容器の構成部材をその種類毎に3つずつ収集した。試料は成型後の角板状であり、大きさは75mm×125mm×2mmに統一し、全ての試料は分析開始まで冷蔵庫で保管した。前処理として4リットル体積のガラス容器に試料1枚を入れて密封し、その後、各試料を各々、40℃,60℃または80℃で2時間加熱して試料からのアウトガスをガラス容器内に充満させた(各試料は1つの温度条件でのみしか加熱しない。このため、同一様の試料が3つ必要であった)。その後、直ちに捕集剤(TENAX−TA:100mg)に容器中の空気を濃縮・サンプリングした。サンプリングはクリーンブースで実施し、サンプリング量はガラス容器体積の2倍となる8リットルとした。試料からのアウトガス成分の捕集は、ヘリウムガスを流しながらガラス容器を25℃/分の昇温速度で室温から400℃まで加温させ、400℃で15分保持し、合計30分間実施した。   After that, three components of our original storage container were collected for each type. The sample was in the shape of a square plate after molding, the size was unified to 75 mm × 125 mm × 2 mm, and all samples were stored in a refrigerator until the start of analysis. As a pretreatment, put one sample in a 4 liter glass container and seal it, and then heat each sample for 2 hours at 40 ° C., 60 ° C. or 80 ° C. to fill the glass container with the outgas from the sample. (Each sample heated only under one temperature condition. Therefore, three identical samples were required). Thereafter, the air in the container was immediately concentrated and sampled in a collecting agent (TENAX-TA: 100 mg). Sampling was performed in a clean booth, and the sampling amount was 8 liters, which is twice the volume of the glass container. The outgas component was collected from the sample by heating the glass container from room temperature to 400 ° C. at a rate of temperature increase of 25 ° C./min while flowing helium gas, and holding at 400 ° C. for 15 minutes for a total of 30 minutes.

次いで、捕集剤(TENAX−TA:100mg)をGLサイエンス社製のガスクロマトグラフィー装置GC6890とアジレント社製の質量分析器MSD5973Nを組み合わせたGC‐MSを用いて、発生した有機アウトガスを分析し、構成部材1グラム当たりから発生する各アウトガスの種類と加熱温度毎のアウトガス発生量を調査した。捕集剤(TENAX−TA:100mg)から捕集したガスを熱脱離させる条件は280℃×15分とした。また、GC‐MS装置にてガス分析する際の温度条件は、まず40℃で8分間待機し、その後に300℃まで10℃/分の速度で昇温させ、300℃で10分間保持した、即ち、合計、44分間の分析を実施した。この分析を各構成部材の試料に対して各々実施した。   Next, the generated organic outgas was analyzed using GC-MS in which a gas chromatography device GC6890 manufactured by GL Science and a mass spectrometer MSD5973N manufactured by Agilent were combined with a collector (TENAX-TA: 100 mg), The type of each outgas generated per gram of the structural member and the amount of outgas generated for each heating temperature were investigated. The conditions for thermally desorbing the gas collected from the collection agent (TENAX-TA: 100 mg) were 280 ° C. × 15 minutes. The temperature conditions for gas analysis with the GC-MS apparatus were as follows: first, waiting at 40 ° C. for 8 minutes, then increasing the temperature to 300 ° C. at a rate of 10 ° C./minute, and holding at 300 ° C. for 10 minutes. That is, a total of 44 minutes of analysis was performed. This analysis was performed on each component sample.

分析の結果、主たるアウトガス種類は、C1224,C1226,デカナール(Decanal),ヂブチルフタル酸エステル(BHT),C1225SH,C1634 の6種類であった。これら6種類のアウトガス量および全有機アウトガス総量に対して各加熱温度におけるアウトガス量を炭素原子重量換算した重量を加熱温度を絶対温度に換算した逆数に対してプロットした。それを図4に示した。 As a result of the analysis, there were six main outgas types: C 12 H 24 , C 12 H 26 , decanal (Decanal), dibutyl phthalate (BHT), C 12 H 25 SH, and C 16 H 34 . The weight of the outgas amount at each heating temperature in terms of carbon atom weight was plotted against the reciprocal of the heating temperature in terms of absolute temperature with respect to these six types of outgas amount and total organic outgas amount. This is shown in FIG.

図4は、横軸が加熱温度を絶対温度に換算した逆数を1000倍した値を示しており、縦軸はアウトガス発生量である。図中のプロットは、○印がC1224、△印がC1226、□印がデカナール(Decanal)、◇印がヂブチルフタル酸エステル(BHT)、+印がC1225SH、×印はC1634、*印は全有機アウトガス量を示している。また、図中には、1.05±0.05eVの活性化エネルギーを示す直線を点線で示した。上述の6種類のプロットのうち、加熱温度の上昇とともにアウトガス量が単調に増加し、且つその活性化エネルギーが1.05±0.05eVに近いのは、C1224,C1226,デカナール(Decanal)の3種類だけであった。また、全有機アウトガス量とは活性化エネルギーが大きく異なることがわかった。このことから、この3種類の物質のどれかあるいは全てがウェーハ保管期限を律束するウェーハ表面欠陥誘導物質として嫌疑があると推定された。そこで、当社製オリジナル収納容器において、上記の3つの嫌疑物質を削減した改善収納容器を試作し、改善収納容器の構成部材に対して上述と同様のアウトガス評価を実施するとともに、改善収納容器にウェーハを保管した場合のウェーハ保管限界期日を評価した。 In FIG. 4, the horizontal axis indicates a value obtained by multiplying the reciprocal of the heating temperature converted into the absolute temperature by 1000, and the vertical axis indicates the outgas generation amount. Plots in the figure are: C 12 H 24 , ◯ marks C 12 H 26 , □ marks decanal, ◇ marks dibutyl phthalate (BHT), + marks C 12 H 25 SH, × The symbol indicates C 16 H 34 , and the symbol * indicates the total organic outgas amount. In the figure, a straight line indicating an activation energy of 1.05 ± 0.05 eV is indicated by a dotted line. Among the six types of plots described above, the amount of outgas monotonously increases as the heating temperature rises, and the activation energy is close to 1.05 ± 0.05 eV because C 12 H 24 , C 12 H 26 , There were only three types, Decalal. It was also found that the activation energy was significantly different from the total organic outgas amount. From this, it was estimated that any or all of these three types of substances are suspicious as wafer surface defect inducers that regulate the wafer storage deadline. Therefore, in our original storage container, we prototyped an improved storage container that reduced the above three suspicious substances, and performed outgas evaluation similar to the above on the components of the improved storage container. The wafer storage limit due date was evaluated.

改善収納容器の構成部材に対して上述と同様のアウトガス評価を実施した結果を図5に示した。図5は、横軸が加熱温度を絶対温度に換算した逆数を1000倍した値を示しており、縦軸はアウトガス発生量である。図中のプロットは、○印が従来収納容器におけるC1224、△印が従来収納容器におけるC1226、□印が従来収納容器におけるデカナール(Decanal)のアウトガス量を示している。また、黒三角印は改善収納容器におけるC1226、黒四角印は改善収納容器におけるデカナール(Decanal)のアウトガス量を示している。改善収納容器では、C1224は検出されず、C1226もデカナール(Decanal)もアウトガス量が低減していた。この2種類のアウトガスの活性化エネルギーは、0.9eV以下の値と計算された。 FIG. 5 shows the result of outgas evaluation similar to that described above for the components of the improved storage container. In FIG. 5, the horizontal axis indicates a value obtained by multiplying the reciprocal of the heating temperature converted into the absolute temperature by 1000, and the vertical axis indicates the outgas generation amount. In the plots in the figure, ◯ indicates the C 12 H 24 in the conventional storage container, Δ indicates the C 12 H 26 in the conventional storage container, and □ indicates the decanal outgas amount in the conventional storage container. Further, the black triangle mark indicates the C 12 H 26 in the improved storage container, and the black square mark indicates the amount of decanal (Decanal) outgas in the improvement storage container. In the improved storage container, C 12 H 24 was not detected, and the outgas amount of both C 12 H 26 and Decanal was reduced. The activation energies of these two types of outgas were calculated to be 0.9 eV or less.

一方、改善収納容器に対して、実施例2で記述した評価手法を適用して得た、ウェーハ保管限度期日の加熱温度依存性を図6に示した。図6は、横軸が加熱温度を絶対温度に換算した逆数を1000倍した値を示しており、縦軸はウェーハ使用前保管限界時間である。図中のプロットは、○印がエリアカウントの増加なし、△印は一部のウェーハにエリアカウントの増加あり、×印は3枚のウェーハにエリアカウントの増加あり、ということを示している。また図中には、当社の出荷倉庫で保管したウェーハを検査した、ウェーハの実保管温度(20℃)におけるウェーハ使用前保管限度期日のデータも併せて示した。○印の範囲内はウェーハの品質を保障できる保管期日であり、×印の範囲はウェーハの品質を保障できない保管期日であることから、○印と×印(あるいは△印)の境界を各加熱温度で繋いでいくと、やはりほぼ直線となることがわかった。そこでその直線を低温側(ウェーハ保管温度に近い方向)に延長していくことで、ウェーハの実保管温度におけるウェーハ使用前保管限度期日を推定できた。推定の結果は、30℃において4年以上となり、顧客要求の目安である1年以上を大幅に上回ることがわかった。   On the other hand, FIG. 6 shows the heating temperature dependency of the wafer storage limit date obtained by applying the evaluation method described in Example 2 to the improved storage container. In FIG. 6, the horizontal axis represents a value obtained by multiplying the reciprocal of the heating temperature converted into an absolute temperature by 1000, and the vertical axis represents the storage limit time before using the wafer. The plots in the figure indicate that the circle mark indicates that the area count does not increase, the triangle mark indicates that the area count has increased for some wafers, and the x mark indicates that the area count has increased for three wafers. The figure also shows data on the storage limit date before using the wafer at the actual storage temperature of the wafer (20 ° C.), in which the wafers stored in our shipping warehouse were inspected. The range marked with ○ is the storage date that guarantees the quality of the wafer, and the range marked with X is the storage date that cannot guarantee the quality of the wafer. It was found that when connected by temperature, it was almost a straight line. Therefore, by extending the straight line to the low temperature side (in the direction closer to the wafer storage temperature), it was possible to estimate the storage limit date before using the wafer at the actual wafer storage temperature. The result of the estimation was 4 years or more at 30 ° C., and it was found that the result was significantly higher than 1 year or more, which is a standard for customer requirements.

また、このウェーハ保管限界時間の活性化エネルギーは、1.15±0.05eVであり、従来収納容器におけるウェーハ保管限界時間の活性化エネルギーと異なり、且つ改善収納容器で検出されたC1226とデカナール(Decanal)の活性化エネルギーとも異なった。以上の結果より、従来収納容器においてウェーハ保管限界時間を律束していた主たる嫌疑物質はC1224であり、それを排除した改善収納容器では異なる活性化エネルギーが得られ且つウェーハ保管限度期日も大幅に改善できた。このことにより、収納容器を始めとする包装部材の構成部材のアウトガスの活性化エネルギーと、ウェーハ保管限界期日の活性化エネルギーを比較検証するという手法で嫌疑物質を同定するという手法の有効性が示された。 The activation energy of the wafer storage limit time is 1.15 ± 0.05 eV, which is different from the activation energy of the wafer storage limit time in the conventional storage container, and C 12 H 26 detected in the improved storage container. And also the activation energy of Decanal. From the above results, the main suspicious substance that has constrained the wafer storage limit time in the conventional storage container is C 12 H 24 , and in the improved storage container excluding it, different activation energy can be obtained and the wafer storage limit date Was also able to improve significantly. This demonstrates the effectiveness of the method of identifying suspicious substances by comparing and verifying the outgas activation energy of the packaging member and other packaging members and the activation energy of the wafer storage limit date. It was done.

上述した評価手法の妥当性を検証するために種々の包装容器に対してウェーハ保管限度期日を調査した結果、本手法は直径200mmのウェーハ収納容器に対してだけでなく、100mm,150mmおよび300mmのウェーハ収納容器に対しても有効なことが判明した。また、出荷容器だけでなく、ウェーハ製造工程内のウェーハ仮保管容器に対しても有効なことも示された。それらの評価から判明した事実として、ウェーハ表面欠陥の発生有無の判定条件を上手に選択することにより、ウェーハ保管限度期日の活性化エネルギーとして1.15±0.05eVを得ることができ、それを利用することで、室温より高温の単一の加熱温度におけるウェーハ保管限度期日を知ることで、ウェーハの実保管温度におけるウェーハ保管限度期日をより簡便に知ることも可能となった。   As a result of investigating the wafer storage limit date for various packaging containers in order to verify the validity of the above-described evaluation method, this method is not only for wafer storage containers having a diameter of 200 mm, but also for 100 mm, 150 mm and 300 mm. It was proved to be effective for wafer storage containers. It was also shown that it is effective not only for shipping containers but also for temporary wafer storage containers in the wafer manufacturing process. As a fact found from these evaluations, 1.15 ± 0.05 eV can be obtained as the activation energy of the wafer storage limit date by properly selecting the determination condition of the occurrence of wafer surface defects. By using the wafer storage limit date at a single heating temperature higher than room temperature, it becomes possible to more easily know the wafer storage limit date at the actual wafer storage temperature.

また、本評価法で示された嫌疑物質であるC1224は、ウェーハ収納の目的にそぐわないため、それを意図的に含有させた構成部材で製造された収納ケースをウェーハ収納に用いてはならないことは言うまでもない。 In addition, C 12 H 24, which is a suspicious substance indicated in this evaluation method, is not suitable for the purpose of wafer storage. Therefore, a storage case manufactured by a component member intentionally containing it is not used for wafer storage. It goes without saying that it doesn't happen.

なお、上述の各実施例で述べた手法は、収納容器にとどまらず、包装袋などの他の包装資材の評価に対しても有効である。   Note that the methods described in the above embodiments are not limited to storage containers but are also effective for evaluation of other packaging materials such as packaging bags.

本発明は半導体基板の包装状態での半導体基板の表面品質を迅速に評価し、それにより半導体基板の使用前保存期限を推定する方法、さらには包装材料の品質の劣化の評価及び劣化因子の同定方法を可能とする。   The present invention provides a method for quickly evaluating the surface quality of a semiconductor substrate in a packaged state of the semiconductor substrate, thereby estimating the shelf life before use of the semiconductor substrate, as well as evaluating the deterioration of the quality of the packaging material and identifying the deterioration factors Enable the method.

本評価法適用で出現した表面欠陥のようす((a):初期測定結果、(b):本評価法適用後の再測定結果)。The appearance of surface defects that appeared after application of this evaluation method ((a): initial measurement result, (b): remeasurement result after application of this evaluation method). 本評価法適用で出現した表面欠陥のようす((a):初期測定結果、(b):本評価法適用後の再測定結果)。The appearance of surface defects that appeared after application of this evaluation method ((a): initial measurement result, (b): remeasurement result after application of this evaluation method). 各加熱温度におけるウェーハ使用前保管限度期日を加熱温度の絶対温度の逆数でプロットした結果。Results of plotting the storage limit date before wafer use at each heating temperature as the reciprocal of the absolute temperature of the heating temperature. 各加熱温度における収納容器構成部材からの各種アウトガス量を加熱温度の絶対温度の逆数でプロットした結果。The result of having plotted the various outgas amounts from the storage container structural member in each heating temperature by the reciprocal number of the absolute temperature of heating temperature. 改善容器において各加熱温度における収納容器構成部材からの各種アウトガス量を加熱温度の絶対温度の逆数でプロットした結果。The result which plotted the various outgas amounts from the storage container structural member in each heating temperature in the improvement container by the reciprocal number of the absolute temperature of heating temperature. 改善収納容器において各加熱温度におけるウェーハ使用前保管限度期日を加熱温度の絶対温度の逆数でプロットした結果。Results of plotting the storage limit date before wafer use at each heating temperature in the improved storage container as the reciprocal of the absolute temperature of the heating temperature.

Claims (5)

半導体基板を室温Tamで包装材料にて包装し、
(1)温度Tamより昇温して高温度Thiで時間thi維持し、
(2)降温して低温度Tlowで時間tlow維持し、
(3)昇温して室温Tamで時間tam時間維持した後、
半導体基板の表面品質の劣化を検査することを特徴とする、包装状態での半導体基板の表面品質を迅速に評価する方法。
Package the semiconductor substrate with packaging material at room temperature Tam,
(1) The temperature is raised from the temperature Tam and maintained at the high temperature Thi for a time thi.
(2) The temperature is lowered and maintained at a low temperature Tlow for a time tlow,
(3) After raising the temperature and maintaining at the room temperature Tam for a time tam time,
A method for quickly evaluating the surface quality of a semiconductor substrate in a packaged state, wherein the deterioration of the surface quality of the semiconductor substrate is inspected.
前記表面品質の劣化の検査が、半導体基板表面のヘイズ値、又は異物付着量の測定であることを特徴とする、請求項1に記載の方法。   The method according to claim 1, wherein the inspection of the deterioration of the surface quality is a measurement of a haze value of a semiconductor substrate surface or a foreign matter adhesion amount. 半導体基板を室温Tamで包装材料にて包装し、
(1)温度Tamより昇温して高温度Thiで時間thi維持し、
(2)降温して低温度Tlowで時間tlow維持し、
(3)昇温して室温Tamで時間tam時間維持した後、
(4)半導体基板の表面品質の劣化を検査してThiでの表面品質の劣化までの維持時間thiを決定し、
(5)Thiとthiとの関係式に基づき、任意のThiにおけるthiを決定し、
(6)半導体基板の使用前保存期限を推定する方法。
Package the semiconductor substrate with packaging material at room temperature Tam,
(1) The temperature is raised from the temperature Tam and maintained at the high temperature Thi for a time thi.
(2) The temperature is lowered and maintained at a low temperature Tlow for a time tlow,
(3) After raising the temperature and maintaining at the room temperature Tam for a time tam time,
(4) The deterioration of the surface quality of the semiconductor substrate is inspected to determine the maintenance time thi until the deterioration of the surface quality at Thi,
(5) Based on the relational expression between Thi and thi, determine thi in any Thi,
(6) A method for estimating a storage period before use of a semiconductor substrate.
前記(5)の関係式が、Thiの逆数を横軸に、劣化までの維持時間thiの対数を縦軸にプロットして、直線関係式を得ることを特徴とする請求項3に記載の方法。   4. The method according to claim 3, wherein the relational expression (5) is obtained by plotting the reciprocal of Thi on the horizontal axis and the logarithm of the maintenance time thi until deterioration on the vertical axis to obtain a linear relational expression. . 包装材料に起因した半導体基板表面の品質劣化因子を同定する方法において、
半導体基板を室温Tamで包装材料にて包装し、
(i)温度Tamより昇温して高温度Thiで時間thi維持し、
(ii)降温して低温度Tlowで時間tlow維持し、
(iii)昇温して室温Tamで時間tam時間維持した後、
(iv)半導体基板の表面品質の劣化を検査してThiでの表面品質の劣化までの維持時間thiを決定し、
(v)Thiとthiとの関係式をThiの逆数を横軸に、劣化までの維持時間thiの対数を縦軸にプロットして直線関係式として直線の傾きを決定し、
包装材料を、
(vi)温度Tamより昇温して高温度Thiで時間thi維持した後、
(vii)包装材料の、各脱ガス成分Gaの脱ガス量MGaを決定し、
(viii)Thiの逆数を横軸に、各MGaの対数を縦軸にプロットして、直線関係式として各脱成分の直線の傾きを決定し、
(ix)(v)で得られた傾きと、(viii)で得られた各成分の傾きとを比較して、
半導体基板の表面品質の劣化因子である包装材料の脱ガス成分を同定することを特徴とする、方法。
In the method of identifying the quality degradation factor of the semiconductor substrate surface caused by the packaging material,
Package the semiconductor substrate with packaging material at room temperature Tam,
(I) The temperature is raised from the temperature Tam and maintained at the high temperature Thi for a time thi,
(Ii) The temperature is lowered and maintained at the low temperature Tlow for a time tlow,
(Iii) After heating and maintaining at room temperature Tam for a time tam time,
(Iv) Inspecting the deterioration of the surface quality of the semiconductor substrate to determine the maintenance time thi until the deterioration of the surface quality at Thi,
(V) The relational expression between Thi and thi is plotted with the reciprocal of Thi on the horizontal axis and the logarithm of the maintenance time thi until deterioration on the vertical axis to determine the slope of the straight line as a linear relational expression,
Packaging materials
(Vi) After raising the temperature from the temperature Tam and maintaining the time thi at the high temperature Thi,
(Vii) determining the degassing amount MGa of each degassing component Ga of the packaging material;
(Viii) plotting the reciprocal of Thi on the horizontal axis and the logarithm of each MGa on the vertical axis, and determining the slope of each decomponent straight line as a linear relational expression;
(Ix) Compare the slope obtained in (v) with the slope of each component obtained in (viii),
A method for identifying a degassing component of a packaging material, which is a deterioration factor of a surface quality of a semiconductor substrate.
JP2007213661A 2007-08-20 2007-08-20 Method for rapidly evaluating surface quality of semiconductor substrate in packing state Withdrawn JP2009049177A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007213661A JP2009049177A (en) 2007-08-20 2007-08-20 Method for rapidly evaluating surface quality of semiconductor substrate in packing state
PCT/JP2008/064695 WO2009025254A1 (en) 2007-08-20 2008-08-18 Method for promptly evaluating the surface quality of semiconductor substrate in packaged state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007213661A JP2009049177A (en) 2007-08-20 2007-08-20 Method for rapidly evaluating surface quality of semiconductor substrate in packing state

Publications (1)

Publication Number Publication Date
JP2009049177A true JP2009049177A (en) 2009-03-05

Family

ID=40378156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007213661A Withdrawn JP2009049177A (en) 2007-08-20 2007-08-20 Method for rapidly evaluating surface quality of semiconductor substrate in packing state

Country Status (2)

Country Link
JP (1) JP2009049177A (en)
WO (1) WO2009025254A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019043840A1 (en) * 2017-08-30 2020-04-16 創光科学株式会社 Light emitting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259254A (en) * 1992-03-10 1993-10-08 Hitachi Cable Ltd Method for inspecting semiconductor wafer container
JP2001151274A (en) * 1999-11-25 2001-06-05 Nippon Steel Corp Storing container
JP4571843B2 (en) * 2004-10-21 2010-10-27 Sumco Techxiv株式会社 Method for evaluating semiconductor wafer storage case

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019043840A1 (en) * 2017-08-30 2020-04-16 創光科学株式会社 Light emitting device
US11165002B2 (en) 2017-08-30 2021-11-02 Soko Kagau Co., Ltd. Light-emitting device

Also Published As

Publication number Publication date
WO2009025254A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
US7342235B1 (en) Contamination monitoring and control techniques for use with an optical metrology instrument
Greczynski et al. C 1s peak of adventitious carbon aligns to the vacuum level: dire consequences for material's bonding assignment by photoelectron spectroscopy
US7622310B2 (en) Contamination monitoring and control techniques for use with an optical metrology instrument
JP5816756B2 (en) Graphene defect detection
US8151816B2 (en) Method and device for removing pollution from a confined environment
Nisato et al. P‐88: Thin Film Encapsulation for OLEDs: Evaluation of Multi‐layer Barriers using the Ca Test
US20150355095A1 (en) Method for evaluating oxide semiconductor thin film, and method for quality control of oxide semiconductor thin film
JP2009049177A (en) Method for rapidly evaluating surface quality of semiconductor substrate in packing state
Gurbán et al. Electron irradiation induced amorphous SiO2 formation at metal oxide/Si interface at room temperature; electron beam writing on interfaces
Friessnegg et al. Defect structure of carbon rich a-SiC: H films and the influence of gas and heat treatments
Nickel et al. Hydrogen density-of-states distribution in zinc oxide
Walther et al. Self‐consistent method for quantifying indium content from X‐ray spectra of thick compound semiconductor specimens in a transmission electron microscope
Lebens et al. Unintentional doping of wafers due to organophosphates in the clean room ambient
Cuvillier et al. Fe‐Mg interdiffusion profiles in rimmed forsterite grains in the Allende matrix: Time–temperature constraints for the parent body metamorphism
KR102230740B1 (en) Apparatus for in-situ evaluating material characteristics
Hagemann et al. Electronic excitations in magnesium epitaxy: Experiment and theory
JP3690484B2 (en) Method for analyzing metal impurities on silicon substrate surface
Dreer et al. Critical evaluation of the state of the art of the analysis of light elements in thin films demonstrated using the examples of SiOXNY and AlOXNY films (IUPAC Technical Report)
Seah CCQM-K32 key comparison and P84 pilot study amount of silicon oxide as a thickness of SiO2 on Si.
JP2010181302A (en) Method for evaluating quality of semiconductor wafer housing case
JP2012028367A (en) Selection method, management method and inspection method of individual packing material for individually packing semiconductor single crystal wafer
US7663747B2 (en) Contamination monitoring and control techniques for use with an optical metrology instrument
Brown et al. Laboratory investigations of the role of the grain surface in astrochemical models
Chiarello et al. Quartz crystal microbalance and synchrotron X-ray reflectivity study of water and liquid xenon adsorbed on gold and quartz
US20020021522A1 (en) Magnetic transfer apparatus and magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100823

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111116

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120312