JP2009047470A - Magnetic three-dimensional position detection device - Google Patents

Magnetic three-dimensional position detection device Download PDF

Info

Publication number
JP2009047470A
JP2009047470A JP2007211804A JP2007211804A JP2009047470A JP 2009047470 A JP2009047470 A JP 2009047470A JP 2007211804 A JP2007211804 A JP 2007211804A JP 2007211804 A JP2007211804 A JP 2007211804A JP 2009047470 A JP2009047470 A JP 2009047470A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
coil
dimensional position
field strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007211804A
Other languages
Japanese (ja)
Other versions
JP4931145B2 (en
Inventor
Sadao Hiroya
定男 廣谷
Takemi Mochida
岳美 持田
Tokihiko Kaburagi
時彦 鏑木
Kohei Wakamiya
幸平 若宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Nippon Telegraph and Telephone Corp
Original Assignee
Kyushu University NUC
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Nippon Telegraph and Telephone Corp filed Critical Kyushu University NUC
Priority to JP2007211804A priority Critical patent/JP4931145B2/en
Publication of JP2009047470A publication Critical patent/JP2009047470A/en
Application granted granted Critical
Publication of JP4931145B2 publication Critical patent/JP4931145B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic three-dimensional position detection device capable of estimating highly accurately the position or the direction of a reception coil by measured values or calibration magnetic field data which are few compared with hitherto, even when a distance between a transmission coil and the reception coil is short. <P>SOLUTION: In this magnetic three-dimensional position detection device which is a device for generating AC magnetic fields having each mutually different frequency from a plurality of transmission coils, and measuring a three-dimensional position of the reception coil by using a reception signal induced into the reception coil, magnetic field intensity induced into the reception coil is determined from a magnetic field intensity function showing a space pattern of the magnetic field intensity using a magnetic dipole model in consideration of the size of the transmission coil relative to the AC magnetic field generated from the transmission coil, and the position and the direction of the reception coil are measured by a means for calculating the three-dimensional position and direction of the reception coil so that an error between signal intensity predicted from the magnetic field intensity function and signal intensity measured actually by the reception coil becomes minimum. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、送信コイルから生成した磁界によって受信コイルに電気信号を誘導して受信コイルの3次元的な位置を決定する、磁気式の3次元位置検出装置および検出方法に関するものである。   The present invention relates to a magnetic three-dimensional position detection apparatus and a detection method that determine a three-dimensional position of a receiving coil by inducing an electric signal to the receiving coil by a magnetic field generated from the transmitting coil.

従来、送信コイル から生成した交流磁界によって受信コイルに電気信号を誘導し、この受信信号の強度をもとにして受信コイル の3次元的な位置を検出する位置検出 装置が用いられている。
これらの装置においては、受信信号から受信コイルの空間的な位置情報を得るため、送信コイルと受信コイルの間の相対的な位置関係に対して、受信される信号の強度を磁界関数として表現する。このような磁界関数には、送信コイルの生成する磁界に関する、電磁理論に基づいた物理式が用いられている(例えば、非特許文献1参照)。
受信コイル の3次元位置は、この磁界関数から予測される受信信号と、実際に計測される信号強度の間の誤差が最小になるように決定される。
2. Description of the Related Art Conventionally, a position detection device that induces an electrical signal to a receiving coil by an alternating magnetic field generated from a transmitting coil and detects a three-dimensional position of the receiving coil based on the intensity of the received signal has been used.
In these devices, in order to obtain the spatial position information of the receiving coil from the received signal, the intensity of the received signal is expressed as a magnetic field function with respect to the relative positional relationship between the transmitting coil and the receiving coil. . For such a magnetic field function, a physical formula based on electromagnetic theory relating to the magnetic field generated by the transmission coil is used (for example, see Non-Patent Document 1).
The three-dimensional position of the receiving coil is determined so that the error between the received signal predicted from the magnetic field function and the actually measured signal strength is minimized.

また、磁界中における複数の位置に受信コイルを配置して、これらの受信コイルの磁界強度の測定データをスプライン補完することにより、磁界強度関数を求める方法がある(例えば、非特許文献2参照)。
阿刀田,中村,冨澤,横山,今田,「磁気式 モーションキャプチャ装置における双極子配置と座標逆算アルゴリズムの一設計法」,計測自動制御学会,Vol.34,No.5,445−453,1998 鏑木,若宮,持田、「3次元磁気センサシステムの評価」、電子情報通信学会信学技法、SP2005-55、2005
In addition, there is a method for obtaining a magnetic field strength function by arranging reception coils at a plurality of positions in a magnetic field and complementing the measurement data of the magnetic field strength of these reception coils by spline (see, for example, Non-Patent Document 2). .
Atoda, Nakamura, Serizawa, Yokoyama, Imada, “A Design Method of Dipole Arrangement and Coordinate Back-Calculation Algorithm in Magnetic Motion Capture Device”, Society of Instrument and Control Engineers, Vol. 34, no. 5,445-453, 1998 Kashiwagi, Wakamiya, Mochida, "Evaluation of three-dimensional magnetic sensor system", IEICE Technical, SP2005-55, 2005

上述した非特許文献1のように、送信コイルから生成される交流磁界の強度の空間的なパタンを表現する磁界強度関数として、送信コイルの大きさを無視した磁気双極子モデルが用いられてきた。
この磁気双極子モデルは、送信コイルと受信コイルの間の距離が、送信コイルの大きさに比べて十分に大きい場合に成り立つものである。しかしながら、実際には、送信コイルの大きさの数倍程度の距離に受信コイルが配置されることがあるため、この仮定が満足されない場合もある。
したがって、非特許文献1の方法においては、仮定した磁界強度関数が実際の磁界強度パタンに適合していないと、受信コイルの位置や向きを精度良く推定することが困難になるという問題があった。
As in Non-Patent Document 1 described above, a magnetic dipole model that ignores the size of the transmission coil has been used as a magnetic field strength function that represents a spatial pattern of the intensity of the alternating magnetic field generated from the transmission coil. .
This magnetic dipole model is established when the distance between the transmission coil and the reception coil is sufficiently larger than the size of the transmission coil. However, in practice, this assumption may not be satisfied because the receiving coil may be arranged at a distance several times the size of the transmitting coil.
Therefore, the method of Non-Patent Document 1 has a problem that it is difficult to accurately estimate the position and orientation of the receiving coil if the assumed magnetic field strength function does not match the actual magnetic field strength pattern. .

また、非特許文献2の方法は、磁気双極子モデルを用いないため、送信コイルと受信コイルが接近した場合でも有効である。
しかしながら、非特許文献2の方法においては、測定範囲をすべて網羅するように磁界強度データを計測する必要があるため、磁界強度関数の校正用の磁界データ計測に多大な時間を要するという問題があった。
Further, since the method of Non-Patent Document 2 does not use the magnetic dipole model, it is effective even when the transmitting coil and the receiving coil are close to each other.
However, in the method of Non-Patent Document 2, it is necessary to measure magnetic field strength data so as to cover the entire measurement range, and thus there is a problem that it takes a lot of time to measure magnetic field data for calibration of the magnetic field strength function. It was.

本発明は、このような事情に鑑みてなされたもので、送信コイルと受信コイルとの距離が近くとも、従来に比して少ない計測値、校正用の磁界データによって受信コイルの位置や向きを高い精度にて推定することができる磁気式3次元位置検出装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and even if the distance between the transmission coil and the reception coil is short, the position and orientation of the reception coil can be determined by using less measurement values and magnetic field data for calibration than in the past. It is an object of the present invention to provide a magnetic three-dimensional position detection device that can be estimated with high accuracy.

本発明の磁気式3次元位置検出装置は、複数の送信コイルから相互に異なる周波数の交流磁界を生成し、さらに受信コイルに誘導される受信信号を用いて、受信コイルの3次元的な位置を計測する磁気式3次元位置検出装置であり、前記送信コイルから生成される交流磁界について、該送信コイルの大きさを考慮した磁気双極子モデルを用いた、磁界強度の空間パタン(言い換えると、空間的な磁界強度パタン)を表す磁界強度関数により、前記受信コイルに誘導される磁界強度を求める予測値計算部と、前記磁界強度関数から予測される信号強度と、前記受信コイルにて実際に計測される信号強度との誤差が最小となるように、該受信コイルの3次元的な位置および向きを計算する誤差最小化手段と、該誤差最小化手段の結果により該受信コイルの位置及び向きを計測する位置検出部とを有する。   The magnetic three-dimensional position detection apparatus of the present invention generates AC magnetic fields having different frequencies from a plurality of transmission coils, and further uses the received signal induced in the reception coil to determine the three-dimensional position of the reception coil. A magnetic three-dimensional position detecting device for measuring, and for an alternating magnetic field generated from the transmission coil, a magnetic field strength spatial pattern (in other words, a space pattern) using a magnetic dipole model in consideration of the size of the transmission coil. A predicted value calculation unit for obtaining a magnetic field strength induced in the receiving coil by a magnetic field strength function representing a typical magnetic field strength pattern), a signal strength predicted from the magnetic field strength function, and an actual measurement by the receiving coil Error minimizing means for calculating the three-dimensional position and orientation of the receiving coil so that an error from the received signal strength is minimized, and the reception by the result of the error minimizing means. And a position detector for measuring the position and orientation of yl.

本発明の磁気式3次元位置検出装置は、前記磁気双極子モデルが磁荷の配置される前記送信コイルの両端の位置情報を含む磁界強度関数を表すことを特徴とする。   In the magnetic three-dimensional position detection apparatus of the present invention, the magnetic dipole model represents a magnetic field strength function including position information of both ends of the transmission coil where magnetic charges are arranged.

本発明の磁気式3次元位置検出方法は、複数の送信コイルから相互に異なる周波数の交流磁界を生成し、さらに受信コイルに誘導される受信信号を用いて、受信コイルの3次元的な位置を計測する磁気式3次元位置検出方法であり、予測値計算部が前記送信コイルから生成される交流磁界について、該送信コイルの大きさを考慮した磁気双極子モデルを用いた、磁界強度の空間パタンを表す磁界強度関数により、前記受信コイルに誘導される磁界強度を求める過程と、誤差最小化手段が前記磁界強度関数から予測される信号強度と、前記受信コイルにて実際に計測される信号強度との誤差が最小となるように、該受信コイルの3次元的な位置および向きを計算する過程と、位置検出部が該誤差最小化手段の結果により該受信コイルの位置及び向きを計測する過程とを有する。   The magnetic three-dimensional position detection method of the present invention generates AC magnetic fields having different frequencies from a plurality of transmission coils, and further uses the received signal induced in the reception coil to determine the three-dimensional position of the reception coil. A magnetic three-dimensional position detection method for measuring, wherein a predicted value calculation unit uses a magnetic dipole model in consideration of the size of the transmission coil for an alternating magnetic field generated from the transmission coil. A magnetic field strength function that represents the magnetic field strength induced in the receiving coil, a signal strength that the error minimizing means predicts from the magnetic field strength function, and a signal strength that is actually measured by the receiving coil. And a process of calculating the three-dimensional position and orientation of the receiving coil so that the error between the receiving coil and the position of the receiving coil is determined by the result of the error minimizing means. And a process for measuring the can.

本発明の磁気式3次元位置検出方法は、前記磁界強度関数が磁荷の配置される前記送信コイルの両端の位置情報を考慮した前記磁気双極子モデルにより表されていることを特徴とする。   The magnetic three-dimensional position detection method of the present invention is characterized in that the magnetic field strength function is represented by the magnetic dipole model considering position information of both ends of the transmission coil where magnetic charges are arranged.

本発明のプログラムは、コンピュータに上記いずれかに記載の磁気式3次元位置検出方法を実行させるためのコンピュータが実行可能なプログラムである。
本発明の記録媒体は、上記プログラムを記録したコンピュータ読み取り可能な記録媒体である。
The program of the present invention is a computer-executable program for causing a computer to execute any one of the magnetic three-dimensional position detection methods described above.
The recording medium of the present invention is a computer-readable recording medium on which the above program is recorded.

以上説明したように、本発明の磁気式3次元位置検出装置は、受信コイルに誘導される信号強度を推定する際に、個々の送信コイルの大きさを考慮しているため、送信コイルの両端の位置情報を信号強度の予測に反映することができる。
このため、本発明の磁気式3次元位置検出装置においては、送信コイルの両端の位置情報を推定する際に用いるので、従来のように送信コイルの大きさを無視して点と見なして推定する場合に比較して、高精度にて磁界強度の空間パタンを表すことができる。
したがって、本発明の磁気式3次元位置検出装置によれば、受信コイルの位置および向きの推定を、送信コイルの両端の位置を考慮して磁界強度パタンを表す上記磁界強度関数に基づいて行われるため、受信コイルの位置推定の精度を高めることが可能となる。
また、本発明の磁気式3次元位置検出装置によれば、磁界データをスプライン補間して磁界強度パタンを表す従来の方法と比較した場合、磁界強度関数の構成に必要となる校正用磁界データの数を大幅に削減することができる。
As described above, the magnetic three-dimensional position detection apparatus of the present invention takes into account the size of each transmission coil when estimating the signal strength induced in the reception coil, and therefore the both ends of the transmission coil. Can be reflected in the prediction of the signal strength.
For this reason, in the magnetic three-dimensional position detection apparatus of the present invention, since it is used when estimating the position information of both ends of the transmission coil, it is estimated by ignoring the size of the transmission coil as in the prior art. Compared to the case, the spatial pattern of the magnetic field strength can be expressed with high accuracy.
Therefore, according to the magnetic three-dimensional position detection apparatus of the present invention, the position and orientation of the receiving coil are estimated based on the magnetic field strength function representing the magnetic field strength pattern in consideration of the positions of both ends of the transmitting coil. Therefore, it is possible to improve the accuracy of the position estimation of the receiving coil.
Further, according to the magnetic type three-dimensional position detection apparatus of the present invention, the magnetic field data for calibration required for the configuration of the magnetic field strength function is compared with the conventional method of expressing the magnetic field strength pattern by spline interpolation of the magnetic field data. The number can be greatly reduced.

<本発明の概要>
本発明は、複数の送信コイルそれぞれから、相互に異なる周波数の交流磁界を生成し、検出対象である受信コイルに誘導される受信信号を用い、この受信コイルの3次元的な位置を計測する磁気式3次元位置検出装置に関するものであり、送信コイルから生成される交流磁界について、各送信コイルの大きさ(磁極が存在する送信コイルの両端の位置)を考慮した磁気双極子モデルを用いた、磁界強度の空間パタンを表す磁界強度関数により、受信コイルに誘導される磁界強度を求め、かつ磁界強度関数から予測される信号強度と、受信コイルにて実際に計測される信号強度との誤差が最小となるように、受信コイルの3次元的な位置および向きを計算する手段と、この手段により受信コイルの位置及び向きを計測するものである。
<Outline of the present invention>
The present invention generates an alternating magnetic field having a different frequency from each of a plurality of transmission coils, and uses a reception signal induced in a reception coil that is a detection target to measure the three-dimensional position of the reception coil. It relates to a three-dimensional position detection apparatus, and for an alternating magnetic field generated from a transmission coil, a magnetic dipole model that takes into account the size of each transmission coil (positions at both ends of the transmission coil where the magnetic pole exists) is used. The magnetic field strength function representing the spatial pattern of the magnetic field strength is used to determine the magnetic field strength induced in the receiving coil, and there is an error between the signal strength predicted from the magnetic field strength function and the signal strength actually measured by the receiving coil. Means for calculating the three-dimensional position and orientation of the receiving coil and measuring the position and orientation of the receiving coil by this means so as to be minimized.

上述したように、本発明は、送信コイルから生成される交流磁界の磁界強度の空間的パタンを、送信コイルの磁荷の存在する両端の位置座標を用いることで、この送信コイルの大きさを考慮した磁気双極子モデルによって表している。
このように、本発明における上記磁気双極子モデルにおいては、送信コイルの軸(コイルを巻く軸)の両端に、互いに極性の異なる磁荷が配置されると考える。
一方、受信コイルの大きさは、送信コイルに比べて十分に小さいと仮定し、これを大きさを持たない空間中の点と見なしている。
As described above, the present invention reduces the size of the transmission coil by using the spatial pattern of the magnetic field strength of the alternating magnetic field generated from the transmission coil using the position coordinates of both ends where the magnetic charge of the transmission coil exists. It is represented by a magnetic dipole model that takes into account.
Thus, in the magnetic dipole model according to the present invention, it is considered that magnetic charges having different polarities are arranged at both ends of the axis of the transmission coil (axis around which the coil is wound).
On the other hand, the size of the receiving coil is assumed to be sufficiently smaller than that of the transmitting coil, and this is regarded as a point in the space having no size.

受信コイルが存在する位置にて発生する磁界強度は、送信コイルの両端位置における磁荷の大きさと、これらの両端に位置する磁荷に対する受信コイルの相対位置によって表されることになる。
したがって、本発明においては、送信コイルの両端位置が磁界強度関数に反映されることになるため、磁気式3次元位置検出装置において、送信コイルと受信距離との関係において、測定精度を向上させるために、送信コイルの大きさを考慮することができる。
The strength of the magnetic field generated at the position where the receiving coil is present is expressed by the magnitude of the magnetic charge at both ends of the transmitting coil and the relative position of the receiving coil with respect to the magnetic charge located at both ends.
Therefore, in the present invention, since both end positions of the transmission coil are reflected in the magnetic field strength function, in the magnetic three-dimensional position detection device, in order to improve measurement accuracy in relation to the transmission coil and the reception distance. In addition, the size of the transmission coil can be considered.

さらに、本発明は、上述したように送信コイルの大きさを反映した磁界強度関数を用いることによって、受信コイルの位置と、送信コイルの発生する磁界の向き(磁力線の向き)に対する傾き(後述するφ)とを未知変数とし、受信コイルに誘導される信号の強度を予測または推定することができる。
すなわち、受信コイルの位置および向きの推定は、この信号強度の予測値と実際に計測される信号強度の間の誤差が最小となるように、これらの未知変数の値を決定することによって行われる。
Furthermore, the present invention uses the magnetic field strength function that reflects the size of the transmission coil as described above, so that the position of the reception coil and the inclination (direction of magnetic field lines) with respect to the direction of the magnetic field generated by the transmission coil (the direction of the magnetic lines) will be described later. φ) is an unknown variable, and the intensity of the signal induced in the receiving coil can be predicted or estimated.
That is, the position and orientation of the receiving coil are estimated by determining the values of these unknown variables so that the error between the predicted value of the signal strength and the actually measured signal strength is minimized. .

本発明においては、上述したように、受信コイルは大きさを持たない点として仮定している。従って、この仮定が満足されるように、受信コイルの大きさを十分に小さくする必要がある。
したがって、本発明においては、位置検出対象の受信コイルとして、小型化の容易な単軸のコイルを用いている。
また、本発明においては、送信コイルを5個以上用い、これらの5個以上の磁界成分について、信号強度の予測値と実際に計測される受信信号強度との間の自乗誤差を最小化することで、単軸の受信コイルの位置と向きとの検出を可能とする。
In the present invention, as described above, the receiving coil is assumed to have no size. Therefore, it is necessary to sufficiently reduce the size of the receiving coil so that this assumption is satisfied.
Therefore, in the present invention, a single-axis coil that is easy to miniaturize is used as a receiving coil for position detection.
Further, in the present invention, five or more transmission coils are used, and for these five or more magnetic field components, the square error between the predicted value of the signal strength and the actually measured received signal strength is minimized. Thus, it is possible to detect the position and orientation of the single-axis receiving coil.

本発明においては、磁界強度の空間パタンを示す磁界強度関数が、物理的な磁気双極子モデルを用いて表されるため、モデルに含まれるパラメータはスカラ量のゲイン項のみとなっている。
このため、本発明は、従来例におけるスプライン補間によって磁界強度関数を表す方法に比較して、あらかじめ校正すべきパラメータの数を極めて少なくすることができる。
したがって、本発明においては、磁界強度関数を校正する校正用の磁界データの数が少なくて済むため、位置検出において複数の受信コイルを使用する場合においても、校正に膨大な時間がかかる問題を生じない。
In the present invention, since the magnetic field strength function indicating the spatial pattern of the magnetic field strength is expressed using a physical magnetic dipole model, the parameter included in the model is only the gain term of the scalar quantity.
For this reason, the present invention can extremely reduce the number of parameters to be calibrated in advance as compared with the method of representing the magnetic field strength function by spline interpolation in the conventional example.
Therefore, in the present invention, since the number of magnetic field data for calibration for calibrating the magnetic field strength function is small, even when a plurality of receiving coils are used for position detection, there is a problem that it takes a long time for calibration. Absent.

<実施形態>
以下、本発明の実施形態による磁気式3次元位置検出装置を図面を参照して説明する。図1は同実施形態による磁気式3次元位置検出装置の構成例を示すブロック図である。
本実施形態の磁気式3次元位置検出装置は、検出対象の受信コイルに対して交流磁界を与える送信コイル(S,S,S,S,S,S)と、該送信コイルに対して各々異なる周波数の交流磁界を発生させる送信コイル駆動部1と、受信コイルDと、上記交流磁界により該受信コイルDに誘導された受信信号の強度を、周波数毎に検出して検出信号として出力する検出部2と、各送信コイル毎に設定された磁界強度関数により受信信号の予測値を算出する予測値計算部3と、検出された検出値と予測値との信号誤差の最小化を行う誤差最小化部4と、誤差最小化部にて得られた結果から送信コイルの位置を求める位置検出部5とから構成されている。
<Embodiment>
Hereinafter, a magnetic three-dimensional position detection apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration example of a magnetic three-dimensional position detection apparatus according to the embodiment.
The magnetic three-dimensional position detection apparatus of the present embodiment includes a transmission coil (S 1 , S 2 , S 3 , S 4 , S 5 , S 6 ) that applies an alternating magnetic field to a reception coil to be detected, and the transmission Transmit coil drive unit 1 for generating alternating magnetic fields of different frequencies for the coils, receiving coil D, and the intensity of the received signal induced in the receiving coil D by the alternating magnetic field is detected and detected for each frequency. A detection unit 2 that outputs a signal; a predicted value calculation unit 3 that calculates a predicted value of the received signal by a magnetic field strength function set for each transmission coil; and a minimum signal error between the detected value and the detected value And an error minimizing unit 4 for performing the calculation, and a position detecting unit 5 for obtaining the position of the transmitting coil from the result obtained by the error minimizing unit.

次に、図1、図2及び図3を用いて本実施形態における磁気式3次元位置検出装置における受信コイルの位置及び傾きを検出する動作を説明する。図2は、本実施形態における磁気式3次元位置検出装置において、送信コイルによって交流磁界を生成し、受信コイルに誘導された信号の強度より、その受信コイルの位置および向きを計算するための手順を示すフローチャートである。図3は本実施形態における磁気式3次元位置検出装置の動作を説明する概念図であり、図3(a)が磁気式3次元位置検出装置における送信コイルS,S,S,S,S,Sの配置の例を示し、図3(b)が受信コイルDの位置と向きを表す方法について示した概念図である。 Next, the operation of detecting the position and inclination of the receiving coil in the magnetic three-dimensional position detection apparatus according to the present embodiment will be described with reference to FIGS. FIG. 2 shows a procedure for calculating the position and orientation of the receiving coil from the intensity of the signal induced in the receiving coil by generating an alternating magnetic field by the transmitting coil in the magnetic three-dimensional position detection apparatus according to the present embodiment. It is a flowchart which shows. FIG. 3 is a conceptual diagram for explaining the operation of the magnetic three-dimensional position detection device according to the present embodiment. FIG. 3A shows transmission coils S 1 , S 2 , S 3 , S in the magnetic three-dimensional position detection device. 4 , S 5 , and S 6 are examples of arrangement, and FIG. 3B is a conceptual diagram illustrating a method of representing the position and orientation of the receiving coil D.

図3(a)における配置例においては、6個の送信コイルS,S,S,S,S,Sにおいて、送信コイル駆動部1の制御により相互に周波数の異なる交流磁界が生成される。
また、図3(b)においては、x、y、zが受信コイルDの位置を表すための座標軸として定義されている。図3(b)における角度θとθとは、それぞれy軸を回転軸とした回転角度、z軸を回転軸とした回転角度を表している。
本実施形態においては、受信コイルDの位置と傾きとが与えられた時に、受信信号の強度を予測することが必要である。
In the arrangement example in FIG. 3A, in the six transmission coils S 1 , S 2 , S 3 , S 4 , S 5 , S 6 , alternating magnetic fields having different frequencies are controlled by the control of the transmission coil driving unit 1. Is generated.
In FIG. 3B, x, y, and z are defined as coordinate axes for representing the position of the receiving coil D. The angles θ 1 and θ 2 in FIG. 3B represent the rotation angle with the y axis as the rotation axis and the rotation angle with the z axis as the rotation axis, respectively.
In the present embodiment, it is necessary to predict the strength of the received signal when the position and inclination of the receiving coil D are given.

このため、磁気双極子モデルを用いて、送信コイルS,S,S,S,S,Sから生成される交流磁界の強度の空間パタンを磁界強度関数として表す必要がある。
送信コイルSS,S,S,S,S,S各々から生成される磁界は、交流磁界であり、本実施形態において、例えば送信コイルS,S,S,S,S,Sが正弦的な交流磁界を生成するように送信コイル駆動部1により駆動する交流電流が流されて駆動される。
この時、生成される磁界も正弦的に変化するが、この正弦的な時間関数の振幅を、本実施形態においては磁界の強度、すなわち磁界強度と呼ぶ。以下の説明において、送信コイルS,S,S,S,S,Sを送信コイルSとして説明する。
For this reason, it is necessary to express the spatial pattern of the intensity of the alternating magnetic field generated from the transmission coils S 1 , S 2 , S 3 , S 4 , S 5 , S 6 as a magnetic field strength function using a magnetic dipole model. .
The magnetic field generated from each of the transmission coils SS 1 , S 2 , S 3 , S 4 , S 5 , S 6 is an AC magnetic field. In this embodiment, for example, the transmission coils S 1 , S 2 , S 3 , S 4 , S 5 , S 6 are driven by an alternating current driven by the transmission coil driving unit 1 so that a sinusoidal alternating magnetic field is generated.
At this time, the generated magnetic field also changes sinusoidally. The amplitude of this sinusoidal time function is called the magnetic field strength, that is, the magnetic field strength in this embodiment. In the following description, the transmission coils S 1 , S 2 , S 3 , S 4 , S 5 , S 6 will be described as the transmission coil S i .

本実施形態で用いる磁気双極子モデルにおいては、上記磁界強度が以下のように磁気双極子モデルを用いてベクトルh=(h,h,hとして以下の(1)式にて表される。 In the magnetic dipole model used in the present embodiment, the magnetic field intensity is expressed by the following formula (1) as a vector h = (h x , h y , h z ) T using the magnetic dipole model as follows. expressed.

Figure 2009047470
Figure 2009047470

ここで、h,h,hは、磁界強度の各軸方向の成分であり、Gは送信コイルの両端における磁荷の大きさ(あるいは強さ)や空気の透磁率などによって決定される一定のゲインである。Tはベクトルの転置を表している。
また、r,rは、以下の(2)式にて示すように、送信コイルSの両端の位置X,Xと、3次元(xyz)座標空間内のある1点の位置Xとの間の相対関係を表すベクトルである。
Here, h x , h y , and h z are components in the respective axial directions of the magnetic field strength, and G is determined by the magnitude (or strength) of magnetic charges at both ends of the transmission coil, the air permeability, and the like. It is a certain gain. T represents vector transposition.
Further, r p and r n are the positions X p and X n at both ends of the transmission coil S and the position X of one point in the three-dimensional (xyz) coordinate space, as shown in the following equation (2). Is a vector representing the relative relationship between

Figure 2009047470
Figure 2009047470

上述した(1)式及び(2)式により、本実施形態においては、磁荷が配置される送信コイルSの両端の位置情報を用いることにより、送信コイルSの大きさを考慮した形にて磁界強度関数を表すことができる。
したがって、送信コイルSと受信コイルDとの間の距離が送信コイルSの大きさ(両端の磁極の距離)に比較して十分に大きいとはいえない場合においても、実際の磁界強度パタンを、従来例に比較してより精度良く表すことができる。
According to the above-described formulas (1) and (2), in the present embodiment, the position information of both ends of the transmission coil S where the magnetic charge is arranged is used, thereby taking the size of the transmission coil S into consideration. A magnetic field strength function can be represented.
Therefore, even when the distance between the transmission coil S and the reception coil D is not sufficiently large compared to the size of the transmission coil S (the distance between the magnetic poles at both ends), the actual magnetic field strength pattern is It can be expressed with higher accuracy than the conventional example.

予測値計算部3は、上記(1)及び(2)式を用いて、3次元座標空間内の点X(x,y,z)に、大きさの無視できる受信コイルDが存在する場合、i番目の送信コイルが送信コイル駆動部1により駆動されて生成する交流磁界に対して、受信コイルDに誘導される受信信号(電圧値)の受信信号強度uを以下の(3)式を用いて予測値の計算を行っている(ステップS3)。 The predicted value calculation unit 3 uses the above equations (1) and (2), and when there is a receiving coil D whose size can be ignored at a point X (x, y, z) in the three-dimensional coordinate space, For the AC magnetic field generated by the i-th transmission coil being driven by the transmission coil drive unit 1, the received signal strength u i of the received signal (voltage value) induced in the receiving coil D is expressed by the following equation (3). The predicted value is calculated using this (step S3).

Figure 2009047470
Figure 2009047470

上記(3)式において、αは受信コイルDに固有のゲインであり、hは上記磁界強度ベクトルであり、φは受信コイルDの軸と磁界強度ベクトルとがなす角度を示している。
なお、受信コイルDの傾き(θ,θ)と、角度φとの関係は、以下のように与えられる。上記(3)式において、|h|cosφはh・eとして置き換えることができる。ここで、「・」はベクトルの内積を表し、「e」は長さ1のベクトルである。ベクトルeはx軸方向の単位ベクトルe=(1,0,0)を、x軸についてθ、x軸についてθの角度で回転して得られるので、
e=A3
となる。ここで、A及びA各々は以下の(4)式に示す回転行列である。
In the above equation (3), α is a gain inherent to the receiving coil D, h i is the magnetic field strength vector, and φ i is an angle formed by the axis of the receiving coil D and the magnetic field strength vector.
The relationship between the inclination (θ 1 , θ 2 ) of the receiving coil D and the angle φ i is given as follows. In the above equation (3), | h i | cosφ i can be replaced with h i · e. Here, “·” represents an inner product of vectors, and “e” is a vector of length 1. The vector e x 1 axial unit vector e 1 = (1,0,0) T, the so obtained rotated at theta 2 angle for theta 1, x 3 axes for x 2 axis,
e = A 3 A 2 e 1
It becomes. Here, each of A 3 and A 2 is a rotation matrix shown in the following equation (4).

Figure 2009047470
Figure 2009047470

すなわち、受信コイルの傾き(θ,θ)がある値に固定されると、回転行列A及びAが求まりベクトルeが定まる。このベクトルeと磁界強度hの内積を計算することにより、磁界に対する受信コイルDの傾き(θ,θ)の影響を考慮することとなる。
また、上記(3)式において、αとi番目の送信コイルSとの磁界強度関数のゲインGをまとめて、改めてGと表すこととすると、受信信号の強度の予測値は以下の(5)式にて表すことができる。
That is, when the inclinations (θ 1 , θ 2 ) of the receiving coil are fixed to certain values, the rotation matrices A 2 and A 3 are obtained and the vector e is determined. By calculating the inner product of the vector e and the magnetic field strength h i , the influence of the inclination (θ 1 , θ 2 ) of the receiving coil D on the magnetic field is taken into consideration.
In the above equation (3), if the gain G i of the magnetic field strength function of α and the i-th transmission coil S i is collectively expressed as G i , the predicted value of the received signal strength is (5) It can represent with Formula.

Figure 2009047470
Figure 2009047470

上記(5)式においてrpiとrniとは以下の(6)式により表されている。 In the above equation (5), r pi and r ni are expressed by the following equation (6).

Figure 2009047470
Figure 2009047470

上記(5)式において、XpiとXniとはそれぞれi番目の送信コイルSの両端の位置を示している。磁界強度関数におけるゲインGは未知数であるが、既知の位置と向きに受信コイルDを配置して、誘導される受信信号の信号強度を測定することにより、測定値を校正するために用いる磁界データを作成しておくことができる。
すなわち、受信コイルDを磁界データを取得する位置及び向きにて配置し、送信コイル駆動部1が送信コイルS,S,S,S,S,S各々から異なる周波数の交流磁界を生成させ、検出部2が検出した受信コイルDの受信信号の信号強度と、受信コイルDの位置及び向きのデータを用いて磁界強度関数により求めた信号強度とが一致するように、送信コイルS(1≦i≦6)各々のゲインG(1≦i≦6)を補正する。
In the above equation (5), X pi and X ni indicate the positions of both ends of the i-th transmission coil S i , respectively. The gain G i in the magnetic field strength function is an unknown number, but the magnetic field used to calibrate the measurement value by measuring the signal strength of the received signal that is induced by arranging the receiving coil D at a known position and orientation. Data can be created.
That is, the receiving coil D is arranged at the position and orientation for acquiring the magnetic field data, and the transmitting coil driving unit 1 receives alternating currents having different frequencies from the transmitting coils S 1 , S 2 , S 3 , S 4 , S 5 , S 6. A magnetic field is generated and transmitted so that the signal strength of the received signal of the receiving coil D detected by the detection unit 2 matches the signal strength obtained by the magnetic field strength function using the position and orientation data of the receiving coil D. The gain G i (1 ≦ i ≦ 6) of each coil S i (1 ≦ i ≦ 6) is corrected.

また、送信コイルSの両端の位置が固定されていると考えれば、rpiやrniは受信コイルDの存在している座標X(x,y,z)に依存し、φは受信コイルDの座標X(x,y,z)と、受信コイルDの傾き(θ,θ)とに依存している。
このため、予測値計算部3は、磁界強度関数にて予測強度uを算出する際、座標X(x,y,z)に対応するrpi及びrniと、この座標X(x,y,z)及び受信コイルDの傾き(θ,θ)に対応したφiとを代入して、予測強度uを求めることになる。
If it is considered that the positions of both ends of the transmission coil S i are fixed, r pi and r ni depend on the coordinates X (x, y, z) where the reception coil D exists, and φ i is received. It depends on the coordinates X (x, y, z) of the coil D and the inclinations (θ 1 , θ 2 ) of the receiving coil D.
For this reason, when the predicted value calculation unit 3 calculates the predicted strength u i using the magnetic field strength function, r pi and r ni corresponding to the coordinate X (x, y, z) and the coordinate X (x, y , Z) and φi corresponding to the inclinations (θ 1 , θ 2 ) of the receiving coil D are substituted to obtain the predicted intensity u i .

従って、受信コイルDの位置や傾きが変化すれば、それに伴って予測される信号強度uも変化する。
例えば、予測値計算部3は、ある任意の位置及び傾きの受信コイルDの受信信号の予測値uを、上述した(6)式の磁界強度関数により求める。
そして、検出部2は、各送信コイルSから送信される交流磁界により、受信コイルDに誘導される実際の測定結果としての受信信号の信号強度の測定値U(1≦i≦6)を計測する(ステップS5)。
Therefore, if the position or inclination of the receiving coil D changes, the signal intensity u i predicted accordingly changes.
For example, the predicted value calculation unit 3, the predicted value u i of the received signal of the receiving coil D of an arbitrary position and the inclination is determined by the magnetic field intensity function of the above-described (6).
The detector 2, the AC magnetic field transmitted from each transmission coil S i, the measured value U i of the signal strength of the received signal as an actual measurement results induced in the receiving coil D (1 ≦ i ≦ 6) Is measured (step S5).

次に、誤差最小化部4は、測定結果としての信号強度の測定値Uと、予測値計算部3にて求められた予測値uとを比較して、信号強度Uと予測値uとの差が予め設定した範囲内にあることを検出した場合、一致信号を位置検出部5へ出力する(ステップS4)。
そして、位置検出部5は、その予測値uを算出した際の受信コイルDの位置及び傾きが、実際に現在の受信コイルの位置及び傾きとして検出して、受信コイルDの位置及び傾きとして出力する。
Next, the error minimizing unit 4 compares the measured value U i of the signal strength as the measurement result with the predicted value u i obtained by the predicted value calculating unit 3, and compares the signal strength U i with the predicted value. When it is detected that the difference from u i is within a preset range, a coincidence signal is output to the position detector 5 (step S4).
Then, the position detection unit 5 detects the position and inclination of the receiving coil D when the predicted value u i is calculated as the current position and inclination of the receiving coil D, and determines the position and inclination of the receiving coil D as the actual position and inclination. Output.

したがって、誤差最小化部4は、信号強度の測定値Uと信号強度の予測値uとの誤差を最小にするように、複数の位置X(x,y,z)及び傾き(θ,θ)の組合せに対応するrpi及びrniとφとのデータを入れて予測値uを計算し、実際に測定した測定値Uと比較することにより、上述したような実際に受信コイルDが配置されている位置及び向きを推定する。
上記誤差の評価尺度としては、以下の(7)式のように、各送信コイルSと受信コイルDとにおける測定値Uiと予測値uiとの自乗誤差を全て加算した自乗誤差合計値Eを用いる。
Therefore, the error minimizing unit 4 has a plurality of positions X (x, y, z) and inclinations (θ 1 ) so as to minimize an error between the measured value U i of the signal strength and the predicted value u i of the signal strength. by putting the data of r pi and r ni and phi i corresponding to the combination of theta 2) to calculate the predicted values u i, is compared with the actual measured measured value U i, actually as described above The position and direction in which the receiving coil D is disposed are estimated.
As an evaluation scale of the error, as shown in the following equation (7), a square error total value E obtained by adding all square errors of the measured value Ui and the predicted value ui in each of the transmission coils Si and the reception coils D is used. Use.

Figure 2009047470
Figure 2009047470

誤差最小化部4は、上記(7)式において、自乗誤差合計値Eが最小となる位置X(x,y,z)と傾き(θ,θ)との値を、非線形な最小自乗法を適用して求める(ステップS4)。
すなわち、誤差最小化部4は、(7)式における自乗誤差合計値Eが予め設定した収束条件を満たすまで(例えば自乗誤差合計値Eが設定した閾値以下になった場合、または自乗誤差合計値Eの変化率の減少が所定の値以下になるまで)、ステップS1,S2,S3,S4のステップにおいて、予測値計算部3が新たなrpi及びrniとφとのデータにより順次算出する各送信コイルSにおける予測値uを用いて、送信コイルSi毎に求まる自乗誤差を合計して自乗誤差合計値Eを求め、予め設定された閾値以下となるまで反復計算を行う。ここで、誤差最小化部4は、予め設定された上記閾値以下となったことが検出されると、最小値として判定する。この閾値は、予め実験において、測定値と予測値との誤差によって設定される。
The error minimizing unit 4 calculates the values of the position X (x, y, z) and the gradient (θ 1 , θ 2 ) at which the square error total value E is minimum in the above equation (7) as a non-linear minimum self. It calculates | requires by applying a multiplication method (step S4).
That is, the error minimizing unit 4 determines that the square error total value E in the expression (7) satisfies a preset convergence condition (for example, when the square error total value E is equal to or less than a set threshold value, or the square error total value). E until the decrease in the rate of change of E becomes equal to or less than a predetermined value), in steps S1, S2, S3, and S4, the predicted value calculation unit 3 sequentially calculates the new r pi, r ni, and φ i data. using the predicted values u i in each transmission coil S i which sums the squared error calculated for each transmission coil Si seeking square error sum E, performing iterative calculations until the following preset threshold. Here, when it is detected that the error minimizing unit 4 is equal to or less than the preset threshold value, it is determined as the minimum value. This threshold value is set in advance by an error between the measured value and the predicted value in an experiment.

上記最小自乗法には様々な方法があるが、本実施の形態ではガウス・ニュートン法あるいは、計算時間と収束安定性とのバランス、関数との関係等を考慮した上で、ガウス・ニュートン法を基本としたレーベンベルグ・マルカート(Levenberg-Marquardt)法を用いても良い。また、ダンピング法、パウエル法等、ガウス・ニュートン法に基づく他の解法を用いてもよい。また、ガウス・ニュートン法でなくても、最急降下法等、他の非線形最小自乗法の解法を用いてもよい。   There are various methods for the least square method, but in this embodiment, the Gauss-Newton method or the Gauss-Newton method is considered after considering the balance between the calculation time and convergence stability, the relationship with the function, etc. The basic Levenberg-Marquardt method may be used. Further, other solution methods based on the Gauss-Newton method such as a damping method and a Powell method may be used. Further, instead of the Gauss-Newton method, other nonlinear least squares methods such as the steepest descent method may be used.

以下に、本実施形態における3次元位置検出装置の有効性を検証するため、受信コイルDの3次元座標空間における3次元位置検出処理の適用例を以下に説明する。
図3(a)に示した3次元座標系において、x={−30,0,30}、y={−30,0,30}、z={−30,0,30}の全ての組合せの位置X(合計の組合せによる位置の数 3×3×3=27点)に受信コイルを配置して、各送信コイルS,S,S,S,S,Sからの交流磁界により誘導される受信信号の信号強度uを検出部2により測定した。
得られた信号強度を用いて送信コイルS各々に対応した磁界強度関数におけるゲインGの補正を行った。
Hereinafter, in order to verify the effectiveness of the three-dimensional position detection apparatus in the present embodiment, an application example of the three-dimensional position detection process in the three-dimensional coordinate space of the receiving coil D will be described below.
In the three-dimensional coordinate system shown in FIG. 3A, all combinations of x = {− 30,0,30}, y = {− 30,0,30}, z = {− 30,0,30} The receiving coil is arranged at the position X (the number of positions by the total combination 3 × 3 × 3 = 27 points) from each of the transmitting coils S 1 , S 2 , S 3 , S 4 , S 5 , S 6 . The signal intensity u i of the received signal induced by the alternating magnetic field was measured by the detector 2.
The gain G i in the magnetic field strength function corresponding to each of the transmission coils S i was corrected using the obtained signal strength.

次に、検出部2により、上記x={−30,0,30}、y={−30,0,30}、z={−30,0,30}の位置の組合せ各々の測定値Uを各々測定した(ステップS5)。
そして、図2に示した手順により、予測値計算部3は、新たな位置及び傾きのデータを入力し(ステップS1)、入力された位置のデータを(6)式に代入してrpi及びrniを算出する(ステップS2)。
また、予測値計算部3は、上記rpi及びrniと磁界のむきに対する傾きφとのデータを(5)式に代入し、予測値uを算出する(ステップS3)。
次に、誤差最小化部5は、測定値Uと予測値uとによる自乗誤差合計値Eが最小となる計算を行う(ステップS5)。
Next, the detection unit 2 uses the measurement values U of the combinations of the positions x = {− 30,0,30}, y = {− 30,0,30}, and z = {− 30,0,30}. Each i was measured (step S5).
Then, according to the procedure shown in FIG. 2, the predicted value calculation unit 3 inputs new position and inclination data (step S1), substitutes the input position data into equation (6), and sets r pi and r ni is calculated (step S2).
Further, the predicted value calculation unit 3 substitutes the data of the above r pi and r ni and the gradient φ i with respect to the magnetic field peeling into the equation (5) to calculate the predicted value u i (step S3).
Next, the error minimizing unit 5 performs a calculation that minimizes the square error total value E based on the measured value U i and the predicted value u i (step S5).

上述した処理において、実際の受信コイルの位置と予測した受信コイルの位置との間の絶対値誤差は平均で0.2mmとして、受信コイルDの位置が求められた。
また、従来の送信コイルの大きさを無視した磁界強度関数を用いた場合には、絶対値誤差が0.5mmであった。
また、校正用の磁界データをスプライン補完して、磁界強度パタンを表す方法においては、校正用のデータの数は全部で375点が必要であり、上述した本実施形態の27点の約14倍のデータ量が必要であった。
上述した実験により、本実施形態には送信コイルSの大きさを無視した磁界強度関数を用いる従来の方法に比較して、より位置検出の精度を高くすることができる。
また、本実施形態は、スプライン補完を行う従来の方法に比較して、測定精度は同等であるが、校正用の磁界データの数を、大幅に削減することができる。
In the above-described processing, the absolute value error between the actual position of the receiving coil and the predicted position of the receiving coil is 0.2 mm on average, and the position of the receiving coil D is obtained.
In addition, when a magnetic field strength function ignoring the size of the conventional transmission coil is used, the absolute value error is 0.5 mm.
Further, in the method of representing the magnetic field intensity pattern by complementing the magnetic field data for calibration by spline, the total number of calibration data is 375 points, which is about 14 times the 27 points of the present embodiment described above. The amount of data required.
The above-described experiments, the present embodiment can be compared with the conventional method of using a magnetic field intensity function that ignores the size of the transmitting coil S i, to increase the accuracy of the position detection.
In addition, this embodiment has the same measurement accuracy as the conventional method that performs spline interpolation, but can greatly reduce the number of magnetic field data for calibration.

なお、図1における予測値計算部3、誤差最小化部4及び位置検出部5の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより3次元位置の検出処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。   A program for realizing the functions of the predicted value calculation unit 3, the error minimization unit 4 and the position detection unit 5 in FIG. 1 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is recorded. The processing for detecting the three-dimensional position may be performed by reading the program into a computer system and executing it. Here, the “computer system” includes an OS and hardware such as peripheral devices. The “computer system” includes a WWW system having a homepage providing environment (or display environment). The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Further, the “computer-readable recording medium” refers to a volatile memory (RAM) in a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, those holding programs for a certain period of time are also included.

また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。   The program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.

本発明の一実施形態による磁気式3次元位置検出装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the magnetic type three-dimensional position detection apparatus by one Embodiment of this invention. 図1の磁気式3次元位置検出装置による受信コイルDの3次元空間における存在する位置を検出する動作を示すフローチャートである。3 is a flowchart showing an operation of detecting a position of a receiving coil D in a three-dimensional space by the magnetic three-dimensional position detecting device of FIG. 1. 本実施形態における磁気式3次元位置検出装置の動作を説明する概念図である。It is a conceptual diagram explaining operation | movement of the magnetic type three-dimensional position detection apparatus in this embodiment.

符号の説明Explanation of symbols

1…送信コイル駆動部
2…検出部
3…予測値計算部
4…誤差最小化部
5…位置検出部
D…受信コイル
,S,S,S,S,S…送信コイル
1 ... transmission coil drive section 2 ... detecting section 3 ... predictive value calculating unit 4 ... error minimizing section 5 ... position detector D ... receiving coils S 1, S 2, S 3 , S 4, S 5, S 6 ... transmission coil

Claims (6)

複数の送信コイルから相互に異なる周波数の交流磁界を生成し、さらに受信コイルに誘導される受信信号を用いて、受信コイルの3次元的な位置を計測する磁気式3次元位置検出装置であり、
前記送信コイルから生成される交流磁界について、該送信コイルの大きさを考慮した磁気双極子モデルを用いた、磁界強度の空間パタンを表す磁界強度関数により、前記受信コイルに誘導される磁界強度を求める予測値計算部と、
前記磁界強度関数から予測される信号強度と、前記受信コイルにて実際に計測される信号強度との誤差が最小となるように、該受信コイルの3次元的な位置および向きを計算する誤差最小化手段と、
該誤差最小化手段の結果により該受信コイルの位置及び向きを計測する位置検出部と
を有する磁気式3次元位置検出装置。
A magnetic three-dimensional position detection device that generates alternating magnetic fields of different frequencies from a plurality of transmission coils and further measures a three-dimensional position of the reception coil using a reception signal induced in the reception coil.
For the alternating magnetic field generated from the transmission coil, the magnetic field strength induced in the reception coil is expressed by a magnetic field strength function representing a spatial pattern of the magnetic field strength using a magnetic dipole model considering the size of the transmission coil. A predicted value calculation unit to be obtained;
Minimal error for calculating the three-dimensional position and orientation of the receiving coil so that the error between the signal strength predicted from the magnetic field strength function and the signal strength actually measured by the receiving coil is minimized. And
A magnetic three-dimensional position detection apparatus comprising: a position detection unit that measures the position and orientation of the reception coil based on a result of the error minimizing means.
前記磁気双極子モデルが磁荷の配置される前記送信コイルの両端の位置情報を含む磁界強度関数を表すことを特徴とする請求項1に記載の磁気式3次元位置検出装置。   The magnetic three-dimensional position detection apparatus according to claim 1, wherein the magnetic dipole model represents a magnetic field strength function including position information of both ends of the transmission coil where magnetic charges are arranged. 複数の送信コイルから相互に異なる周波数の交流磁界を生成し、さらに受信コイルに誘導される受信信号を用いて、受信コイルの3次元的な位置を計測する磁気式3次元位置検出方法であり、
予測値計算部が前記送信コイルから生成される交流磁界について、該送信コイルの大きさを考慮した磁気双極子モデルを用いた、磁界強度の空間パタンを表す磁界強度関数により、前記受信コイルに誘導される磁界強度を求める過程と、
誤差最小化手段が前記磁界強度関数から予測される信号強度と、前記受信コイルにて実際に計測される信号強度との誤差が最小となるように、該受信コイルの3次元的な位置および向きを計算する過程と、
位置検出部が該誤差最小化手段の結果により該受信コイルの位置及び向きを計測する過程と
を有する磁気式3次元位置検出方法。
A magnetic three-dimensional position detection method that generates alternating magnetic fields having different frequencies from a plurality of transmission coils, and further measures a three-dimensional position of the reception coil using a reception signal induced in the reception coil.
The predicted value calculation unit induces the AC coil generated from the transmitter coil to the receiver coil by a magnetic field strength function representing a spatial pattern of the magnetic field strength using a magnetic dipole model considering the size of the transmitter coil. Determining the magnetic field strength to be
The three-dimensional position and orientation of the receiving coil so that the error minimizing means minimizes the error between the signal strength predicted from the magnetic field strength function and the signal strength actually measured by the receiving coil. The process of calculating
A magnetic three-dimensional position detection method comprising: a step of measuring a position and an orientation of the reception coil by a position detection unit based on a result of the error minimizing means.
前記磁界強度関数が磁荷の配置される前記送信コイルの両端の位置情報を考慮した前記磁気双極子モデルにより表されていることを特徴とする請求項3に記載の磁気式3次元位置検出方法。   4. The magnetic three-dimensional position detection method according to claim 3, wherein the magnetic field strength function is represented by the magnetic dipole model in consideration of position information of both ends of the transmission coil where magnetic charges are arranged. . コンピュータに請求項3及び請求項4のいずれかに記載の磁気式3次元位置検出方法を実行させるためのコンピュータが実行可能なプログラム。   A computer-executable program for causing a computer to execute the magnetic three-dimensional position detection method according to claim 3. 請求項5に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。   A computer-readable recording medium on which the program according to claim 5 is recorded.
JP2007211804A 2007-08-15 2007-08-15 Magnetic three-dimensional position detection apparatus, magnetic three-dimensional position detection method, program, and recording medium Expired - Fee Related JP4931145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007211804A JP4931145B2 (en) 2007-08-15 2007-08-15 Magnetic three-dimensional position detection apparatus, magnetic three-dimensional position detection method, program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007211804A JP4931145B2 (en) 2007-08-15 2007-08-15 Magnetic three-dimensional position detection apparatus, magnetic three-dimensional position detection method, program, and recording medium

Publications (2)

Publication Number Publication Date
JP2009047470A true JP2009047470A (en) 2009-03-05
JP4931145B2 JP4931145B2 (en) 2012-05-16

Family

ID=40499838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007211804A Expired - Fee Related JP4931145B2 (en) 2007-08-15 2007-08-15 Magnetic three-dimensional position detection apparatus, magnetic three-dimensional position detection method, program, and recording medium

Country Status (1)

Country Link
JP (1) JP4931145B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155383A1 (en) * 2010-06-09 2011-12-15 オリンパスメディカルシステムズ株式会社 Probe shape detection device and probe shape detection method
JP2014021111A (en) * 2012-07-12 2014-02-03 Biosense Webster (Israel) Ltd Position and orientation algorithm for single axis sensor
JP2014135538A (en) * 2013-01-08 2014-07-24 Nippon Telegr & Teleph Corp <Ntt> Mobile terminal device and radio communication system
US10416333B2 (en) 2017-05-19 2019-09-17 Microsoft Technology Licensing, Llc Magnetic tracker with dual-transmit frequency
CN116869539A (en) * 2023-07-06 2023-10-13 北京未磁科技有限公司 Calibration method and calibration device for magnetoencephalography and magnetoencephalography

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589005A (en) * 1981-02-12 1983-01-19 ハネウエル・インコ−ポレ−テツド Electromagnetic device utilizing electromagnetic field vector for determining direction of helmet
JPH0510751A (en) * 1991-07-03 1993-01-19 Mitsutoyo Corp Evaluating method for measured value
JPH1019505A (en) * 1996-03-05 1998-01-23 He Holdings Inc Dba Hughes Electron Method and device for determining position of magnetic dipole which use spatial and temporal processing of magnetometer data
JPH1026506A (en) * 1996-03-05 1998-01-27 He Holdings Inc Dba Hughes Electron Improved dipole moment detector and localizer
JPH10108853A (en) * 1996-10-08 1998-04-28 Eiichi Bando Stereoscopic displacement sensor for human body
JPH11325810A (en) * 1998-03-18 1999-11-26 Olympus Optical Co Ltd Position presuming equipment
JP2003114101A (en) * 2001-10-03 2003-04-18 Nippon Telegr & Teleph Corp <Ntt> Magnetic three-dimensional position detector and detection method
JP2004536298A (en) * 2001-06-26 2004-12-02 ノーザン・デジタル・インコーポレイテッド Gain factor and position determination system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589005A (en) * 1981-02-12 1983-01-19 ハネウエル・インコ−ポレ−テツド Electromagnetic device utilizing electromagnetic field vector for determining direction of helmet
JPH0510751A (en) * 1991-07-03 1993-01-19 Mitsutoyo Corp Evaluating method for measured value
JPH1019505A (en) * 1996-03-05 1998-01-23 He Holdings Inc Dba Hughes Electron Method and device for determining position of magnetic dipole which use spatial and temporal processing of magnetometer data
JPH1026506A (en) * 1996-03-05 1998-01-27 He Holdings Inc Dba Hughes Electron Improved dipole moment detector and localizer
JPH10108853A (en) * 1996-10-08 1998-04-28 Eiichi Bando Stereoscopic displacement sensor for human body
JPH11325810A (en) * 1998-03-18 1999-11-26 Olympus Optical Co Ltd Position presuming equipment
JP2004536298A (en) * 2001-06-26 2004-12-02 ノーザン・デジタル・インコーポレイテッド Gain factor and position determination system
JP2003114101A (en) * 2001-10-03 2003-04-18 Nippon Telegr & Teleph Corp <Ntt> Magnetic three-dimensional position detector and detection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155383A1 (en) * 2010-06-09 2011-12-15 オリンパスメディカルシステムズ株式会社 Probe shape detection device and probe shape detection method
JP5231681B2 (en) * 2010-06-09 2013-07-10 オリンパスメディカルシステムズ株式会社 Probe shape detection device and method of operating probe shape detection device
US8566052B2 (en) 2010-06-09 2013-10-22 Olympus Medical Systems Corp. Probe shape detection apparatus and probe shape detection method
JP2014021111A (en) * 2012-07-12 2014-02-03 Biosense Webster (Israel) Ltd Position and orientation algorithm for single axis sensor
JP2014135538A (en) * 2013-01-08 2014-07-24 Nippon Telegr & Teleph Corp <Ntt> Mobile terminal device and radio communication system
US10416333B2 (en) 2017-05-19 2019-09-17 Microsoft Technology Licensing, Llc Magnetic tracker with dual-transmit frequency
CN116869539A (en) * 2023-07-06 2023-10-13 北京未磁科技有限公司 Calibration method and calibration device for magnetoencephalography and magnetoencephalography
CN116869539B (en) * 2023-07-06 2024-04-19 北京未磁科技有限公司 Calibration method and calibration device for magnetoencephalography and magnetoencephalography

Also Published As

Publication number Publication date
JP4931145B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
KR101912195B1 (en) Method and device for real-time target location and map creation
KR100734967B1 (en) Detecting errors in the determination of magnetic location or orientation
US8509819B2 (en) Information processing apparatus and correction method
KR100938047B1 (en) Calibration of a device location measurement system that utilizes wireless signal strengths
US7532997B2 (en) Electromagnetic tracking using a discretized numerical field model
Guan et al. Automated DC offset calibration strategy for structural health monitoring based on portable CW radar sensor
JP4931145B2 (en) Magnetic three-dimensional position detection apparatus, magnetic three-dimensional position detection method, program, and recording medium
US20080204004A1 (en) Coil arrangement for electromagnetic tracking method and system
US11250318B2 (en) Method and/or system for magnetic localization
US20160282444A1 (en) Methods and Apparatus for Localizing a Source of a Set of Radio Signals
JP2015232513A (en) Flexure estimation device and program
US10996288B2 (en) Method for calibrating a magnetometer
KR20140013308A (en) Method for modifying magnetic field map, terminal and server for modifying magnetic field
KR101962855B1 (en) Apparatus and method for generating indoor map using duplication grid analysis
US10393824B2 (en) Techniques for magnetometer calibration using selected measurements over time
JP6621656B2 (en) Magnetic field modeling
KR101209571B1 (en) Autocalibration method and device
US11525852B2 (en) Field probe isotropic compensation using orthogonal scalar field components
JP5300779B2 (en) Area estimation apparatus, area estimation method, and program
WO2019058478A1 (en) Vibration determination device, vibration determination method, and program
US6714008B1 (en) Gradiometric measurement methodology for determining magnetic fields of large objects
US9964640B2 (en) Method for phase unwrapping using confidence-based rework
JP6933665B2 (en) Calibration methods and equipment for electromagnetic induction measurement systems
KR20160128759A (en) Wireless sensor network device and method for controlling the same
JP2009192476A (en) Array angle measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees