JP2009047509A - Outer diameter measuring device and optical element - Google Patents

Outer diameter measuring device and optical element Download PDF

Info

Publication number
JP2009047509A
JP2009047509A JP2007212909A JP2007212909A JP2009047509A JP 2009047509 A JP2009047509 A JP 2009047509A JP 2007212909 A JP2007212909 A JP 2007212909A JP 2007212909 A JP2007212909 A JP 2007212909A JP 2009047509 A JP2009047509 A JP 2009047509A
Authority
JP
Japan
Prior art keywords
ladder
scanning
prism
light beam
prisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007212909A
Other languages
Japanese (ja)
Inventor
Nobuyuki Osawa
信之 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2007212909A priority Critical patent/JP2009047509A/en
Publication of JP2009047509A publication Critical patent/JP2009047509A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an outer diameter measuring device capable of measuring an outer diameter of a hollow part. <P>SOLUTION: This outer diameter measuring device includes a light beam scanning means 21 for scanning with a light beam, a light receiving means 23 for collecting a light beam transmitted through a scanning surface and outputting a corresponding electric signal, and a processing means 74 for calculating the width of a measuring object from the electric signal when arranging the measuring object in the middle of the scanning light beam. The measuring device also includes two ladder type prisms 31, 32 arranged oppositely so that each optical axis becomes parallel, and a holding block 33 for holding the two ladder type prisms 31, 32. The measuring object is arranged in a space whose one side is restricted by the holding block, in a space scanned with the light beam between the two ladder type prisms. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光ビームを走査して被測定物により光ビームが遮断された期間を検出することにより被測定物の外径を測定する外径測定装置およびそこで使用する光学素子に関し、特に軸が凹んだ部分にある軸の外径を測定する外径測定装置およびそこで使用する光学素子に関する。   The present invention relates to an outer diameter measuring apparatus that measures the outer diameter of a measurement object by scanning a light beam and detecting a period during which the light beam is blocked by the measurement object, and an optical element used therefor, in particular, the axis is The present invention relates to an outer diameter measuring apparatus for measuring an outer diameter of a shaft in a recessed portion and an optical element used therein.

円筒物の外径や板状物の長さを非接触で測定するため、平行に走査される光ビーム内へ被測定物を配置し、遮断された光ビームの幅で長さを測定する外径測定装置が広く利用されている。図1は、外径測定装置の基本構成を示す図である。   In order to measure the outer diameter of a cylindrical object and the length of a plate-shaped object in a non-contact manner, the object to be measured is placed in a light beam scanned in parallel and the length is measured by the width of the blocked light beam. Diameter measuring devices are widely used. FIG. 1 is a diagram showing a basic configuration of an outer diameter measuring apparatus.

図1において、参照番号711は平行な光ビームを発生する光ビーム発生器であり、半導体レーザとコリメータレンズを組み合わせたものが一般的である。712は、ポリゴンミラーであり、精密な多面鏡が等速回転して光ビームを等角速度で偏向する。713はfθレンズであり、偏向された光ビームを軸に平行になるように方向を変化させ、軸に垂直な方向に等速で移動、すなわち走査する。72は収束レンズであり、走査された光ビームを集光する。73はフォトセンサであり、集光レンズ62で集光された光ビームを受光して電気信号に変換する。74は電気信号を処理して光ビームが遮断された幅を算出する。   In FIG. 1, reference numeral 711 denotes a light beam generator for generating a parallel light beam, which is generally a combination of a semiconductor laser and a collimator lens. A polygon mirror 712 rotates a precise polygon mirror at a constant speed to deflect the light beam at a constant angular velocity. Reference numeral 713 denotes an fθ lens that changes the direction of the deflected light beam so as to be parallel to the axis, and moves, that is, scans in a direction perpendicular to the axis at a constant speed. A converging lens 72 condenses the scanned light beam. A photosensor 73 receives the light beam collected by the condenser lens 62 and converts it into an electrical signal. 74 processes the electrical signal to calculate the width at which the light beam is blocked.

図1において、700は被測定物であり、被測定物700を走査ビーム中に配置することにより、走査ビームが被測定物700を走査している期間だけ走査光ビームが遮断され、フォトセンサ73からの電気信号の強度もこれに応じて変化する。従って、電気信号の強度が低下する期間を検出すれば、走査ビームの走査速度を乗じることにより、光ビームが遮断された幅が求まる。   In FIG. 1, reference numeral 700 denotes an object to be measured. By disposing the object to be measured 700 in the scanning beam, the scanning light beam is interrupted only during a period in which the scanning beam scans the object to be measured 700. The intensity of the electrical signal from the light also changes accordingly. Therefore, if the period during which the intensity of the electrical signal is reduced is detected, the width at which the light beam is blocked is obtained by multiplying the scanning speed of the scanning beam.

図1の外径測定装置については、特許文献1に記載されているので、これ以上の詳しい説明は省略する。   Since the outer diameter measuring apparatus of FIG. 1 is described in Patent Document 1, further detailed description thereof is omitted.

図2は、測定対象の部品の一例の断面図である。参照番号13が主部分で、回転軸11が設けられている。回転軸11の周囲に主部分13の周辺部が伸びる構造になっている。言い換えれば、回転軸11は、主部分13からは突出しているが、主部分13の周辺部も突出しているため、軸は凹んだ部分にある。   FIG. 2 is a cross-sectional view of an example of a component to be measured. Reference numeral 13 is a main portion, and a rotating shaft 11 is provided. The periphery of the main portion 13 extends around the rotation shaft 11. In other words, the rotating shaft 11 protrudes from the main portion 13, but since the peripheral portion of the main portion 13 also protrudes, the shaft is in a recessed portion.

上記の部品の回転軸の外径は高い精度が要求される。そこで、図1のような外径測定装置で回転軸11の外径を測定することが求められている。   High accuracy is required for the outer diameter of the rotating shaft of the above parts. Therefore, it is required to measure the outer diameter of the rotating shaft 11 with an outer diameter measuring apparatus as shown in FIG.

特開平6−265319号公報JP-A-6-265319

しかし、図2に示すように、回転軸11の周囲には主部分13の周辺部が突出しており、回転軸11を横切るように光ビームを走査することはできないので、図1の外径測定装置では測定は行えないという問題がある。   However, as shown in FIG. 2, the periphery of the main portion 13 protrudes around the rotating shaft 11 and the light beam cannot be scanned across the rotating shaft 11. There is a problem that measurement cannot be performed with the apparatus.

本発明はこのような問題を解決して、図2に示すような被測定部分の周囲に他の部分が突出している部材の被測定部分の外径を測定できるようにすることを目的とする。   An object of the present invention is to solve such a problem, and to measure the outer diameter of a part to be measured of a member whose other part protrudes around the part to be measured as shown in FIG. .

上記目的を実現するため、本発明の外径測定装置は、保持ブロックで2個の梯子型プリズムを所定の位置関係に保持する光学素子を利用する。具体的には、2個の梯子型プリズムを光軸が平行で、被測定物(の軸)に対して対称になるように配置する。   In order to achieve the above object, the outer diameter measuring apparatus of the present invention uses an optical element that holds two ladder prisms in a predetermined positional relationship with a holding block. Specifically, two ladder prisms are arranged so that their optical axes are parallel and symmetrical with respect to (the axis of) the object to be measured.

すなわち、本発明の外径測定装置は、空間の所定面を走査面として光ビームを走査する光ビーム走査手段と、前記走査面を通過した前記光ビームを集光し、前記光ビームの強度に対応した電気信号を出力する受光手段と、走査される前記光ビームの途中に被測定物を配置した時の前記電気信号から前記光ビームの遮断期間を導出し、前記光ビーム走査手段の走査速度と前記遮断期間に基づいて前記被測定物の幅を算出する処理手段と、を備える外径測定装置において、光軸が平行になるように対向して配置された2個の梯子型プリズムと、前記2個の梯子型プリズムを保持する保持ブロックと、を備える走査面移動素子を備え、前記光ビームは、前記2個の梯子型プリズムの一方に入射し、基準側プリズム面で反射された後、他方の走査側プリズム面で反射されて出射された後、前記2個の梯子型プリズムの他方に入射し、走査側プリズム面で反射された後、他方の基準側プリズム面で反射されて出射され、前記2個の梯子型プリズムの前記走査側プリズム面の間の前記光ビームが走査される空間で、前記保持ブロックにより一方が限定される空間に、前記被測定物が配置されることを特徴とする。   That is, the outer diameter measuring apparatus according to the present invention includes a light beam scanning unit that scans a light beam with a predetermined surface of the space as a scanning surface, and condenses the light beam that has passed through the scanning surface to obtain an intensity of the light beam. A light receiving means for outputting a corresponding electrical signal; and a scanning period of the light beam scanning means is derived from the electrical signal when an object to be measured is placed in the middle of the scanned light beam. And a processing means for calculating the width of the object to be measured based on the blocking period, and two ladder prisms arranged opposite to each other so that the optical axes are parallel to each other, A scanning block that includes a holding block that holds the two ladder-type prisms, and the light beam is incident on one of the two ladder-type prisms and reflected by a reference-side prism surface. , The other scanning side After being reflected by the prism surface and incident on the other of the two ladder prisms, reflected by the scanning prism surface and then reflected by the other reference prism surface and emitted. The object to be measured is arranged in a space where the light beam is scanned between the scanning-side prism surfaces of the ladder-type prism, and one of which is limited by the holding block.

また、本発明の光学素子は、光軸が平行になるように対向して配置された第1および第2の梯子型プリズムと、前記2個の梯子型プリズムを保持する保持ブロックと、を備え、前記2個の梯子型プリズムは、前記第1の梯子型プリズムの光軸に平行な第1の方向に進む光ビームが、走査プリズム面で反射されて出射された後、前記第2の梯子型プリズムに入射し、走査プリズム面で反射された後、前記第1の方向と180度逆方向に進むように配置され、前記保持ブロックは、前記2個の梯子型プリズムの前記走査側プリズム面の間に空間を形成するように前記2個の梯子型プリズムを保持することを特徴とする。   The optical element of the present invention includes first and second ladder-type prisms arranged to face each other so that their optical axes are parallel to each other, and a holding block that holds the two ladder-type prisms. The two ladder-type prisms are configured such that a light beam traveling in a first direction parallel to the optical axis of the first ladder-type prism is reflected and emitted by a scanning prism surface, and then the second ladder-type prism is used. After being incident on the mold prism and reflected on the scanning prism surface, the holding block is disposed so as to travel in a direction 180 degrees opposite to the first direction, and the holding block is the scanning prism surface of the two ladder prisms The two ladder prisms are held so as to form a space between them.

本発明によれば、2個の梯子型プリズムの走査側プリズム面の間に回転軸が配置できるので、回転軸の外径が測定できる。   According to the present invention, since the rotation axis can be disposed between the scanning prism surfaces of the two ladder-type prisms, the outer diameter of the rotation axis can be measured.

プリズム面が尖っていると破損しやすいので、2個の梯子型プリズムのプリズム面には三角プリズムを接着し、プリズム面には反射処理を施すようにしてもよい。   If the prism surface is sharp, it may be easily damaged. Therefore, a triangular prism may be bonded to the prism surfaces of the two ladder prisms, and the prism surface may be subjected to a reflection process.

外径測定装置は、高精度で被測定物の外径を測定する必要があり、2個の梯子型プリズムの位置関係は高精度であることが要求される。そのため、本発明では、保持ブロックにより2個の梯子型プリズムを所定の位置関係に保持する。具体的には、2個の梯子型プリズムを保持ブロックに接着する。   The outer diameter measuring device needs to measure the outer diameter of the object to be measured with high accuracy, and the positional relationship between the two ladder-type prisms is required to be highly accurate. Therefore, in the present invention, the two ladder-type prisms are held in a predetermined positional relationship by the holding block. Specifically, two ladder prisms are bonded to the holding block.

本発明によれば、外径測定装置により、図2に示すような、凹んだ部分に設けられた軸の外径も測定できる。   According to the present invention, the outer diameter of the shaft provided in the recessed portion as shown in FIG. 2 can also be measured by the outer diameter measuring device.

図3は、本発明の第1実施形態の光学素子およびその使用方法を示す図であり、図3の(A)は光学素子の上面図であり、(B)は光学素子の側面図で、外径測定装置の光ビームとの関係を示し、被測定物を破線で示す。   FIG. 3 is a diagram illustrating the optical element and the method of using the optical element according to the first embodiment of the present invention. FIG. 3A is a top view of the optical element, and FIG. 3B is a side view of the optical element. The relationship with the light beam of the outer diameter measuring device is shown, and the object to be measured is indicated by a broken line.

図3に示すように、2個の梯子型プリズム31、32は、保持部材33に接着されて固定されている。2個の梯子型プリズム31、32は、直方体のガラス板を、対向する小さな面を、他の面に対して正確に45度の面になるように加工する。すなわち、プリズム面35、36を形成するように加工する。保持ブロック33は、少なくとも2個の梯子型プリズム31、32が接着される対向する面は高い精度で平行であるように加工されている。そして、2個の梯子型プリズム31、32を、図3の(B)に示すように、保持ブロック32に対して対称になるように接着する。この時、梯子型プリズム31のプリズム面35、36と、梯子型プリズム32のプリズム面35、36とが、正確に90度をなす一関係にする。2個の梯子型プリズム31、32は、保持ブロック32の上面からさらに上に伸びており、2個の梯子型プリズム31、32の対向する空間で、下側が保持ブロック32の上面により制限される空間には、測定時にはハブの回転軸11が配置される。2個の梯子型プリズム31、32は、測定時には回転軸11と保持部分12の間の空間に位置する。保持ブロック32は、台34に接着するなどして固定される。保持ブロック32の下側の形状や台34への固定方法は各種の変形例が可能である。   As shown in FIG. 3, the two ladder prisms 31 and 32 are bonded and fixed to a holding member 33. The two ladder-type prisms 31 and 32 process a rectangular parallelepiped glass plate so that the opposing small surfaces are exactly 45 degrees with respect to the other surfaces. That is, processing is performed so as to form the prism surfaces 35 and 36. The holding block 33 is processed so that the opposing surfaces to which at least two ladder prisms 31 and 32 are bonded are parallel with high accuracy. Then, the two ladder-type prisms 31 and 32 are bonded so as to be symmetric with respect to the holding block 32 as shown in FIG. At this time, the prism surfaces 35 and 36 of the ladder-type prism 31 and the prism surfaces 35 and 36 of the ladder-type prism 32 are in an exact relationship of 90 degrees. The two ladder-type prisms 31 and 32 extend further upward from the upper surface of the holding block 32, and the lower side is limited by the upper surface of the holding block 32 in the space where the two ladder-type prisms 31 and 32 face each other. A hub rotating shaft 11 is arranged in the space at the time of measurement. The two ladder-type prisms 31 and 32 are located in a space between the rotating shaft 11 and the holding portion 12 at the time of measurement. The holding block 32 is fixed to the table 34 by bonding. Various modifications of the shape of the lower side of the holding block 32 and the fixing method to the base 34 are possible.

走査ビーム出力部21は、図1の光ビーム発生器711、ポリゴンミラー712およびfθレンズ713を含む部分であり、走査ビームを出力する。走査ビーム受光部22は、図1の収束レンズ72およびフォトセンサ73を含む部分であり、光ビームを受光して電気信号を出力する。信号処理回路23は、図1の信号処理回路74に相当し、電気信号を処理して光ビームが遮断された幅、すなわち回転軸11の外径を算出する。   The scanning beam output unit 21 includes the light beam generator 711, the polygon mirror 712, and the fθ lens 713 shown in FIG. 1 and outputs a scanning beam. The scanning beam receiving unit 22 is a part including the converging lens 72 and the photosensor 73 in FIG. 1, and receives the light beam and outputs an electrical signal. The signal processing circuit 23 corresponds to the signal processing circuit 74 in FIG. 1, and processes the electrical signal to calculate the width where the light beam is blocked, that is, the outer diameter of the rotating shaft 11.

走査ビーム出力部21から出力された走査光ビームは、梯子型プリズム31に入射し、下側の基準側プリズム面35で全反射して梯子型プリズム31内を上側に進む。ここで、梯子型プリズム31のこの方向を光軸と称する。これは梯子型プリズム32についても同様である。走査光ビームは、梯子型プリズム31の上側の走査側プリズム面36で全反射して梯子型プリズム31から水平に出射される。従って、図3の(A)に示すように、光ビームは水平方向に走査される。   The scanning light beam output from the scanning beam output unit 21 is incident on the ladder-type prism 31, totally reflected by the lower reference-side prism surface 35, and travels upward in the ladder-type prism 31. Here, this direction of the ladder-type prism 31 is referred to as an optical axis. The same applies to the ladder-type prism 32. The scanning light beam is totally reflected by the scanning-side prism surface 36 on the upper side of the ladder-type prism 31 and is emitted horizontally from the ladder-type prism 31. Therefore, as shown in FIG. 3A, the light beam is scanned in the horizontal direction.

光ビームは、梯子型プリズム32に入射し、上側の走査側プリズム面36で全反射して梯子型プリズム32内を光軸に沿って下側に進む。走査光ビームは、梯子型プリズム32の下側の基準側プリズム面35で全反射して梯子型プリズム32から水平に出射され、走査ビーム受光部22に入射する。   The light beam enters the ladder-type prism 32, is totally reflected by the upper scanning-side prism surface 36, and travels down the ladder-type prism 32 along the optical axis. The scanning light beam is totally reflected by the reference prism surface 35 below the ladder-type prism 32, is emitted horizontally from the ladder-type prism 32, and enters the scanning beam light receiving unit 22.

破線で示すように、測定時には、保持ブロック33の上の空間の2個の梯子型プリズム31、32で挟まれた空間に、測定対象である回転軸11が、配置される。この時、2個の梯子型プリズム31、32は、回転軸11と保持部12の間の空間に位置するので干渉することはない。梯子型プリズム31から水平に出射される走査光ビームは回転軸11により遮断されるので、回転軸11の外径が測定できる。   As indicated by the broken line, at the time of measurement, the rotating shaft 11 as the measurement target is arranged in a space sandwiched between the two ladder prisms 31 and 32 in the space above the holding block 33. At this time, the two ladder-type prisms 31 and 32 are located in the space between the rotating shaft 11 and the holding portion 12 and thus do not interfere with each other. Since the scanning light beam emitted horizontally from the ladder-type prism 31 is blocked by the rotating shaft 11, the outer diameter of the rotating shaft 11 can be measured.

図4は、本発明の第2実施形態の光学素子の構成と、走査光ビームの経路を示す図であり、(A)が上面図であり、(B)が側面図である。この光学素子は、図3と同様に、台34に固定されて使用される。   4A and 4B are diagrams showing the configuration of the optical element and the path of the scanning light beam according to the second embodiment of the present invention, where FIG. 4A is a top view and FIG. 4B is a side view. This optical element is used by being fixed to a table 34 as in FIG.

第2実施形態の光学素子は、第1実施形態と同様に、保持ブロック33に2個の梯子型プリズムを所定の位置関係に接着したものであるが、次の点が第1実施形態と異なる。   As in the first embodiment, the optical element of the second embodiment is obtained by bonding two ladder prisms to the holding block 33 in a predetermined positional relationship, but the following points are different from the first embodiment. .

各梯子型プリズムは、一方にプリズム面48が形成された第1の部材41、46と、対向する面がプリズム面48、49である第2の部材42、45と、3角プリズム43、44とで構成される。第2の部材42、45のプリズム面48、49には反射コート層が形成されている。第1の部材41、46と第2の部材42、45をプリズム面48で接着し、1つの板状にする。さらに、第2の部材42、45のプリズム面49に、3角プリズム43、44を接着して、直方体の梯子型プリズムとする。梯子型プリズムは直方体であるが、ここでは梯子型プリズムと称する。上記のように、プリズム面48、49に反射コート層が設けられているので、図示のように、一方の梯子型プリズムに入射した走査光ビームは、プリズム面48で反射されて光軸に沿って上側に進み、プリズム面49で反射されて梯子型プリズムから出射され、被測定物(回転軸11)を走査する。走査光ビームは、梯子型プリズムに入射して、プリズム面49で反射されて光軸に沿って下側に進み、プリズム面48で反射されて梯子型プリズムから出射される。他は、第1実施形態と同じである。   Each ladder-type prism includes first members 41 and 46 each having a prism surface 48 formed thereon, second members 42 and 45 having opposing surfaces 48 and 49, and triangular prisms 43 and 44, respectively. It consists of. A reflective coating layer is formed on the prism surfaces 48 and 49 of the second members 42 and 45. The first members 41 and 46 and the second members 42 and 45 are bonded by the prism surface 48 to form a single plate. Further, triangular prisms 43 and 44 are bonded to the prism surfaces 49 of the second members 42 and 45 to form a rectangular parallelepiped ladder type prism. The ladder-type prism is a rectangular parallelepiped, but is referred to as a ladder-type prism here. As described above, since the reflective surfaces are provided on the prism surfaces 48 and 49, the scanning light beam incident on one of the ladder-type prisms is reflected by the prism surface 48 and along the optical axis as shown in the figure. Then, the light is reflected by the prism surface 49 and emitted from the ladder-type prism, and the object to be measured (the rotating shaft 11) is scanned. The scanning light beam enters the ladder-type prism, is reflected by the prism surface 49, travels downward along the optical axis, is reflected by the prism surface 48, and is emitted from the ladder-type prism. Others are the same as the first embodiment.

第2実施形態では、梯子型プリズムが直方体であるから、第1実施形態の梯子型プリズムに比べて、プリズム部分が破損しにくい。   In the second embodiment, since the ladder-type prism is a rectangular parallelepiped, the prism portion is less likely to be damaged than the ladder-type prism of the first embodiment.

以上本発明の実施形態を説明したが、各種の変形例が可能であるのはいうまでもない。特に、梯子型プリズムの形状や製作方法は各種可能である。   Although the embodiment of the present invention has been described above, it goes without saying that various modifications are possible. In particular, the shape and manufacturing method of the ladder prism can be various.

本発明は、凹んだ部分に設けられた形状の外径を検出する場合にはどのような場合にも適用可能である。   The present invention is applicable to any case when detecting the outer diameter of the shape provided in the recessed portion.

外径測定装置の概略構成を示す図である。It is a figure which shows schematic structure of an outer diameter measuring apparatus. 本発明で測定対象とする凹んだ部分に回転軸を有する部品の断面形状を示す図である。It is a figure which shows the cross-sectional shape of components which have a rotating shaft in the recessed part made into a measuring object by this invention. 本発明の第1実施形態の外径測定装置の構成、そこで使用する光学素子、および光ビームの経路を示す図である。It is a figure which shows the structure of the outer diameter measuring apparatus of 1st Embodiment of this invention, the optical element used there, and the path | route of a light beam. 本発明の第2実施形態の外径測定装置で使用する光学素子、および光ビームの経路を示す図である。It is a figure which shows the optical element used with the outer diameter measuring apparatus of 2nd Embodiment of this invention, and the path | route of a light beam.

符号の説明Explanation of symbols

11 回転軸(測定対象)
31、32 梯子型プリズム
33 保持ブロック
35 基準側プリズム面
36 走査側プリズム面
11 Rotating shaft (measurement target)
31, 32 Ladder type prism 33 Holding block 35 Reference side prism surface 36 Scan side prism surface

Claims (4)

空間の所定面を走査面として光ビームを走査する光ビーム走査手段と、
前記走査面を通過した前記光ビームを集光し、前記光ビームの強度に対応した電気信号を出力する受光手段と、
走査される前記光ビームの途中に被測定物を配置した時の前記電気信号から前記光ビームの遮断期間を導出し、前記光ビーム走査手段の走査速度と前記遮断期間に基づいて前記被測定物の幅を算出する処理手段と、を備える外径測定装置において、
光軸が平行になるように対向して配置された2個の梯子型プリズムと、前記2個の梯子型プリズムを保持する保持ブロックと、を備える走査面移動素子を備え、
前記光ビームは、前記2個の梯子型プリズムの一方に入射し、基準側プリズム面で反射された後、他方の走査側プリズム面で反射されて出射された後、前記2個の梯子型プリズムの他方に入射し、走査側プリズム面で反射された後、他方の基準側プリズム面で反射されて出射され、
前記2個の梯子型プリズムの前記走査側プリズム面の間の前記光ビームが走査される空間で、前記保持ブロックにより一方が限定される空間に、前記被測定物が配置されることを特徴とする外径測定装置。
A light beam scanning means for scanning a light beam with a predetermined plane of space as a scanning plane;
A light receiving means for collecting the light beam that has passed through the scanning surface and outputting an electrical signal corresponding to the intensity of the light beam;
A cutoff period of the light beam is derived from the electrical signal when the measurement object is arranged in the middle of the scanned light beam, and the measurement object is based on the scanning speed of the light beam scanning means and the cutoff period. In the outer diameter measuring device comprising a processing means for calculating the width of
A scanning plane moving element comprising: two ladder prisms arranged opposite to each other so that the optical axes are parallel; and a holding block holding the two ladder prisms;
The light beam enters one of the two ladder-type prisms, is reflected by the reference-side prism surface, is reflected by the other scanning-side prism surface, and then exits, and then the two ladder-type prisms After being incident on the other side of the light source and reflected by the scanning side prism surface, then reflected and emitted by the other reference side prism surface,
The object to be measured is disposed in a space where the light beam is scanned between the scanning prism surfaces of the two ladder prisms, one of which is limited by the holding block. Outside diameter measuring device.
前記2個の梯子型プリズムのプリズム面には、三角プリズムが接着され、前記プリズム面には反射処理が施されている請求項1に記載の外径測定装置。   The outer diameter measuring apparatus according to claim 1, wherein a triangular prism is bonded to a prism surface of the two ladder-type prisms, and the prism surface is subjected to a reflection process. 光軸が平行になるように対向して配置された第1および第2の梯子型プリズムと、前記2個の梯子型プリズムを保持する保持ブロックと、を備え、
前記2個の梯子型プリズムは、前記第1の梯子型プリズムの光軸に平行な第1の方向に進む光ビームが、走査プリズム面で反射されて出射された後、前記第2の梯子型プリズムに入射し、走査プリズム面で反射された後、前記第1の方向と180度逆方向に進むように配置され、
前記保持ブロックは、前記2個の梯子型プリズムの前記走査側プリズム面の間に空間を形成するように前記2個の梯子型プリズムを保持することを特徴とする光学素子。
First and second ladder-type prisms arranged to face each other so that their optical axes are parallel, and a holding block for holding the two ladder-type prisms,
The two ladder-type prisms are configured such that a light beam traveling in a first direction parallel to the optical axis of the first ladder-type prism is reflected by a scanning prism surface and emitted, and then the second ladder-type prism is used. After being incident on the prism and reflected by the surface of the scanning prism, the prism is arranged so as to travel in a direction 180 degrees opposite to the first direction,
The optical element, wherein the holding block holds the two ladder prisms so as to form a space between the scanning side prism surfaces of the two ladder prisms.
前記2個の梯子型プリズムのプリズム面には、三角プリズムが接着され、前記プリズム面には反射処理が施されている請求項3に記載の光学素子。   The optical element according to claim 3, wherein a triangular prism is bonded to a prism surface of the two ladder-type prisms, and the prism surface is subjected to a reflection process.
JP2007212909A 2007-08-17 2007-08-17 Outer diameter measuring device and optical element Pending JP2009047509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007212909A JP2009047509A (en) 2007-08-17 2007-08-17 Outer diameter measuring device and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212909A JP2009047509A (en) 2007-08-17 2007-08-17 Outer diameter measuring device and optical element

Publications (1)

Publication Number Publication Date
JP2009047509A true JP2009047509A (en) 2009-03-05

Family

ID=40499873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212909A Pending JP2009047509A (en) 2007-08-17 2007-08-17 Outer diameter measuring device and optical element

Country Status (1)

Country Link
JP (1) JP2009047509A (en)

Similar Documents

Publication Publication Date Title
KR101409644B1 (en) Three-dimensional shape measuring apparatus
JP6315268B2 (en) Laser range finder
JP2015175611A (en) Distance measuring equipment and distance measuring system
JP2016020834A (en) Laser scanner
JP6071042B2 (en) Dimension measuring device
JP2008256465A (en) Measurement apparatus
KR20180123699A (en) Method and system for inspecting boards for microelectronics or optics by laser Doppler effect
KR100878425B1 (en) Surface measurement apparatus
JP2009109305A (en) Method of measuring resonance frequency and maximum optical swing angle
JP2009047509A (en) Outer diameter measuring device and optical element
JP2011179969A (en) Light scanning device and laser radar device
JP2019032325A (en) Displacement detection device and method for measuring displacement of object
JP2010197143A (en) Measuring apparatus and measuring method for measuring axis tilt of shaft of motor for polygon mirror
JP2006084331A (en) Eccentricity measuring device of polygon mirror motor
JP2018028484A (en) Laser distance measurement device
JP3619851B2 (en) A method of improving the accuracy of a straight line meter using a laser beam.
JP2011169796A (en) Curvature measuring device
JP2003097924A (en) Shape measuring system and method using the same
JP2006132955A (en) Device for measuring mirror eccentricity and surface irregularities of polygon mirror motor
JP2008196970A (en) Shape measurement method and instrument
JP2018163129A (en) Object detection method and object detection device
JP2008151640A (en) Measurement device
JP2016017854A (en) Shape measurement device
JP2010230400A (en) Optical displacement meter
KR101490457B1 (en) Apparatus for inspecting