JP2009047256A - Cylindrical heat insulating material, pipe with heat insulating material, manufacturing method of cylindrical heat insulating material, and manufacturing method for pipe with heat insulating material - Google Patents

Cylindrical heat insulating material, pipe with heat insulating material, manufacturing method of cylindrical heat insulating material, and manufacturing method for pipe with heat insulating material Download PDF

Info

Publication number
JP2009047256A
JP2009047256A JP2007214574A JP2007214574A JP2009047256A JP 2009047256 A JP2009047256 A JP 2009047256A JP 2007214574 A JP2007214574 A JP 2007214574A JP 2007214574 A JP2007214574 A JP 2007214574A JP 2009047256 A JP2009047256 A JP 2009047256A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
foam material
pipe
end portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007214574A
Other languages
Japanese (ja)
Inventor
Seitaro Onoe
清太朗 尾上
Kohei Mitsuhashi
浩平 三觜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007214574A priority Critical patent/JP2009047256A/en
Publication of JP2009047256A publication Critical patent/JP2009047256A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the heat insulation performance by a heat insulating material without degrading the productivity. <P>SOLUTION: A pipe 10 with a heat insulating material is covered by a first foam material 14, a second foam material 16 and a third foam material 18 which are laminated on an outer circumferential surface 12A of a resin-made pipe 12. The thickness of the covering layer is the total value of the thickness of three layers, i.e., the first foam material 14, the second foam material 16 and the third foam material 18 (the entire (total) layer thickness is increased). On the other hand, the layer thickness of each of the first foam material 14, the second foam material 16 and the third foam material 18 can be decreased (not thick), and the repulsive force of each of the first foam material 14, the second foam material 16 and the third foam material 18 can be decreased (not large). Thus, the joining strength of ends 14A, 16A, 18A of the first foam material 14, the second foam material 16 and the third foam material 18 need not be increased, and the heat insulation performance is enhanced without degrading the productivity. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、筒状保温材、保温材付きパイプ、筒状保温材の製造方法、及び保温材付きパイプの製造方法に関する。   The present invention relates to a cylindrical heat insulating material, a pipe with a heat insulating material, a method for manufacturing a cylindrical heat insulating material, and a method for manufacturing a pipe with a heat insulating material.

近年、給水・給湯用のパイプとしてポリブテン等からなる樹脂パイプが広く用いられている。給水・給湯用途として樹脂パイプを使用する場合、特に寒冷地において断熱保温のため、樹脂パイプの周りはポリエチレン等からなる発泡材(保温材)で被覆される(例えば、特許文献1を参照)。   In recent years, resin pipes made of polybutene or the like have been widely used as pipes for water supply and hot water supply. When a resin pipe is used for water supply or hot water supply, the resin pipe is covered with a foamed material (heat insulating material) made of polyethylene or the like for heat insulation and insulation particularly in cold regions (see, for example, Patent Document 1).

樹脂パイプの周りを発泡材(保温材)で被覆した保温材付きパイプの製造方法としては、シート状の発泡材を円形に絞りながら樹脂パイプの周りを覆うと共に、シート端部を熱融着することで、保温材付きパイプを連続的に製造する方法が知られている(例えば、特許文献2を参照)。
特開2000−97932号公報 特開2005−125760号公報
As a method of manufacturing a pipe with a heat insulating material in which the periphery of the resin pipe is covered with a foam material (heat insulating material), the resin pipe is covered while the sheet-like foam material is squeezed into a circle, and the end of the sheet is heat-sealed. Thus, a method of continuously producing a pipe with a heat insulating material is known (see, for example, Patent Document 2).
JP 2000-97932 A JP 2005-125760 A

さて、例えば、保温性能を高める目的の等のために、発泡材を厚くすると反発力(円筒形に曲げられた状態から元の平らな状態に戻ろうとする力)が大きくなる。このため発泡材の熱融着部分(端部同士の接合部分)に融着割れ(接合不良)が発生することがある。   For example, for the purpose of improving the heat retaining performance, when the foam material is thickened, the repulsive force (force to return from the state bent into the cylindrical shape to the original flat state) increases. For this reason, a fusion crack (joining failure) may occur in the heat-sealed portion (joint portion between the end portions) of the foam material.

よって、発泡材の長手方向にスリットを入れる等して反発力を低減させる必要がある。しかし、スリットは、外観性が低下しないように、発泡材の内面側(パイプ側の面)に入れる必要ある。このため反発力の低減効果が充分でない。
したがって、生産速度を低下させ融着強度(接合強度)を向上させる必要があるが、生産速度の低下は、すなわち生産性の低下となる。
Therefore, it is necessary to reduce the repulsive force by inserting a slit in the longitudinal direction of the foam material. However, it is necessary to insert the slit on the inner surface side (surface on the pipe side) of the foam material so that the appearance does not deteriorate. For this reason, the effect of reducing the repulsive force is not sufficient.
Therefore, although it is necessary to reduce the production rate and improve the fusion strength (bonding strength), the reduction in the production rate is a reduction in productivity.

本発明は、上記問題を解決すべく成されたもので、帯状の保温材の端部同士の接合不良を防止又は抑制させ、生産性を低下させることなく、保温性能を向上させることが目的である。   The present invention has been made to solve the above problem, and it is intended to prevent or suppress the bonding failure between the end portions of the belt-shaped heat insulating material and improve the heat retaining performance without reducing the productivity. is there.

請求項1に記載の筒状保温部材の製造方法は、帯状の保温材を長手方向に移送しながら、前記保温材を幅方向に変形し前記保温材の幅方向の端部同士を接合して筒状とする工程を、複数の帯状の保温材に対して順番に連続して行ない、二番目以降の工程においては、前工程で筒状とされた保温材の外側を保温材で覆うことを特徴としている。   The manufacturing method of the cylindrical heat insulating member according to claim 1, the belt-shaped heat insulating material is transferred in the longitudinal direction, the heat insulating material is deformed in the width direction, and end portions in the width direction of the heat insulating material are joined to each other. The process of making a cylinder is successively performed on a plurality of strip-shaped heat insulating materials in order, and in the second and subsequent processes, the outside of the heat insulating material that has been formed into a cylindrical shape in the previous step is covered with a heat insulating material. It is a feature.

請求項1に記載の筒状保温部材の製造方法では、帯状の保温材を長手方向に移送しながら、保温材を幅方向に変形し保温材の幅方向の端部同士を接合して筒状とする工程を、複数の帯状の保温材に対して順番に連続して行ない、二番目以降の工程においては、前工程で筒状とされた保温材の外側を保温材で覆う。   In the manufacturing method of the cylindrical heat insulating member according to claim 1, the heat insulating material is deformed in the width direction and the end portions in the width direction of the heat insulating material are joined to each other while the belt-shaped heat insulating material is transferred in the longitudinal direction. The steps are continuously performed on a plurality of belt-shaped heat insulating materials in order, and in the second and subsequent steps, the outer side of the heat insulating material that has been cylindrical in the previous step is covered with the heat insulating material.

したがって、複数の保温材が積層された(積層構造の)筒状保温部材が製造される。よって、保温材全体(合計)の層厚が厚くなる。
一方、各保温材の単体の層厚自体は薄くできるので(厚くならないので)、各保温材単体の反発力を小さくできる(積層された保温材全体の層厚を厚くしても反発力は大きくならない)。よって、各保温材の幅方向の端部同士の接合強度を高くする必要がない。すなわち、各保温材の端部同士の接合強度を高くするため、生産速度を低下させる必要性がない。
Therefore, a cylindrical heat insulating member in which a plurality of heat insulating materials are stacked (stacked structure) is manufactured. Therefore, the layer thickness of the whole heat insulating material (total) is increased.
On the other hand, since the layer thickness of each heat insulating material itself can be reduced (because it does not become thick), the repulsive force of each heat insulating material can be reduced (the repulsive force is large even if the layer thickness of the entire laminated heat insulating material is increased). Must not). Therefore, it is not necessary to increase the bonding strength between the end portions in the width direction of each heat insulating material. That is, since the bonding strength between the end portions of each heat insulating material is increased, there is no need to reduce the production rate.

したがって、例えば、単層構造における保温材の層厚を厚くして保温性能を向上させる方法と比較し、帯状の保温材の端部同士の接合不良が防止又は抑制され、その結果、生産性が低下することなく、保温性能が向上される。
なお、各保温材間(層間)に空気層が形成される場合において、この空気層も断熱効果を有する。よって、保温材の層厚を厚くして保温性能を向上させる方法よりも保温性能が向上される。
Therefore, for example, compared to a method of increasing the heat insulation performance by increasing the layer thickness of the heat insulating material in a single layer structure, bonding failure between the end portions of the belt-shaped heat insulating material is prevented or suppressed, and as a result, productivity is increased. The heat retention performance is improved without lowering.
In addition, when an air layer is formed between each heat insulating material (interlayer), this air layer also has a heat insulation effect. Therefore, the heat insulation performance is improved as compared with the method of increasing the heat insulation performance by increasing the layer thickness of the heat insulation material.

請求項2に記載の筒状部材の製造方法は、請求項1に記載の製造方法において、前記保温材の前記端部同士は、熱融着によって接合することを特徴としている。   The manufacturing method of the cylindrical member according to claim 2 is characterized in that in the manufacturing method according to claim 1, the end portions of the heat insulating material are joined to each other by heat fusion.

請求項2に記載の筒状部材の製造方法では、保温材の幅方向の端部同士は熱融着によって接合するので、例えば、接着剤による接合と比較し、接合工程が容易である。したがって、生産性が更に向上される。   In the manufacturing method of the cylindrical member of Claim 2, since the edge parts of the width direction of a heat insulating material are joined by heat sealing | fusion, a joining process is easy compared with joining by an adhesive agent, for example. Therefore, productivity is further improved.

請求項3に記載の保温材付きパイプの製造方法は、帯状の保温材とパイプとを長手方向に移送しながら、前記保温材を幅方向に変形し前記保温材の幅方向の端部同士を接合して筒状とする工程を、複数の帯状の保温材に対して順番に連続して行ない、一番目の工程においては、前記パイプの外周面を前記筒状とされた保温材が覆い、二番目以降の工程においては、前工程で筒状とされた保温材の外側を保温材が覆うことを特徴としている。   The manufacturing method of the pipe with a heat insulating material according to claim 3, the belt-shaped heat insulating material and the pipe are transported in the longitudinal direction, the heat insulating material is deformed in the width direction, and the end portions in the width direction of the heat insulating material are connected to each other. The step of joining and forming a cylindrical shape is sequentially performed on a plurality of belt-shaped heat insulating materials, and in the first step, the outer peripheral surface of the pipe is covered with the cylindrical heat insulating material, The second and subsequent processes are characterized in that the heat insulating material covers the outside of the heat insulating material that has been cylindrical in the previous process.

請求項3に記載の保温材付きパイプの製造方法では、帯状の保温材とパイプとを長手方向に移送しながら、保温材を幅方向に変形し保温材の幅方向の端部同士を接合して筒状とする工程を、複数の帯状の保温材に対して順番に連続して行ない、一番目の工程においては、前記パイプの外周面を筒状とされた保温材が覆い、二番目以降の工程においては、前工程で筒状とされた保温材の外側を保温材で覆う。   In the method for manufacturing a pipe with a heat insulating material according to claim 3, the heat insulating material is deformed in the width direction and the end portions in the width direction of the heat insulating material are joined to each other while transferring the belt-shaped heat insulating material and the pipe in the longitudinal direction. In the first step, the outer peripheral surface of the pipe is covered with a cylindrical heat insulating material, and the second and subsequent steps. In the step, the outside of the heat insulating material that has been cylindrical in the previous step is covered with the heat insulating material.

したがって、パイプの外周面が積層された複数の保温材で覆われた保温材付きパイプが製造される。よって、パイプの外周面を被覆する保温材全体(合計)の層厚が厚くなる。
一方、各保温材の単体の層厚自体は薄くできるので(厚くならないので)、各保温材単体の反発力を小さくできる(積層された保温材全体の層厚を厚くしても反発力は大きくならない)。よって、各保温材の幅方向の端部同士の接合強度を高くする必要がない。すなわち、各保温材の端部同士の接合強度を高くするため、生産速度を低下させる必要性がない。
Therefore, a pipe with a heat insulating material is manufactured in which the outer peripheral surface of the pipe is covered with a plurality of heat insulating materials stacked. Therefore, the layer thickness of the whole heat insulating material (total) covering the outer peripheral surface of the pipe is increased.
On the other hand, since the layer thickness of each heat insulating material itself can be reduced (because it does not become thick), the repulsive force of each heat insulating material can be reduced (the repulsive force is large even if the layer thickness of the entire laminated heat insulating material is increased). Must not). Therefore, it is not necessary to increase the bonding strength between the end portions in the width direction of each heat insulating material. That is, since the bonding strength between the end portions of each heat insulating material is increased, there is no need to reduce the production rate.

したがって、例えば、単層構造における保温材の層厚を厚くして保温性能を向上させる方法と比較し、帯状の保温材の端部同士の接合不良が防止又は抑制され、その結果、生産性が低下することなく、保温性能が向上される。
なお、各保温材間(層間)に空気層が形成される場合において、この空気層も断熱効果を有する。よって、保温材の層厚を厚くして保温性能を向上させる方法よりも保温性能が向上される。
Therefore, for example, compared to a method of increasing the heat insulation performance by increasing the layer thickness of the heat insulating material in a single layer structure, bonding failure between the end portions of the belt-shaped heat insulating material is prevented or suppressed, and as a result, productivity is increased. The heat retention performance is improved without lowering.
In addition, when an air layer is formed between each heat insulating material (interlayer), this air layer also has a heat insulation effect. Therefore, the heat insulation performance is improved as compared with the method of increasing the heat insulation performance by increasing the layer thickness of the heat insulation material.

請求項4に記載のパイプの製造方法は、請求項3に記載の製造方法において、前記保温材の前記端部同士は、熱融着によって接合することを特徴としている。   The manufacturing method of the pipe according to claim 4 is the manufacturing method according to claim 3, wherein the end portions of the heat insulating material are joined to each other by heat fusion.

請求項4に記載のパイプの製造方法では、保温材の幅方向の端部同士は熱融着によって接合するので、例えば、接着剤による接合と比較し、接合工程が容易である。したがって、生産性が更に向上される。   In the pipe manufacturing method according to the fourth aspect, since the end portions in the width direction of the heat insulating material are joined by heat fusion, for example, the joining process is easier than joining by an adhesive. Therefore, productivity is further improved.

請求項5に記載の筒状保温材は、積層された複数の帯状の保温材の幅方向の端部同士が接合されて筒状とされたことを特徴としている。   The cylindrical heat insulating material according to claim 5 is characterized in that end portions in the width direction of a plurality of laminated heat insulating materials in a strip shape are joined to form a cylindrical shape.

請求項5に記載の筒状保温材では、積層された複数の帯状の保温材の幅方向の端部同士が接合されて筒状とされている。よって、保温材全体(合計)の層厚が厚くなる。
一方、各保温材の単体の層厚自体は薄くできるので(厚くならないので)、各保温材単体の反発力を小さくできる(積層された保温材全体の層厚を厚くしても反発力は大きくならない)。よって、各保温材の幅方向の端部同士の接合強度を高くする必要がない。すなわち、各保温材の端部同士の接合強度を高くするため、接合時間を長くする必要がない。つまり、生産速度を低下させる必要性がない。
In the cylindrical heat insulating material according to claim 5, the end portions in the width direction of the plurality of laminated heat insulating materials in a strip shape are joined to form a cylindrical shape. Therefore, the layer thickness of the whole heat insulating material (total) is increased.
On the other hand, since the layer thickness of each heat insulating material itself can be reduced (because it does not become thick), the repulsive force of each heat insulating material can be reduced (the repulsive force is large even if the layer thickness of the entire laminated heat insulating material is increased). Must not). Therefore, it is not necessary to increase the bonding strength between the end portions in the width direction of each heat insulating material. That is, it is not necessary to lengthen the joining time in order to increase the joining strength between the end portions of each heat insulating material. That is, there is no need to reduce the production rate.

したがって、例えば、単層構造における保温材の層厚を厚くして保温性能を向上させる方法と比較し、帯状の保温材の端部同士の接合不良が防止又は抑制され、その結果、生産性が低下することなく、保温性能が向上される。
なお、各保温材間(層間)空気層が形成された場合において、この空気層も断熱効果を有する。よって、保温材の層厚を厚くして保温性能を向上させる方法よりも保温性能が向上される。
Therefore, for example, compared to a method of increasing the heat insulation performance by increasing the layer thickness of the heat insulating material in a single layer structure, bonding failure between the end portions of the belt-shaped heat insulating material is prevented or suppressed, and as a result, productivity is increased. The heat retention performance is improved without lowering.
In addition, when the air layer between each heat insulating material (interlayer) is formed, this air layer also has a heat insulation effect. Therefore, the heat insulation performance is improved as compared with the method of increasing the heat insulation performance by increasing the layer thickness of the heat insulation material.

請求項6に記載の保温材付きパイプは、パイプの外周面が積層された複数の帯状の保温材が覆うと共に、各層を構成する前記保温材の幅方向の端部同士が接合されたことを特徴としている。   The pipe with a heat insulating material according to claim 6 is covered with a plurality of belt-shaped heat insulating materials on which the outer peripheral surfaces of the pipes are laminated, and the end portions in the width direction of the heat insulating material constituting each layer are joined. It is a feature.

請求項6に記載の保温材付きパイプでは、パイプの外周面が積層された複数の帯状の保温材で覆われている。よって、パイプの外周面を被覆する保温材全体(合計)の層厚が厚くなる。
一方、各保温材の単体の層厚自体は薄くできるので(厚くならないので)、各保温材単体の反発力を小さくできる(積層された保温材全体の層厚を厚くしても反発力は大きくならない)。よって、各保温材の幅方向の端部同士の接合強度を高くする必要がない。すなわち、各保温材の端部同士の接合強度を高くするため、接合時間を長くする必要がない。つまり、生産速度を低下させる必要性がない。
In the pipe with a heat insulating material according to claim 6, the outer peripheral surface of the pipe is covered with a plurality of belt-shaped heat insulating materials stacked. Therefore, the layer thickness of the whole heat insulating material (total) covering the outer peripheral surface of the pipe is increased.
On the other hand, since the layer thickness of each heat insulating material itself can be reduced (because it does not become thick), the repulsive force of each heat insulating material can be reduced (the repulsive force is large even if the layer thickness of the entire laminated heat insulating material is increased). Must not). Therefore, it is not necessary to increase the bonding strength between the end portions in the width direction of each heat insulating material. That is, it is not necessary to lengthen the joining time in order to increase the joining strength between the end portions of each heat insulating material. That is, there is no need to reduce the production rate.

したがって、例えば、単層構造における保温材の層厚を厚くして保温性能を向上させる方法と比較し、帯状の保温材の端部同士の接合不良が防止又は抑制され、その結果、生産性が低下することなく、保温性能が向上される。
なお、各保温材間(層間)に空気層が形成された場合において、この空気層も断熱効果を有する。よって、保温材の層厚を厚くして保温性能を向上させる方法よりも保温性能が向上される。
Therefore, for example, compared to a method of increasing the heat insulation performance by increasing the layer thickness of the heat insulating material in a single layer structure, bonding failure between the end portions of the belt-shaped heat insulating material is prevented or suppressed, and as a result, productivity is increased. The heat retention performance is improved without lowering.
In addition, when an air layer is formed between each heat insulating material (interlayer), this air layer also has a heat insulation effect. Therefore, the heat insulation performance is improved as compared with the method of increasing the heat insulation performance by increasing the layer thickness of the heat insulation material.

以上説明したように本発明によれば、帯状の保温材の端部同士の接合不良を防止又は抑制させ、生産性を低下させることなく、保温性能を向上させることができる、という優れた効果を有する。   As described above, according to the present invention, it is possible to prevent or suppress the bonding failure between the end portions of the belt-shaped heat insulating material, and to improve the heat retaining performance without reducing the productivity. Have.

以下、図1から図5を用いて、本発明における保温材付きパイプの実施形態の一例を詳細に説明する。
まず、保温材付きパイプ10について説明する。
図1と図2とに示すように、保温材付きパイプ10は、樹脂製のパイプ12の外周面12Aが、積層された第一発泡材14、第二発泡材16、第三発泡材18で被覆された構成とされている。
Hereinafter, an example of an embodiment of a pipe with a heat insulating material in the present invention will be described in detail with reference to FIGS. 1 to 5.
First, the pipe 10 with a heat insulating material will be described.
As shown in FIG. 1 and FIG. 2, the pipe 10 with a heat insulating material is formed by laminating a first foam material 14, a second foam material 16, and a third foam material 18 on the outer peripheral surface 12 </ b> A of the resin pipe 12. It is set as the structure covered.

第一発泡材14、第二発泡材16、第三発泡材18は帯状とされ、それぞれ幅方向の端部14A,16A,18同士が接合され、パイプ12の外周面12Aを覆う筒状とされている(図5も参照)。なお、本実施形態においては、第一発泡材14、第二発泡材16、第三発泡材18の端部14A,16A,18同士は、熱融着にて接合されている。   The first foam material 14, the second foam material 16, and the third foam material 18 are formed in a strip shape, and end portions 14 </ b> A, 16 </ b> A, 18 in the width direction are joined to each other, and are formed in a cylindrical shape covering the outer peripheral surface 12 </ b> A of the pipe 12. (See also FIG. 5). In the present embodiment, the end portions 14A, 16A, and 18 of the first foam material 14, the second foam material 16, and the third foam material 18 are joined by thermal fusion.

また、本実施形態においては、パイプ12は、ボリブテン樹脂からなるφ15のボリブデンパイプとされている。また、第一発泡材14、第二発泡材16、第三発泡材18は、表面にポリエチレンフィルムが形成され、発泡された厚み5mmのポリエチレンシートとされている。なお、第一発泡材14、第二発泡材16、第三発泡材18はこれに限定されない。例えば、ポリプロピレン、ポリスチレン、フェノ−ル、ポリウレタン等にて代表される樹脂発泡材(発泡シート)であってもよい。
また、第一発泡材14、第二発泡材16、第三発泡材18は、それぞれ異なる材料からなると共に、異なる厚みであってもよい。
Further, in the present embodiment, the pipe 12 is a φ15 borib den pipe made of boribten resin. Further, the first foam material 14, the second foam material 16, and the third foam material 18 are formed into a polyethylene sheet having a thickness of 5 mm by forming a polyethylene film on the surface. In addition, the 1st foam material 14, the 2nd foam material 16, and the 3rd foam material 18 are not limited to this. For example, a resin foam material (foamed sheet) represented by polypropylene, polystyrene, phenol, polyurethane, or the like may be used.
Further, the first foam material 14, the second foam material 16, and the third foam material 18 may be made of different materials and may have different thicknesses.

つぎに、図1に示す保温材付きパイプ10を製造する製造ライン100の概要構成及び製造工程について、図3を用いて説明する。
図3に示すように、製造ライン100の最上流部には、コイル状に捲かれた樹脂製のパイプ12が装着されるパイプ装着部102が設けられている。そして、パイプ装着部102からパイプ12が下流側に送り出される。
Next, a schematic configuration and manufacturing process of the manufacturing line 100 for manufacturing the pipe 10 with the heat insulating material shown in FIG. 1 will be described with reference to FIG.
As shown in FIG. 3, a pipe mounting portion 102 to which a resin pipe 12 wound in a coil shape is mounted is provided at the most upstream portion of the production line 100. Then, the pipe 12 is sent out from the pipe mounting portion 102 to the downstream side.

パイプ装着部102の下流側には、第一のガイド部150Aが設けられている。第一のガイド部150Aは、回転軸が水平とされたローラ対152A、154Aと回転軸が垂直とされたローラ対153A、155Aとで構成され、これらのローラ対152A、153A、154A、155Aの間に挟まれてガイドされて下流側に移送される。このようにガイドされて下流側に移送されることで、樹脂パイプ12がストレート状(長手方向に略真っ直ぐの状態で)で下流側に送られる。   A first guide portion 150 </ b> A is provided on the downstream side of the pipe mounting portion 102. The first guide portion 150A is composed of a pair of rollers 152A and 154A whose rotation axes are horizontal and a pair of rollers 153A and 155A whose rotation axes are vertical. These roller pairs 152A, 153A, 154A and 155A It is sandwiched between and guided and transferred downstream. By being guided and transported to the downstream side in this way, the resin pipe 12 is sent to the downstream side in a straight shape (in a state of being substantially straight in the longitudinal direction).

第一のガイド部150Aの下流側には、帯状の第一発泡材14によってパイプ12の外周面12Aを覆う第一の被覆装置200Aが設けられている。第一の被覆装置200Aでは、図5(A)の左図と右図とに示すように、パイプ12と帯状の第一発泡材14とを長手方向に移送しながら、第一発泡材14を幅方向に変形して筒状としてパイプ12の外周面12Aを覆い、第一発泡材14の幅方向の端部14A同士を熱融着にて接合する。なお、第一の被覆装置200A、及び後述する第二の被覆装置200B、第三の被覆装置200B詳細構造等は後述する。   A first coating device 200A that covers the outer peripheral surface 12A of the pipe 12 with the strip-shaped first foam material 14 is provided on the downstream side of the first guide portion 150A. In the first coating apparatus 200A, as shown in the left and right views of FIG. 5A, the first foam material 14 is moved while the pipe 12 and the strip-shaped first foam material 14 are transported in the longitudinal direction. The pipe 12 is deformed in the width direction to cover the outer peripheral surface 12A of the pipe 12, and the end portions 14A in the width direction of the first foamed material 14 are joined together by heat fusion. The detailed structure of the first coating apparatus 200A, the second coating apparatus 200B described later, the third coating apparatus 200B, and the like will be described later.

第一の被覆装置200Aの下流側には、第二のガイド部150Bが設けられている。第二のガイド部150Bも第一のガイド部150Aと同様に、回転軸が水平とされたローラ対152B、154Bと回転軸が垂直とされたローラ対153B、155Bとで構成され、これらのローラ対152B、153B、154B、155Bの間に挟みまれてガイドされ下流側に移送される。   A second guide portion 150B is provided on the downstream side of the first coating apparatus 200A. Similarly to the first guide portion 150A, the second guide portion 150B is composed of roller pairs 152B and 154B whose rotation axes are horizontal and roller pairs 153B and 155B whose rotation axes are vertical. It is sandwiched between the pairs 152B, 153B, 154B, 155B and guided to the downstream side.

第二のガイド部150Bの下流側には、第二の被覆装置200Bが設けられている。第二の被覆装置200Bでは、図5(B)の左図と右図とに示すように、外周面12Aに第一発泡材14が被覆されたパイプ12を長手方向に移送しながら、第二発泡材16を幅方向に変形して筒状とし、パイプ12の外周面12Aを被覆した第一発泡材14の外側を覆い、第二発泡材16の幅方向の端部16A同士を熱融着にて接合する。   A second coating device 200B is provided on the downstream side of the second guide portion 150B. In the second coating apparatus 200B, as shown in the left and right views of FIG. 5B, the pipe 12 having the outer peripheral surface 12A coated with the first foam material 14 is transferred in the longitudinal direction while The foam material 16 is deformed in the width direction into a cylindrical shape, covers the outer side of the first foam material 14 covering the outer peripheral surface 12A of the pipe 12, and the end portions 16A in the width direction of the second foam material 16 are heat-sealed. Join with.

第二の被覆装置200Bの下流側には、第三のガイド部150Cが設けられている。第三のガイド部150Cも第一のガイド部150Aと同様に、回転軸が水平とされたローラ対152C、154Cと回転軸が垂直とされたローラ対153C、155Cとで構成され、これらのローラ対152C、153C、154C、155Cの間に挟まれてガイドされ下流側に送られる。   A third guide portion 150C is provided on the downstream side of the second coating apparatus 200B. Similarly to the first guide portion 150A, the third guide portion 150C is composed of roller pairs 152C and 154C whose rotation axes are horizontal and roller pairs 153C and 155C whose rotation axes are vertical. It is sandwiched between the pairs 152C, 153C, 154C, and 155C and guided to the downstream side.

第三のガイド部150Cの下流側には、第三の被覆装置200Cが設けられている。第三の被覆装置200Cでは、図5(B)の左図と右図とに示すように、第一発泡材14及びと第二発泡材16が被覆されたパイプ12を長手方向に移送しながら、第三発泡材18を幅方向に変形して筒状とし、第二発泡材16の外側を覆い、第三発泡材18の幅方向の端部18A同士を熱融着にて接合する。   A third coating device 200C is provided on the downstream side of the third guide portion 150C. In the third coating apparatus 200C, as shown in the left and right diagrams of FIG. 5B, while the pipe 12 coated with the first foam material 14 and the second foam material 16 is transported in the longitudinal direction. The third foam material 18 is deformed in the width direction to form a cylinder, covers the outer side of the second foam material 16, and the end portions 18A of the third foam material 18 in the width direction are joined together by heat fusion.

このようにして、積層された第一発泡材14、第二発泡材16、第三発泡材18でパイプ12の外周面が被覆された三層構造の保温材付きパイプ10が製造される。
また、第三の被覆装置200Cの下流側には引取装置160が設けられている。この引取装置160で引き取られながら保温材付きパイプ10が製造される(引取装置160の搬送ベルト162、164の間にパイプ12が挟み込まれ引っ張れると共に、下流側に送り出される)。
In this way, the pipe 10 with a heat insulating material having a three-layer structure in which the outer peripheral surface of the pipe 12 is covered with the laminated first foam material 14, second foam material 16, and third foam material 18 is manufactured.
Further, a take-up device 160 is provided on the downstream side of the third coating device 200C. The pipe 10 with a heat insulating material is manufactured while being drawn by the take-up device 160 (the pipe 12 is sandwiched and pulled between the conveying belts 162 and 164 of the take-up device 160 and sent out downstream).

引取装置160の下流側には、裁断装置170が設けられ、裁断装置170の下流側、すなわち、製造ライン100の最下流部に巻取装置174が設けられている。そして、巻取装置174が保温材付きパイプ10をコイル状に巻き取ると共に、所定の長さで裁断装置170が保温材付きパイプ10を裁断する。   A cutting device 170 is provided on the downstream side of the take-up device 160, and a winding device 174 is provided on the downstream side of the cutting device 170, that is, the most downstream portion of the production line 100. The winder 174 winds up the pipe 10 with the heat insulating material in a coil shape, and the cutting device 170 cuts the pipe 10 with the heat insulating material at a predetermined length.

さて一方、コイル状に捲かれた帯状の第一発泡材14は第一の発泡材装着部110に装着される。そして、第一発泡材14は、複数の搬送ローラ112〜119に捲き掛けられ、前述した第一の被覆装置200Aに搬送される。同様に、コイル状に捲かれた帯状の第二発泡材16は第二の発泡材装着部120に装着され、コイル状に捲かれた帯状の第三発泡材18は第三の発泡材装着部130に装着される。そして、第二発泡材16は、複数の搬送ローラ122〜129に捲き掛けられ、前述した第二の被覆装置200Bに搬送される。同様に第三発泡材18は、複数の搬送ローラ132〜139に捲き掛けられ、前述した第三の被覆装置200Cに搬送される。   On the other hand, the strip-shaped first foam material 14 wound in a coil shape is mounted on the first foam material mounting portion 110. Then, the first foam material 14 is strung over the plurality of transport rollers 112 to 119 and is transported to the first coating apparatus 200A described above. Similarly, the strip-shaped second foam material 16 wound in a coil shape is mounted on the second foam material mounting portion 120, and the strip-shaped third foam material 18 wound in a coil shape is the third foam material mounting portion. 130. And the 2nd foaming material 16 is wound around the some conveyance rollers 122-129, and is conveyed by the 2nd coating | coated apparatus 200B mentioned above. Similarly, the third foam material 18 is wound around the plurality of transport rollers 132 to 139 and transported to the above-described third coating apparatus 200C.

つぎに、第一の被覆装置200Aにおける発泡材14のパイプ12への被覆について、図4を用いて説明する。なお、図4(B)は、図4(A)のB−B断面図である。
図4(A)に示すように、発泡材14をパイプ12の外周面12Aに添わせつつ順次円形筒状に絞る(図4(B)も参照)。そして、絞りきる直前に発泡材14の幅方向の端部14Aに、熱風装置302で熱風Nを吹き付けて加熱して溶融状態とした後に、端部14A同士を突き合わせて熱融着(接合)させることで、発泡材14がパイプ12の外周面12Aに被覆される。そして、発泡材14が被覆された後、円筒状のダイス304の中に通して両者を密着させると共に、発泡材14の外形を整える(図5(A)の右図も参照)。
Next, the coating of the foam material 14 on the pipe 12 in the first coating apparatus 200A will be described with reference to FIG. FIG. 4B is a cross-sectional view taken along the line BB in FIG.
As shown in FIG. 4 (A), the foam material 14 is successively squeezed into a circular cylindrical shape while following the outer peripheral surface 12A of the pipe 12 (see also FIG. 4 (B)). Then, the hot air N is blown and heated to the end portion 14A in the width direction of the foam material 14 immediately before the drawing is completed, and the end portions 14A are brought into contact with each other and heat-sealed (joined). As a result, the foam material 14 is coated on the outer peripheral surface 12 </ b> A of the pipe 12. And after the foam material 14 is coat | covered, while letting both pass in the cylindrical die | dye 304 and adjusting the external shape of the foam material 14 (refer also the right figure of FIG. 5 (A)).

なお、第二の被覆装置200B及び第三の被覆装置200Cにおける第二発泡材16及び第三発泡材18による被覆も、被覆対象が、それぞれ第一発泡材14が被覆されたパイプ12、第一発泡材14及び第二発泡材16が被覆されたパイプ12に置き換わるだけで、同様であるので、説明を省略する。   It should be noted that the coating with the second foam material 16 and the third foam material 18 in the second coating device 200B and the third coating device 200C also includes the pipe 12, the first foam material 14 and the first foam material 14 respectively. Since only the pipe 12 covered with the foam material 14 and the second foam material 16 is replaced, the description is omitted.

また、熱融着する方法は、熱風装置202による熱風Nの吹き付け以外の方法で行なってもよい。例えば、電熱コテを用いてもよいし、熱風装置202と電熱コテとの両方を用いいてもよい。   Moreover, you may perform the method of heat-seal | fusion by methods other than the blowing of the hot air N by the hot air apparatus 202. FIG. For example, an electric heating iron may be used, or both the hot air device 202 and the electric heating iron may be used.

つぎに、本実施形態の作用について説明する。
図1と図2とに示すように、保温材付きパイプ10は、樹脂製のパイプ12の外周面12Aが積層された第一発泡材14、第二発泡材16、第三発泡材18で被覆された構成とされている(第一発泡材14、第二発泡材16、第三発泡材18が積層された三層構造の保温材付きパイプ10とされている)。よって、第一発泡材14、第二発泡材16、第三発泡材18の三層分の層厚となる(全体(合計)の層厚が厚くなる)。
Next, the operation of this embodiment will be described.
As shown in FIGS. 1 and 2, the pipe 10 with a heat insulating material is covered with a first foam material 14, a second foam material 16, and a third foam material 18 in which the outer peripheral surface 12 </ b> A of the resin pipe 12 is laminated. It is set as the structure (it is set as the pipe 10 with the heat insulating material of the three-layer structure on which the 1st foam material 14, the 2nd foam material 16, and the 3rd foam material 18 were laminated | stacked). Therefore, it becomes the layer thickness for the three layers of the first foam material 14, the second foam material 16, and the third foam material 18 (the total (total) layer thickness is increased).

一方、各第一発泡材14、第二発泡材16、第三発泡材18の単体の層厚は薄くできるので(厚くならないので)、各第一発泡材14、第二発泡材16、第三発泡材18単体の反発力を小さくできる(積層された保温材全体の層厚を厚くしても反発力は大きくならない)。よって、第一発泡材14、第二発泡材16、第三発泡材18の幅方向の端部14A,16A,18A同士の接合強度を高くする必要がない。すなわち、接合強度を高くするため、生産速度を低下させる必要性がない。なお、反発力とは、帯状の第一発泡材14、第二発泡材16、第三発泡材18が、筒状に曲げられた状態から元の平らな状態に戻ろうとする力のことを指す。   On the other hand, since the single layer thickness of each of the first foam material 14, the second foam material 16, and the third foam material 18 can be made thin (because it does not become thick), each first foam material 14, second foam material 16, third The repulsive force of the foam material 18 alone can be reduced (the repulsive force does not increase even if the layer thickness of the entire laminated heat insulating material is increased). Therefore, it is not necessary to increase the bonding strength between the end portions 14A, 16A, and 18A in the width direction of the first foam material 14, the second foam material 16, and the third foam material 18. That is, there is no need to reduce the production rate in order to increase the bonding strength. The repulsive force refers to the force that the belt-like first foam material 14, the second foam material 16, and the third foam material 18 try to return to the original flat state from the bent state. .

また、スリットを入れる等して、反発力を低減させる必要もない。よって、スリットを入れる工程も必要ない(スリットを入れる生産工程が必要とされない)。
したがって、例えば、一つの発泡材(単層構造)の層厚を厚くして保温性能を向上させる方法と比較し、第一発泡材14、第二発泡材16、第三発泡材18の幅方向の端部14A,16A,18A同士の接合不良が防止又は抑制され、その結果、生産性が低下することなく、保温性能が向上される。
更に、第一発泡材14、第二発泡材16、第三発泡材18の幅方向の端部14A,16A,18A同士は熱融着によって接合するので、接合工程が容易である。したがって、生産性が更に向上される。
Further, it is not necessary to reduce the repulsive force by inserting a slit or the like. Therefore, there is no need for a slitting process (no production process for slitting is required).
Therefore, for example, the width direction of the first foam material 14, the second foam material 16, and the third foam material 18 is compared with the method of increasing the heat insulation performance by increasing the layer thickness of one foam material (single layer structure). Insulation failure between the end portions 14A, 16A, and 18A is prevented or suppressed, and as a result, the heat retention performance is improved without lowering the productivity.
Furthermore, since the end portions 14A, 16A, 18A in the width direction of the first foam material 14, the second foam material 16, and the third foam material 18 are joined together by thermal fusion, the joining process is easy. Therefore, productivity is further improved.

なお、第一発泡材14、第二発泡材16、第三発泡材18を完全に密着させずに、第一発泡材14、第二発泡材16、第三発泡材18間に空気層が形成されるようにすると、この空気層も断熱効果を有する。よって、一つの発泡材(単層構造)の層厚を厚くして保温性能を向上させる方法よりも、保温性能が向上される。   An air layer is formed between the first foam material 14, the second foam material 16, and the third foam material 18 without completely bringing the first foam material 14, the second foam material 16, and the third foam material 18 into close contact. In this case, this air layer also has a heat insulating effect. Therefore, the heat retaining performance is improved as compared with the method of increasing the heat retaining performance by increasing the layer thickness of one foam material (single layer structure).

また、上記実施形態では、図2に示すように、第一発泡材14、第二発泡材16、第三発泡材18の端部14A、16A,18A同士の接合部は、略同一直線状に位置していたが、これに限定されない。図7に示すように、第一発泡材14、第二発泡材16、第三発泡材18の端部14A、16A,18A同士の接合部が、幅方向にずれていてもよい。   Moreover, in the said embodiment, as shown in FIG. 2, the junction part of 14 A of end parts 14A, 16A, and 18A of the 1st foam material 14, the 2nd foam material 16, and the 3rd foam material 18 is substantially the same linear shape. Although located, it is not limited to this. As shown in FIG. 7, the joint portions between the end portions 14 </ b> A, 16 </ b> A, and 18 </ b> A of the first foam material 14, the second foam material 16, and the third foam material 18 may be shifted in the width direction.

ここで、厚み10mmの発泡材の単層構造の場合、反発力が大きいので、生産速度が10m/分程度でも端部同士の接合部分に融着割れが生じることが懸念される(反発力に対して接合強度(融着強度)が充分で無い場合がある)。これに対して、厚み5mmの第一発泡材14、第二発泡材16、第三発泡材18の三層構造の場合、生産速度は約20m/分程度としても融着割れが生じない(反発力に対して充分な接合強度を有している)。
つまり、条件が同じであれば、厚み10mmの発泡材の単層構造よりも、厚み5mmの発泡材の三層構造(合計で15mmの層厚であり保温性能が良い)の方が、生産性が高い。
Here, in the case of a single layer structure of a foam material having a thickness of 10 mm, since the repulsive force is large, there is a concern that fusion cracking may occur at the joint portion between the end portions even at a production rate of about 10 m / min. On the other hand, the bonding strength (fusion strength) may not be sufficient). On the other hand, in the case of a three-layer structure of the first foam material 14, the second foam material 16, and the third foam material 18 having a thickness of 5 mm, no fusion cracking occurs even if the production rate is about 20 m / min (repulsion). It has a sufficient bonding strength against the force).
In other words, if the conditions are the same, the three-layer structure of the foam material with a thickness of 5 mm (the total thickness is 15 mm and the heat retaining performance is better) than the single-layer structure of the foam material with a thickness of 10 mm is more productive. Is expensive.

つぎに、図6を用いて、本発明における筒状保温材11の実施形態の一例を詳細に説明する。
図6に示すように、筒状保温材11は、図1に示す保温材付きパイプ10に樹脂製のパイプ12を備えていない構成とされている。つまり、保温材としての第一発泡材14、第二発泡材16、第三発泡材18が積層されそれぞれ幅方向の端部14A,16A,18同士が接合され筒状とされた構成である。
Next, an example of an embodiment of the tubular heat insulating material 11 in the present invention will be described in detail with reference to FIG.
As shown in FIG. 6, the cylindrical heat insulating material 11 is configured such that the pipe 10 with the heat insulating material shown in FIG. 1 is not provided with the resin pipe 12. That is, the first foamed material 14, the second foamed material 16, and the third foamed material 18 as heat insulating materials are laminated, and the end portions 14A, 16A, 18 in the width direction are joined to each other to form a cylinder.

なお、樹脂製のパイプ12を備えていない以外は、保温材付きパイプ10と同様であるので、説明を省略する。
また、筒状保温材11を製造する製造ラインの及び製造工程も、パイプ12を移送せずに、第一発泡材14、第二発泡材16、第三発泡材18を順番に積層し、それぞれ幅方向の端部14A,16A,18同士を接合して筒状とすることで製造される。つまり、図3、図4で示す保温材付きパイプ10を製造する製造ライン100の概要構成及び製造工程とは、パイプ12を移送しない点以外は同様とされる。よって、詳しい説明を省略する。
また、本実施形態における作用も同様であるので、説明を省略する。
In addition, since it is the same as that of the pipe 10 with a heat insulating material except not providing the resin-made pipe 12, description is abbreviate | omitted.
Moreover, the manufacturing line and manufacturing process which manufactures the cylindrical heat insulating material 11 also laminate | stack the 1st foam material 14, the 2nd foam material 16, the 3rd foam material 18 in order, without transferring the pipe 12, It is manufactured by joining the end portions 14A, 16A, and 18 in the width direction to form a cylinder. That is, the outline structure and manufacturing process of the manufacturing line 100 for manufacturing the pipe 10 with the heat insulating material shown in FIGS. 3 and 4 are the same except that the pipe 12 is not transferred. Therefore, detailed description is omitted.
In addition, since the operation in the present embodiment is the same, the description thereof is omitted.

なお、本発明は上記実施形態に限定されない。
例えば、上記実施形態では、第一発泡材14、第二発泡材16、第三発泡材18が積層された三層構造であったが、これに限定されない。二層構図であってもよいし、四層以上の構造であってもよい。
In addition, this invention is not limited to the said embodiment.
For example, in the embodiment described above, the first foam material 14, the second foam material 16, and the third foam material 18 have a three-layer structure in which the first foam material 14, the second foam material 16, and the third foam material 18 are laminated. A two-layer composition may be used, or a structure having four or more layers may be used.

また、例えば、上記実施形態では、第一発泡材14、第二発泡材16、第三発泡材18発泡材14の端部14A、16A,18A同士は熱融着で接合したが、これに限定されない。どのような接合方法であってもよい。例えば、接着剤によって接合してもよい。   Further, for example, in the above-described embodiment, the end portions 14A, 16A, and 18A of the first foam material 14, the second foam material 16, the third foam material 18 and the foam material 14 are joined together by heat fusion, but this is limited to this. Not. Any joining method may be used. For example, you may join by an adhesive agent.

本発明の実施形態に係る保温材付きパイプを模式的に示す斜視図である。It is a perspective view which shows typically the pipe with a heat insulating material which concerns on embodiment of this invention. 図1に示す保温材付きパイプにおける保温材の端部同士の接合部分を拡大した拡大図である。It is the enlarged view which expanded the junction part of the edge parts of the heat insulating material in the pipe with a heat insulating material shown in FIG. 本発明の実施形態に係る保温材付きパイプの製造工程を模式的に示す工程図である。It is process drawing which shows typically the manufacturing process of the pipe with a heat insulating material which concerns on embodiment of this invention. (A)は被覆装置においてパイプに第一発泡材を被覆する様子を説明する説明図であり、(B)は(A)のB−B断面図である。(A) is explanatory drawing explaining a mode that a pipe | tube is covered with a 1st foaming material in a coating | coated apparatus, (B) is BB sectional drawing of (A). (A)はパイプの外周面に第一発泡材を被覆する様子を左図から右図に示し、(B)は第一発泡材の外側に第二発泡材を被覆する様子を左図から右図に示し、(C)は第二発泡材の外側に第三発泡材を被覆する様子を左図から右図に示す説明図である。(A) shows from the left to the right how the outer peripheral surface of the pipe is coated with the first foam, and (B) shows from the left to the right how the second foam is coated on the outside of the first foam. (C) is explanatory drawing which shows a mode that a 3rd foaming material is coat | covered on the outer side of a 2nd foaming material from a left figure to a right figure. 本発明の実施形態に係る筒状保温材を模式的に示す斜視図である。It is a perspective view which shows typically the cylindrical heat insulating material which concerns on embodiment of this invention. 端部同士の接合部分が幅方向にずれている例を示す図である。It is a figure which shows the example which the junction part of edge parts has shifted | deviated to the width direction.

符号の説明Explanation of symbols

10 保温材付きパイプ
11 筒状保温材
12 パイプ
14 第一発泡材(保温材)
16 第二発泡材(保温材)
18 第三発泡材(保温材)
14A 端部
16A 端部
18A 端部
10 Pipe with heat insulating material 11 Tubular heat insulating material 12 Pipe 14 First foam material (heat insulating material)
16 Second foam material (heat insulation)
18 Third foam (heat insulation)
14A end 16A end 18A end

Claims (6)

帯状の保温材を長手方向に移送しながら、前記保温材を幅方向に変形し前記保温材の幅方向の端部同士を接合して筒状とする工程を、複数の帯状の保温材に対して順番に連続して行ない、
二番目以降の工程においては、前工程で筒状とされた保温材の外側を保温材で覆うことを特徴とする筒状保温材の製造方法。
While transferring the belt-shaped heat insulating material in the longitudinal direction, the step of deforming the heat insulating material in the width direction and joining the end portions in the width direction of the heat insulating material to form a cylinder, with respect to a plurality of belt-shaped heat insulating material In order,
In the second and subsequent steps, a method for manufacturing a cylindrical heat insulating material, characterized in that the heat insulating material that has been tubular in the previous step is covered with a heat insulating material.
前記保温材の前記端部同士は、熱融着によって接合することを特徴とする請求項1に記載の筒状保温材の製造方法。   The method for manufacturing a cylindrical heat insulating material according to claim 1, wherein the end portions of the heat insulating material are bonded to each other by heat fusion. 帯状の保温材とパイプとを長手方向に移送しながら、前記保温材を幅方向に変形し前記保温材の幅方向の端部同士を接合して筒状とする工程を、複数の帯状の保温材に対して順番に連続して行ない、
一番目の工程においては、前記パイプの外周面を前記筒状とされた保温材が覆い、
二番目以降の工程においては、前工程で筒状とされた保温材の外側を保温材で覆うことを特徴とする保温材付きパイプの製造方法。
The process of deforming the heat insulating material in the width direction and joining the end portions in the width direction of the heat insulating material into a tubular shape while transporting the belt-shaped heat insulating material and the pipe in the longitudinal direction is a plurality of belt-shaped heat insulating materials. To the material in order,
In the first step, the pipe-shaped heat insulating material covers the outer peripheral surface of the pipe,
In the second and subsequent steps, a method for manufacturing a pipe with a heat insulating material, characterized in that the heat insulating material that has been cylindrical in the previous step is covered with a heat insulating material.
前記保温材の前記端部同士は、熱融着によって接合することを特徴とする請求項3に記載の保温材付きパイプの製造方法。   The method for manufacturing a pipe with a heat insulating material according to claim 3, wherein the end portions of the heat insulating material are joined to each other by heat fusion. 積層された複数の帯状の保温材の幅方向の端部同士が接合されて筒状とされたことを特徴とする筒状保温材。   A cylindrical heat insulating material characterized in that end portions in the width direction of a plurality of laminated heat insulating materials are joined to form a cylindrical shape. パイプの外周面が積層された複数の帯状の保温材が覆うと共に、各層を構成する前記保温材の幅方向の端部同士が接合されたことを特徴とする保温材付きパイプ。   A pipe with a heat insulating material, wherein a plurality of belt-shaped heat insulating materials on which outer peripheral surfaces of the pipe are laminated are covered and ends in the width direction of the heat insulating materials constituting each layer are joined.
JP2007214574A 2007-08-21 2007-08-21 Cylindrical heat insulating material, pipe with heat insulating material, manufacturing method of cylindrical heat insulating material, and manufacturing method for pipe with heat insulating material Pending JP2009047256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007214574A JP2009047256A (en) 2007-08-21 2007-08-21 Cylindrical heat insulating material, pipe with heat insulating material, manufacturing method of cylindrical heat insulating material, and manufacturing method for pipe with heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007214574A JP2009047256A (en) 2007-08-21 2007-08-21 Cylindrical heat insulating material, pipe with heat insulating material, manufacturing method of cylindrical heat insulating material, and manufacturing method for pipe with heat insulating material

Publications (1)

Publication Number Publication Date
JP2009047256A true JP2009047256A (en) 2009-03-05

Family

ID=40499652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007214574A Pending JP2009047256A (en) 2007-08-21 2007-08-21 Cylindrical heat insulating material, pipe with heat insulating material, manufacturing method of cylindrical heat insulating material, and manufacturing method for pipe with heat insulating material

Country Status (1)

Country Link
JP (1) JP2009047256A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654219A (en) * 2011-03-01 2012-09-05 株式会社普利司通 Composite pipe and manufacture method thereof
KR101184392B1 (en) 2011-10-19 2012-09-19 김국수 Insulation apparatus for pipe
KR101274120B1 (en) 2010-10-14 2013-06-12 (주)한성 하나론 Apparatus and Method for Manufacturing Pipe Lagging
CN107672006A (en) * 2017-09-22 2018-02-09 盐城绿宝石新型墙体材料有限公司 A kind of preparation maintenance process of cement foaming material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274120B1 (en) 2010-10-14 2013-06-12 (주)한성 하나론 Apparatus and Method for Manufacturing Pipe Lagging
CN102654219A (en) * 2011-03-01 2012-09-05 株式会社普利司通 Composite pipe and manufacture method thereof
KR101184392B1 (en) 2011-10-19 2012-09-19 김국수 Insulation apparatus for pipe
CN107672006A (en) * 2017-09-22 2018-02-09 盐城绿宝石新型墙体材料有限公司 A kind of preparation maintenance process of cement foaming material

Similar Documents

Publication Publication Date Title
JP5847403B2 (en) Manufacturing method of composite pipe
JP2009047256A (en) Cylindrical heat insulating material, pipe with heat insulating material, manufacturing method of cylindrical heat insulating material, and manufacturing method for pipe with heat insulating material
WO2022134481A1 (en) Wide fiber-mesh reinforced plastic laminated composite sheet material
WO2011060695A1 (en) Steel strip reinforced composite belt for helically corrugated plastic-steel winding pipe
JP2017219150A (en) Duplex tube
JP2008308007A (en) Pneumatic tire
KR101991783B1 (en) Method and apparatus for producing a laminate from one or more layers of material
JP2002541407A (en) Pressure-resistant hose using polyethylene fabric
JP3384948B2 (en) Insulated pipe cover
JP5038817B2 (en) Manufacturing method of pipe with heat insulating material
JP2017219149A (en) Duplex tube
US20030070751A1 (en) Method of manufacture for fluid handling polymeric barrier tube
JP2019105322A (en) Composite tube and manufacturing method of the same
JP3929446B2 (en) Duct hose forming method
JP4978948B2 (en) Manufacturing method of pipe lining material
JP2010511139A (en) Conduit member forming an air channel for an air conditioning system
JP4850036B2 (en) Method for manufacturing elastic hose
KR102521057B1 (en) Spiral duct capable of preventing flow of fluid and manufacture method therefor
JPH0419120A (en) Manufacture of laminated spiral pipe
JP7221918B2 (en) Electrode sheet manufacturing method
JP2019119096A (en) Method for manufacturing heat insulation tube
WO2017122214A1 (en) Multilayer material and manufacturing method
JP6114794B2 (en) Manufacturing method of composite pipe
KR20230161620A (en) Manufacturing method of spiral duct capable of preventing flow of fluid
JP2006038174A (en) Thermal insulation pipe cover