JP2009046756A - Gas blowing plug - Google Patents

Gas blowing plug Download PDF

Info

Publication number
JP2009046756A
JP2009046756A JP2007216784A JP2007216784A JP2009046756A JP 2009046756 A JP2009046756 A JP 2009046756A JP 2007216784 A JP2007216784 A JP 2007216784A JP 2007216784 A JP2007216784 A JP 2007216784A JP 2009046756 A JP2009046756 A JP 2009046756A
Authority
JP
Japan
Prior art keywords
porous
gas
boundary
refractory layer
porous portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007216784A
Other languages
Japanese (ja)
Inventor
Tomohiro Kojima
智宏 小嶋
Junya Kondo
準也 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2007216784A priority Critical patent/JP2009046756A/en
Publication of JP2009046756A publication Critical patent/JP2009046756A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas blowing plug which can reduce the possibility of impairing a gas-flowing property in a porous refractory layer by changing the cross sectional shape, and can efficiently blow the gas into molten metal. <P>SOLUTION: The gas blowing plug is provided with: the porous refractory layer 5; and a gas supplying pipe connected to the porous refractory layer at the bottom part side. The porous refractory layer is provided with: a first porous part 10, which has almost head-cutting quadratic shape, and is connected to the gas supplying pipe; and a second porous part 20 having almost head-cutting columnar shape, successively arranged from the first porous part through no adhesive layer. The porosity ratio of the first porous part is more than the porosity ratio of the second porous part. In the first porous part, the area of the bottom part-end surface 11 is larger than that of the first boundary part-end surface 12 at the boundary with the second porous part. In the second porous part, the area of the second boundary part-end surface 21 at the boundary with the first porous part is larger than that of the top end part 22 at the reverse side. The length of a diagonal line at the first boundary part-end surface is made almost equal to the diameter of the second boundary part-end surface. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、製鋼プロセスにおいて溶融金属中にガスを吹込むために使用されるガス吹込みプラグに関するものである。   The present invention relates to a gas blowing plug used for blowing gas into molten metal in a steelmaking process.

製鋼プロセスでは、溶融金属の撹拌、温度調整、非金属成分の除去反応の促進等のために、ガス流通性を有する耐火物を用いたガス吹込みプラグを取鍋の底部等に取付け、アルゴンや窒素などのガスを溶融金属中に吹込む処理が行われる。このガス吹込みプラグは、先端が溶融金属に接触することに加え、ガスの流通経路となる空孔を介して耐火物内部まで溶融金属が浸入することから、取鍋の内張りの耐火物に比べて溶融金属による浸食・損耗が激しい。そのため、溶融金属が取鍋外に漏出するという重大な事故を回避するためには、損耗が著しく進行する前に、新しいガス吹込みプラグに交換することが必要となる。しかしながら、溶融金属の漏出を恐れるあまりに早期にガス吹込みプラグの交換を行うのでは、資源的、労力的、経済的に無駄が大きい。   In the steelmaking process, a gas blowing plug using a refractory with gas flowability is attached to the bottom of the pan, etc. for stirring the molten metal, adjusting the temperature, and promoting the removal reaction of non-metallic components. A process of blowing a gas such as nitrogen into the molten metal is performed. This gas blowing plug has contact with the molten metal at the tip, and the molten metal penetrates into the refractory through the holes that form the gas flow path. Compared to the refractory on the ladle lining, Therefore, erosion and wear due to molten metal are severe. Therefore, in order to avoid a serious accident that the molten metal leaks out of the ladle, it is necessary to replace it with a new gas blowing plug before the wear progresses remarkably. However, it is wasteful in terms of resources, labor, and economy if the gas blowing plug is replaced too early in fear of leakage of molten metal.

そこで、従来、図5に示すように、多孔質耐火レンガを断面形状が途中で変化するように形成したガス吹込みプラグ100が提案され、実施されている(例えば、特許文献1参照)。図示した例では、ガスを透過させる多孔質耐火レンガ110は、四角柱形状の部分111と載頭円錐形状の部分112とが組み合わされた形状をしており、この多孔質耐火レンガ110の底部には鉄皮109を介してガス吹き込みプラグ100にガスを供給するガス供給管108が取り付けられている。また、多孔質耐火レンガ110の外周には、緻密質耐火物層106が形成されている。   Therefore, conventionally, as shown in FIG. 5, a gas blowing plug 100 in which a porous refractory brick is formed so that its cross-sectional shape changes midway has been proposed and implemented (see, for example, Patent Document 1). In the illustrated example, the gas-permeable porous refractory brick 110 has a shape in which a quadrangular prism-shaped portion 111 and a truncated cone-shaped portion 112 are combined, and at the bottom of the porous refractory brick 110. A gas supply pipe 108 for supplying gas to the gas blowing plug 100 through the iron skin 109 is attached. A dense refractory layer 106 is formed on the outer periphery of the porous refractory brick 110.

かかる構成のガス吹き込みプラグ100では、取鍋から溶融金属を排出した際、まだ赤熱している緻密質耐火物層106の中に、ガスの流通により冷え易い多孔質耐火レンガ110が暗色に見えるため、両者を視覚的に識別することができる。そして、図5(b)にX−X線断面図を示すように、当初は円形に見えていた多孔質耐火レンガ110が、ガス吹き込みプラグの損耗の進行に伴い、図(c)にY−Y線断面図を示すように四角形に見えるようになる。従って、多孔質耐火レンガ110において断面形状を変化させる位置を、ガス吹込みプラグ100を交換すべき残寸を考慮して設定しておくことにより、断面形状の変化を検知することによってガス吹込みプラグ100の交換時期の到来を知ることができる。   In the gas blowing plug 100 having such a configuration, when the molten metal is discharged from the ladle, the porous refractory brick 110 that is easily cooled by the gas flow appears dark in the dense refractory layer 106 that is still red hot. Both can be identified visually. Then, as shown in the cross-sectional view along the line XX in FIG. 5 (b), the porous refractory brick 110, which was initially visible in a circular shape, is shown in FIG. 5 (c) as Y- As shown in the cross-sectional view along the Y line, it looks like a square. Therefore, by setting the position where the cross-sectional shape is changed in the porous refractory brick 110 in consideration of the remaining size to replace the gas blowing plug 100, the gas blowing is detected by detecting the change in the cross-sectional shape. The arrival of plug 100 replacement time can be known.

実開昭57−122751号公報Japanese Utility Model Publication No. 57-122751

しかしながら、断面形状が途中から変化する複雑な形状の多孔質耐火レンガは、従来では、載頭円錐形状、円柱形状、四角柱状などの単純な形状のレンガを、耐火モルタル等で接着して形成されることが多かった。そのため、接着されたレンガは脱落し易く短寿命に終わってしまうことがあった。また、接着層には溶融金属が浸入し易く、その固化によって多孔質耐火レンガの空孔が塞がれ、ガス流通性が損なわれることもあった。   However, a porous refractory brick with a complicated shape whose cross-sectional shape changes from the middle is conventionally formed by bonding bricks with a simple shape such as a truncated cone shape, a cylindrical shape, or a quadrangular prism shape with a refractory mortar or the like. There were many cases. For this reason, the bonded bricks are likely to fall off and end up with a short life. In addition, molten metal easily enters the adhesive layer, and the solidification of the molten metal blocks pores of the porous refractory brick, which may impair gas flowability.

一方、多孔質耐火レンガを一体成形する場合は、複雑な形状であるために成形型の製造のために手間やコストがかかることに加え、均一に加圧成形することが難しいという問題があった。特に、多孔質耐火レンガの部位ごとに気孔率にばらつきが生じ易く、ガス吹込みプラグのガス流通性に大きく影響するものであった。例えば、ガス流通経路の始端側である底部付近の気孔率が低い場合は、他の部分の気孔率が適切であったとしても、底部付近の気孔率によってガス吹込みプラグ全体としてのガス流通性が定まってしまうという問題があった。また、ガス流通経路の後端となるプラグの先端側の気孔率が他の部分に比べて高い場合は、その気孔率の高さがガス流通性に寄与せず無駄となるだけではなく、溶融金属が浸入し易くマイナス因子となるという問題があった。   On the other hand, when integrally forming a porous refractory brick, there is a problem that it is difficult to perform uniform pressure molding in addition to the labor and cost for manufacturing the mold because of its complicated shape. . In particular, the porosity tends to vary from part to part of the porous refractory brick, which greatly affects the gas flowability of the gas blowing plug. For example, if the porosity near the bottom, which is the starting end side of the gas flow path, is low, the gas flowability of the gas blowing plug as a whole depends on the porosity near the bottom even if the porosity of other parts is appropriate. There was a problem that was fixed. In addition, when the porosity of the plug end, which is the rear end of the gas flow path, is higher than other parts, the high porosity does not contribute to gas flow and is not only wasted, but also melted. There was a problem that the metal easily penetrates and becomes a negative factor.

更に、従来のガス吹込みプラグでは、多孔質耐火レンガの断面形状の変化に伴って断面積も大きく変化するため、多孔質耐火レンガのガス流通性が充分に生かされていなかった。例えば、図5で例示した従来のガス吹込みプラグ100は、部分111の断面積が部分112の断面積よりかなり小さいため、ガス吹込みプラグ100全体のガス流通性は部分111の面積によって律せられてしまうものであった。逆に、図6に示すように、底部側の部分121の断面積が先端側の部分122の断面積よりかなり大きいガス吹込みプラグ101では(特許文献1で他の例として示されている例)、部分121を上昇してきたガスは緻密質耐火物層106との境界123でそれ以上の上昇を妨げられ、応力を発生させるおそれがあった。   Furthermore, in the conventional gas blowing plug, since the cross-sectional area changes greatly with the change in the cross-sectional shape of the porous refractory brick, the gas flowability of the porous refractory brick has not been fully utilized. For example, in the conventional gas blowing plug 100 illustrated in FIG. 5, the cross-sectional area of the portion 111 is considerably smaller than the cross-sectional area of the portion 112, so that the gas flowability of the entire gas blowing plug 100 is determined by the area of the portion 111. It was something that would have been. On the contrary, as shown in FIG. 6, in the gas blowing plug 101 in which the cross-sectional area of the bottom portion 121 is considerably larger than the cross-sectional area of the tip portion 122 (an example shown in Patent Document 1 as another example). ), The gas that has risen in the portion 121 is prevented from further rising at the boundary 123 with the dense refractory layer 106, and there is a risk of generating stress.

そこで、本発明は、上記の実情に鑑み、交換時期の到来を検知するために多孔質耐火物層の断面形状を変化させたガス吹込みプラグにおいて、断面形状を変化させることによって多孔質耐火物層のガス流通性が損なわれるというおそれが低減されていると共に、効率的に溶融金属中にガスを吹き込むことができるガス吹込みプラグの提供を課題とするものである。   Accordingly, in view of the above circumstances, the present invention provides a porous refractory by changing the cross-sectional shape in a gas blowing plug in which the cross-sectional shape of the porous refractory layer is changed in order to detect the arrival of the replacement time. An object of the present invention is to provide a gas blowing plug that can reduce the gas flowability of the layer and can efficiently blow the gas into the molten metal.

上記の課題を解決するため、本発明にかかるガス吹込みプラグは、「多孔質耐火物層、及び、該多孔質耐火物層に底部側で接続されたガス供給管を備え、製鋼プロセスにおいて溶融金属中にガスを吹込むガス吹込みプラグであって、前記多孔質耐火物層は、前記ガス供給管に接続された略載頭四角錘形状の第一多孔質部と、該第一多孔質部から接着層を介することなく連設された略載頭円錐形状の第二多孔質部とを具備し、前記第一多孔質部の気孔率は前記第二多孔質部の気孔率以上であり、前記第一多孔質部において底部端面は前記第二多孔質部との境界の第一境界部端面より面積が大であると共に、前記第二多孔質部において前記第一多孔質部との境界の第二境界部端面は反対側の先端部端面より面積が大であり、前記第一境界部端面の対角線の長さは前記第二境界部端面の直径と略等しい」ものである。   In order to solve the above-described problems, the gas blowing plug according to the present invention includes a porous refractory layer and a gas supply pipe connected to the porous refractory layer on the bottom side, and is melted in a steelmaking process. A gas injection plug for injecting a gas into a metal, wherein the porous refractory layer includes a first porous portion having a substantially truncated quadrangular pyramid shape connected to the gas supply pipe, and the first multi-layer. A substantially porous cone-shaped second porous portion continuously provided from the porous portion without an adhesive layer, and the porosity of the first porous portion is the same as that of the second porous portion. More than the porosity, the bottom end face in the first porous part is larger in area than the first boundary end face of the boundary with the second porous part, and in the second porous part The second boundary end surface of the boundary with the first porous portion has a larger area than the opposite end portion end surface, and the first boundary end surface The length of the rectangular wire is substantially equal "to the diameter of the second boundary end face.

「多孔質耐火物層」を構成させる耐火材料の種類は特に限定されず、例えば、アルミナ質、スピネル質、アルミナ−シリカ質、アルミナ−スピネル質、アルミナ−マグネシア質、アルミナ−カーボン質、マグネシア−カーボン質、アルミナ−クロム質、マグネシア−クロム質等の耐火材料を使用することができる。   The kind of the refractory material constituting the “porous refractory layer” is not particularly limited. For example, alumina, spinel, alumina-silica, alumina-spinel, alumina-magnesia, alumina-carbon, magnesia Refractory materials such as carbonaceous, alumina-chromic, magnesia-chromic can be used.

第二多孔質部が「接着層を介することなく」「第一多孔質部から連設」された構成としては、単一の成形体に対して切削等の加工を施すことによって第一多孔質部と第二多孔質部とが形成された構成や、第一多孔質部と第二多孔質部が一体的に成形された構成を例示することができる。ただし、上記のように、複雑な形状を一体的に成形する場合は均一な成形が難しく、気孔率のばらつきが大きくなり易いため、単一の成形体が事後的に加工される方が望ましい。   The configuration in which the second porous portion is “not connected through the adhesive layer” and “continuously provided from the first porous portion” is such that the first molded body is processed by cutting or other processing. Examples include a configuration in which the porous portion and the second porous portion are formed, and a configuration in which the first porous portion and the second porous portion are integrally formed. However, as described above, when a complicated shape is integrally formed, uniform forming is difficult and variation in porosity tends to increase. Therefore, it is preferable that a single formed body is processed afterwards.

「気孔率」は、第一多孔質部と第二多孔質部とで同一の方法で評価することが必要であるが、測定方法は特に限定されない。例えば、JIS R2205に規定された見掛け気孔率の測定方法、水銀圧入法、画像解析法を用いて測定することができる。また、「第一多孔質部の気孔率は前記第二多孔質部の気孔率以上」とする方法としては、成形型に充填する耐火材料の粒度を部位に応じて調整する方法を例示することができる。或いは、単一の成形体を事後的に加工する場合において、元となる成形体を一方向加圧成形し、第二多孔質部を構成することとなる側から加圧する方法を例示することができる。   “Porosity” needs to be evaluated by the same method for the first porous portion and the second porous portion, but the measurement method is not particularly limited. For example, it can be measured using the apparent porosity measurement method, mercury intrusion method, and image analysis method defined in JIS R2205. In addition, as a method for setting “the porosity of the first porous portion is equal to or higher than the porosity of the second porous portion”, a method of adjusting the particle size of the refractory material filled in the mold according to the part is exemplified. can do. Alternatively, in the case where a single molded body is processed afterwards, a method of unidirectionally press-molding the original molded body and pressing from the side that constitutes the second porous portion is illustrated. Can do.

上記の構成により、本発明によれば、第一多孔質部と第二多孔質部との境界において、載頭四角錘形の対角線の長さと載頭円錐形の直径がほぼ等しいため、多孔質耐火物層における断面積の変化を最小限にとどめつつ、断面の形状を不連続に変化させることができる。これにより、形状の相違を明瞭に識別し得る円から四角へという不連続な変化によって、ガス吹込みプラグの交換時期をはっきりと検知できると共に、ガスの流通経路となる多孔質耐火物層の体積を確保することができ、多孔質耐火物層のガス流通性が阻害されるおそれが低減される。   With the above configuration, according to the present invention, at the boundary between the first porous portion and the second porous portion, the length of the diagonal of the truncated quadrangular pyramid and the diameter of the truncated cone are substantially equal. The cross-sectional shape can be discontinuously changed while minimizing the change in the cross-sectional area in the porous refractory layer. As a result, it is possible to clearly detect the replacement timing of the gas blowing plug by the discontinuous change from the circle to the square that can clearly distinguish the difference in shape, and the volume of the porous refractory layer that becomes the gas flow path The possibility that the gas flowability of the porous refractory layer is hindered is reduced.

更に、底部端面は第一境界部端面より面積が大であり、第二境界部端面は先端部端面より面積が大であることから、第一多孔質部においても第二多孔質部においても、ガス流通の始端側から後端側に向けて断面積が小さくなる。これにより、ガス流通路の始端側の方が断面積が小さい従来のガス吹込みプラグのように、始端側の断面積によって全体のガス流通性が律せられて後端側のガス流通性が無駄となるおそれがないものとなっている。   Furthermore, since the bottom end face has a larger area than the first boundary end face, and the second boundary end face has a larger area than the tip end face, the first porous part also has a second porous part. However, the cross-sectional area decreases from the start end side to the rear end side of the gas flow. As a result, like the conventional gas blowing plug with a smaller cross-sectional area on the start end side of the gas flow passage, the overall gas flow property is regulated by the cross-sectional area on the start end side, and the gas flow property on the rear end side is reduced. There is no risk of being wasted.

また、仮に、第一多孔質部が載頭円錐形状で第二多孔質部が載頭四角錘形状である場合は、当然ながら第二境界部端面の面積が第一境界部端面の面積より小となるため、第一多孔質部を上昇してきたガスが第二多孔質部との境界面で行き先を失い応力を発生させるおそれがある。これに対し、本発明では、第一多孔質部が載頭四角錘形状で第二多孔質部が載頭円錐形状である構成を採用したことにより、かかるおそれがなく、底部端面から先端部端面に向かってガスをスムーズに流通させることができる。   In addition, if the first porous portion has a truncated cone shape and the second porous portion has a truncated quadrangular pyramid shape, the area of the second boundary end face is naturally the area of the first boundary end face. Since the gas becomes smaller, the gas that has risen in the first porous portion may lose its destination at the boundary surface with the second porous portion and generate stress. On the other hand, in the present invention, by adopting a configuration in which the first porous portion has a truncated quadrangular pyramid shape and the second porous portion has a truncated cone shape, there is no such a risk, and the front end from the bottom end face Gas can be circulated smoothly toward the end face of the part.

加えて、仮に、第一多孔質部の気孔率が第二多孔質部の気孔率より小さい場合は、ガス流通の始端側の気孔率によって全体のガス流通性が律せられてしまうおそれがある。逆に、第二多孔質部の気孔率が第一多孔質部の気孔率より大きい場合は、ガス流通の後端側にガス流通にあまり寄与し得ない気孔が存在し、無駄であるばかりか溶融金属が浸入するおそれの大きいものとなる。これに対し、本発明では、第一多孔質部の気孔率が第二多孔質部の気孔率以上とされているため、ガス供給管から供給されたガスを多孔質耐火物中に効率良く流通させ、溶融金属中に効率良くガスを吹き込むことができると共に、第二多孔質部の先端側で溶融金属が浸入するおそれを低減することができる。   In addition, if the porosity of the first porous portion is smaller than the porosity of the second porous portion, the overall gas flow may be regulated by the porosity on the gas flow start side. There is. On the contrary, when the porosity of the second porous portion is larger than the porosity of the first porous portion, there is a pore that cannot contribute much to the gas flow at the rear end side of the gas flow, which is useless. In addition, there is a large risk of molten metal entering. On the other hand, in the present invention, since the porosity of the first porous portion is equal to or higher than the porosity of the second porous portion, the gas supplied from the gas supply pipe is efficiently contained in the porous refractory. It is possible to flow well and gas can be efficiently blown into the molten metal, and the risk of the molten metal entering at the tip side of the second porous portion can be reduced.

また、第一多孔質部と第二多孔質部とが一体であり、両者間に接着層が存在しないため、接着層を介して溶融金属が浸入するおそれや、第二多孔質部が第一多孔質部から脱落するおそれがないものとなっている。   In addition, since the first porous portion and the second porous portion are integral and there is no adhesive layer between them, there is a risk that molten metal may enter through the adhesive layer, However, there is no possibility of dropping from the first porous portion.

本発明にかかるガス吹込みプラグは、「前記底部端面の対角線の長さは、前記第二多孔質部を前記底部端面に向かって前記第一多孔質部の高さ分仮想的に延設した仮想的載頭円錐形における底部側の端面の直径と略等しい」ものとすることができる。   According to the gas blowing plug of the present invention, “the length of the diagonal line of the bottom end face extends virtually the height of the first porous part from the second porous part toward the bottom end face. The diameter of the end face on the bottom side in the provided virtual head cone is substantially equal. "

上記の構成により、本発明によれば、予め載頭円錐形状の成形体を作成し、事後的に切削・切除等の加工を施すことにより、第一多孔質部と第二多孔質部を有する多孔質耐火物層を形成する場合、元となる成形体を「第二多孔質部を底部端面に向かって第一多孔質部の高さ分仮想的に延設した仮想的載頭円錐形」とすることにより、切削・切除等する部分を最小限にとどめ、簡易かつ無駄のない加工を行うことができる。   With the above configuration, according to the present invention, the first porous portion and the second porous portion can be obtained by creating a truncated cone-shaped molded body in advance and performing subsequent processing such as cutting and excision. When forming a porous refractory layer having a `` virtual mounting in which the second porous portion is virtually extended by the height of the first porous portion toward the bottom end surface ''. By adopting a “conical shape”, it is possible to perform a simple and lean process while minimizing a portion to be cut and excised.

以上のように、本発明の効果として、交換時期の到来を検知するために多孔質耐火物層の断面形状を変化させたガス吹込みプラグにおいて、断面形状を変化させることによって多孔質耐火物層のガス流通性が損なわれるというおそれが低減されていると共に、効率的に溶融金属中にガスを吹き込むことができるガス吹込みプラグを提供することができる。   As described above, as an effect of the present invention, in the gas blowing plug in which the cross-sectional shape of the porous refractory layer is changed to detect the arrival of the replacement time, the porous refractory layer is changed by changing the cross-sectional shape. The possibility that the gas flowability of the gas is impaired is reduced, and a gas blowing plug capable of efficiently blowing gas into the molten metal can be provided.

以下、本発明の最良の一実施形態であるガス吹込みプラグについて、図1乃至図3に基づいて説明する。ここで、図1は本実施形態のガス吹込みプラグの(a)縦断面図、(b)A−A線断面図、(c)B−B線断面図であり、図2は図1のガス吹込みプラグにおける多孔質耐火物層の(a)斜視図、(b)C−C線断面図であり、図3は図2の多孔質耐火物層の成形方法を例示する説明図である。   Hereinafter, a gas blowing plug according to the best embodiment of the present invention will be described with reference to FIGS. Here, FIG. 1 is (a) longitudinal sectional view, (b) AA sectional view, (c) BB sectional view of the gas blowing plug of this embodiment, FIG. FIG. 3A is a perspective view of a porous refractory layer in a gas blowing plug, FIG. 3B is a cross-sectional view taken along the line CC, and FIG. 3 is an explanatory view illustrating a method for forming the porous refractory layer of FIG. .

本実施形態のガス吹込みプラグ1は、図1(a)及び図2に示すように、多孔質耐火物層5、及び、多孔質耐火物層5に底部側で接続されたガス供給管8を備えており、多孔質耐火物層5は、ガス供給管8に接続された略載頭四角錘形状の第一多孔質部10と、第一多孔質部10から接着層を介することなく連設された略載頭円錐形状の第二多孔質部20とを具備し、第一多孔質部10の気孔率は第二多孔質部20の気孔率以上であり、第一多孔質部10において底部端面11は第二多孔質部20との境界の第一境界部端面12より面積が大であると共に、第二多孔質部20において第一多孔質部10との境界の第二境界部端面21は反対側の先端部端面22より面積が大であり、第一境界部端面12の対角線の長さは第二境界部端面21の直径と略等しいものに設定されている。   As shown in FIGS. 1A and 2, the gas blowing plug 1 of the present embodiment includes a porous refractory layer 5 and a gas supply pipe 8 connected to the porous refractory layer 5 on the bottom side. The porous refractory layer 5 includes a first porous portion 10 having a substantially truncated quadrangular pyramid shape connected to the gas supply pipe 8 and an adhesive layer from the first porous portion 10. The first porous portion 10 has a porosity that is equal to or higher than the porosity of the second porous portion 20. In the porous portion 10, the bottom end surface 11 has a larger area than the first boundary portion end surface 12 at the boundary with the second porous portion 20, and the first porous portion 10 in the second porous portion 20. The second boundary portion end face 21 has a larger area than the opposite end portion end face 22, and the diagonal length of the first boundary end face 12 is the length of the second boundary end face 21. It is set to substantially equal to the diameter.

より詳細に説明すると、多孔質耐火物層5の外周面は緻密質耐火物層6によって被覆されており、ガス供給管8は緻密質耐火物層6を被覆する鉄皮9によってガスプール部7を介して多孔質耐火物層5に対して固定されている。なお、第一多孔質部10の高さは、ガス吹込みプラグ1を新しいものに交換すべき残寸を考慮して設定され、通常は100〜150mm程度である。   More specifically, the outer peripheral surface of the porous refractory layer 5 is covered with a dense refractory layer 6, and the gas supply pipe 8 is provided with a gas pool portion 7 by an iron skin 9 covering the dense refractory layer 6. It is being fixed to the porous refractory layer 5 via. In addition, the height of the 1st porous part 10 is set in consideration of the remaining dimension which should replace | exchange the gas blowing plug 1 for a new thing, and is about 100-150 mm normally.

ガス吹込みプラグ1を取鍋の底部等に取り付け、溶融金属中にガスを吹き込むために使用すると、多孔質耐火物層5及び緻密質耐火物層6が先端側から損耗する。そして、取鍋から溶融金属を排出した際に、赤熱した緻密質耐火物層6の中に暗色に見える多孔質耐火物層5は、損耗の進行に伴い、図1(b)にA−A線断面を示すような円形から、図1(c)にB−B線断面図を示すような四角形に変化する。このとき、断面形状は不連続に変化し、且つ、四角と円形という形状の相違は明瞭に識別し得るため、この変化を見落とすことなく交換時期の到来を検知することができる。   If the gas blowing plug 1 is attached to the bottom of the pan or the like and used to blow gas into the molten metal, the porous refractory layer 5 and the dense refractory layer 6 are worn from the tip side. When the molten metal is discharged from the ladle, the porous refractory layer 5 that appears dark in the red refractory dense refractory layer 6 is shown in FIG. The shape changes from a circle showing a line cross section to a quadrangle showing a BB line cross section in FIG. At this time, the cross-sectional shape changes discontinuously, and the difference between the square shape and the circular shape can be clearly identified. Therefore, the arrival of the replacement time can be detected without overlooking this change.

加えて、図1(b)と図1(c)とを対比すると明らかなように、本実施形態では多孔質耐火物層5の断面形状が変化しても断面積の変化は小さい。そのため、ガスの流通路となる多孔質耐火物層5の体積は充分に確保される。   In addition, as apparent from a comparison between FIG. 1B and FIG. 1C, in this embodiment, even if the cross-sectional shape of the porous refractory layer 5 changes, the change in the cross-sectional area is small. Therefore, a sufficient volume of the porous refractory layer 5 serving as a gas flow path is ensured.

また、図4に示すように、仮に、載頭円錐形状の第一多孔質部51と載頭四角錘形状の第二多孔質部52によって多孔質耐火物層50が構成される場合は、第一多孔質部51を上昇してきたガスは、第二多孔質部52との境界面53で緻密質耐火物層によって行き先を塞がれ、そこに応力が発生するおそれがある。これに対し、本実施形態では、第一多孔質部10を載頭四角錘形状とし第二多孔質部20を載頭円錐形状としたことにより、かかる応力が発生するおそれがなく、多孔質耐火物層5中をスムーズにガスが流通する。   In addition, as shown in FIG. 4, if the porous refractory layer 50 is configured by the first conical-shaped first porous portion 51 and the second quadrangular pyramid-shaped second porous portion 52, The gas that has risen in the first porous portion 51 is blocked at the boundary surface 53 with the second porous portion 52 by the dense refractory layer, and stress may be generated there. On the other hand, in this embodiment, since the first porous portion 10 has a truncated quadrangular pyramid shape and the second porous portion 20 has a truncated cone shape, there is no possibility that such stress occurs, Gas smoothly flows through the refractory layer 5.

次に、本実施形態の多孔質耐火物層5の成形方法の一例について、図3を用いて説明する。多孔質耐火物層5は、図3(a)に示すような載頭円錐形状の成形体30を事後的に加工することによって形成することができる。ここで、元となる成形体30の形状は、図3(b)に示すように、第二多孔質部20を底部端面11に向かって第一多孔質部10の高さ分だけ仮想的に延設した仮想的載頭円錐形とすることができる。これにより、仮想的載頭円錐形において底部側の端面である仮想底部端面31の直径は、第一多孔質部10の底部端面11の対角線の長さと等しいものとなる。なお、図3(b)では、仮想的に第二多孔質部20を延設した部分を二点鎖線で示している。   Next, an example of a method for forming the porous refractory layer 5 of the present embodiment will be described with reference to FIG. The porous refractory layer 5 can be formed by post-processing a cone-shaped shaped body 30 as shown in FIG. Here, as shown in FIG. 3B, the shape of the original molded body 30 is virtually equal to the height of the first porous portion 10 with the second porous portion 20 facing the bottom end face 11. It can be made into the virtual head-on-cone extended in the direction. Thereby, the diameter of the virtual bottom end surface 31 which is the end surface on the bottom side in the virtual mounting cone is equal to the length of the diagonal line of the bottom end surface 11 of the first porous portion 10. In addition, in FIG.3 (b), the part which extended the 2nd porous part 20 virtually is shown with the dashed-two dotted line.

そして、図3(c)に一点鎖線で示した部分を切削または切除することにより、第一多孔質部10に第二多孔質部20が連設された本実施形態の多孔質耐火物層5を形成することができる。ここで、単純な載頭円錐形状の場合は、組織の均一な成形体を安定的に作製することができるため、第一多孔質部10及び第二多孔質部20を供える複雑な形状に対応した成形型をつくり、その成形型を用いて多孔質耐火物層5を一体成形する場合に比べ、気孔率にばらつきの少ない成形体30を得ることができる。更に、先端部端面22となる側から圧力をかけながら、一方向加圧成形によって成形体30を成形することにより、全体にほぼ均一な気孔率でありながら、第一多孔質部10となる側の気孔率が第二多孔質部20となる側の気孔率より若干大きな成形体30を成形することが可能となる。これにより、成形体30を事後的に加工することにより、第一多孔質部10の気孔率が第二多孔質部20の気孔率以上である多孔質耐火物層5を得ることができる。   And the porous refractory of this embodiment by which the 2nd porous part 20 was connected with the 1st porous part 10 by cutting or excising the part shown with the dashed-dotted line in FIG.3 (c). Layer 5 can be formed. Here, in the case of a simple conical cone shape, since a uniform shaped body of tissue can be stably produced, a complicated shape including the first porous portion 10 and the second porous portion 20 is provided. Compared with the case where a mold corresponding to the above is made and the porous refractory layer 5 is integrally molded using the mold, a molded body 30 with less variation in porosity can be obtained. Furthermore, by forming the molded body 30 by one-way pressure molding while applying pressure from the side that becomes the end portion end surface 22, the first porous portion 10 is obtained while having a substantially uniform porosity as a whole. It is possible to mold the molded body 30 having a slightly higher porosity on the side than the porosity on the side that becomes the second porous portion 20. Thereby, the porous refractory layer 5 whose porosity of the 1st porous part 10 is more than the porosity of the 2nd porous part 20 can be obtained by processing the molded object 30 afterwards. .

上記のように、本実施形態のガス吹込みプラグ1によれば、多孔質耐火物層5の断面形状は、円から四角へという明瞭に識別可能な形状に、不連続に変化するが、多孔質耐火物層5の断面積は大きくは変化しない構成とされているため、断面形状を変化させることによってガス流通性が阻害されるおそれの少ないものとなっている。   As described above, according to the gas blowing plug 1 of the present embodiment, the cross-sectional shape of the porous refractory layer 5 changes discontinuously into a clearly identifiable shape from a circle to a square. Since the cross-sectional area of the refractory refractory layer 5 is not greatly changed, the gas flowability is hardly hindered by changing the cross-sectional shape.

更に、底部端面11の対角線は仮想的底部端面31の直径とほぼ等しいことから、底部端面11の面積が大きいものとなり、ガス流通路の始端側の断面積が小さい従来のガス吹込みプラグ100のように、始端側の断面積によって全体のガス流通性が律せられるおそれのないものとなっている。   Further, since the diagonal line of the bottom end face 11 is substantially equal to the diameter of the virtual bottom end face 31, the area of the bottom end face 11 is large, and the cross-sectional area of the gas flow passage on the start end side is small. As described above, the overall gas flowability is not limited by the cross-sectional area on the start end side.

また、第一多孔質部10が載頭四角錘形状で第二多孔質部20が載頭円錐形状とされているため、第一多孔質部10と第二多孔質部20との境界でガス圧による応力が発生するおそれがない。   In addition, since the first porous portion 10 has a truncated quadrangular pyramid shape and the second porous portion 20 has a truncated cone shape, the first porous portion 10 and the second porous portion 20 There is no risk of stress due to gas pressure at the boundary.

加えて、本実施形態では仮想的載頭円錐形に成形された単一の成形体30を、事後的に加工することによって多孔質耐火物層5を形成しているため、多孔質耐火物層5の全体にわたり気孔率のばらつきが小さく均一に近い組織となると共に、一方向加圧により第一多孔質部10の気孔率が第二多孔質部20の気孔率よりやや大きなものとなっている。これにより、ガス供給管8から供給されたガスを多孔質耐火物中に効率良く流通させることができると共に、第二多孔質部20の先端側に溶融金属が浸入するおそれを低減することができる。   In addition, in this embodiment, since the porous refractory layer 5 is formed by post-processing the single molded body 30 formed into a virtual conical cone, the porous refractory layer is formed. The porosity of the first porous portion 10 is slightly larger than the porosity of the second porous portion 20 due to the unidirectional pressurization. ing. Thereby, while being able to distribute | circulate the gas supplied from the gas supply pipe | tube 8 efficiently in a porous refractory, the possibility that a molten metal permeates into the front end side of the 2nd porous part 20 may be reduced. it can.

また、単一の成形体30を事後的に加工したことにより、第一多孔質部10と第二多孔質部20との間に接着層が存在しないため、接着層を介して溶融金属が浸入するおそれや、第二多孔質部20が第一多孔質部10から脱落するおそれがないものとなっている。   In addition, since the single molded body 30 is processed afterwards, there is no adhesive layer between the first porous portion 10 and the second porous portion 20, so that the molten metal is interposed through the adhesive layer. Is not likely to enter, and the second porous portion 20 may not fall out of the first porous portion 10.

加えて、底部端面11の対角線の長さを仮想底部端面31の直径とほぼ等しいものとし、且つ、第一境界部端面12の対角線の長さと第二境界部端面21の直径とをほぼ等しいものとしたことにより、成形体30を事後的に加工する際に切削・切除等する部分が最小となる。これにより、加工が容易で、且つ、資源の無駄の少ないものとなる。   In addition, the diagonal length of the bottom end face 11 is substantially equal to the diameter of the virtual bottom end face 31, and the diagonal length of the first boundary end face 12 is substantially equal to the diameter of the second boundary end face 21. As a result, the portion to be cut and cut when the molded body 30 is processed afterwards is minimized. Thereby, processing is easy and the waste of resources is reduced.

以上、本発明について好適な実施形態を挙げて説明したが、本発明は上記の実施形態に限定されるものではなく、以下に示すように、本発明の要旨を逸脱しない範囲において、種々の改良及び設計の変更が可能である。   The present invention has been described with reference to the preferred embodiments. However, the present invention is not limited to the above-described embodiments, and various improvements can be made without departing from the scope of the present invention as described below. And design changes are possible.

例えば、上記構成のガス吹込みプラグ1の緻密質耐火物層6の外周面に、更に鉄皮9を介して不定形耐火物層、緻密質の定形耐火物層、或いは、多孔質の定形耐火物層で構成されるスリーブ層を設けることができる。通常、ガス吹込みプラグを取鍋に取り付ける場合、取鍋の底の羽口レンガ(受けレンガ)に設けられた孔部にガス吹込みプラグが嵌め込まれるが、スリーブ層を設けることにより、多孔質耐火物層を保護しつつ羽口レンガにガス吹込みプラグを固定することができる。加えて、本実施形態では第一多孔質部10が四角錐状であるため、鉄皮9は多孔質耐火物層10に直接取り付けるよりも緻密質耐火物層6の外周面に設ける方が容易であるが、スリーブ層を設けることによって鉄皮9が羽口レンガの孔部の内壁と直接当接することがなくなるため、羽口レンガの孔部の損傷を抑制することができる。   For example, an amorphous refractory layer, a dense regular refractory layer, or a porous regular refractory layer is provided on the outer peripheral surface of the dense refractory layer 6 of the gas blowing plug 1 having the above-described configuration via an iron skin 9. A sleeve layer composed of a physical layer can be provided. Normally, when a gas blowing plug is attached to a ladle, the gas blowing plug is fitted in a hole provided in a tuyere brick (receiving brick) at the bottom of the ladle. The gas blowing plug can be fixed to the tuyeres brick while protecting the refractory layer. In addition, in the present embodiment, since the first porous portion 10 has a quadrangular pyramid shape, the iron skin 9 is provided on the outer peripheral surface of the dense refractory layer 6 rather than directly attached to the porous refractory layer 10. Although it is easy, since the iron skin 9 does not directly contact the inner wall of the hole portion of the tuyere brick by providing the sleeve layer, damage to the hole portion of the tuyere brick can be suppressed.

本実施形態のガス吹込みプラグの(a)縦断面図、(b)A−A線断面図、(c)B−B線断面図である。It is the (a) longitudinal cross-sectional view of the gas blowing plug of this embodiment, (b) AA sectional view, (c) BB sectional drawing. 図1のガス吹込みプラグにおける多孔質耐火物層の(a)斜視図、(b)C−C線断面図である。It is the (a) perspective view and (b) CC sectional view taken on the line of the porous refractory layer in the gas blowing plug of FIG. 図2の多孔質耐火物層の成形方法を例示する説明図である。It is explanatory drawing which illustrates the shaping | molding method of the porous refractory layer of FIG. 図2の多孔質耐火物層と対比した別発明の多孔質耐火物層の斜視図である。It is a perspective view of the porous refractory layer of another invention compared with the porous refractory layer of FIG. 従来のガス吹込みプラグの(a)縦断面図、(b)X−X線断面図、(c)Y−Y線断面図である。It is (a) longitudinal cross-sectional view, (b) XX sectional view, (c) YY sectional view of the conventional gas blowing plug. 他の従来のガス吹込みプラグの縦断面である。It is a longitudinal section of other conventional gas blowing plugs.

符号の説明Explanation of symbols

1 ガス吹込みプラグ
5 多孔質耐火物層
6 緻密質耐火物層
7 ガスプール部
8 ガス供給管
9 鉄皮
10 第一多孔質部(多孔質耐火物層)
11 底部端面
12 第一境界部端面
20 第二多孔質部(多孔質耐火物層)
21 第二境界部端面
22 先端部端面
30 成形体
31 仮想底部端面
DESCRIPTION OF SYMBOLS 1 Gas blowing plug 5 Porous refractory layer 6 Dense refractory layer 7 Gas pool part 8 Gas supply pipe 9 Iron skin 10 1st porous part (porous refractory layer)
11 bottom end face 12 first boundary end face 20 second porous part (porous refractory layer)
21 End surface 22 of the second boundary portion End surface 30 of the tip portion Molded body 31 End surface of the virtual bottom portion

Claims (2)

多孔質耐火物層、及び、該多孔質耐火物層に底部側で接続されたガス供給管を備え、製鋼プロセスにおいて溶融金属中にガスを吹込むガス吹込みプラグであって、
前記多孔質耐火物層は、前記ガス供給管に接続された略載頭四角錘形状の第一多孔質部と、該第一多孔質部から接着層を介することなく連設された略載頭円錐形状の第二多孔質部とを具備し、
前記第一多孔質部の気孔率は前記第二多孔質部の気孔率以上であり、
前記第一多孔質部において底部端面は前記第二多孔質部との境界の第一境界部端面より面積が大であると共に、前記第二多孔質部において前記第一多孔質部との境界の第二境界部端面は反対側の先端部端面より面積が大であり、
前記第一境界部端面の対角線の長さは前記第二境界部端面の直径と略等しい
ことを特徴とするガス吹込みプラグ。
A porous refractory layer, and a gas supply plug connected to the porous refractory layer on the bottom side, for injecting gas into the molten metal in a steelmaking process,
The porous refractory layer includes a substantially truncated quadrangular pyramid-shaped first porous portion connected to the gas supply pipe, and a substantially continuous connection from the first porous portion without an adhesive layer. A second conical portion having a conical shape;
The porosity of the first porous portion is equal to or higher than the porosity of the second porous portion;
In the first porous portion, the bottom end surface has a larger area than the first boundary end surface at the boundary with the second porous portion, and the first porous portion in the second porous portion. The second boundary end face of the boundary with the area is larger than the end face on the opposite end,
The length of the diagonal line of said 1st boundary part end surface is substantially equal to the diameter of said 2nd boundary part end surface, The gas blowing plug characterized by the above-mentioned.
前記底部端面の対角線の長さは、前記第二多孔質部を前記底部端面に向かって前記第一多孔質部の高さ分仮想的に延設した仮想的載頭円錐形における底部側の端面の直径と略等しいことを特徴とする請求項1に記載のガス吹込みプラグ。   The length of the diagonal line of the bottom end face is the bottom side in the hypothetical truncated cone shape in which the second porous part is virtually extended by the height of the first porous part toward the bottom end face. The gas blowing plug according to claim 1, wherein the diameter is substantially equal to the diameter of the end face of the gas blowing plug.
JP2007216784A 2007-08-23 2007-08-23 Gas blowing plug Pending JP2009046756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007216784A JP2009046756A (en) 2007-08-23 2007-08-23 Gas blowing plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007216784A JP2009046756A (en) 2007-08-23 2007-08-23 Gas blowing plug

Publications (1)

Publication Number Publication Date
JP2009046756A true JP2009046756A (en) 2009-03-05

Family

ID=40499235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216784A Pending JP2009046756A (en) 2007-08-23 2007-08-23 Gas blowing plug

Country Status (1)

Country Link
JP (1) JP2009046756A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101090927B1 (en) * 2009-05-26 2011-12-08 조선내화 주식회사 Bubbing plug
JP2012101250A (en) * 2010-11-10 2012-05-31 Kurosaki Harima Corp Gas blowing nozzle
KR101819913B1 (en) * 2016-09-19 2018-01-18 한국내화 주식회사 Porous plug
JP2020164953A (en) * 2019-03-29 2020-10-08 東京窯業株式会社 Gas blowing plug
KR102646138B1 (en) * 2022-11-09 2024-03-11 한국내화 주식회사 Nozzle containing carbon, and purging plug comprising the same
JP7578385B2 (en) 2022-08-18 2024-11-06 東京窯業株式会社 Gas blowing plug

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122751U (en) * 1981-01-20 1982-07-30
JPH01153843U (en) * 1988-04-15 1989-10-23
JPH01301813A (en) * 1988-01-29 1989-12-06 Didier Werke Ag Washing cone
JPH04228514A (en) * 1990-05-07 1992-08-18 Didier Werke Ag Gas cleaning and draining apparatus
JPH0510444U (en) * 1991-07-22 1993-02-09 品川白煉瓦株式会社 Porous plug
JPH07198267A (en) * 1993-12-29 1995-08-01 Kawasaki Refract Co Ltd Porous plug producing for gas blowing
JPH1171609A (en) * 1997-08-29 1999-03-16 Nakayama Steel Works Ltd Porous plug
JP2003253327A (en) * 2002-03-06 2003-09-10 Tokyo Yogyo Co Ltd Porous plug for gas-blowing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122751U (en) * 1981-01-20 1982-07-30
JPH01301813A (en) * 1988-01-29 1989-12-06 Didier Werke Ag Washing cone
JPH01153843U (en) * 1988-04-15 1989-10-23
JPH04228514A (en) * 1990-05-07 1992-08-18 Didier Werke Ag Gas cleaning and draining apparatus
JPH0510444U (en) * 1991-07-22 1993-02-09 品川白煉瓦株式会社 Porous plug
JPH07198267A (en) * 1993-12-29 1995-08-01 Kawasaki Refract Co Ltd Porous plug producing for gas blowing
JPH1171609A (en) * 1997-08-29 1999-03-16 Nakayama Steel Works Ltd Porous plug
JP2003253327A (en) * 2002-03-06 2003-09-10 Tokyo Yogyo Co Ltd Porous plug for gas-blowing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101090927B1 (en) * 2009-05-26 2011-12-08 조선내화 주식회사 Bubbing plug
JP2012101250A (en) * 2010-11-10 2012-05-31 Kurosaki Harima Corp Gas blowing nozzle
KR101819913B1 (en) * 2016-09-19 2018-01-18 한국내화 주식회사 Porous plug
WO2018052180A1 (en) * 2016-09-19 2018-03-22 한국내화 주식회사 Multi-stage porous plug
CN109689899A (en) * 2016-09-19 2019-04-26 韩国耐火株式会社 Multistage porous plug
EP3517634B1 (en) 2016-09-19 2022-08-10 Korea Refractories Co., Ltd. Multi-stage porous plug
JP2020164953A (en) * 2019-03-29 2020-10-08 東京窯業株式会社 Gas blowing plug
JP7578385B2 (en) 2022-08-18 2024-11-06 東京窯業株式会社 Gas blowing plug
KR102646138B1 (en) * 2022-11-09 2024-03-11 한국내화 주식회사 Nozzle containing carbon, and purging plug comprising the same

Similar Documents

Publication Publication Date Title
JP2009046756A (en) Gas blowing plug
CN107427904B (en) The metallurgical tank lining of perforation structure with configuration
US9469882B2 (en) Refractory purging devices
WO2006007672A3 (en) Stopper rod for delivering gas into a molten metal
JP7182496B2 (en) Nozzle and structure of nozzle and stopper
US4331471A (en) Method and device for installing and replacing a gas permeable insert in the wall of a vessel and for the introduction of gas therethrough
JP2009127087A (en) Member for closing opening-hole part of bottom-blowing tuyere in converter, and method for removing this member
JP5225635B2 (en) Gas injection plug
JP2004136367A (en) JOINT STRUCTURE FOR CONTINUOUS CASTING NOZZLE HAVING CARBON CONTAINING CaO BASED REFRACTORY LAYER
JP2002129224A (en) Plug for gas blowing and its using method
JP5697193B2 (en) Nozzle for gas injection
US8017069B2 (en) Ceramic seating stone and metallurgical vessel
JP2008231554A (en) Method for manufacturing gas injection plug and gas injection plug
JP2007229798A (en) Nozzle for continuous casting
JP3459045B2 (en) Porous plug with metal infiltration prevention function
JP2006312188A (en) Continuous casting nozzle
JP2004183041A (en) Double-deck porous well block
JP2011104629A (en) Tundish upper nozzle
JP2020164953A (en) Gas blowing plug
KR20120007129U (en) Plug for inducting gas
JP5234268B2 (en) Foreign metal removal device for molten metal
JP4452586B2 (en) Lance pipe
JP2015116571A (en) Molten metal receiver and production method of the same
RU147457U1 (en) POROUS BOTTLE FOR BOTTOM METAL BLOWING
JP2003253327A (en) Porous plug for gas-blowing

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100818

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20130215

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702