JP2009047507A - Detection method of target molecule in sample using molecule imprinting particulate - Google Patents

Detection method of target molecule in sample using molecule imprinting particulate Download PDF

Info

Publication number
JP2009047507A
JP2009047507A JP2007212826A JP2007212826A JP2009047507A JP 2009047507 A JP2009047507 A JP 2009047507A JP 2007212826 A JP2007212826 A JP 2007212826A JP 2007212826 A JP2007212826 A JP 2007212826A JP 2009047507 A JP2009047507 A JP 2009047507A
Authority
JP
Japan
Prior art keywords
fine particles
target molecule
molecular
bpa
molecularly imprinted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007212826A
Other languages
Japanese (ja)
Other versions
JP4853972B2 (en
Inventor
Toshibumi Takeuchi
俊文 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Priority to JP2007212826A priority Critical patent/JP4853972B2/en
Publication of JP2009047507A publication Critical patent/JP2009047507A/en
Application granted granted Critical
Publication of JP4853972B2 publication Critical patent/JP4853972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for constructing a sensing system that sufficiently puts the feature of a molecule imprinting particulate uniform in particle size and having a nanosize (average particle size is below 1 μm) to practical use. <P>SOLUTION: The target molecule in a sample is detected by detecting the interaction of a molecule imprinting particulate (A), which has a target molecule recognizing region constructed by a molecule imprinting method and has the average particle size of below 1 μm measured by a dynamic light scattering method, and a molecule accumulation (B) having a monomolecular layer composed of a target molecule or its derivative (B) and characterized in that the molecule imprinting particulate is bondable to the monomolecular layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、分子インプリント微粒子を用いた試料中の標的分子検出方法に関するものであり、詳しくは、分子インプリント微粒子と、標的分子またはその誘導体の単分子層を有する分子集積体との相互作用の検出により試料中の標的分子を検出する方法に関するものである。   The present invention relates to a method for detecting a target molecule in a sample using molecularly imprinted fine particles, and more specifically, interaction between a molecularly imprinted fine particle and a molecular aggregate having a monomolecular layer of a target molecule or a derivative thereof. The present invention relates to a method for detecting a target molecule in a sample by detection of.

標的分子を特異的に認識できる人工レセプター合成法の1つとして、モレキュラーインプリント法(MI法)が知られている。MI法とは、認識対象である分子(標的分子)を鋳型として、その標的分子に選択性のある結合部位(標的分子認識部位)を人工的に材料中に構築する方法である。   A molecular imprint method (MI method) is known as one of artificial receptor synthesis methods capable of specifically recognizing a target molecule. The MI method is a method in which a recognition target molecule (target molecule) is used as a template and a binding site (target molecule recognition site) that is selective for the target molecule is artificially constructed in a material.

MI法を用いて合成されるポリマーはモレキュラーインプリントポリマー(MIP)と呼ばれる。MIPは、鋳型分子(標的分子あるいはその誘導体)と機能性モノマー(鋳型分子に対して特異的に相互作用する部位とビニル基などの重合可能な官能基とを持つ分子)とを架橋剤とともにラジカル重合させ、鋳型分子をポリマー内から除去することによって構築される(非特許文献1参照)。   A polymer synthesized using the MI method is called a molecular imprint polymer (MIP). MIP radicals a template molecule (target molecule or derivative thereof) and a functional monomer (a molecule having a site that interacts specifically with the template molecule and a polymerizable functional group such as a vinyl group) together with a crosslinking agent. It is constructed by polymerizing and removing the template molecule from within the polymer (see Non-Patent Document 1).

MIPによって認識される標的分子としては、除草剤、薬物、殺虫剤、タンパク質やペプチド、コレステロール、染料、炭水化物などが報告されており、MIPは標的分子認識技術として有用であることが示されている。   As target molecules recognized by MIP, herbicides, drugs, insecticides, proteins and peptides, cholesterol, dyes, carbohydrates and the like have been reported, and MIP has been shown to be useful as a target molecule recognition technique. .

また、MIPは、種々の検出手段と組合わせてセンサーとして適用できることが報告されている。例えば、水晶振動子化学計測装置(非特許文献2参照)、表面プラズモン共鳴計測装置(非特許文献3参照)、電極(非特許文献4参照)などが挙げられる。   Further, it has been reported that MIP can be applied as a sensor in combination with various detection means. Examples thereof include a quartz crystal chemical measurement device (see Non-Patent Document 2), a surface plasmon resonance measurement device (see Non-Patent Document 3), an electrode (see Non-Patent Document 4), and the like.

一方、近年のポリマー微粒子合成技術の革新により、ポリマー微粒子は、より高度かつ精密に、粒子径・形態・粒子組成・粒子表面の制御が可能となっており、MIPについても微粒子化が試みられている(非特許文献5参照)。
蒲池幹治、遠藤剛監修者、『ラジカル重合ハンドブック』(1999)エヌティーエス Kugimiya, A.,Yoneyama, H., Takeuchi, T. Sialic Acid Imprinted Polymer-Coated Quartz CrystalMicrobalance, Electroanalysis 2000, 12, 1322-1326. Matsunaga, T.,Hishiya, T., Takeuchi, T., Surface Plasmon Resonance Sensor for Lysozyme Basedon Molecularly Imprinted Thin Films, Anal. Chim. Acta 2007, 591, 63-67. Shoji, R.,Takeuchi, T., Kubo, I. Atrazine Sensor Based on Molecularly Imprinted PolymerModified Gold Electrode, Anal. Chem. 2003, 75, 4882-4886. Silvestri, D.,Borrelli, C., Giusti, P., Cristallini, C., Ciardelli, G., Polymeric devicescontaining imprinted nanospheres: a novel approach to improve recognition inwater for clinical uses, Anal. Chim. Acta 2005, 542, 3-13.
On the other hand, due to recent innovations in polymer fine particle synthesis technology, it is possible to control the particle size, shape, particle composition, and particle surface of polymer fine particles with a higher degree of precision, and MIP has also been attempted to make fine particles. (See Non-Patent Document 5).
Mikiharu Tsunoike, Takeshi Endo, “Radical Polymerization Handbook” (1999) NTS Kugimiya, A., Yoneyama, H., Takeuchi, T. Sialic Acid Imprinted Polymer-Coated Quartz Crystal Microbalance, Electroanalysis 2000, 12, 1322-1326. Matsunaga, T., Hishiya, T., Takeuchi, T., Surface Plasmon Resonance Sensor for Lysozyme Basedon Molecularly Imprinted Thin Films, Anal. Chim. Acta 2007, 591, 63-67. Shoji, R., Takeuchi, T., Kubo, I. Atrazine Sensor Based on Molecularly Imprinted PolymerModified Gold Electrode, Anal. Chem. 2003, 75, 4882-4886. Silvestri, D., Borrelli, C., Giusti, P., Cristallini, C., Ciardelli, G., Polymeric devices containing imprinted nanospheres: a novel approach to improve recognition inwater for clinical uses, Anal. Chim. Acta 2005, 542, 3-13.

上述のように、ポリマー微粒子合成技術の進歩により、粒子径の揃ったナノサイズ(平均粒子計が1μm未満)の分子インプリント微粒子を、簡便かつ安価に合成できるようになっている。このような分子インプリント微粒子は、従来のMIPポリマーを機械的に粉砕して得られる微粒子と比較して比表面積が増大しているので、効果的に標的分子と相互作用することができると考えられる。したがって、これらの特徴を十分に活かすことにより、ナノサイズ(平均粒子計が1μm未満)の分子インプリント微粒子を用いた新規なセンシングシステム(検出系)の構築が期待できる。すなわち、ナノサイズ(平均粒子計が1μm未満)の分子インプリント微粒子を用いた新規なセンシングシステム(検出系)を構築することが、本研究分野の課題となっている。   As described above, the advancement of polymer fine particle synthesis technology makes it possible to synthesize molecularly imprinted fine particles having a uniform particle size and having a uniform particle size (average particle size of less than 1 μm) easily and inexpensively. Such molecularly imprinted fine particles have an increased specific surface area compared to fine particles obtained by mechanically pulverizing conventional MIP polymers, so that they can effectively interact with target molecules. It is done. Therefore, by fully utilizing these characteristics, it is expected to construct a novel sensing system (detection system) using nano-sized molecular imprinted fine particles (average particle size is less than 1 μm). That is, the construction of a novel sensing system (detection system) using nano-sized molecularly imprinted fine particles (average particle size is less than 1 μm) is an issue in this research field.

本発明は上記の課題を解決するためになされたものであり、その目的は、ナノサイズ(平均粒子計が1μm未満)の分子インプリント微粒子を利用した新規な標的分子の検出方法を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a novel method for detecting a target molecule using molecular-imprinted fine particles of nanosize (average particle size is less than 1 μm). It is.

本発明者は鋭意検討した結果、表面プラズモン共鳴(SPR)のセンサー基板表面に標的分子誘導体を集積させ、分子インプリント微粒子を送液すれば、分子インプリント微粒子が標的分子誘導体集積基板と相互作用し、これによりSPRスペクトルが変化することを利用して試料中の標的分子を検出できることを見出した。さらに、本発明者は蛍光性の分子インプリント微粒子が、表面に標的分子誘導体を集積させた金微粒子と相互作用することにより、分子インプリント微粒子と標的分子誘導体集積金微粒子間の光エネルギーの吸収と放出挙動を利用して試料中の標的分子を検出できることを見出し、本発明を完成させるに至った。   As a result of intensive studies, the present inventor has accumulated the target molecule derivative on the surface of the surface plasmon resonance (SPR) sensor substrate, and sent the molecular imprinted fine particle, so that the molecular imprinted fine particle interacts with the target molecule derivative accumulated substrate. Thus, it has been found that the target molecule in the sample can be detected by utilizing the change in the SPR spectrum. Furthermore, the present inventor has shown that the fluorescent molecularly imprinted fine particles interact with the gold fine particles having the target molecule derivative accumulated on the surface, thereby absorbing light energy between the molecular imprinted fine particles and the target molecule derivative-integrated gold fine particles. And found that the target molecule in the sample can be detected by utilizing the release behavior, and the present invention has been completed.

すなわち、本発明に係る試料中の標的分子検出方法は、試料中の標的分子を検出する方法であって、以下の(A)と(B)との相互作用を検出することを特徴とする。
(A)分子インプリント法により構築された標的分子認識部位を有し、動的光散乱法により測定される平均粒子径が1μm未満の分子インプリント微粒子
(B)標的分子またはその誘導体の単分子層を有し、単分子層に分子インプリント微粒子が結合可能な分子集積体
That is, the target molecule detection method in a sample according to the present invention is a method for detecting a target molecule in a sample, and is characterized by detecting the following interaction between (A) and (B).
(A) Molecularly imprinted fine particles having a target molecule recognition site constructed by a molecular imprint method and having an average particle diameter of less than 1 μm measured by a dynamic light scattering method (B) A single molecule of a target molecule or a derivative thereof Molecular assembly having a layer and capable of binding molecularly imprinted fine particles to a monolayer

本発明に係る試料中の標的分子検出方法において、分子集積体は、基板の表面に単分子層が形成されていることが好ましい。また、分子集積体は、溶媒に分散可能な微粒子の表面に単分子層が形成されていることが好ましい。   In the method for detecting a target molecule in a sample according to the present invention, the molecular assembly preferably has a monomolecular layer formed on the surface of the substrate. In addition, the molecular aggregate preferably has a monomolecular layer formed on the surface of fine particles dispersible in a solvent.

また、分子集積体は、光エネルギーを吸収または放出することが好ましい。一方、分子インプリント微粒子は、分子集積体が光エネルギーを吸収するときは光エネルギーを放出し、分子集積体が光エネルギーを放出するときは光エネルギーを吸収することが好ましい。より好ましい組み合せは、分子インプリント微粒子は蛍光を発光し、分子集積体は分子インプリント微粒子が発する蛍光エネルギーを吸収して分子インプリント微粒子の蛍光を消光する、または分子インプリント微粒子が発する蛍光エネルギーを吸収して分子集積体自身がさらに蛍光を発光することである。逆に、分子集積体は蛍光を発光し、分子インプリント微粒子は分子集積体が発する蛍光エネルギーを吸収して分子集積体の蛍光を消光する、または分子集積体が発する蛍光エネルギーを吸収して分子インプリント微粒子自身がさらに蛍光を発光するものでもよい。   Further, the molecular assembly preferably absorbs or emits light energy. On the other hand, the molecularly imprinted fine particles preferably emit light energy when the molecular aggregate absorbs light energy, and absorb light energy when the molecular aggregate releases light energy. A more preferable combination is that the molecularly imprinted fine particles emit fluorescence, and the molecular aggregate absorbs the fluorescent energy emitted by the molecularly imprinted fine particles and quenches the fluorescence of the molecularly imprinted fine particles, or the fluorescent energy emitted by the molecularly imprinted fine particles. And the molecular aggregate itself emits further fluorescence. Conversely, the molecular aggregate emits fluorescence, and the molecularly imprinted fine particles absorb the fluorescent energy emitted by the molecular aggregate and quench the fluorescence of the molecular aggregate, or absorb the fluorescent energy emitted by the molecular aggregate and absorb the molecule. The imprint fine particles themselves may further emit fluorescence.

本発明に係る試料中の標的分子検出方法は、試料と前記分子インプリント微粒子と前記分子集積体とを接触させる試料接触工程を包含することを特徴とする。   The method for detecting a target molecule in a sample according to the present invention includes a sample contacting step in which a sample, the molecular imprinted fine particles, and the molecular aggregate are brought into contact with each other.

本発明に係る試料中の標的分子検出キットは、試料中の標的分子を検出するための試薬キットであって、以下の(A)および(B)を備えることを特徴とする。
(A)分子インプリント法により構築された標的分子認識部位を有し、動的光散乱法により測定される平均粒子径が1μm未満の分子インプリント微粒子
(B)標的分子またはその誘導体の単分子層を有し、単分子層に分子インプリント微粒子が結合可能な分子集積体
A target molecule detection kit in a sample according to the present invention is a reagent kit for detecting a target molecule in a sample, and includes the following (A) and (B).
(A) Molecularly imprinted fine particles having a target molecule recognition site constructed by a molecular imprint method and having an average particle diameter of less than 1 μm measured by a dynamic light scattering method (B) A single molecule of a target molecule or a derivative thereof Molecular assembly having a layer and capable of binding molecularly imprinted fine particles to a monolayer

本発明によれば、ナノサイズ(平均粒子計が1μm未満)の分子インプリント微粒子と、標的分子またはその誘導体の単分子層を有する分子集積体とを利用した新規な標的分子の検出方法を提供することができる。本発明に係る試料中の標的分子検出方法は、種々の検出手段に適用することができ、応用範囲が広いという効果を奏する。   According to the present invention, there is provided a novel method for detecting a target molecule using nano-sized (average particle size is less than 1 μm) molecular imprinted fine particles and a molecular assembly having a monomolecular layer of the target molecule or its derivative. can do. The method for detecting a target molecule in a sample according to the present invention can be applied to various detection means, and has an effect that the application range is wide.

まず、本発明の完成に至る背景を簡単に説明する。   First, the background to the completion of the present invention will be briefly described.

本発明者は、生体分子の機能を人工的に模倣するバイオミメティック技術を開発すべく、モレキュラーインプリント法により構築した標的分子認識構造体を用いたセンシングについて鋭意研究を行っている。今回、本発明者は、女性ホルモン様作用を示す内分泌攪乱物質として知られているビスフェノールA(以下「BPA」と記す)を標的分子とする分子インプリント微粒子を合成し、この分子インプリント微粒子と標的分子であるBPAとの相互作用を表面プラズモン共鳴(以下「SPR」と記する)スペクトルの変化として検出することを試みた。   In order to develop a biomimetic technique that artificially mimics the function of a biomolecule, the present inventor has conducted earnest research on sensing using a target molecule recognition structure constructed by a molecular imprint method. This time, the present inventors synthesized molecularly imprinted fine particles having bisphenol A (hereinafter referred to as “BPA”), which is known as an endocrine disrupting substance exhibiting a female hormone-like action, as target molecules. An attempt was made to detect the interaction with the target molecule BPA as a change in surface plasmon resonance (hereinafter referred to as “SPR”) spectrum.

最初に、本発明者は、SPRガラス基板表面にBPA認識分子インプリント微粒子を自己集積させた基板を作製し、これをSPR測定基板としてSPR測定装置にセットし、BPA溶液を送液してSPRスペクトルの変化を観察した。しかしながら、SPRスペクトルの変化はほとんど観察されなかった。また、BPAと非特異的に吸着することが知られている物質を基板に用いた場合も同様にSPRスペクトルの変化が観察されなかった。これらの結果から、基板表面のBPA認識分子インプリント微粒子にBPAが吸着しないのではなく、BPA吸着による基板表面の質量変化(密度変化)が小さすぎるため、SPRスペクトルの変化として捕らえることができないことが明らかとなった。この結果は、基板表面の密度変化による誘電率変化が共鳴波長に影響するというSPRの原理上妥当であり、今回のターゲットであるBPA(Mw=228)は分子量が小さすぎるため、SPRによる検出対象として不適当であるものと考えられた。   First, the present inventor produced a substrate in which BPA recognition molecular imprinted fine particles were self-assembled on the surface of an SPR glass substrate, set this as an SPR measurement substrate in an SPR measurement device, and fed a BPA solution to perform SPR. The change of the spectrum was observed. However, almost no change in the SPR spectrum was observed. Similarly, no change in the SPR spectrum was observed when a substance known to adsorb nonspecifically with BPA was used for the substrate. From these results, BPA is not adsorbed on BPA recognition molecule imprinted fine particles on the substrate surface, and the mass change (density change) on the substrate surface due to BPA adsorption is too small to be captured as a change in SPR spectrum. Became clear. This result is valid on the principle of SPR that the change in dielectric constant due to the density change on the substrate surface affects the resonance wavelength. Since the target BPA (Mw = 228) has a molecular weight that is too small, it is a target to be detected by SPR. It was considered inappropriate.

そこで、本発明者は、基板表面にBPA誘導体を集積させたSPR測定基板を作製してこれをSPR測定装置にセットし、BPA認識分子インプリント微粒子溶液を送液することを試みた。その結果、基板への分子インプリント微粒子の吸着をSPRスペクトルの変化として検出できることを見出した。また、BPA認識分子インプリント微粒子を、BPAを含む試料に加えて放置した後に送液したときのSPRスペクトルの変化は、BPA認識分子インプリント微粒子のみを送液した場合と異なることを見出した。これにより、低分子量のBPAをSPRスペクトルの変化として検出できる、新たな標的分子の検出方法を完成させた(後段の実施例2参照)。   Therefore, the present inventor tried to produce an SPR measurement substrate in which a BPA derivative is integrated on the substrate surface, set the substrate in an SPR measurement device, and send a BPA recognition molecule imprinted fine particle solution. As a result, it was found that adsorption of molecularly imprinted fine particles on the substrate can be detected as a change in the SPR spectrum. Further, it was found that the change in the SPR spectrum when the BPA-recognized molecularly imprinted fine particles were added to a sample containing BPA and allowed to flow and then sent was different from the case where only the BPA-recognized molecularly imprinted fine particles were sent. As a result, a new target molecule detection method capable of detecting low molecular weight BPA as a change in the SPR spectrum was completed (see Example 2 in the subsequent stage).

さらに、上述の分子インプリント微粒子と標的分子またはその誘導体の単分子層を有する分子集積体とを用いる検出系において、SPR測定装置等の高価な装置を使用しなくても標的分子を検出できる方法を開発すべく研究を行った。なぜなら、SPR測定装置のような高価な装置を保有する施設は限られており、誰もが容易に実施できるものではないからである。   Furthermore, in a detection system using the above-described molecularly imprinted fine particles and a molecular assembly having a monomolecular layer of a target molecule or a derivative thereof, a method capable of detecting a target molecule without using an expensive device such as an SPR measurement device Researched to develop. This is because there are a limited number of facilities that have expensive devices such as SPR measurement devices, and not everyone can easily implement them.

そこで、本発明者は、蛍光性のBPA認識分子インプリント微粒子と表面にBPA誘導体を集積させた金微粒子を用いることを試みた。金微粒子は、蛍光消光剤として、蛍光色素近傍に存在したとき消光反応を示すことが知られているからである(例えば、以下の参考文献を参照のこと。O.Yen-Yu, H.Michael, J.Phys.Chem ,2006,110,2031. C.Fabio,
C.Giuseppe, B.Anna, C.Salvatore, J.Phys.Chem ,2006,110,16491. N.Kato, F.Caruso,
J.Phys.Chem ,2005,109,19604. H.Cheng, D.Silvester, G.Wang, G.Kalyuzhny,
A.Douglas, R.Murry,J.Phys.Chem ,2006,110,4637.)。その結果、蛍光性BPA認識分子インプリント微粒子溶液にBPA集積金微粒子を添加することによりBPA集積金微粒子が蛍光性分子インプリント微粒子に吸着し、蛍光性分子インプリント微粒子の蛍光が消光することを見出した。これにより、分子インプリント微粒子と標的分子またはその誘導体の単分子層を有する分子集積体とを用いる検出系において、高価な測定機器を使用しないでも、光エネルギーの放出と吸収を利用することで標的分子の検出が可能であることが示された(後段の実施例3参照)。
Therefore, the present inventor has attempted to use fluorescent BPA-recognizing molecule-imprinted fine particles and gold fine particles in which BPA derivatives are accumulated on the surface. This is because gold fine particles are known to exhibit a quenching reaction when present in the vicinity of a fluorescent dye as a fluorescence quencher (see, for example, the following references: O. Yen-Yu, H. Michael). , J.Phys.Chem, 2006,110,2031.C.Fabio,
C. Giuseppe, B. Anna, C. Salvatore, J. Phys. Chem, 2006, 110, 16491. N. Kato, F. Caruso,
J.Phys.Chem, 2005,109,19604.H.Cheng, D.Silvester, G.Wang, G.Kalyuzhny,
A. Douglas, R. Murry, J. Phys. Chem, 2006, 110, 4637.). As a result, by adding the BPA-integrated gold fine particles to the fluorescent BPA recognition molecular imprinted fine particle solution, the BPA-integrated gold fine particles are adsorbed on the fluorescent molecularly imprinted fine particles, and the fluorescence of the fluorescent molecularly imprinted fine particles is quenched. I found it. As a result, in a detection system using molecular imprinted fine particles and a molecular assembly having a monomolecular layer of a target molecule or a derivative thereof, the target can be obtained by utilizing the release and absorption of light energy without using an expensive measuring instrument. It was shown that molecules can be detected (see Example 3 below).

以下、本発明に係る試料中の標的分子検出方法ついて詳細に説明する。   Hereinafter, the method for detecting a target molecule in a sample according to the present invention will be described in detail.

〔標的分子の検出方法〕
本発明に係る試料中の標的分子検出方法(以下「本発明に係る検出方法」と記す)は、試料中の標的分子を検出する方法であって、(A)分子インプリント法により構築された標的分子認識部位を有し、動的光散乱法により測定される平均粒子径が1μm未満の分子インプリント微粒子と、(B)標的分子またはその誘導体の単分子層を有し、当該単分子層に前記分子インプリント微粒子が結合可能な分子集積体との相互作用を検出するものである。
[Target molecule detection method]
A target molecule detection method in a sample according to the present invention (hereinafter referred to as “detection method according to the present invention”) is a method for detecting a target molecule in a sample, and is constructed by (A) a molecular imprint method. A molecular imprinted fine particle having a target molecule recognition site and having an average particle size of less than 1 μm measured by a dynamic light scattering method, and (B) a monomolecular layer of the target molecule or a derivative thereof, And detecting an interaction with the molecular aggregate to which the molecularly imprinted fine particles can bind.

本発明に係る検出方法に用いられる分子インプリント微粒子は、分子インプリント法により構築された標的分子認識部位を有し、動的光散乱法により測定される平均粒子径が1μm未満であればよい。したがって、その素材は、分子インプリント法を適用して標的分子認識部位が構築でき、かつ、動的光散乱法により測定される平均粒子径が1μm未満の微粒子を形成し得るものであればよく、具体的には、例えば、有機ポリマー、無機ポリマー、金属酸化物などが挙げられる。なお、「分子インプリント法」は、認識対象である分子(標的分子)を鋳型として、その標的分子に選択性のある結合部位(標的分子認識部位)を人工的に材料中に構築する方法を意味する。   The molecularly imprinted fine particles used in the detection method according to the present invention may have a target molecule recognition site constructed by the molecular imprint method, and the average particle diameter measured by the dynamic light scattering method may be less than 1 μm. . Therefore, the material may be any material as long as it can construct a target molecule recognition site by applying the molecular imprint method and can form fine particles having an average particle diameter measured by the dynamic light scattering method of less than 1 μm. Specific examples include organic polymers, inorganic polymers, metal oxides, and the like. The “molecular imprint method” is a method of artificially constructing a binding site (target molecule recognition site) that is selective for the target molecule in a material using the molecule to be recognized (target molecule) as a template. means.

有機ポリマーを素材としたものは、標的分子あるいはその誘導体や類似化合物を鋳型分子としてラジカル重合反応時に共存させることにより得ることができる。無機ポリマーを素材にしたものは、標的分子あるいはその誘導体や類似化合物を鋳型分子としてゾル-ゲル反応時に共存させることにより得ることができる。(Lee, S.W.,
Ichinose, I., Kunitake, T., Enantioselective binding of amino acid
derivatives onto imprinted TiO2 ultrathin films. Chem. Lett. 2002, 678-679.)金属酸化物を素材としたものは、標的分子あるいはその誘導体や類似化合物を鋳型分子として、金属酸化物膜の製膜法の1種である液相析出法を用いることで得ることができる(Feng, L., Liu, Y., Hu, J., Langmuir 2004, 20, 1786.)。これらの方法は、重合反応時に鋳型分子に対して相補的に相互作用する分子認識部位を、ポリマー合成と同時に構築する方法である。より詳細には、まず、標的分子あるいはその誘導体や類似化合物と結合可能な官能基および重合可能な官能基を併せ持つ機能性モノマーを標的分子と結合させて、標的分子/機能性モノマー複合体を形成させる。なお、この複合体を形成するための結合は、切断可能であれば共有結合でも非共有結合でもかまわない。次に、この標的分子/機能性モノマー複合体に架橋剤および重合開始剤を加え、重合反応を行なう。これにより鋳型分子の形状ならびに相互作用点の配置を記憶した有機高分子が得られる。最後に、得られた高分子より鋳型分子を切断除去することにより、鋳型分子と基質特異的に相互作用する分子認識部位を有する高分子(分子インプリントポリマー)が得られる。なお、分子インプリントポリマーの合成方法については、例えば、参考文献「Komiyama, M., Takeuchi, T., Mukawa, T., Asanuma, H. "Molecular
Imprinting", WILEY-VCH, Weinheim, 2002.」の記載を参照すればよい。
An organic polymer material can be obtained by using a target molecule or its derivative or similar compound as a template molecule in the radical polymerization reaction. A material made of an inorganic polymer can be obtained by using a target molecule or its derivative or similar compound as a template molecule in the sol-gel reaction. (Lee, SW,
Ichinose, I., Kunitake, T., Enantioselective binding of amino acid
Chemist. Lett. 2002, 678-679.) Metal oxides are used as template molecules for target molecules or their derivatives and similar compounds. Derived onto imprinted TiO2 ultrathin films. It can be obtained by using one type of liquid phase precipitation method (Feng, L., Liu, Y., Hu, J., Langmuir 2004, 20, 1786.). In these methods, a molecular recognition site that interacts complementarily with a template molecule during a polymerization reaction is constructed simultaneously with the synthesis of the polymer. More specifically, first, a functional monomer having both a functional group capable of binding to the target molecule or its derivative or similar compound and a polymerizable functional group is bound to the target molecule to form a target molecule / functional monomer complex. Let The bond for forming this complex may be a covalent bond or a non-covalent bond as long as it can be cleaved. Next, a crosslinking agent and a polymerization initiator are added to the target molecule / functional monomer complex, and a polymerization reaction is performed. Thereby, an organic polymer in which the shape of the template molecule and the arrangement of the interaction points are stored is obtained. Finally, the template molecule is cleaved and removed from the obtained polymer to obtain a polymer (molecular imprint polymer) having a molecular recognition site that interacts with the template molecule in a substrate-specific manner. For the method of synthesizing the molecularly imprinted polymer, for example, the reference “Komiyama, M., Takeuchi, T., Mukawa, T., Asanuma, H.“ Molecular
Refer to the description of “Imprinting”, WILEY-VCH, Weinheim, 2002.

分子インプリント微粒子を得る方法としては、機械的に粉砕して微粒子を得る方法と、核を成長させて微粒子を得る方法の2つに大別される。機械的に粉砕する場合、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機、ジェット気流式粉砕機などの公知の粉砕機が使用できる。得られた粉砕物(微粒子)は、必要により篩別して粒度調製することができる。   The method for obtaining molecularly imprinted fine particles is roughly classified into two methods: a method for obtaining fine particles by mechanical pulverization and a method for obtaining fine particles by growing nuclei. When mechanically pulverizing, known pulverizers such as a hammer pulverizer, an impact pulverizer, a roll pulverizer, and a jet airflow pulverizer can be used. The obtained pulverized product (fine particles) can be sieved as necessary to prepare a particle size.

分子インプリントポリマーの微粒子を得る方法としては、例えば、沈殿重合法、分散重合法、乳化重合法、シード乳化重合法などを挙げることができる(参考文献:蒲池幹治、遠藤剛監修者、『ラジカル重合ハンドブック』(1999)エヌティーエス、G. Schmid Ed. Nanoparticles,
Wiley-VCH (2004)を参照)。本発明者は、ポリスチレン粒子をシード(種)とするシード乳化重合法により、BPA認識分子インプリントポリマー微粒子を合成している(後段の実施例1参照)。
Examples of the method for obtaining fine particles of molecularly imprinted polymer include precipitation polymerization method, dispersion polymerization method, emulsion polymerization method, seed emulsion polymerization method, etc. (reference: Mikiharu Tsunoike, Takeshi Endo, “Radical” Polymerization Handbook "(1999) NTS, G. Schmid Ed. Nanoparticles,
(See Wiley-VCH (2004)). The inventor has synthesized BPA-recognized molecularly imprinted polymer fine particles by a seed emulsion polymerization method using polystyrene particles as seeds (see Example 1).

本発明に係る検出方法に用いられる分子インプリント微粒子は、動的光散乱法により測定される平均粒子径が1μm未満である。ここで、「動的光散乱法」とは、粒子が分散している溶液にレーザー光を当て、その散乱光変化を測定したときに検出される粒子のブラウン運動に依存した散乱光度の揺らぎに基づいて、粒子の大きさ(粒子径)を導き出す方法である。動的光散乱法に基づく粒子径測定装置は各社から市販されており(大塚電子、シスメックス、ベックマン・コールターなど)、本発明に係る検出方法に用いられる分子インプリント微粒子の平均粒子径測定に好適に用いることができる。   The molecularly imprinted fine particles used in the detection method according to the present invention have an average particle size measured by a dynamic light scattering method of less than 1 μm. Here, the “dynamic light scattering method” refers to fluctuations in the scattered light intensity depending on the Brownian motion of the particles detected when laser light is applied to the solution in which the particles are dispersed and changes in the scattered light are measured. This is a method for deriving the size (particle diameter) of particles based on the above. Particle size measuring devices based on the dynamic light scattering method are commercially available from various companies (Otsuka Electronics, Sysmex, Beckman Coulter, etc.) and suitable for measuring the average particle size of molecularly imprinted fine particles used in the detection method according to the present invention. Can be used.

平均粒子径が1μm未満であれば、分子インプリント微粒子は、溶媒(液体の分散媒)中で均一に分散することができる。平均粒子径の下限は特に限定されず、凝集が生じない限りにおいて小さいほうが好ましい。分散性と取り扱いの容易さの観点から、分子インプリント微粒子の平均粒子径は100nm〜500nmが好ましい。   If the average particle size is less than 1 μm, the molecularly imprinted fine particles can be uniformly dispersed in a solvent (liquid dispersion medium). The lower limit of the average particle diameter is not particularly limited, and it is preferably as small as possible unless aggregation occurs. From the viewpoint of dispersibility and ease of handling, the average particle size of the molecularly imprinted fine particles is preferably 100 nm to 500 nm.

本発明に係る検出方法の検出対象である標的分子は特に限定されず、薬剤等の低分子化合物からタンパク質などの高分子化合物まで広範囲の分子を標的分子とすることができる。好ましい標的分子としては、生体分子が挙げられる。生体分子は生物中に存在する分子であればよい。生体分子を標的とすることにより、病気の診断、臨床検査、生物学の基礎研究などに利用可能な標的分子の検出方法を提供することができる。   The target molecule to be detected by the detection method according to the present invention is not particularly limited, and a wide range of molecules from low molecular compounds such as drugs to high molecular compounds such as proteins can be used as target molecules. Preferable target molecules include biomolecules. The biomolecule may be a molecule that exists in an organism. By targeting a biomolecule, it is possible to provide a method for detecting a target molecule that can be used for diagnosis of disease, clinical examination, basic research of biology, and the like.

本発明に係る検出方法を適用する試料は、標的分子を含み得るものであればよい。試料の形態は特に限定されず、液体、個体、粒状体、粉状体、流動体、組織切片などの形態を挙げることができる。生体分子を標的とする場合は、動物および植物の生体構成成分を好適に用いることができる。ヒトを含む動物由来の試料としては、例えば血液、組織液、リンパ液、脳脊髄液、膿、粘液、鼻水、喀痰、尿、糞便、腹水等の体液類、皮膚、肺、腎、粘膜、各種臓器、骨等の組織、鼻腔、気管支、皮膚、各種臓器、骨等を洗浄した後の洗浄液、透析排液などを挙げることができる。   The sample to which the detection method according to the present invention is applied may be any sample that can contain a target molecule. The form of the sample is not particularly limited, and examples thereof include liquids, solids, granules, powders, fluids, and tissue sections. When targeting biomolecules, animal and plant biological components can be suitably used. Examples of samples derived from animals including humans include body fluids such as blood, tissue fluid, lymph fluid, cerebrospinal fluid, pus, mucus, nasal discharge, sputum, urine, feces, ascites, skin, lung, kidney, mucous membrane, various organs, Examples thereof include a washing solution after washing tissue such as bone, nasal cavity, bronchi, skin, various organs, bone, and the like, and dialysis drainage.

本発明に係る検出方法に用いられる分子集積体は、標的分子またはその誘導体の単分子層を有し、当該単分子層に(A)の分子インプリント微粒子が結合可能であるものであればよい。標的分子またはその誘導体の単分子層は、基板の表面、または溶媒に分散可能な微粒子の表面に形成されていることが好ましい。基板および溶媒に分散可能な微粒子については後述する。この単分子層は分子集積体の表面の全部に形成されていてもよく、表面の一部に形成されていてもよい。なお、「標的分子またはその誘導体の単分子層」とは、標的分子またはその誘導体が基板表面や微粒子表面に自己組織化膜やラングミュアーブロジェット膜のように単分子の層を作って固定化されていることを意味する。   The molecular assembly used in the detection method according to the present invention may be any one having a monomolecular layer of a target molecule or a derivative thereof and capable of binding the molecularly imprinted fine particles (A) to the monomolecular layer. . The monomolecular layer of the target molecule or derivative thereof is preferably formed on the surface of the substrate or the surface of fine particles that can be dispersed in a solvent. The fine particles dispersible in the substrate and the solvent will be described later. This monomolecular layer may be formed on the entire surface of the molecular assembly or may be formed on a part of the surface. “Monolayer of target molecule or its derivative” means that the target molecule or its derivative is immobilized by creating a monomolecular layer on the substrate surface or fine particle surface like a self-assembled film or Langmuir-Blodgett film. Means that

本発明に係る検出方法において、上述の分子インプリント微粒子と標的分子またはその誘導体の単分子層を有する分子集積体(以下「分子集積体」と記す)との相互作用とは、分子インプリント微粒子が有する標的分子認識部位が分子集積体表面の標的分子またはその誘導体を特異的に認識し、分子インプリント微粒子と分子集積体とが物理的化学的に相互作用可能なほど近接する状態になることを意味する。   In the detection method according to the present invention, the interaction between the above-described molecularly imprinted fine particles and a molecular aggregate having a monomolecular layer of a target molecule or a derivative thereof (hereinafter referred to as “molecular aggregate”) is a molecularly imprinted fine particle. The target molecule recognition site of the molecule specifically recognizes the target molecule or its derivative on the surface of the molecular aggregate, and the molecular imprinted microparticle and the molecular aggregate are in close proximity so that they can interact physically and chemically. Means.

(1) 表面に標的分子またはその誘導体の単分子層が形成された基板を用いる方法(第1実施形態)
本発明に係る検出方法の一実施形態において、分子集積体は表面に標的分子またはその誘導体の単分子層が形成された基板(以下「分子集積基板」と記す)であることが好ましい。基板は、その表面に標的分子またはその誘導体の単分子層が形成できるものであればよい。好適な基板としては、例えば、金属基板、ガラス基板、シリコン基板、光導波路基板などが挙げられる。また、分子インプリント微粒子と基板表面の標的分子またはその誘導体との相互作用の検出に用いる検出手段に応じて、適宜基板の材質を選択することが好ましい。例えば、表面プラズモン共鳴(SPR)法に適用する場合はSPR用の金基板を用いることが好ましく、局在プラズモン共鳴(LSPR)法に適用する場合は光導波路基板を用いることが好ましく、水晶振動子センサーに適用する場合は水晶振動子をセンシングチップとすることが好ましく、電気化学的方法による検出に適用する場合は電極となる金属基板(例えば、金基板)を用いることが好ましい。また、発光や発色による検出に適用する場合はガラスや石英基板、光ファイバー、光導波路基板を用いることが好ましい。
(1) A method using a substrate on which a monomolecular layer of a target molecule or a derivative thereof is formed on the surface (first embodiment)
In one embodiment of the detection method according to the present invention, the molecular aggregate is preferably a substrate (hereinafter, referred to as “molecular integrated substrate”) on which a monomolecular layer of a target molecule or a derivative thereof is formed. The substrate may be any substrate as long as a monomolecular layer of the target molecule or derivative thereof can be formed on the surface. Examples of suitable substrates include metal substrates, glass substrates, silicon substrates, optical waveguide substrates, and the like. Moreover, it is preferable to select the material of the substrate as appropriate according to the detection means used for detecting the interaction between the molecularly imprinted fine particles and the target molecule on the substrate surface or a derivative thereof. For example, when applied to the surface plasmon resonance (SPR) method, a gold substrate for SPR is preferably used, and when applied to the localized plasmon resonance (LSPR) method, an optical waveguide substrate is preferably used. When applied to a sensor, it is preferable to use a quartz crystal as a sensing chip, and when applied to detection by an electrochemical method, it is preferable to use a metal substrate (for example, a gold substrate) serving as an electrode. When applied to detection by light emission or color development, it is preferable to use a glass, quartz substrate, optical fiber, or optical waveguide substrate.

基板表面に標的分子の単分子層を形成させる方法としては、例えば本発明者は、金−チオール結合を利用して、チオール基を導入したBPAの自己組織化単分子膜(SAM:Self−Assembled Monolayer)を形成させることにより、BPAインプリント微粒子が結合可能なBPA誘導体の分子集積基板を作製している(後段の実施例2参照)。   As a method for forming a monolayer of a target molecule on the surface of a substrate, for example, the present inventor has used a self-assembled monolayer (SAM: Self-Assembled) of BPA into which a thiol group is introduced using a gold-thiol bond. Monolayer) is formed to produce a molecular integrated substrate of a BPA derivative to which BPA imprinted fine particles can bind (see Example 2 below).

図1は、分子インプリント微粒子が分子集積基板に吸着している状態を示す模式図である。図1に示したように、本実施形態では、分子集積基板表面の標的分子またはその誘導体と分子インプリント微粒子とが接触すると、分子インプリント微粒子が有する標的分子認識部位が標的分子またはその誘導体を特異的に認識し、両者の相互作用により分子インプリント微粒子が分子集積基板に吸着する。この相互作用を検出することにより、試料中の標的分子を検出することができる。分子インプリント微粒子と分子集積基板表面の標的分子またはその誘導体との相互作用の検出手段には、表面プラズモン共鳴(SPR)法、局在プラズモン共鳴(LSPR)法、水晶振動子センサー、電気化学的方法、発光法、発色法、光導波路分光法などの公知の方法を好適に適用することができる。なお、いずれの手段を用いる場合も、通常とは逆に、標的分子を捕捉するための標的分子認識部位を有する分子インプリント微粒子を固定化せずに、バッチ式検出系の場合は試料溶液に分散させ、フロー式検出系の場合はキャリア溶液に混合して流すこととし、表面に標的分子またはその誘導体が単分子層を形成して集積している基板を用いることになる。この点が、本発明に係る検出方法の特徴であり、分子インプリント微粒子との相互作用が非常に小さい低分子の標的分子をも検出することが可能となる。   FIG. 1 is a schematic diagram showing a state where molecularly imprinted fine particles are adsorbed on a molecular integrated substrate. As shown in FIG. 1, in this embodiment, when the target molecule or its derivative on the surface of the molecular integrated substrate and the molecularly imprinted fine particle come into contact with each other, the target molecule recognition site of the molecularly imprinted fine particle changes the target molecule or its derivative. Specifically recognized, the molecularly imprinted fine particles are adsorbed on the molecular integrated substrate by the interaction between the two. By detecting this interaction, the target molecule in the sample can be detected. As a means for detecting the interaction between the molecularly imprinted fine particles and the target molecule on the surface of the molecular integrated substrate or its derivative, surface plasmon resonance (SPR) method, localized plasmon resonance (LSPR) method, quartz crystal sensor, electrochemical Known methods such as a method, a light emitting method, a color developing method, and an optical waveguide spectroscopy can be suitably applied. In any case, contrary to the normal case, the molecular imprint fine particles having the target molecule recognition site for capturing the target molecule are not immobilized. In the case of a flow type detection system, the substrate is dispersed and flowed in a carrier solution, and a substrate in which a target molecule or a derivative thereof forms a monomolecular layer and is accumulated on the surface is used. This point is a feature of the detection method according to the present invention, and it is possible to detect even a low molecular target molecule having a very small interaction with the molecularly imprinted fine particles.

試料中の標的分子を検出する際には、分子インプリント微粒子と分子集積基板との2者を接触させたときの相互作用の強さと、標的分子を含み得る試料と分子インプリント微粒子と分子集積基板との3者を接触させたときの相互作用の強さとを比較する。つまり、3者を接触させたときに試料中に標的分子が存在すれば、この試料中の標的分子が、基板表面に集積された標的分子またはその誘導体と競合して分子インプリント微粒子の標的分子認識部位に吸着する。その結果、2者を接触させたときと比較して、分子インプリント微粒子と分子集積基板との相互作用が小さくなるので、試料中に標的分子が存在していることがわかる。この際、検量線を作成することにより、試料中の標的分子を定量することが可能となる。   When detecting a target molecule in a sample, the strength of the interaction when the molecular imprinted fine particle and the molecular integration substrate are brought into contact with each other, the sample that may contain the target molecule, the molecular imprinted fine particle, and the molecular integration. The strength of the interaction when the three parties are brought into contact with the substrate is compared. That is, if a target molecule is present in the sample when the three are brought into contact with each other, the target molecule in this sample competes with the target molecule or its derivative accumulated on the substrate surface, and the target molecule of the molecularly imprinted microparticle Adsorb to the recognition site. As a result, since the interaction between the molecularly imprinted fine particles and the molecular integrated substrate is smaller than when the two are brought into contact with each other, it can be seen that the target molecule is present in the sample. At this time, it is possible to quantify the target molecule in the sample by creating a calibration curve.

試料と分子インプリント微粒子と分子集積基板との3者を接触させる場合、分子インプリント微粒子と分子集積基板と接触させる前に、分子インプリント微粒子を試料と接触させてもよく、分子インプリント微粒子を分子集積基板と接触させた後に、分子インプリント微粒子を試料と接触させてもよく、3者を同時に接触させてもよい。検出対象の標的分子や用いる検出手段等に応じて最適な順序を選択することが好ましい。   When contacting the sample, the molecularly imprinted fine particle, and the molecular integrated substrate, the molecularly imprinted fine particle may be brought into contact with the sample before contacting the molecularly imprinted fine particle and the molecular integrated substrate. After contacting the molecular integrated substrate, the molecularly imprinted fine particles may be contacted with the sample, or the three may be simultaneously contacted. It is preferable to select an optimal order according to the target molecule to be detected, the detection means used, and the like.

(2) 表面に標的分子またはその誘導体の単分子層が形成された微粒子を用いる方法(第2実施形態)
本発明に係る検出方法の他の実施形態において、分子集積体は表面に標的分子またはその誘導体の単分子層が形成され、溶媒に分散可能な微粒子(以下「分子集積微粒子」と記す)であることが好ましい。溶媒に分散可能とは、溶媒(液体の分散媒)中において均一な分散状態が維持され、凝集や沈殿が生じない状態を意味する。したがって、微粒子を構成する物質、標的分子、使用する溶媒などの条件により好適な微粒子の大きさが選択される。通常、平均粒子径は数十nm〜数百nmの範囲で選択される。
(2) Method using a fine particle having a monomolecular layer of a target molecule or its derivative formed on the surface (second embodiment)
In another embodiment of the detection method according to the present invention, the molecular aggregate is a fine particle (hereinafter referred to as “molecular integrated fine particle”) having a monomolecular layer of a target molecule or derivative thereof formed on the surface and dispersible in a solvent. It is preferable. Dispersible in a solvent means a state in which a uniform dispersion state is maintained in a solvent (liquid dispersion medium) and aggregation or precipitation does not occur. Accordingly, a suitable size of the fine particles is selected depending on conditions such as a substance constituting the fine particles, a target molecule, and a solvent to be used. Usually, the average particle diameter is selected in the range of several tens nm to several hundreds nm.

微粒子はその表面に標的分子またはその誘導体の単分子層が形成できるものであればよい。好適な微粒子としては、有機ポリマー微粒子(ポリスチレン、ポリメタクリル酸メチルなど)、無機ポリマー微粒子(シリカ、アルミナなど)、金属微粒子(金、銀、白金、チタンなど)が挙げられる。   The fine particles are not particularly limited as long as a monomolecular layer of a target molecule or a derivative thereof can be formed on the surface thereof. Suitable fine particles include organic polymer fine particles (polystyrene, polymethyl methacrylate, etc.), inorganic polymer fine particles (silica, alumina, etc.) and metal fine particles (gold, silver, platinum, titanium, etc.).

表面に標的分子またはその誘導体の単分子層が形成された微粒子は、有機ポリマー微粒子や無機ポリマー微粒子の場合は、標的分子またはその誘導体が化学結合可能な官能基をあらかじめ導入することでポリマー表層に標的分子またはその誘導体を結合することにより取得することができる。金属微粒子の場合は、標的分子またはその誘導体にチオール基を導入して、金属微粒子表面上に自己組織化膜を形成させることで取得することができる。本発明者は、塩化金酸溶液とチオール基を導入したBPAから、表面にBPAの単分子層が形成された金微粒子を合成している(後段の実施例3参照)。   In the case of organic polymer fine particles or inorganic polymer fine particles, fine particles with a target molecule or derivative monomolecular layer formed on the surface are introduced into the polymer surface layer by introducing a functional group capable of chemically bonding to the target molecule or derivative thereof in advance. It can be obtained by binding a target molecule or a derivative thereof. In the case of metal fine particles, it can be obtained by introducing a thiol group into the target molecule or derivative thereof to form a self-assembled film on the surface of the metal fine particles. The inventor has synthesized gold fine particles having a BPA monomolecular layer formed on the surface from BPA into which a chloroauric acid solution and a thiol group have been introduced (see Example 3 in the subsequent stage).

本実施形態において、分子集積微粒子は光エネルギーを吸収または放出することが好ましい。「光エネルギーを吸収する」とは、分子が光エネルギーを吸収して基底状態から励起状態になることを意味し、「光エネルギーを放出する」とは、分子が励起状態から基底状態へ戻る際にエネルギーを光として放出することを意味する。   In this embodiment, it is preferable that the molecular integrated fine particles absorb or emit light energy. “Absorb light energy” means that the molecule absorbs light energy and goes from the ground state to the excited state, and “releases light energy” means when the molecule returns from the excited state to the ground state. It means that energy is released as light.

光エネルギーを放出する分子インプリント微粒子を用いる場合、分子インプリント微粒子が発する光エネルギーを吸収する分子集積微粒子を用いることで、分子インプリント微粒子と分子集積微粒子が相互作用した際に起こる消光現象を利用するセンシングが可能となる。また、光エネルギーを放出する分子インプリント微粒子を用いる場合、分子インプリント微粒子が発する光エネルギーを吸収することが可能で、かつその吸収した光エネルギーで励起状態になり、基底状態に戻る際に分子インプリント微粒子が発する光の波長とは異なる長波長側の新たな光を発する光の共鳴エネルギー移動が生じる分子集積微粒子を用いることで、分子インプリント微粒子と分子集積微粒子が相互作用した際に起こる光の共鳴エネルギー移動現象を利用するセンシングが可能となる。   When using molecularly imprinted fine particles that emit light energy, the use of molecularly integrated fine particles that absorb the light energy emitted by molecularly imprinted fine particles eliminates the quenching phenomenon that occurs when molecularly imprinted fine particles interact with molecularly integrated fine particles. Sensing can be used. In addition, when using molecularly imprinted fine particles that emit light energy, it is possible to absorb the light energy emitted from the molecularly imprinted fine particles, and when the absorbed light energy becomes excited and returns to the ground state, Occurs when molecularly imprinted fine particles interact with molecularly integrated fine particles by using molecularly integrated fine particles that generate resonance energy transfer of light that emits new light on a longer wavelength side that is different from the wavelength of light emitted by imprinted fine particles Sensing using the resonance energy transfer phenomenon of light becomes possible.

また、上記とは逆に、光エネルギーを放出する分子集積微粒子と分子集積微粒子が発する光エネルギーを吸収する分子インプリント微粒子とを用いた場合も同様のセンシングが可能となり、光エネルギーを放出する分子集積微粒子と分子集積微粒子が発する光エネルギーを吸収することが可能で、かつその吸収した光エネルギーで励起状態になり、基底状態に戻る際に分子集積微粒子が発する光の波長とは異なる長波長側の新たな光を発する光の共鳴エネルギー移動が生じる分子インプリント微粒子とを用いた場合も、同様のセンシングが可能となる。   Contrary to the above, in the case of using molecularly integrated fine particles that emit light energy and molecularly imprinted fine particles that absorb light energy emitted by the molecularly integrated fine particles, the same sensing is possible, and molecules that emit light energy can be obtained. It is possible to absorb the light energy emitted by the integrated fine particles and molecular integrated fine particles, and when the absorbed light energy enters the excited state and returns to the ground state, the wavelength is different from the wavelength of the light emitted by the molecular integrated particles. The same sensing is also possible when using molecularly imprinted fine particles that generate resonance energy transfer of light that emits new light.

光エネルギーを吸収する物質としては、特定の化合物の指定はなく、用いる発光物質の発光波長付近に吸収極大のある化合物であればよい。光の共鳴エネルギー移動現象を利用する場合は、用いる発光物質の発光波長付近に吸収極大のある化合物で、その吸収した光エネルギーを用いて新たな発光現象を生じる化合物であればよい。光エネルギーを放出する物質としては、ピレン、フルオレセイン、ローダミン、クマリン、ダンシル、Cy3,Cy5などの蛍光物質やCdSe微粒子など量子ドットと呼ばれる無機発光物質を挙げることができる。   The substance that absorbs light energy is not specified as a specific compound, and any compound having an absorption maximum in the vicinity of the emission wavelength of the light emitting substance to be used may be used. In the case of utilizing the resonance energy transfer phenomenon of light, any compound may be used as long as it is a compound having an absorption maximum near the emission wavelength of the light-emitting substance to be used and generates a new light emission phenomenon using the absorbed light energy. Examples of the substance that emits light energy include fluorescent substances such as pyrene, fluorescein, rhodamine, coumarin, dansyl, Cy3 and Cy5, and inorganic light-emitting substances called quantum dots such as CdSe fine particles.

したがって、光エネルギーを吸収する分子集積微粒子は、用いる発光物質の発光波長付近に吸収極大のある化合物を微粒子合成の際に混入させてドープさせたり、微粒子表面に官能基を導入し共有結合や非共有結合で化学的に結合させれば取得することができる。光エネルギーを放出する分子集積微粒子も同様に、上記例示した物質から適宜選択した物質を微粒子合成の際に混入させてドープさせたり、微粒子表面に官能基を導入し共有結合や非共有結合で化学的に結合させれば取得することができる。   Therefore, molecularly integrated fine particles that absorb light energy are doped with a compound having an absorption maximum in the vicinity of the emission wavelength of the light-emitting substance used during the fine particle synthesis, or a functional group is introduced on the fine particle surface to introduce covalent bonds or non- It can be obtained by chemically bonding with a covalent bond. Similarly, molecularly integrated microparticles that emit light energy can be doped with a material selected from the above-mentioned substances as appropriate during the synthesis of the microparticles, or introduced with functional groups on the surface of the microparticles to chemistry by covalent bonding or noncovalent bonding. Can be obtained by combining them.

また、光エネルギーを吸収する分子インプリント微粒子は、用いる発光物質の発光波長付近に吸収極大のある化合物を分子インプリント微粒子合成の際に混入させてドープさせたり、共重合させたり、微粒子表面に官能基を導入し共有結合や非共有結合で化学的に結合させれば取得することができる。光エネルギーを放出する分子インプリント微粒も同様に、上記例示した物質から適宜選択した物質を分子インプリント微粒子合成の際に混入させてドープさせたり、共重合させたり、微粒子表面に官能基を導入し共有結合や非共有結合で化学的に結合させれば取得することができる。   In addition, molecularly imprinted fine particles that absorb light energy can be doped or copolymerized by mixing a compound having an absorption maximum near the emission wavelength of the luminescent material used in the synthesis of the molecularly imprinted fine particles. It can be obtained by introducing a functional group and chemically bonding it with a covalent bond or a non-covalent bond. Similarly, the molecularly imprinted fine particles that emit light energy are mixed with a material appropriately selected from the above-listed materials during the synthesis of the molecularly imprinted fine particles, copolymerized, or functional groups are introduced on the surface of the fine particles. It can be obtained by chemically bonding with a covalent bond or a non-covalent bond.

本実施形態において、蛍光を発光する分子インプリント微粒子と、当該分子インプリント微粒子が発する蛍光エネルギーを吸収して分子インプリント微粒子の蛍光を消光させる分子集積微粒子を用いることが好ましい。これにより、分子インプリント微粒子と分子集積微粒子との相互作用を、蛍光強度を指標に検出することが可能となる。   In the present embodiment, it is preferable to use molecularly imprinted fine particles that emit fluorescence and molecular integrated fine particles that absorb fluorescence energy emitted from the molecularly imprinted fine particles and quench the fluorescence of the molecularly imprinted fine particles. Thereby, the interaction between the molecularly imprinted fine particles and the molecular integrated fine particles can be detected using the fluorescence intensity as an index.

また、蛍光を発光する分子インプリント微粒子と、当該分子インプリント微粒子が発する蛍光エネルギーを吸収して自身がさらに蛍光を発光する蛍光共鳴エネルギー移動現象を生じる分子集積微粒子を用いてもよい。同様に、分子インプリント微粒子と分子集積微粒子との相互作用を、蛍光共鳴エネルギー移動現象に基づく蛍光強度を指標に検出することが可能となる。   Alternatively, molecularly imprinted fine particles that emit fluorescence and molecularly integrated fine particles that absorb fluorescence energy emitted from the molecularly imprinted fine particles and generate a fluorescence resonance energy transfer phenomenon in which they themselves emit fluorescence may be used. Similarly, the interaction between the molecularly imprinted fine particles and the molecular integrated fine particles can be detected using the fluorescence intensity based on the fluorescence resonance energy transfer phenomenon as an index.

蛍光を発光する分子インプリント微粒子は、有機ポリマー素材の分子インプリント微粒子を合成する際に、蛍光性モノマーを添加することにより取得することができる。蛍光性モノマーとしては、例えばピレン、フルオレセイン、ローダミン、クマリン、ダンシル、Cy3,Cy5などを用いることができる。   The molecularly imprinted fine particles emitting fluorescence can be obtained by adding a fluorescent monomer when synthesizing the molecularly imprinted fine particles of the organic polymer material. As the fluorescent monomer, for example, pyrene, fluorescein, rhodamine, coumarin, dansyl, Cy3, Cy5 and the like can be used.

蛍光エネルギーを吸収して消光させる分子集積微粒子は、金属(金、銀、白金、チタンなど)や有機化合物(蛍光物質の蛍光波長のところに吸収波長を持つ有機化合物)などを
用いて上記と同様の方法で取得することができる。また、蛍光エネルギーを吸収して自身がさらに蛍光を発光する分子集積微粒子は、はじめに発光する蛍光物質の発光波長付近の波長で励起できる蛍光物質を用いて上記と同様の方法で取得することができる。
Molecularly integrated fine particles that absorb and extinguish fluorescence energy are the same as described above using metals (gold, silver, platinum, titanium, etc.) and organic compounds (organic compounds having an absorption wavelength at the fluorescence wavelength of the fluorescent substance). Can be obtained by the method. In addition, molecular integrated fine particles that absorb fluorescence energy and emit fluorescence further can be obtained in the same manner as described above using a fluorescent substance that can be excited at a wavelength near the emission wavelength of the fluorescent substance that emits light first. .

逆に、蛍光を発光する分子集積微粒子と、当該分子集積体が発する蛍光エネルギーを吸収して分子集積微粒子の蛍光を消光させる分子インプリント微粒子を用いることも可能である。同様に、蛍光を発光する分子集積微粒子と、当該分子集積体が発する蛍光エネルギーを吸収して自身がさらに蛍光を発光する分子インプリント微粒子を用いることも可能である。これらの分子集積微粒子、分子インプリント微粒子も上記と同様の方法で取得することができる。   Conversely, it is also possible to use molecularly integrated fine particles that emit fluorescence and molecularly imprinted fine particles that absorb the fluorescence energy emitted from the molecular integrated body and quench the fluorescence of the molecularly integrated fine particles. Similarly, it is also possible to use molecularly integrated fine particles that emit fluorescence and molecularly imprinted fine particles that absorb fluorescence energy emitted from the molecular integrated body and emit fluorescence further. These molecular integrated fine particles and molecular imprinted fine particles can also be obtained by the same method as described above.

分子インプリント微粒子と分子集積微粒子との相互作用を、蛍光強度を指標に検出する場合、蛍光性分子インプリント微粒子および分子集積微粒子の粒子径はいずれも蛍光の励起波長以下であることが好ましい。励起光を照射しても分散液中の微粒子が見えないからである。   In the case where the interaction between the molecularly imprinted fine particles and the molecular integrated fine particles is detected using the fluorescence intensity as an index, the particle diameters of the fluorescent molecularly imprinted fine particles and the molecular integrated fine particles are preferably not more than the excitation wavelength of the fluorescence. This is because the fine particles in the dispersion are not visible even when irradiated with excitation light.

以下、蛍光を発光する分子インプリント微粒子と当該分子インプリント微粒子が発する蛍光エネルギーを吸収して分子インプリント微粒子の蛍光を消光させる分子集積微粒子との相互作用により、蛍光強度を指標として標的分子を検出する方法について説明する。   In the following, the target molecule is detected using the fluorescence intensity as an index by the interaction between the molecularly imprinted fine particles that emit fluorescence and the molecularly integrated fine particles that absorb the fluorescence energy emitted from the molecularly imprinted fine particles and quench the fluorescence of the molecularly imprinted fine particles. A detection method will be described.

図2は、蛍光を発光する分子インプリント微粒子(蛍光性分子インプリント微粒子)と分子集積金微粒子との相互作用を示す模式図である。図2に示したように、蛍光性分子インプリント微粒子のみが系内に存在している場合は、励起により強い蛍光発光が観測される。そこに蛍光エネルギーを吸収する金微粒子の表面に標的分子誘導体の単分子層を形成させた分子集積金微粒子を添加すると、蛍光性分子インプリント微粒子表面の標的分子認識部位に分子集積金微粒子が吸着し、これが消光剤として作用するため消光反応が進行する。さらに、標的分子、標的化合物誘導体、もしくは粒子間相互作用を阻害する化合物を添加すると蛍光が回復すると考えられる。   FIG. 2 is a schematic diagram showing an interaction between molecularly imprinted fine particles (fluorescent molecularly imprinted fine particles) that emit fluorescence and molecularly integrated gold fine particles. As shown in FIG. 2, when only fluorescent molecularly imprinted fine particles are present in the system, strong fluorescent emission is observed by excitation. When molecularly integrated gold microparticles with a monomolecular layer of a target molecule derivative formed on the surface of gold microparticles that absorb fluorescence energy are added, the molecularly integrated gold microparticles adsorb to the target molecule recognition site on the surface of the fluorescent molecularly imprinted microparticle. And since this acts as a quencher, a quenching reaction proceeds. Furthermore, it is considered that fluorescence is restored when a target molecule, a target compound derivative, or a compound that inhibits the interaction between particles is added.

試料中の標的分子を検出する際には、蛍光性分子インプリント微粒子と消光剤として作用する分子集積微粒子との2者を接触させたときの蛍光強度と、標的分子を含み得る試料と蛍光性分子インプリント微粒子と分子集積微粒子(消光剤)との3者を接触させたときの蛍光強度とを比較する。つまり、3者を接触させたときに試料中に標的分子が存在すれば、この試料中の標的分子が、分子集積微粒子表面の標的分子またはその誘導体と競合して蛍光性分子インプリント微粒子の標的分子認識部位に吸着する。その結果、2者を接触させたときと比較して、蛍光性分子インプリント微粒子と分子集積微粒子との相互作用が小さくなるので消光の程度も小さくなる。つまり、蛍光強度が大きくなり、試料中に標的分子が存在していることがわかる。この際、検量線を作成することにより、試料中の標的分子を定量することが可能となる。   When detecting a target molecule in a sample, the fluorescence intensity when the two molecules of the fluorescent molecule imprinted fine particle and the molecular integrated fine particle acting as a quencher are brought into contact with each other, the sample that may contain the target molecule, and the fluorescence A comparison is made of the fluorescence intensity when the three molecules of the molecular imprinted fine particles and the molecular integrated fine particles (quenching agent) are brought into contact with each other. That is, if a target molecule is present in the sample when the three are brought into contact with each other, the target molecule in the sample competes with the target molecule on the surface of the molecule-integrated fine particle or its derivative to target the fluorescent molecularly imprinted fine particle. Adsorbs to the molecular recognition site. As a result, compared with the case where the two are brought into contact with each other, the interaction between the fluorescent molecularly imprinted fine particles and the molecular integrated fine particles is reduced, so the degree of quenching is also reduced. That is, the fluorescence intensity increases and it can be seen that the target molecule is present in the sample. At this time, it is possible to quantify the target molecule in the sample by creating a calibration curve.

試料と分子インプリント微粒子と分子集積微粒子との3者を接触させる場合、分子インプリント微粒子と分子集積微粒子と接触させる前に、分子インプリント微粒子を試料と接触させてもよく、分子インプリント微粒子を分子集積微粒子と接触させた後に、分子インプリント微粒子を試料と接触させてもよく、3者を同時に接触させてもよい。検出対象の標的分子等に応じて最適な順序を選択することが好ましい。   When the sample, the molecularly imprinted fine particle, and the molecularly integrated fine particle are brought into contact with each other, the molecularly imprinted fine particle may be brought into contact with the sample before contacting the molecularly imprinted fine particle and the molecularly integrated fine particle. Then, the molecular imprinted fine particles may be brought into contact with the sample, or the three members may be brought into contact at the same time. It is preferable to select an optimal order according to the target molecule to be detected.

なお、本実施形態では蛍光を発光する分子インプリント微粒子と消光剤として作用する分子集積微粒子とを用いる液相の検出系について説明したが、蛍光を発光する分子インプリント微粒子を基板上に固定化して基板上の蛍光強度を指標とする検出系とすることもできる。   In this embodiment, the liquid phase detection system using the molecularly imprinted fine particles that emit fluorescence and the molecular integrated fine particles that act as a quencher has been described. However, the molecularly imprinted fine particles that emit fluorescence are immobilized on the substrate. Thus, a detection system using the fluorescence intensity on the substrate as an index can also be used.

また、分子集積微粒子に代えて分子集積基板を用いても実施することができる。具体的には、例えば、分子集積基板に分子インプリント微粒子のみを滴下したときの基板上の蛍光強度と、分子集積基板に標的分子を含み得る試料および分子インプリント微粒子を滴下したときの基板上の蛍光強度とを比較することにより、試料中の標的分子を検出することが可能である。   Further, the present invention can also be carried out using a molecular integrated substrate instead of the molecular integrated fine particles. Specifically, for example, the fluorescence intensity on the substrate when only the molecularly imprinted fine particles are dropped on the molecular integrated substrate, and the sample that may contain the target molecule and the molecularly imprinted fine particles on the substrate when the molecularly integrated substrate is dropped. It is possible to detect the target molecule in the sample by comparing the fluorescence intensity of the sample.

〔標的分子の検出キット〕
本名発明に係る試料中の標的分子検出キットは、以下の(A)および(B)を備えるものであればよい。
(A)分子インプリント法により構築された標的分子認識部位を有し、動的光散乱法により測定される平均粒子径が1μm未満の分子インプリント微粒子
(B)標的分子またはその誘導体の単分子層を有し、当該単分子層に前記分子インプリント微粒子が結合可能な分子集積体
これ以外の具体的なキットの構成については特に限定されるものではなく、必要な試薬や器具等を適宜選択してキットの構成とすればよい。本発明に係るキットを用いることにより、本発明に係る検出方法を簡便かつ迅速に実施することができる。
[Target molecule detection kit]
The target molecule detection kit in the sample according to the present invention may be any one provided with the following (A) and (B).
(A) Molecularly imprinted fine particles having a target molecule recognition site constructed by a molecular imprint method and having an average particle diameter of less than 1 μm measured by a dynamic light scattering method (B) A single molecule of a target molecule or a derivative thereof There is no particular limitation on the structure of the specific kit other than the molecular assembly in which the molecular imprinted fine particles can be bound to the monomolecular layer, and necessary reagents and instruments are appropriately selected. The kit may be configured. By using the kit according to the present invention, the detection method according to the present invention can be carried out simply and quickly.

(B)は表面に標的分子もしくはその誘導体の単分子層が形成された基板(分子集積基板)、または、表面に標的分子もしくはその誘導体の単分子層が形成され、溶媒に分散可能な微粒子(分子集積微粒子)であることが好ましく、表面に標的分子もしくはその誘導体の単分子層が形成され、溶媒に分散可能な微粒子(分子集積微粒子)がより好ましい。   (B) is a substrate on which a monomolecular layer of a target molecule or a derivative thereof is formed on a surface (molecular integrated substrate), or a fine particle (a monomolecular layer of a target molecule or a derivative thereof formed on the surface and dispersible in a solvent) Molecularly integrated fine particles) are preferable, and fine particles (molecular integrated fine particles) in which a monomolecular layer of a target molecule or a derivative thereof is formed on the surface and can be dispersed in a solvent are more preferable.

(A)と(B)の好適な組み合せとしては、上述の第2実施形態で説明したように、(A)光エネルギーを吸収する分子集積微粒子と(B)光エネルギーを放出する分子インプリント微粒子の組み合せ、または、(A)光エネルギーを放出する分子集積微粒子と(B)光エネルギーを吸収する分子インプリント微粒子の組み合せが挙げられる。   As a preferred combination of (A) and (B), as described in the second embodiment, (A) molecular integrated fine particles that absorb light energy and (B) molecular imprinted fine particles that emit light energy. Or a combination of (A) molecular integrated fine particles that emit light energy and (B) molecular imprinted fine particles that absorb light energy.

より具体的には、(1)蛍光を発光する分子インプリント微粒子と当該分子インプリント微粒子が発する蛍光エネルギーを吸収して分子インプリント微粒子の蛍光を消光させる分子集積微粒子との組み合せ、(2)蛍光を発光する分子インプリント微粒子と当該分子インプリント微粒子が発する蛍光エネルギーを吸収して自身がさらに蛍光を発光する分子集積微粒子との組み合せ、(3)蛍光を発光する分子集積微粒子と当該分子集積体が発する蛍光エネルギーを吸収して分子集積微粒子の蛍光を消光させる分子インプリント微粒子との組み合せ、(4)蛍光を発光する分子集積微粒子と当該分子集積体が発する蛍光エネルギーを吸収して自身がさらに蛍光を発光する分子インプリント微粒子との組み合せ、が挙げられる。これらの詳細については、上述の第2実施形態で説明したので、ここでは説明を省略する。   More specifically, (1) a combination of molecularly imprinted fine particles that emit fluorescence and molecularly integrated fine particles that absorb fluorescence energy emitted from the molecularly imprinted fine particles and quench the fluorescence of the molecularly imprinted fine particles; (2) Combination of molecularly imprinted fine particles that emit fluorescence and molecular integrated fine particles that absorb fluorescence energy emitted by the molecularly imprinted fine particles and emit themselves further, (3) molecular integrated fine particles that emit fluorescence and the molecular integrated In combination with molecularly imprinted fine particles that absorb the fluorescence energy emitted by the body and quench the fluorescence of the molecularly integrated fine particles, (4) the molecular integrated fine particles emitting fluorescence and the fluorescent energy emitted by the molecular integrated body absorb themselves Furthermore, a combination with molecularly imprinted fine particles that emit fluorescence is mentioned. Since these details have been described in the second embodiment, description thereof will be omitted here.

また、本キットは、上述の本発明に係る検出方法の実施手順に準じて使用することができる。   Moreover, this kit can be used according to the implementation procedure of the detection method which concerns on the above-mentioned this invention.

本明細書において「キット」は、特定の材料を内包する容器(例えば、ボトル、プレート、チューブ、ディッシュなど)を備えた包装が意図される。好ましくは当該材料を使用するための使用説明書を備える。使用説明書は、紙またはその他の媒体に書かれていても印刷されていてもよく、あるいは磁気テープ、コンピューター読み取り可能ディスクまたはテープ、CD−ROMなどのような電子媒体に付されてもよい。   As used herein, a “kit” is intended to be a package with a container (eg, bottle, plate, tube, dish, etc.) containing a specific material. Preferably, an instruction manual for using the material is provided. The instructions for use may be written or printed on paper or other media, or may be affixed to electronic media such as magnetic tape, computer readable disk or tape, CD-ROM, and the like.

〔実施例1:ビスフェノールA認識分子インプリント微粒子の合成と評価〕
ビスフェノールA(BPA)認識分子インプリント微粒子を合成し、その評価を行った。本実施例に使用した試薬は、いずれも市販品を購入した。また、分析機器としては、以下のものを使用した。すなわち、合成した分子インプリント微粒子の評価には高速液体クロマトグラフィー(HPLC)を用いた。HPLCはオートサンプルインジェクター(AUTOINJECTOR234)、ポンプ(322pump)、UV検出器(UV/VIS−152)からなる計器(GILSON)にパソコンをつなぎ、計測プログラムにはUnipoint V.3.00を使用した。ポリマーの洗浄にはトミー精工株式会社の遠心分離器SRX−201を使用した。粒子径分布と平均粒子径の測定には大塚電子株式会社のダイナミック光散乱光度計(DL−6500)を使用した。遠心エバポレータは東京理科器械株式会社のCVE−2000型を用いた。インキュベーションにはエッペンドルフ社製サーモミキサーコンフォートを使用した。走査型分析電子顕微鏡(SEM)は日本電子株式会社(JEOL)のJSM−5610LVSを使用した。
[Example 1: Synthesis and evaluation of bisphenol A-recognized molecular imprinted fine particles]
Bisphenol A (BPA) recognizing molecular imprinted fine particles were synthesized and evaluated. All reagents used in this example were purchased commercially. Moreover, the following was used as an analytical instrument. That is, high performance liquid chromatography (HPLC) was used for evaluation of the synthesized molecularly imprinted fine particles. For HPLC, a personal computer was connected to an instrument (GILSON) consisting of an auto sample injector (AUTOINJECTOR 234), a pump (322 pump), and a UV detector (UV / VIS-152), and Unipoint V. 3.00 was used. A centrifuge SRX-201 manufactured by Tommy Seiko Co., Ltd. was used for washing the polymer. A dynamic light scattering photometer (DL-6500) manufactured by Otsuka Electronics Co., Ltd. was used for measurement of particle size distribution and average particle size. The centrifugal evaporator used was CVE-2000 type manufactured by Tokyo Science Instruments Co., Ltd. Eppendorf Thermomixer Comfort was used for the incubation. As a scanning analytical electron microscope (SEM), JSM-5610LVS manufactured by JEOL Ltd. (JEOL) was used.

(1−1)BPA認識分子インプリント微粒子の合成
シード(種粒子)として用いるためのスチレン粒子の合成を行った。スチレンモノマーはインヒビターリムーバーにより重合禁止剤を除去したものを使用した。500mlセパラブルフラスコに表1のレシピに従ってモノマーと蒸留水を仕込み、攪拌しながら窒素雰囲気下で重合温度80℃まで加温した。開始剤V−50を5ml蒸留水に溶解させ、その水溶液を加温後のセパラブルフラスコに加えた。窒素雰囲気下、80℃でメカニカルスターラーを用いて150rpmで12時間攪拌重合を行った。重合終了後、遠心分離洗浄を3回行い未反応のモノマー、開始剤を除去し、エマルション固形分濃度を0.74%に調整した。重合率は100%で、ダイナミック光散乱光度計(DLS)による平均粒子径は381nmであった。
(1-1) Synthesis of BPA-recognizing molecule-imprinted fine particles Styrene particles for use as seeds (seed particles) were synthesized. The styrene monomer was obtained by removing the polymerization inhibitor with an inhibitor remover. A 500 ml separable flask was charged with a monomer and distilled water according to the recipe of Table 1, and heated to a polymerization temperature of 80 ° C. in a nitrogen atmosphere while stirring. Initiator V-50 was dissolved in 5 ml distilled water, and the aqueous solution was added to the heated separable flask. Under nitrogen atmosphere, stirring polymerization was carried out at 80 rpm using a mechanical stirrer at 80 ° C. for 12 hours. After completion of the polymerization, centrifugal washing was performed three times to remove unreacted monomers and initiators, and the emulsion solid content concentration was adjusted to 0.74%. The polymerization rate was 100%, and the average particle size measured by a dynamic light scattering photometer (DLS) was 381 nm.

Figure 2009047507
Figure 2009047507

上記で得られたシードを用いてBPA認識分子インプリント微粒子の合成を行った。50mlバイアル瓶にポリスチレンシード溶液(0.997wt%)30gをはかりとり、表2のレシピに従って所定量のモノマーを添加し、室温で6時間攪拌して膨潤させた。モノマー相の消失を確認した後、窒素雰囲気下で重合温度80℃まで加温し、開始剤V―50を5ml蒸留水に溶解させた水溶液を加温後のバイアル瓶に加えた。窒素雰囲気下、80℃、スターラー200rpmで12時間攪拌重合を行った。重合終了後、遠心分離洗浄を3回行い未反応のモノマー、開始剤を除去した。重合率は88.5%で、DLSによる平均粒子径は438.5nmであった。BPA認識分子インプリント微粒子(表2中「INP」)と同様の条件でBPAジメタクリレートモノマーを用いずにブランク微粒子(表2中「BNP」)も合成した。   Using the seed obtained above, BPA-recognized molecular imprinted fine particles were synthesized. 30 g of a polystyrene seed solution (0.997 wt%) was weighed into a 50 ml vial, a predetermined amount of monomer was added according to the recipe in Table 2, and the mixture was stirred at room temperature for 6 hours to swell. After confirming disappearance of the monomer phase, the mixture was heated to a polymerization temperature of 80 ° C. in a nitrogen atmosphere, and an aqueous solution in which initiator V-50 was dissolved in 5 ml distilled water was added to the heated vial. Under a nitrogen atmosphere, stirring polymerization was performed at 80 ° C. and a stirrer at 200 rpm for 12 hours. After completion of the polymerization, centrifugal washing was performed 3 times to remove unreacted monomers and initiators. The polymerization rate was 88.5%, and the average particle size by DLS was 438.5 nm. Blank fine particles (“BNP” in Table 2) were also synthesized without using the BPA dimethacrylate monomer under the same conditions as the BPA-recognized molecular imprinted fine particles (“INP” in Table 2).

Figure 2009047507
Figure 2009047507

BPA認識分子インプリント微粒子からBPAを除去するため、加水分解反応を行った。100mlナスフラスコに、得られた分子インプリント微粒子固形分濃度0.7wt%を80ml加え、水酸化ナトリウムを添加し1Mに調整した。それを還流下、24時間攪拌し加水分解を行った。24時間後攪拌を止め、室温まで冷ました後、遠心分離により上澄みを除去した。そこへHCl水溶液(1M)を加え、10分間超音波照射し、遠心分離により溶媒を除去した。酸による洗浄を3回繰り返した後、最後に蒸留水で2回洗浄し、エマルションとして保管した。   In order to remove BPA from the BPA-recognized molecularly imprinted fine particles, a hydrolysis reaction was performed. 80 ml of the obtained molecular imprinted fine particle solid concentration of 0.7 wt% was added to a 100 ml eggplant flask, and sodium hydroxide was added to adjust to 1M. It was stirred for 24 hours under reflux for hydrolysis. After 24 hours, stirring was stopped and the mixture was cooled to room temperature, and then the supernatant was removed by centrifugation. An aqueous HCl solution (1M) was added thereto, and ultrasonic irradiation was performed for 10 minutes, and the solvent was removed by centrifugation. Washing with an acid was repeated three times, and finally, washing was performed twice with distilled water and stored as an emulsion.

(1−2)BPA認識分子インプリント微粒子の評価
得られたポリマー(BPA認識分子インプリント微粒子)の分子認識能の評価としてHPLCによる再結合実験を行った。合成したBPA認識分子インプリント微粒子を5mgずつ1.5mlバイアル瓶にはかりとり、そこへ標的分子であるBPAを含む4種類(BPA、ビスフェノールB(BPB)、1−ナフトール、17β−エストラジオール(図3参照))のサンプル溶液(各3本 1.1mM乾燥トルエン溶液)を1.5mlずつ加えサーモミキサーで25℃、24時間インキュベーションを行った。その後シリンジフィルター(0.2μm)で溶液をろ過し、ろ液1mlをマイクロピペットで採取した。そこへ内部標準試料(ビス(4−ヒドロキシフェニル)メタン 6.28mMトルエン溶液)を100μl加えた後、遠心エバポレータで溶媒を留去した。留去後、アセトニトリルに再溶解させその濃度をHPLCを用いて定量し、BPA認識分子インプリント微粒子への結合量を算出した(HPLC測定条件;溶離液:MeCN/HO=4/6、流速:0.8ml/min、注入量:10μl、検出波長:278nm、カラム:SUPELCO LC−8−DB)。
(1-2) Evaluation of BPA-recognized molecularly imprinted fine particles A recombination experiment by HPLC was performed as an evaluation of the molecular recognition ability of the obtained polymer (BPA-recognized molecularly imprinted fine particles). 5 mg of the synthesized BPA recognition molecule imprinted fine particles are weighed into a 1.5 ml vial, and there are four types (BPA, bisphenol B (BPB), 1-naphthol, 17β-estradiol (FIG. 3) containing the target molecule BPA. 1.5 ml each of the sample solution (see 3) each and 1.1 mM dry toluene solution) was added, and incubation was performed with a thermomixer at 25 ° C. for 24 hours. Thereafter, the solution was filtered with a syringe filter (0.2 μm), and 1 ml of the filtrate was collected with a micropipette. 100 μl of an internal standard sample (bis (4-hydroxyphenyl) methane 6.28 mM toluene solution) was added thereto, and then the solvent was distilled off with a centrifugal evaporator. After distilling off, it was redissolved in acetonitrile, and its concentration was quantified using HPLC, and the binding amount to BPA-recognized molecular imprinted fine particles was calculated (HPLC measurement conditions; eluent: MeCN / H 2 O = 4/6, Flow rate: 0.8 ml / min, injection volume: 10 μl, detection wavelength: 278 nm, column: SUPELCO LC-8-DB).

(1−3)結果
図4に、合成したBPA認識分子インプリント微粒子のSEM画像を示した。図4から、比較的単分散な粒子径450nm程度の粒子が形成されていることが確認できた。
(1-3) Results FIG. 4 shows an SEM image of the synthesized BPA recognition molecule imprinted fine particles. From FIG. 4, it was confirmed that particles having a relatively monodispersed particle diameter of about 450 nm were formed.

図5に、合成したBPA認識分子インプリント微粒子への各サンプルの吸着量を算出した結果を示した。図5から明らかなように、標的分子であるBPAの吸着量は、ポリマー1gあたり13.8μmolであり、1−ナフトール(1.42μmol/gポリマー)、17β−エストラジオール(1.03μmol/gポリマー)と比較して吸着量が多かった。1−ナフトールは構造、官能基ともにBPAとの差異が多いが、17β−エストラジオールについては同じジオール化合物でありながら、吸着が抑えられた。また、ほぼ同じ構造を有するBPBの吸着量は11.0μmol/gポリマーであり、標的分子であるBPAと同程度の吸着性が見られた。この結果から、BPAとほぼ同じ構造であるBPBを識別することは困難なものの、今回合成した分子インプリント微粒子には、BPA特異的な認識部位が構築されていることが示された。   FIG. 5 shows the result of calculating the amount of each sample adsorbed on the synthesized BPA-recognizing molecule-imprinted fine particles. As is apparent from FIG. 5, the adsorption amount of BPA as a target molecule is 13.8 μmol per 1 g of polymer, 1-naphthol (1.42 μmol / g polymer), 17β-estradiol (1.03 μmol / g polymer). The amount of adsorption was larger than that. Although 1-naphthol has many differences in structure and functional group from BPA, the adsorption of 17β-estradiol was suppressed even though it was the same diol compound. Moreover, the adsorption amount of BPB having almost the same structure was 11.0 μmol / g polymer, and the same degree of adsorption as BPA as the target molecule was observed. From this result, it was difficult to identify BPB having almost the same structure as BPA, but it was shown that a BPA-specific recognition site was constructed in the molecularly imprinted fine particles synthesized this time.

〔実施例2:BPA−SAM基板とBPA認識分子インプリント微粒子を用いたSPRセンシング〕
BPA−SAM基板とBPA認識分子インプリント微粒子を用いて、SPRセンシングを試みた。本実施例に使用した試薬は、いずれも市販品を購入した。また、分析機器としては、以下のものを使用した。すなわち、誘導体合成に使用したシリカゲルクロマトグラフィーは和光純薬工業のシリカゲル(Wakogel C−300HG)を用いた。NMRスペクトルは日本電子(株)製NMR測定装置(JNM−LA300)を用いて測定した。質量分析にはApplied Biosystems(株)製ESI−MS(API2000)およびMALDI−TOF−MS(Voyager−2000[accelerating voltage 20kV])を用いた。IRスペクトル測定にはDIGILAB EXCULIBUR SERIES FT 3000を使用した。分子インプリント微粒子の評価には、システムインスツルメンツ株式会社製のプラズモン光導波路分光装置(S−SPR6000)を使用した。走査型分析電子顕微鏡(SEM)は日本電子株式会社(JEOL)のJSM−5610LVSを使用した。
[Example 2: SPR sensing using BPA-SAM substrate and BPA-recognized molecular imprinted fine particles]
SPR sensing was attempted using a BPA-SAM substrate and BPA recognition molecule imprinted fine particles. All reagents used in this example were purchased commercially. Moreover, the following was used as an analytical instrument. That is, silica gel (Wakogel C-300HG) manufactured by Wako Pure Chemical Industries was used for silica gel chromatography used for derivative synthesis. The NMR spectrum was measured using a JEOL Co., Ltd. NMR measurement apparatus (JNM-LA300). ESI-MS (API2000) and MALDI-TOF-MS (Voyager-2000 [accelating voltage 20 kV]) manufactured by Applied Biosystems Co., Ltd. were used for mass spectrometry. DIGILAB EXCULIBUR SERIES FT 3000 was used for IR spectrum measurement. For the evaluation of the molecularly imprinted fine particles, a plasmon optical waveguide spectrometer (S-SPR6000) manufactured by System Instruments Co., Ltd. was used. As a scanning analytical electron microscope (SEM), JSM-5610LVS manufactured by JEOL Ltd. (JEOL) was used.

(2−1)BPA−SAM基板の作製
SPR基板上にBPAを集積させるための手段としてBPA−SAM(Self−Assembled Monolayer、自己組織化単分子膜)を形成させるため、まずBPAにチオール基の導入を行った。
(2-1) Production of BPA-SAM substrate In order to form BPA-SAM (Self-Assembled Monolayer) as a means for integrating BPA on the SPR substrate, first, a thiol group of BPA Introduced.

(i) 4,4−Bis−(4−hydroxy−phenyl)−Pentanoic acid (11−mercapto−undecyl)−amideの合成(下記反応式(1)参照)
200mL二口ナスフラスコにdiphenolic acid(3.43g)、KCO(4.15g)、AcO(4.51ml)を入れ、アセトニトリル(150ml)を加え、60℃で12時間攪拌した。TLCにより原料がなくなり2スポットになったことを確認してから反応をとめ、エバポレータで溶媒を留去した。HO:CHClにて抽出を行った後、シリカゲルカラムクロマトグラフィ−(CHCl:MeOH=20:1)にて精製し白色の粉末を得た。H−NMR、MALDI−TOF−MSで目的物1を確認した(収量3.05g、収率68.7%)。
(i) Synthesis of 4,4-Bis- (4-hydroxy-phenyl) -Pentanoic acid (11-mercapto-undecyl) -amide (see the following reaction formula (1))
Diphenolic acid (3.43 g), K 2 CO 3 (4.15 g), and Ac 2 O (4.51 ml) were placed in a 200 mL two-necked eggplant flask, acetonitrile (150 ml) was added, and the mixture was stirred at 60 ° C. for 12 hours. The reaction was stopped after confirming that there were no two raw materials by TLC, and the solvent was distilled off with an evaporator. After extraction with H 2 O: CH 2 Cl 2 , purification was performed by silica gel column chromatography (CH 2 Cl 2 : MeOH = 20: 1) to obtain a white powder. The target compound 1 was confirmed by 1 H-NMR and MALDI-TOF-MS (amount 3.05 g, yield 68.7%).

Figure 2009047507
Figure 2009047507

(ii) アルキルチオール誘導体2の合成(下記反応式(2)参照)
11−amino−1−undecanethiol hydrochlorideの抽出(NaHCO水溶液:CHCl)をし、脱塩酸処理を行った。11−amino−1−undecanethiol(53.8mg)と化合物1(98mg)を20ml CHClに溶解させた。そこへ、WSC(75.1mg)と、NHS(45.7mg)、DIEA(138.4μl)を加え室温で24時間攪拌した。TLCにより3スポットが確認された。そこで(AcOEt:4%NaHCO水溶液,10%クエン酸水溶液,飽和食塩水)抽出を行った。その後、シリカゲルカラムクロマトグラフィ−にてCHCl:MeOH=100:1とCHCl:MeOH=100:3で精製を2回行い、3スポットを分離したところ、2番目のスポットの精製物から目的物2のH−NMR、MALDI−TOF−MSが確認できた(収量25mg、収率17%)。
(ii) Synthesis of alkylthiol derivative 2 (see the following reaction formula (2))
Extraction of 11-amino-1-undecanethiol hydrochloride (NaHCO 3 aqueous solution: CH 2 Cl 2 ) was performed, and dehydrochlorination treatment was performed. 11-amino-1-undecanethiol (53.8 mg) and compound 1 (98 mg) were dissolved in 20 ml CH 2 Cl 2 . WSC (75.1 mg), NHS (45.7 mg), and DIEA (138.4 μl) were added thereto, and the mixture was stirred at room temperature for 24 hours. Three spots were confirmed by TLC. Therefore, extraction was performed (AcOEt: 4% NaHCO 3 aqueous solution, 10% citric acid aqueous solution, saturated saline). Then, purification was performed twice with silica gel column chromatography with CH 2 Cl 2 : MeOH = 100: 1 and CH 2 Cl 2 : MeOH = 100: 3, and 3 spots were separated. 1 confirmed 1 H-NMR and MALDI-TOF-MS of target product 2 (yield 25 mg, yield 17%).

Figure 2009047507
Figure 2009047507

(iii) BPA−チオール誘導体3の合成(下記反応式(3)参照)
THF6mlに化合物2 10mgを溶解させ、NaOH水溶液(0.25M)を1ml加え、室温で6時間攪拌した。TLCにより原料のスポットが消え、極性の高いスポットが現れたことを確認し、反応を止め、中和後、エバポレータにて溶媒を留去した。その後、抽出(AcOEt:10%クエン酸水溶液)を行い、H−NMRおよびMALDI−TOF−MSにより化合物3を確認した。また桐山ろうとを用いて得られた化合物3を、HxとCHClで洗浄し回収したものについて、H−NMRを確認した(収量8mg、収率93%)。
(iii) Synthesis of BPA-thiol derivative 3 (see the following reaction formula (3))
10 mg of Compound 2 was dissolved in 6 ml of THF, 1 ml of NaOH aqueous solution (0.25 M) was added, and the mixture was stirred at room temperature for 6 hours. After confirming that the spot of the raw material disappeared and a highly polar spot appeared by TLC, the reaction was stopped, and after neutralization, the solvent was distilled off with an evaporator. Thereafter, extraction (AcOEt: 10% aqueous citric acid solution) was performed, and Compound 3 was confirmed by 1 H-NMR and MALDI-TOF-MS. In addition, 1 H-NMR was confirmed for the compound 3 obtained using Kiriyama wax and washed with Hx and CH 2 Cl 2 (yield: 8 mg, yield: 93%).

Figure 2009047507
Figure 2009047507

(iv) BPA−チオール誘導体3を用いたBPA−SAM膜の合成
SPR測定基板として用いるため、高屈折ガラス基板上の金薄膜にピランハ溶液(濃硫酸:30%過酸化水素水=3:1)を滴下し5分間静置し、その後蒸留水で洗浄した。そこに、上記BPA−チオール誘導体3溶液(1mMエタノール溶液)を滴下し、カバーガラスをかぶせ窒素雰囲気一晩静置した。その後、基板をEtOHで洗浄し乾燥させた。また、BPA−SAM膜の形成を確認するため、別の金基板に同様の手順でSAM膜を作成したものを高感度反射赤外分光測定器(IR−RAS)により観察した。
(iv) Synthesis of BPA-SAM film using BPA-thiol derivative 3 In order to use as a SPR measurement substrate, a Piranha solution (concentrated sulfuric acid: 30% hydrogen peroxide solution = 3: 1) is used on a gold thin film on a highly refractive glass substrate. Was dropped and allowed to stand for 5 minutes, and then washed with distilled water. Thereto, the above BPA-thiol derivative 3 solution (1 mM ethanol solution) was dropped, covered with a cover glass, and allowed to stand overnight in a nitrogen atmosphere. Thereafter, the substrate was washed with EtOH and dried. Moreover, in order to confirm formation of a BPA-SAM film, what produced the SAM film in the same procedure on another gold substrate was observed with the high sensitive reflection infrared spectrometer (IR-RAS).

(2−2)BPA認識分子インプリント微粒子の合成
メカニカルスターラーの回転を200rpmに変更した以外、実施例1と同様の方法でシードとして用いるためのスチレン粒子の合成を行った。遠心分離洗浄後のエマルション固形分濃度を1.44%に調整した。重合率は100%で、DLSによる平均粒子径は270nm(dw/dn=1.14)であった。
(2-2) Synthesis of BPA recognition molecular imprinted fine particles Styrene particles for use as seeds were synthesized in the same manner as in Example 1 except that the rotation of the mechanical stirrer was changed to 200 rpm. The emulsion solid content concentration after centrifugal washing was adjusted to 1.44%. The polymerization rate was 100%, and the average particle size by DLS was 270 nm (dw / dn = 1.14).

得られたシードを用いてBPA認識分子インプリント微粒子の合成を行った。100mlバイアル瓶にポリスチレンシード粒子溶液(1.44wt%)50gをはかりとり、表3のレシピに従って所定量のモノマーを添加し、室温で6時間攪拌して膨潤させた。モノマー相の消失を確認した後、窒素雰囲気下で重合温度80℃まで加温し、開始剤V―50を5ml蒸留水に溶解させた水溶液を加温後のバイアル瓶に加えた。窒素雰囲気下、80℃、スターラー200rpmで12時間攪拌重合を行った。重合終了後、遠心分離洗浄を3回行い未反応のモノマー、開始剤を除去した。重合率は91%で、DLSによる平均粒子径は292.9nm(dw/dn=1.11)であった。BPA認識分子インプリント微粒子(表3中「INP」)と同様の条件でBPAジメタクリレートモノマーを用いずにブランク微粒子(表3中「BNP」)も合成した。   BPA recognition molecular imprinted fine particles were synthesized using the obtained seed. 50 g of a polystyrene seed particle solution (1.44 wt%) was weighed into a 100 ml vial, a predetermined amount of monomer was added according to the recipe in Table 3, and the mixture was allowed to swell by stirring at room temperature for 6 hours. After confirming disappearance of the monomer phase, the mixture was heated to a polymerization temperature of 80 ° C. in a nitrogen atmosphere, and an aqueous solution in which initiator V-50 was dissolved in 5 ml distilled water was added to the heated vial. Under a nitrogen atmosphere, stirring polymerization was performed at 80 ° C. and a stirrer at 200 rpm for 12 hours. After completion of the polymerization, centrifugal washing was performed 3 times to remove unreacted monomers and initiators. The polymerization rate was 91% and the average particle size by DLS was 292.9 nm (dw / dn = 1.11). Blank fine particles (“BNP” in Table 3) were also synthesized without using the BPA dimethacrylate monomer under the same conditions as the BPA recognition molecule imprinted fine particles (“INP” in Table 3).

Figure 2009047507
Figure 2009047507

BPA認識分子インプリント微粒子からBPAを除去するため、実施例1と同じ方法で加水分解を行い、酸による洗浄および蒸留水による洗浄を行った。さらに本実施例では、クロロホルム溶媒を用いてSPR測定を行うため、メタノールに置換した後クロロホルムによる置換を行った。なお、以後の実験においては、鋳型分子(BPA)の切り出し処理を行った分子インプリント微粒子を「INP」、鋳型分子(BPA)の切り出し処理を行っていない分子インプリント微粒子を「RNP」、鋳型分子(BPA)を添加せずに合成した微粒子を「BNP」と表記する。   In order to remove BPA from the BPA-recognized molecularly imprinted fine particles, hydrolysis was performed in the same manner as in Example 1, and washing with acid and washing with distilled water were performed. Furthermore, in this example, in order to perform SPR measurement using a chloroform solvent, substitution with chloroform was performed after substitution with methanol. In subsequent experiments, “INP” is a molecular imprinted fine particle that has undergone template molecule (BPA) excision processing, “RNP” is a molecular imprinted fine particle that has not been excised from a template molecule (BPA), template Fine particles synthesized without adding molecules (BPA) are denoted as “BNP”.

(2−3)SPRによるBPA−SAM基板とBPA認識分子インプリント微粒子との相互作用のセンシング
BPA−SAM基板をステージに設置し、セルと流路を装着し、アナライトとしてINP溶液、RNP溶液およびBNP溶液(0〜3wt%水溶液)を送液し、平衡に達した5分後のSPRスペクトルを測定した。また、微粒子を含まない(0wt%)時のSPRスペクトルからの長波長側へのシフトの値をΔλ[nm]とし、各微粒子とBPA−SAM基板との吸着等温線をグラフ化し評価した。
(2-3) Sensing of interaction between BPA-SAM substrate and BPA-recognized molecular imprinted fine particles by SPR BPA-SAM substrate is set on stage, cell and flow path are installed, INP solution, RNP solution as analyte And a BNP solution (0 to 3 wt% aqueous solution) were fed, and the SPR spectrum was measured 5 minutes after reaching equilibrium. Moreover, the value of the shift to the long wavelength side from the SPR spectrum when fine particles are not included (0 wt%) was Δλ [nm], and the adsorption isotherm between each fine particle and the BPA-SAM substrate was graphed and evaluated.

さらに、競合実験としてINP溶液中に標的分子であるBPAを添加してBPAを吸着させた後、その溶液を流路に送液しスペクトル変化を測定した。具体的には、INP3wt%溶液にBPAを所定量添加し50mMになるように調整した。その溶液を25℃で12時間インキュベーションした後送液し、SPRのスペクトルの経時変化を観察した。比較として、BPAを添加していないINP溶液についても同様に実験を行った。   Further, as a competition experiment, BPA as a target molecule was added to the INP solution to adsorb BPA, and then the solution was sent to the flow path to measure the spectral change. Specifically, a predetermined amount of BPA was added to an INP 3 wt% solution to adjust to 50 mM. The solution was incubated at 25 ° C. for 12 hours and then fed, and the time course of the SPR spectrum was observed. As a comparison, an experiment was similarly performed on an INP solution to which BPA was not added.

次に、INPのBPA−SAM基板からの解離を目的とし、標的分子であるBPA、またBPA類似体である4,4’−diaminodiphenylmethane(DADPM、下記式(4)参照)、極性溶媒で水素結合を弱めるメタノールを送液しその変化を観察した。最初に5分間INP溶液(3wt%クロロホルム溶液)を流しINPを吸着させ、その経時変化を追った。そこへ溶媒であるクロロホルム(CHCl)をさらに5分間送液し、濃度平衡によるINPの解離の経時変化を追った。そして最後に阻害剤としてBPA溶液(50mM)、またはDADPM(25mM)、またはメタノールをそれぞれ5分間送液しINPの解離の経時変化を追跡した。メタノールについては、メタノール送液後に溶媒であるクロロホルムに戻して測定を行った。
SPR測定条件は以下の通りである。
入射角 28.1°
検出角 28.6°
積算時間 10ms
加算平均 5回
スムージング 5点
P偏光入射
流速 20μl/min
Next, for the purpose of dissociation of INP from the BPA-SAM substrate, the target molecule BPA and BPA analog 4,4'-diaminodiphenylmethane (DADPM, see formula (4) below), hydrogen bonding with polar solvent Methanol was weakened to observe the change. First, an INP solution (3 wt% chloroform solution) was allowed to flow for 5 minutes to adsorb INP, and the change with time was followed. Chloroform (CHCl 3 ), which is a solvent, was further fed for 5 minutes, and the time course of INP dissociation due to concentration equilibrium was followed. Finally, BPA solution (50 mM), DADPM (25 mM), or methanol was fed as an inhibitor for 5 minutes, respectively, and the time course of INP dissociation was followed. About methanol, it measured by returning to chloroform which is a solvent after methanol feeding.
The SPR measurement conditions are as follows.
Incident angle 28.1 °
Detection angle 28.6 °
Integration time 10ms
Addition average 5 times smoothing 5 points P polarized light incident flow rate 20μl / min

Figure 2009047507
Figure 2009047507

(2−4)結果
(i) SEMによる分子インプリント微粒子同定
合成した各分子インプリント微粒子のSEM画像を図6〜図8に示した。図6はINPのSEM画像であり、図7はRNPのSEM画像であり、図8はBNPのSEM画像である。図6〜図8から明らかなように、得られた各分子インプリント微粒子は、いずれも直径300nm程度の粒子径の揃ったポリマー(INP:dw/dn=1.1、RNP:dw/dn=1.11)であることが確認された。このことから、それぞれの表面積は同程度であると仮定でき、SPRスペクトルの変化は結合挙動を反映するとものと考えられる。
(2-4) Results
(i) Identification of molecularly imprinted fine particles by SEM SEM images of each synthesized molecularly imprinted fine particle are shown in FIGS. 6 is an SEM image of INP, FIG. 7 is an SEM image of RNP, and FIG. 8 is an SEM image of BNP. As is apparent from FIGS. 6 to 8, each of the obtained molecularly imprinted fine particles is a polymer (INP: dw / dn = 1.1, RNP: dw / dn = 1.11). From this, it can be assumed that each surface area is the same, and the change of the SPR spectrum is considered to reflect the binding behavior.

(ii)IRによるBPA−SAM基板の同定
図9にBPA−SAM基板のIR−RASスペクトルを示した。図9より、以下の通り基板上にBPA−SAM膜が形成されていることが確認された。
3500〜3700cm−1:フェノールOH 一置換アミドN−H 伸縮振動
1600cm−1付近 :芳香族C=CおよびC−H伸縮振動
1700cm−1付近 :一置換アミドC=O伸縮振動
1200〜1350cm−1:C10の長鎖アルキルのひねりおよび横揺れ振動
(ii) Identification of BPA-SAM substrate by IR FIG. 9 shows an IR-RAS spectrum of the BPA-SAM substrate. From FIG. 9, it was confirmed that the BPA-SAM film was formed on the substrate as follows.
3500-3700 cm −1 : Phenol OH monosubstituted amide NH stretching vibration around 1600 cm −1 : aromatic C═C and C—H stretching vibration around 1700 cm −1 : monosubstituted amide C═O stretching vibration 1200 to 1350 cm −1 : Twist and roll vibration of C10 long chain alkyl

(iii) BPA−SAM基板とBPA認識分子インプリント微粒子を用いたSPR測定
図10に、3種類の微粒子(INP、RNP、BNP)の各濃度における波長のシフト値(Δλnm)をプロットした吸着等温線を示した。図10から明らかなように、いずれの微粒子を送液した場合でも、濃度の上昇とともにSPRスペクトルの長波長側へのシフトが観察されたが、3種類の微粒子のなかで、INPのシフト値が最も大きいことが確認された。この結果から、BPA−SAM基板と各微粒子との相互作用(吸着)の差をSPRスペクトルの波長シフト量によってセンシングすることが可能であることが示された。
(iii) SPR measurement using BPA-SAM substrate and BPA-recognized molecularly imprinted fine particles FIG. 10 is an adsorption isothermal plotting wavelength shift values (Δλnm) at respective concentrations of three kinds of fine particles (INP, RNP, BNP). A line is shown. As is clear from FIG. 10, even when any of the fine particles was fed, a shift toward the long wavelength side of the SPR spectrum was observed as the concentration increased. Among the three types of fine particles, the shift value of INP was The largest was confirmed. From this result, it was shown that the difference in interaction (adsorption) between the BPA-SAM substrate and each fine particle can be sensed by the wavelength shift amount of the SPR spectrum.

(iv) BPA存在下での競合実験
競合実験としてINP溶液中に標的分子であるBPAを添加してINPにBPAを吸着させた後、その溶液を流路に送液し、0分〜5分まで経時的にスペクトル変化を測定した。対照として、BPAを添加していないINP溶液を流路に送液し、同様にスペクトル変化を測定した。
(iv) Competitive Experiment in the Presence of BPA As a competitive experiment, BPA as a target molecule was added to the INP solution to adsorb BPA to INP, and then the solution was sent to the flow path, and 0 minutes to 5 minutes. Spectral changes were measured over time. As a control, an INP solution to which BPA was not added was sent to the channel, and the change in spectrum was measured in the same manner.

図11に、送液開始からの各時間における波長のシフト値(Δλnm)をプロットした吸着等温線を示した。図11から明らかなように、BPAを添加した場合と添加しない場合のいずれも1分後に平衡に達している挙動は同様であるものの、その変化量は圧倒的にBPAを添加した場合の方が小さかった。この結果は、BPAとINPを共存させインキュベーションすることにより、INP表面のBPA認識部位にBPAが予め吸着するため、INPとBPA−SAM基板間の相互作用が阻害されることを示すものであると考えられた。したがって、BPAの競合によりINPとBPA−SAM基板間の相互作用(吸着)に変化が生じ、この変化を検出することにより、サンプル中のBPAを検出可能であることが示された。   FIG. 11 shows an adsorption isotherm in which the wavelength shift value (Δλnm) at each time from the start of liquid feeding is plotted. As is clear from FIG. 11, the behavior of reaching the equilibrium after 1 minute is the same both when BPA is added and when it is not added, but the amount of change is overwhelmingly when BPA is added. It was small. This result indicates that the interaction between INP and the BPA-SAM substrate is inhibited because BPA is pre-adsorbed to the BPA recognition site on the surface of INP by incubating in the presence of BPA and INP. it was thought. Therefore, it was shown that the interaction (adsorption) between INP and the BPA-SAM substrate was changed by competition of BPA, and BPA in the sample could be detected by detecting this change.

(v) INPのBPA−SAM基板からの解離
図12に、BPA−SAM基板にINP溶液を送液後、溶媒(クロロホルム)を送液し、最後にBPAを送液したときのSPRスペクトルの変化を示した。図12に示したように、まず、INP溶液を5分間送液するとINPがBPA−SAM基板に吸着し、SPRスペクトルが大きく長波長側にシフトした。次に、溶媒であるクロロホルムを送液するとその濃度平衡が崩れ、基板上に弱く結合していたINPが若干解離するため、SPRスペクトルは短波長側にシフトした。しかし、それでは完全にINPを解離することはできないので、さらに標的分子であるBPAを用いて解離を試みたところ、BPA飽和濃度50mMの溶液を送液してもSPRスペクトルの変化が見られなかった。
(v) Dissociation of INP from BPA-SAM substrate Fig. 12 shows the change in SPR spectrum when the solvent (chloroform) was fed after the INP solution was fed to the BPA-SAM substrate, and finally BPA was fed. showed that. As shown in FIG. 12, first, when the INP solution was fed for 5 minutes, INP was adsorbed on the BPA-SAM substrate, and the SPR spectrum was greatly shifted to the longer wavelength side. Next, when chloroform as a solvent was fed, the concentration equilibrium was lost, and the INP that was weakly bound on the substrate was slightly dissociated, so the SPR spectrum shifted to the short wavelength side. However, since it was not possible to completely dissociate INP, further dissociation was attempted using BPA as the target molecule, and no change in the SPR spectrum was observed even when a solution with a BPA saturation concentration of 50 mM was fed. .

図13は、BPA−SAM基板にINP溶液を送液後、溶媒(クロロホルム)を送液し、最後にDADPMを送液したときのSPRスペクトルの変化を示した。DADPMは、上記式(4)に示したように、INP表面のBPA認識部位に存在するカルボン酸残基と強く水素結合を形成すると考えられるアミノ基を有し、かつBPA類似骨格を持つ化合物である。図13に示したように、DADPM溶液を送液すると、SPRスペクトルはクロロホルム送液時よりさらに短波長側にシフトし、INPのさらなる解離が観測された。   FIG. 13 shows the change in the SPR spectrum when the INP solution was sent to the BPA-SAM substrate, the solvent (chloroform) was sent, and finally DADPM was sent. As shown in the above formula (4), DADPM is a compound having an amino group that is considered to form a hydrogen bond strongly with a carboxylic acid residue present at the BPA recognition site on the surface of INP, and having a BPA-like skeleton. is there. As shown in FIG. 13, when the DADPM solution was fed, the SPR spectrum was shifted to a shorter wavelength side than when chloroform was fed, and further dissociation of INP was observed.

図14は、BPA−SAM基板にINP溶液を送液後、溶媒(クロロホルム)を送液し、最後にメタノールを送液したときのSPRスペクトルの変化を示した。図14に示したように、極性溶媒であるメタノールを送液すると、長波長シフトの値(Δλ[nm])がほぼ「0」となり、INPがBPA−SAM基板からほぼ完全に解離されたことが示された。   FIG. 14 shows the change in the SPR spectrum when the INP solution was sent to the BPA-SAM substrate, the solvent (chloroform) was sent, and finally methanol was sent. As shown in FIG. 14, when methanol as a polar solvent was fed, the long wavelength shift value (Δλ [nm]) was almost “0”, and INP was almost completely dissociated from the BPA-SAM substrate. It has been shown.

以上のように、アミンおよび極性溶媒によってINPのBPA−SAM基板への吸着を解離できたことから、INPとSAM基板間の相互作用は水素結合ベースの特異的な結合であることが示唆された。   As described above, the adsorption of INP on the BPA-SAM substrate could be dissociated by the amine and the polar solvent, suggesting that the interaction between INP and the SAM substrate is a hydrogen bond-based specific bond. .

〔実施例3:BPA認識分子インプリント微粒子を用いた蛍光消光センシング〕
上述のように、金微粒子は蛍光消光剤として、蛍光色素近傍に存在したとき消光反応を示すことが知られている。そこで、標的分子であるBPAを金微粒子表面に集積したBPA集積金微粒子と、BPAを標的分子とした蛍光性分子インプリント微粒子(蛍光性BPA認識分子インプリント微粒子)とを用いて、蛍光消光センシングを試みた(図2参照)。
[Example 3: Fluorescence quenching sensing using BPA-recognized molecular imprinted fine particles]
As described above, it is known that gold fine particles exhibit a quenching reaction when present in the vicinity of a fluorescent dye as a fluorescence quencher. Therefore, fluorescence quenching sensing is performed using BPA-integrated gold fine particles in which the target molecule BPA is integrated on the surface of the gold fine particles, and fluorescent molecule imprinted fine particles (fluorescent BPA recognition molecular imprinted fine particles) having BPA as the target molecule. (See FIG. 2).

本実施例に使用した試薬は、いずれも市販品を購入した。また、分析機器としては、以下のものを使用した。すなわち、誘導体合成に使用したシリカゲルクロマトグラフィーは和光純薬工業のシリカゲル(Wakogel C−300HG)を用いた。NMRスペクトルは日本電子(株)製NMR測定装置(JNM−LA300)を用いて測定した。質量分析にはApplied Biosystems(株)製ESI−MS(API2000)およびMALDI−TOF−MS(Voyager−2000[accelerating voltage 20kV])を用いた。ポリマーの洗浄にはトミー精工株式会社の遠心分離器SRX−201を使用した。粒子径分布と平均粒子径の測定には大塚電子株式会社のダイナミック光散乱光度計(DL−6500)を使用した。透過型電子顕微鏡(TEM)は、日立社の透過型電子顕微鏡H−7500を使用した。紫外・可視分光光度分析には紫外・可視分光光度計(JASCO V−560)を使用し、システム制御およびデータ処理には専用ソフトウェアSpectra Manager(JASCO)を使用、また測定には1cm角石英セルを用いた。蛍光スペクトル測定にはHitachi F−2500を使用、また測定には1cm角石英セルを用いた。   All reagents used in this example were purchased commercially. Moreover, the following was used as an analytical instrument. That is, silica gel (Wakogel C-300HG) manufactured by Wako Pure Chemical Industries was used for silica gel chromatography used for derivative synthesis. The NMR spectrum was measured using a JEOL Co., Ltd. NMR measurement apparatus (JNM-LA300). ESI-MS (API2000) and MALDI-TOF-MS (Voyager-2000 [accelating voltage 20 kV]) manufactured by Applied Biosystems Co., Ltd. were used for mass spectrometry. A centrifuge SRX-201 manufactured by Tommy Seiko Co., Ltd. was used for washing the polymer. A dynamic light scattering photometer (DL-6500) manufactured by Otsuka Electronics Co., Ltd. was used for measurement of particle size distribution and average particle size. The transmission electron microscope (TEM) used was a Hitachi transmission electron microscope H-7500. Ultraviolet / visible spectrophotometric analysis uses an ultraviolet / visible spectrophotometer (JASCO V-560), system control and data processing use special software Spectra Manager (JASCO), and a 1 cm square quartz cell is used for measurement. Using. Hitachi F-2500 was used for the fluorescence spectrum measurement, and a 1 cm square quartz cell was used for the measurement.

(3−1)蛍光性BPA認識分子インプリント微粒子の合成
(i) ピレンモノマーの合成(下記反応式(5)参照)
50mLナスフラスコに1−pyrenemethylamine500mg(2mmol)を10mlの乾燥ジクロロメタン(CHCl)に溶かし、窒素雰囲気下でmethacryroyl chloride(377mg、4mmol)、TEA(0.36ml、4mmol)を加え、還流下で16時間攪拌した。抽出(CHCl:NaHCO水溶液、HCl水溶液、NaCl水溶液)した後、シリカゲルカラムクロマトグラフィ−(CHCl)により精製し、白色の目的物を得た。H−NMR、MALDI−TOF−MSで確認した(収量300mg、収率50%)。
(3-1) Synthesis of fluorescent BPA-recognizing molecule imprinted fine particles
(i) Synthesis of pyrene monomer (see the following reaction formula (5))
In a 50 mL eggplant flask, 1-pyrenemethylamine 500 mg (2 mmol) was dissolved in 10 ml of dry dichloromethane (CH 2 Cl 2 ). Under nitrogen atmosphere, methachloroyl chloride (377 mg, 4 mmol) and TEA (0.36 ml, 4 mmol) were added. Stir for 16 hours. Extraction (CH 2 Cl 2 : NaHCO 3 aqueous solution, HCl aqueous solution, NaCl aqueous solution) and purification by silica gel column chromatography (CH 2 Cl 2 ) gave a white target product. It was confirmed by 1 H-NMR and MALDI-TOF-MS (yield 300 mg, yield 50%).

Figure 2009047507
Figure 2009047507

(ii) 蛍光性BPA認識分子インプリント微粒子の合成
得られたピレンモノマーおよび実施例2で合成した粒子径270nm(DLS測定)のスチレンシードを用いて、蛍光性BPA認識分子インプリント微粒子の合成を行った。25mlバイアル瓶にポリスチレンシード溶液(1.4wt%)10gをはかりとり、表4のレシピに従って所定量のモノマーを添加し、室温で6時間攪拌して膨潤させた。ピレン含有分子インプリント微粒子については、モノマーの溶解性のためアセトンを微量添加しピレンモノマーを溶解させた。モノマー層の消失を確認した後、窒素雰囲気下で重合温度80℃まで加温し、開始剤V−50を5ml蒸留水に溶解させた水溶液を加温後のバイアル瓶に加えた。窒素雰囲気下、80℃、スターラー200rpmで24時間攪拌重合を行った。重合終了後、遠心分離洗浄を3回行い未反応のモノマー、開始剤を除去した。ピレン含有分子インプリント微粒子の重合率は95%であった。
(ii) Synthesis of fluorescent BPA-recognizing molecule imprinted fine particles Using the obtained pyrene monomer and the styrene seed with a particle size of 270 nm (DLS measurement) synthesized in Example 2, the synthesis of fluorescent BPA-recognized molecular imprinted fine particles was performed. went. 10 g of a polystyrene seed solution (1.4 wt%) was weighed into a 25 ml vial, a predetermined amount of monomer was added according to the recipe in Table 4, and the mixture was stirred for 6 hours at room temperature to swell. For the pyrene-containing molecular imprinted fine particles, a small amount of acetone was added to dissolve the pyrene monomer for the solubility of the monomer. After confirming disappearance of the monomer layer, the mixture was heated to a polymerization temperature of 80 ° C. in a nitrogen atmosphere, and an aqueous solution in which initiator V-50 was dissolved in 5 ml distilled water was added to the heated vial. Under a nitrogen atmosphere, stirring polymerization was performed at 80 ° C. and a stirrer 200 rpm for 24 hours. After completion of the polymerization, centrifugal washing was performed 3 times to remove unreacted monomers and initiators. The polymerization rate of the pyrene-containing molecularly imprinted fine particles was 95%.

Figure 2009047507
Figure 2009047507

蛍光性BPA認識分子インプリント微粒子からBPAを除去するため、実施例1と同じ方法で加水分解を行い、酸による洗浄および蒸留水による洗浄を行った。さらに本実施例では、蛍光測定をメタノール/トルエン=7/13溶液で行うため、メタノールで1回洗浄した後、メタノール/トルエン=7/13溶液に置換した。   In order to remove BPA from the fluorescent BPA-recognizing molecule-imprinted fine particles, hydrolysis was performed in the same manner as in Example 1, and washing with acid and distilled water was performed. Furthermore, in this example, in order to perform fluorescence measurement with a methanol / toluene = 7/13 solution, it was washed once with methanol and then replaced with a methanol / toluene = 7/13 solution.

(3−2)BPA集積金微粒子の合成
標的分子であるBPAを金微粒子表面に集積させるため、実施例2で合成したBPA−チオール誘導体を保護剤として金微粒子の合成を行った(参考文献:M.Brust, M.Walker, D.Bethell, D.Schiffrin,R.Whyman, Chem.Commun.,1994,801.
M.Brust, J.Fink, D.Bethell, D.Schiffrin,C.Kiely, Chem.Commun.,1995,1655.)。
(3-2) Synthesis of BPA-integrated gold fine particles Gold particles were synthesized using the BPA-thiol derivative synthesized in Example 2 as a protective agent in order to accumulate BPA as a target molecule on the gold fine particle surface (reference: M. Brust, M. Walker, D. Bethell, D. Schiffrin, R. Whyman, Chem. Commun., 1994, 801.
M. Brust, J. Fink, D. Bethell, D. Schiffrin, C. Kiely, Chem. Commun., 1995, 1655.).

予め、合成に使用する器具のシリコンコートを行った。2%ジメチルジクロロシラン(溶媒:トルエン)を調製し、10mlバイアル瓶に注ぎ、容器を回しながら液を行き渡らせた。液を戻し、そのまま溶液を蒸発させ、蒸留水ですすぎ乾燥させたものを使用した。   In advance, a silicon coat of an instrument used for synthesis was performed. 2% dimethyldichlorosilane (solvent: toluene) was prepared, poured into a 10 ml vial, and the solution was spread while rotating the container. The solution was returned, and the solution was evaporated as it was, rinsed with distilled water and dried.

表5に示すように、2mlのBPA−チオール誘導体溶液(5.8mM in MeOH)と2mlの塩化金酸溶液(5.8mMメタノール溶液)をバイアルにとり、酢酸80μlを加えた。この液をスターラーで攪拌しながら、0.4Mの水素化ホウ素ナトリウム水溶液を100μlずつ5回に分けてゆっくり滴下した。瞬時に溶液の色が赤紫色に変化したので、それから30分後に攪拌をとめた。この反応溶液をエバポレータにかけ、溶媒を留去した。その後エーテルを加え、生じた沈殿物を桐山ろうとを用いてろ過し、さらに酢酸エチル、蒸留水の順に洗浄した。得られた金微粒子をメタノール/トルエン=7/13溶液で再溶解させた(収量:4.3mg)。   As shown in Table 5, 2 ml of BPA-thiol derivative solution (5.8 mM in MeOH) and 2 ml of chloroauric acid solution (5.8 mM methanol solution) were placed in a vial, and 80 μl of acetic acid was added. While stirring this solution with a stirrer, a 0.4 M sodium borohydride aqueous solution was slowly added dropwise in 100 μl portions in 5 portions. Since the color of the solution changed to reddish purple instantly, stirring was stopped after 30 minutes. This reaction solution was applied to an evaporator and the solvent was distilled off. Ether was then added, and the resulting precipitate was filtered using a Kiriyama funnel, and further washed in the order of ethyl acetate and distilled water. The obtained gold fine particles were redissolved with a methanol / toluene = 7/13 solution (yield: 4.3 mg).

Figure 2009047507
Figure 2009047507

(3−3)蛍光性BPA認識分子インプリント微粒子およびBPA集積金微粒子を用いた蛍光消光センシング
系内に蛍光性BPA認識分子インプリント微粒子(蛍光INP)のみ存在する場合について、蛍光発光が飽和する濃度を検討するため滴定実験を行った。具体的には、1cm角石英セルにメタノール/トルエン=7/13溶液を3ml加え、そこへBPA蛍光分子インプリント微粒子溶液(1.2wt%メタノール/トルエン=7/13)を5μlずつ滴下することにより、蛍光が飽和し、濃度消光による消光が起こる濃度を確認した。鋳型分子の切り出し処理をしていない蛍光性BPA認識分子インプリント微粒子(蛍光RNP)についても同様の手順で測定を行った。
(3-3) Fluorescence quenching sensing using fluorescent BPA-recognized molecular imprinted fine particles and BPA-integrated gold fine particles When only fluorescent BPA-recognized molecularly imprinted fine particles (fluorescent INP) are present in the system, fluorescence emission is saturated. A titration experiment was conducted to examine the concentration. Specifically, 3 ml of a methanol / toluene = 7/13 solution is added to a 1 cm square quartz cell, and 5 μl of a BPA fluorescent molecule imprinted fine particle solution (1.2 wt% methanol / toluene = 7/13) is added dropwise thereto. The concentration at which fluorescence was saturated and quenching due to concentration quenching was confirmed. The same procedure was used to measure fluorescent BPA-recognized molecularly imprinted fine particles (fluorescent RNP) that had not been subjected to template molecule cutting-out.

次に、蛍光消光反応を検出するため蛍光INP溶液または蛍光RNP溶液へのBPA集積金微粒子の滴定実験を行った。蛍光スペクトル測定は、蛍光INPまたは蛍光RNPの濃度を共に2.4×10−3wt%(メタノール/トルエン=7/13)に調整し、それぞれ3mlを1cm角石英セルに加えた。そこにBPA集積金微粒子3mg/ml溶液(メタノール/トルエン=7/13)を10μlずつ滴下し1分間攪拌した後、蛍光スペクトルを測定し消光を観察した。なお、BPA集積金微粒子添加に伴い蛍光INPの濃度を補正した。 Next, in order to detect the fluorescence quenching reaction, a titration experiment of BPA-integrated gold fine particles in a fluorescent INP solution or a fluorescent RNP solution was performed. In the fluorescence spectrum measurement, both the concentration of fluorescent INP or fluorescent RNP was adjusted to 2.4 × 10 −3 wt% (methanol / toluene = 7/13), and 3 ml of each was added to a 1 cm square quartz cell. Thereto, 10 μl of 3 mg / ml solution of BPA-integrated gold fine particles (methanol / toluene = 7/13) was dropped and stirred for 1 minute, and then the fluorescence spectrum was measured and the quenching was observed. The concentration of fluorescent INP was corrected with the addition of BPA-integrated gold fine particles.

消光状態からの蛍光回復を測定するため、BPA集積金微粒子を添加されて消光状態となっている蛍光INP溶液または蛍光RNP溶液に、蛍光INPへのBPA集積金微粒子の吸着を阻害する阻害剤溶液を添加する滴定実験を行った。蛍光INP溶液または蛍光RNP溶液3.2×10−3wt%(メタノール/トルエン=7/13)3mlを1cm角石英セルに加え、BPA集積金微粒子溶液を0.02mg/mlまで添加し消光状態を形成した。そこへ阻害剤として標的分子であるBPA溶液、あるいはカルボン酸である酢酸溶液を添加し一分間攪拌したのち蛍光測定を行った。BPA溶液は濃度400mM(メタノール/トルエン=7/13)、酢酸溶液は濃度100mM(メタノール/トルエン=7/13)に調製したものを滴定に使用した。なお、酢酸溶液添加に伴い蛍光INPの濃度を補正した。   Inhibitor solution that inhibits adsorption of BPA-integrated gold fine particles to fluorescent INP in fluorescent INP solution or fluorescent RNP solution that has been quenched by adding BPA-integrated gold fine particles to measure fluorescence recovery from the quenched state A titration experiment in which Add 3 ml of fluorescent INP solution or fluorescent RNP solution 3.2 × 10 −3 wt% (methanol / toluene = 7/13) to a 1 cm square quartz cell and add BPA-integrated gold fine particle solution to 0.02 mg / ml to quench the state. Formed. A BPA solution, which is a target molecule, or an acetic acid solution, which is a carboxylic acid, was added thereto as an inhibitor and stirred for 1 minute, and then fluorescence measurement was performed. A BPA solution having a concentration of 400 mM (methanol / toluene = 7/13) and an acetic acid solution having a concentration of 100 mM (methanol / toluene = 7/13) were used for titration. The concentration of fluorescent INP was corrected with the addition of the acetic acid solution.

以上の実験において、蛍光測定は以下の条件で行った。
Exitation wavelength 347nm
温度 25℃,
photomal電圧 400V
In the above experiment, the fluorescence measurement was performed under the following conditions.
Exiting wavelength 347nm
Temperature 25 ℃,
Photomal voltage 400V

(3−4)結果
(i) 蛍光性BPA認識分子インプリント微粒子およびBPA集積金微粒子の同定
図15に、ピレンモノマーを含んだ蛍光性BPA認識分子インプリント微粒子のSEM画像を示した。図15から明らかなように、きれいに形状を保った平均粒子径368nmの微粒子であることが確認された。
(3-4) Results
(i) Identification of fluorescent BPA-recognizing molecule imprinted fine particles and BPA-integrated gold fine particles FIG. 15 shows an SEM image of fluorescent BPA-recognized molecular imprinted fine particles containing a pyrene monomer. As is clear from FIG. 15, it was confirmed that the particles were fine particles having an average particle diameter of 368 nm that maintained a clean shape.

図16に、可視紫外吸収光度計で測定したBPA集積金微粒子溶液の吸収スペクトルを示した。図16に示したように、金粒子のプラズモン由来の吸収が520nm付近に、BPA由来の吸収が279nm付近に観測された。また、図17に、BPA集積金微粒子のTEM画像を示した。図17に示したように、大きさにばらつきはみられるものの、粒子径30nm程度の粒子が形成されていることが明らかとなった。   FIG. 16 shows the absorption spectrum of the BPA-integrated gold fine particle solution measured with a visible ultraviolet absorption photometer. As shown in FIG. 16, plasmon-derived absorption of gold particles was observed near 520 nm, and BPA-derived absorption was observed near 279 nm. FIG. 17 shows a TEM image of the BPA-integrated gold fine particles. As shown in FIG. 17, it was revealed that particles having a particle diameter of about 30 nm were formed, although the sizes varied.

(ii) 蛍光性BPA認識分子インプリント微粒子における蛍光強度の濃度依存性
図18および図19に、それぞれ蛍光INPの濃度と蛍光強度の関係、および蛍光RNPの濃度と蛍光強度の関係を示した。図18および図19から明らかなように、蛍光INPおよび蛍光RNPともに0.02wt%付近で蛍光強度が飽和に達しており、濃度をそれ以上高くした場合、濃度消光が引き起こされることが確認された。この結果を踏まえて、以後の実験においては蛍光INP(蛍光RNP)の濃度として、濃度消光の起こらない低濃度(2〜3×10−3wt%)を用いることにした。
(ii) Dependence of fluorescence intensity on fluorescent BPA recognition molecule imprinted fine particles FIG. 18 and FIG. 19 show the relationship between the concentration of fluorescence INP and fluorescence intensity, and the relationship between the concentration of fluorescence RNP and fluorescence intensity, respectively. As is clear from FIGS. 18 and 19, the fluorescence intensity reached saturation at around 0.02 wt% for both fluorescence INP and fluorescence RNP, and it was confirmed that concentration quenching was caused when the concentration was further increased. . Based on this result, in subsequent experiments, a low concentration (2 to 3 × 10 −3 wt%) at which concentration quenching does not occur was used as the concentration of fluorescent INP (fluorescent RNP).

(iii) 蛍光性BPA認識分子インプリント微粒子およびBPA集積金微粒子の相互作用に基づく蛍光消光
図20に、蛍光INP溶液および蛍光RNP溶液に、それぞれBPA集積金微粒子溶液を添加したときの蛍光強度の変化率を示した。蛍光強度の変化率は、波長397nmにおけるBPA集積金微粒子添加前の蛍光強度(F)に対する、BPA集積金微粒子添加後の蛍光強度(F)の比(F/F)で示した。図20に示したように、蛍光RNPの消光の程度より、蛍光INP溶液の消光程度のほうが大きいこと確認された。この結果から、蛍光INP表面に形成されたBPA認識部位にBPA集積金微粒子が吸着することにより、効率よく蛍光が消光することが明らかとなった。
(iii) Fluorescence quenching based on the interaction between fluorescent BPA recognition molecule imprinted fine particles and BPA-integrated gold fine particles. FIG. 20 shows the fluorescence intensity when the BPA-integrated gold fine particle solution is added to the fluorescent INP solution and the fluorescent RNP solution, respectively. The rate of change is shown. The change rate of the fluorescence intensity was indicated by the ratio (F / F 0 ) of the fluorescence intensity (F) after addition of the BPA-integrated gold fine particles to the fluorescence intensity (F 0 ) before addition of the BPA-integrated gold fine particles at a wavelength of 397 nm. As shown in FIG. 20, it was confirmed that the degree of quenching of the fluorescent INP solution was greater than the degree of quenching of the fluorescent RNP. From this result, it has been clarified that the fluorescence is efficiently quenched by the adsorption of the BPA-integrated gold fine particles to the BPA recognition site formed on the surface of the fluorescent INP.

(iv)BPAおよび極性溶媒による蛍光回復
図21に、集積金微粒子を加えて消光状態となっている蛍光INP溶液にBPA溶液を滴下したときの蛍光スペクトルの変化を示した。図中、右上に波長397nm付近の蛍光スペクトルを拡大して示した。BPAは、セル中のBPA濃度が20mMになるまで滴下した。図21から明らかなように、大きなスペクトルの変化は見られなかった。この結果は、実施例2の結果と一致するものであった。
(iv) Fluorescence recovery by BPA and polar solvent FIG. 21 shows changes in the fluorescence spectrum when the BPA solution was added dropwise to the fluorescence INP solution that was quenched by adding the accumulated gold fine particles. In the figure, the fluorescence spectrum near the wavelength of 397 nm is shown enlarged in the upper right. BPA was added dropwise until the BPA concentration in the cell reached 20 mM. As is clear from FIG. 21, no large spectral change was observed. This result was consistent with the result of Example 2.

図22に、集積金微粒子を加えて消光状態となっている蛍光INP溶液および蛍光RNP溶液に、それぞれ酢酸溶液を滴下したときの蛍光強度の回復率を示した。蛍光強度の回復率は、集積金微粒子添加前の蛍光INP溶液および蛍光RNP溶液の蛍光強度(波長397nm)を100%とし、集積金微粒子添加後、蛍光が消光したときの蛍光強度を0%として算出した。図22から明らかなように、酢酸の添加により蛍光INPの蛍光回復が観測され、その蛍光回復率は15.5%であった。一方、蛍光RNPでは蛍光の回復はほとんど観測されず、蛍光回復率は2%であった。この結果は、実施例2の結果と一致するものであり、蛍光INPと集積金微粒子との解離がカルボン酸によって促進されたことから、蛍光INPと集積金微粒子間の相互作用は水素結合による特異的な結合であることが示唆された。   FIG. 22 shows the recovery rate of the fluorescence intensity when the acetic acid solution is dropped into the fluorescent INP solution and the fluorescent RNP solution which have been quenched by adding the accumulated gold fine particles. The recovery rate of the fluorescence intensity is 100% of the fluorescence intensity (wavelength 397 nm) of the fluorescent INP solution and the fluorescent RNP solution before the addition of the accumulated gold fine particles, and the fluorescence intensity when the fluorescence is quenched after the addition of the accumulated gold fine particles is 0%. Calculated. As apparent from FIG. 22, the fluorescence recovery of the fluorescent INP was observed by the addition of acetic acid, and the fluorescence recovery rate was 15.5%. On the other hand, almost no recovery of fluorescence was observed with the fluorescent RNP, and the fluorescence recovery rate was 2%. This result is consistent with the result of Example 2, and the dissociation between the fluorescent INP and the accumulated gold fine particles was promoted by the carboxylic acid, so that the interaction between the fluorescent INP and the accumulated gold fine particles is specific due to hydrogen bonding. It was suggested that this is a natural bond.

なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments and examples, and various modifications are possible within the scope shown in the claims, and technical means disclosed in different embodiments are appropriately combined. The obtained embodiment is also included in the technical scope of the present invention.

また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。   Moreover, all the academic literatures and patent literatures described in this specification are incorporated herein by reference.

本発明は、公衆衛生、環境衛生、医療などの分野に利用することができる。また、試薬産業に利用することができる。   The present invention can be used in fields such as public health, environmental health, and medical care. It can also be used in the reagent industry.

分子インプリント微粒子が分子集積基板に吸着している状態を示す模式図である。It is a schematic diagram which shows the state which the molecular imprint fine particle has adsorb | sucked to the molecular integration | stacking board | substrate. 蛍光性分子インプリント微粒子と分子集積金微粒子との相互作用を示す模式図である。It is a schematic diagram which shows the interaction of fluorescent molecularly imprinted fine particles and molecular integrated gold fine particles. BPA認識分子インプリント微粒子の評価に用いた4種類の化合物の化学構造式を示す図である。It is a figure which shows the chemical structural formula of four types of compounds used for evaluation of BPA recognition molecule | numerator imprint fine particle. 合成したBPA認識分子インプリント微粒子のSEM画像である。It is a SEM image of the synthetic | combination BPA recognition molecule | numerator imprint fine particle. 合成したBPA認識分子インプリント微粒子への各サンプルの吸着量を算出した結果を示す図である。It is a figure which shows the result of having calculated the adsorption amount of each sample to the synthetic | combination BPA recognition molecule | numerator imprint fine particle. INPのSEM画像である。It is a SEM image of INP. RNPのSEM画像である。It is a SEM image of RNP. BNPのSEM画像である。It is a SEM image of BNP. BPA−SAM基板のIR−RASスペクトルを示す図である。It is a figure which shows the IR-RAS spectrum of a BPA-SAM board | substrate. 3種類の微粒子(INP、RNP、BNP)の各濃度における波長のシフト値(Δλnm)をプロットした吸着等温線を示す図である。It is a figure which shows the adsorption isotherm which plotted the shift value ((DELTA) (lambda) nm) of the wavelength in each density | concentration of three types of microparticles | fine-particles (INP, RNP, BNP). 送液開始からの各時間における波長のシフト値(Δλnm)をプロットした吸着等温線を示す図である。It is a figure which shows the adsorption isotherm which plotted the shift value ((DELTA) (lambda) nm) of the wavelength in each time from the liquid feeding start. BPA−SAM基板にINP溶液を送液後、溶媒(クロロホルム)を送液し、最後にBPAを送液したときのSPRスペクトルの変化を示す図である。It is a figure which shows the change of a SPR spectrum when a solvent (chloroform) is sent after sending an INP solution to a BPA-SAM board | substrate, and BPA is sent last. BPA−SAM基板にINP溶液を送液後、溶媒(クロロホルム)を送液し、最後にDADPMを送液したときのSPRスペクトルの変化を示す図である。It is a figure which shows the change of a SPR spectrum when a solvent (chloroform) is sent after sending an INP solution to a BPA-SAM board | substrate, and DADPM is sent last. BPA−SAM基板にINP溶液を送液後、溶媒(クロロホルム)を送液し、最後にメタノールを送液したときのSPRスペクトルの変化を示す図である。It is a figure which shows the change of a SPR spectrum when a solvent (chloroform) is sent after sending an INP solution to a BPA-SAM board | substrate, and methanol is finally sent. ピレンモノマーを含んだ蛍光性BPA認識分子インプリント微粒子のSEM画像である。It is a SEM image of fluorescent BPA recognition molecule imprint microparticles containing a pyrene monomer. 可視紫外吸収光度計で測定したBPA集積金微粒子溶液の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of the BPA integration | stacking gold fine particle solution measured with the visible ultraviolet absorption photometer. BPA集積金微粒子のTEM画像である。It is a TEM image of BPA accumulation gold fine particles. 蛍光INPの濃度と蛍光強度の関係を示す図である。It is a figure which shows the relationship between the density | concentration of fluorescence INP, and fluorescence intensity. 蛍光RNPの濃度と蛍光強度の関係を示す図である。It is a figure which shows the density | concentration of fluorescence RNP, and the relationship of fluorescence intensity. 蛍光INP溶液および蛍光RNP溶液に、それぞれBPA集積金微粒子溶液を添加したときの蛍光強度の変化率を示す図である。It is a figure which shows the change rate of a fluorescence intensity when a BPA accumulation | aggregation gold fine particle solution is added to the fluorescence INP solution and the fluorescence RNP solution, respectively. 集積金微粒子を加えて消光状態となっている蛍光INP溶液にBPA溶液を滴下したときの蛍光スペクトルの変化を示す図である。It is a figure which shows the change of a fluorescence spectrum when a BPA solution is dripped at the fluorescence INP solution which added the accumulation | aggregation gold microparticles and is in the quenching state. 集積金微粒子を加えて消光状態となっている蛍光INP溶液および蛍光RNP溶液に、それぞれ酢酸溶液を滴下したときの蛍光強度の回復率を示す図である。It is a figure which shows the recovery | restoration rate of the fluorescence intensity when an acetic acid solution is dripped at the fluorescence INP solution and fluorescence RNP solution which are in the quenching state by adding the accumulation | aggregation | fine-particle fine particle, respectively.

Claims (9)

試料中の標的分子を検出する方法であって、以下の(A)と(B)との相互作用を検出することを特徴とする試料中の標的分子検出方法。
(A)分子インプリント法により構築された標的分子認識部位を有し、動的光散乱法により測定される平均粒子径が1μm未満の分子インプリント微粒子
(B)標的分子またはその誘導体の単分子層を有し、当該単分子層に前記分子インプリント微粒子が結合可能な分子集積体
A method for detecting a target molecule in a sample, the method comprising detecting a target molecule in a sample, wherein the following interaction between (A) and (B) is detected.
(A) Molecularly imprinted fine particles having a target molecule recognition site constructed by a molecular imprint method and having an average particle diameter of less than 1 μm measured by a dynamic light scattering method (B) A single molecule of a target molecule or a derivative thereof Molecular assembly having a layer and capable of binding the molecularly imprinted fine particles to the monomolecular layer
前記分子集積体は、基板の表面に前記単分子層が形成されていることを特徴とする請求項1に記載の試料中の標的分子検出方法。   The method for detecting a target molecule in a sample according to claim 1, wherein the monomolecular layer is formed on a surface of a substrate of the molecular assembly. 前記分子集積体は、溶媒に分散可能な微粒子の表面に前記単分子層が形成されていることを特徴とする請求項1に記載の試料中の標的分子検出方法。   The method for detecting a target molecule in a sample according to claim 1, wherein the molecular aggregate has the monomolecular layer formed on the surface of fine particles dispersible in a solvent. 前記分子集積体は、光エネルギーを吸収または放出することを特徴とする請求項1〜3のいずれか1項に記載の試料中の標的分子検出方法。   The method of detecting a target molecule in a sample according to any one of claims 1 to 3, wherein the molecular assembly absorbs or emits light energy. 前記分子インプリント微粒子は、前記分子集積体が光エネルギーを吸収するときは光エネルギーを放出し、前記分子集積体が光エネルギーを放出するときは光エネルギーを吸収することを特徴とする請求項4に記載の試料中の標的分子検出方法。   5. The molecular imprinted fine particles emit light energy when the molecular aggregate absorbs light energy, and absorb light energy when the molecular aggregate emits light energy. 2. A method for detecting a target molecule in a sample according to 1. 前記分子インプリント微粒子は蛍光を発光し、前記分子集積体は当該分子インプリント微粒子が発する蛍光エネルギーを吸収して分子インプリント微粒子の蛍光を消光する、または当該分子インプリント微粒子が発する蛍光エネルギーを吸収して分子集積体自身がさらに蛍光を発光することを特徴とする請求項5に記載の試料中の標的分子検出方法。   The molecularly imprinted fine particles emit fluorescence, and the molecular aggregate absorbs the fluorescent energy emitted by the molecularly imprinted fine particles and quenches the fluorescence of the molecularly imprinted fine particles, or the fluorescent energy emitted by the molecularly imprinted fine particles. 6. The method for detecting a target molecule in a sample according to claim 5, wherein the molecular aggregate itself further emits fluorescence upon absorption. 前記分子集積体は蛍光を発光し、前記分子インプリント微粒子は当該分子集積体が発する蛍光エネルギーを吸収して分子集積体の蛍光を消光する、または当該分子集積体が発する蛍光エネルギーを吸収して分子インプリント微粒子自身がさらに蛍光を発光することを特徴とする請求項5に記載の試料中の標的分子検出方法。   The molecular aggregate emits fluorescence, and the molecular imprinted fine particles absorb fluorescence energy emitted from the molecular aggregate to quench the fluorescence of the molecular aggregate, or absorb fluorescence energy emitted from the molecular aggregate. The method for detecting a target molecule in a sample according to claim 5, wherein the molecularly imprinted fine particles themselves further emit fluorescence. 試料と前記分子インプリント微粒子と前記分子集積体とを接触させる試料接触工程を包含することを特徴とする請求項1〜7のいずれか1項に記載の標的分子の検出方法。   The method for detecting a target molecule according to any one of claims 1 to 7, further comprising a sample contacting step in which a sample, the molecularly imprinted fine particles, and the molecular aggregate are brought into contact with each other. 試料中の標的分子を検出するための試薬キットであって、以下の(A)および(B)を備えることを特徴とする試料中の標的分子検出キット。
(A)分子インプリント法により構築された標的分子認識部位を有し、動的光散乱法により測定される平均粒子径が1μm未満の分子インプリント微粒子
(B)標的分子またはその誘導体の単分子層を有し、当該単分子層に前記分子インプリント微粒子が結合可能な分子集積体
A reagent kit for detecting a target molecule in a sample, comprising the following (A) and (B):
(A) Molecularly imprinted fine particles having a target molecule recognition site constructed by a molecular imprint method and having an average particle diameter of less than 1 μm measured by a dynamic light scattering method (B) A single molecule of a target molecule or a derivative thereof Molecular assembly having a layer and capable of binding the molecularly imprinted fine particles to the monomolecular layer
JP2007212826A 2007-08-17 2007-08-17 Method for detecting target molecules in samples using molecularly imprinted fine particles Active JP4853972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007212826A JP4853972B2 (en) 2007-08-17 2007-08-17 Method for detecting target molecules in samples using molecularly imprinted fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212826A JP4853972B2 (en) 2007-08-17 2007-08-17 Method for detecting target molecules in samples using molecularly imprinted fine particles

Publications (2)

Publication Number Publication Date
JP2009047507A true JP2009047507A (en) 2009-03-05
JP4853972B2 JP4853972B2 (en) 2012-01-11

Family

ID=40499871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212826A Active JP4853972B2 (en) 2007-08-17 2007-08-17 Method for detecting target molecules in samples using molecularly imprinted fine particles

Country Status (1)

Country Link
JP (1) JP4853972B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112872A (en) * 2008-11-07 2010-05-20 Kobe Univ Sensing chip and manufacturing method and using thereof
JP2012516361A (en) * 2009-01-29 2012-07-19 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Molecular imprinted polymer
CN103575709A (en) * 2012-07-26 2014-02-12 中国科学院沈阳应用生态研究所 High flux environmental pollutant detection method
WO2014181662A1 (en) * 2013-05-10 2014-11-13 株式会社日立製作所 Molecular template and manufacturing method therefor
CN104237182A (en) * 2014-09-05 2014-12-24 江苏大学 Preparation method and application of Mn-doped ZnS quantum dot imprinted sensor
JP2015222273A (en) * 2009-10-30 2015-12-10 メドテック ディテクト、エル・エル・シー Composition, device and method for colorimetric detection of analyte by using imprinted polymers and photochromic switch molecules
WO2018117067A1 (en) * 2016-12-20 2018-06-28 学校法人 芝浦工業大学 Sensor utilizing particles having molecularly imprinted polymer on surface thereof
JP2018132527A (en) * 2017-02-17 2018-08-23 学校法人 芝浦工業大学 Molecular imprint nanoparticle having fluorescent functional group
CN114486440A (en) * 2022-01-27 2022-05-13 山东大学 Particulate matter mixing system and detection instrument calibration method
WO2023027183A1 (en) * 2021-08-27 2023-03-02 国立大学法人神戸大学 Technique for aligning particles on substrate without agglomeration

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310874A (en) * 2001-04-16 2002-10-23 National Institute Of Advanced Industrial & Technology Measurement reagent and measurement method for quartz resonator
JP2005073605A (en) * 2003-09-01 2005-03-24 Retsu Saito Nucleotide-labeled reagent and oligonucleotide derivative in which the same reagent is introduced
WO2006033348A1 (en) * 2004-09-22 2006-03-30 National University Corporation Tokyo University Of Agriculuture And Technology Labeling enzyme
WO2006064640A1 (en) * 2004-12-14 2006-06-22 Matsushita Electric Industrial Co., Ltd. Method of selectively disposing ferritin
JP2006292721A (en) * 2005-03-15 2006-10-26 Sekisui Chem Co Ltd Magnetic body-containing particle, manufacturing method of magnetic body-containing particle, particle for measuring immunity, and immunity measuring method
JP2007093559A (en) * 2005-09-30 2007-04-12 Kyushu Univ Sensor for detecting and classifying chemical substance by specific molecular structure
JP2007171158A (en) * 2005-11-25 2007-07-05 Hitachi Ltd Biomolecule detecting element and method, and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310874A (en) * 2001-04-16 2002-10-23 National Institute Of Advanced Industrial & Technology Measurement reagent and measurement method for quartz resonator
JP2005073605A (en) * 2003-09-01 2005-03-24 Retsu Saito Nucleotide-labeled reagent and oligonucleotide derivative in which the same reagent is introduced
WO2006033348A1 (en) * 2004-09-22 2006-03-30 National University Corporation Tokyo University Of Agriculuture And Technology Labeling enzyme
WO2006064640A1 (en) * 2004-12-14 2006-06-22 Matsushita Electric Industrial Co., Ltd. Method of selectively disposing ferritin
JP2006292721A (en) * 2005-03-15 2006-10-26 Sekisui Chem Co Ltd Magnetic body-containing particle, manufacturing method of magnetic body-containing particle, particle for measuring immunity, and immunity measuring method
JP2007093559A (en) * 2005-09-30 2007-04-12 Kyushu Univ Sensor for detecting and classifying chemical substance by specific molecular structure
JP2007171158A (en) * 2005-11-25 2007-07-05 Hitachi Ltd Biomolecule detecting element and method, and manufacturing method therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112872A (en) * 2008-11-07 2010-05-20 Kobe Univ Sensing chip and manufacturing method and using thereof
JP2012516361A (en) * 2009-01-29 2012-07-19 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Molecular imprinted polymer
JP2015222273A (en) * 2009-10-30 2015-12-10 メドテック ディテクト、エル・エル・シー Composition, device and method for colorimetric detection of analyte by using imprinted polymers and photochromic switch molecules
CN103575709A (en) * 2012-07-26 2014-02-12 中国科学院沈阳应用生态研究所 High flux environmental pollutant detection method
WO2014181662A1 (en) * 2013-05-10 2014-11-13 株式会社日立製作所 Molecular template and manufacturing method therefor
JP2014219353A (en) * 2013-05-10 2014-11-20 株式会社日立製作所 Molecule mold and method of manufacturing the same
CN104237182A (en) * 2014-09-05 2014-12-24 江苏大学 Preparation method and application of Mn-doped ZnS quantum dot imprinted sensor
US11913899B2 (en) 2016-12-20 2024-02-27 Shibaura Institute Of Technology Sensor using particles coated with molecularly imprinted polymer
WO2018117067A1 (en) * 2016-12-20 2018-06-28 学校法人 芝浦工業大学 Sensor utilizing particles having molecularly imprinted polymer on surface thereof
JPWO2018117067A1 (en) * 2016-12-20 2019-10-24 学校法人 芝浦工業大学 Sensor using particles with molecularly imprinted polymer on the surface
JP2018132527A (en) * 2017-02-17 2018-08-23 学校法人 芝浦工業大学 Molecular imprint nanoparticle having fluorescent functional group
JP7133832B2 (en) 2017-02-17 2022-09-09 学校法人 芝浦工業大学 Molecularly imprinted nanoparticles with fluorescent functional groups
WO2023027183A1 (en) * 2021-08-27 2023-03-02 国立大学法人神戸大学 Technique for aligning particles on substrate without agglomeration
JP7334003B2 (en) 2021-08-27 2023-08-28 国立大学法人神戸大学 Technology for arranging particles on a substrate without agglomeration
CN114486440B (en) * 2022-01-27 2023-06-20 山东大学 Particulate matter mixing system and detecting instrument calibration method
CN114486440A (en) * 2022-01-27 2022-05-13 山东大学 Particulate matter mixing system and detection instrument calibration method

Also Published As

Publication number Publication date
JP4853972B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4853972B2 (en) Method for detecting target molecules in samples using molecularly imprinted fine particles
Zhang et al. CoFe2O4@ HNTs/AuNPs substrate for rapid magnetic solid-phase extraction and efficient SERS detection of complex samples all-in-one
Zhang et al. Quantum dots based mesoporous structured imprinting microspheres for the sensitive fluorescent detection of phycocyanin
Yu et al. Gold-nanorod-coated capillaries for the SERS-based detection of thiram
Sobiech et al. Quantum and carbon dots conjugated molecularly imprinted polymers as advanced nanomaterials for selective recognition of analytes in environmental, food and biomedical applications
Yang et al. Fabrication of a flexible gold nanorod polymer metafilm via a phase transfer method as a SERS substrate for detecting food contaminants
JP5400297B2 (en) Fluorescent nanosilica particles, nanofluorescent material, biochip using the same, and assay method thereof
Gunsolus et al. Analytical aspects of nanotoxicology
Greene et al. Colorimetric molecularly imprinted polymer sensor array using dye displacement
Mandal et al. Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature
Hamon et al. Colloidal design of plasmonic sensors based on surface enhanced Raman scattering
EP2342247B1 (en) Method for preparing molecular imprint polymers (pem) by radical polymerisation
Gui et al. Recent advances in synthetic methods and applications of photo-luminescent molecularly imprinted polymers
Jiang et al. Synthesis of biotinylated α-D-mannoside or N-acetyl β-D-glucosaminoside decorated gold nanoparticles: study of their biomolecular recognition with Con A and WGA lectins
Zhu et al. Block copolymer brush layer-templated gold nanoparticles on nanofibers for surface-enhanced Raman scattering optophysiology
Wei et al. Facile polymerizable surfactant inspired synthesis of fluorescent molecularly imprinted composite sensor via aqueous CdTe quantum dots for highly selective detection of λ-cyhalothrin
Ensafi et al. Development of a nano plastic antibody for determination of propranolol using CdTe quantum dots
Wu et al. TiO2 nanoparticles-enhanced luminol chemiluminescence and its analytical applications in organophosphate pesticide imprinting
Kou et al. Recyclable magnetic MIP-based SERS sensors for selective, sensitive, and reliable detection of paclobutrazol residues in complex environments
Wei et al. Fabrication and evaluation of sulfanilamide-imprinted composite sensors by developing a custom-tailored strategy
Li et al. Boronate affinity-based surface-imprinted quantum dots as novel fluorescent nanosensors for the rapid and efficient detection of rutin
Male et al. Synthesis and stability of fluorescent gold nanoparticles by sodium borohydride in the presence of mono-6-deoxy-6-pyridinium-β-cyclodextrin chloride
Fernandes et al. Metal-dendrimer hybrid nanomaterials for sensing applications
JP5521188B2 (en) Sensing chip, manufacturing method thereof and use thereof
JP4107873B2 (en) Luminescent fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110721

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4853972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250