JP2009046645A - Pretreatment method for formation of low-concentration exhaust gas fuel-based emulsion and attachment device - Google Patents

Pretreatment method for formation of low-concentration exhaust gas fuel-based emulsion and attachment device Download PDF

Info

Publication number
JP2009046645A
JP2009046645A JP2007241560A JP2007241560A JP2009046645A JP 2009046645 A JP2009046645 A JP 2009046645A JP 2007241560 A JP2007241560 A JP 2007241560A JP 2007241560 A JP2007241560 A JP 2007241560A JP 2009046645 A JP2009046645 A JP 2009046645A
Authority
JP
Japan
Prior art keywords
liquid
hole
stock solution
particle
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007241560A
Other languages
Japanese (ja)
Inventor
Masayuki Matsuo
正行 松尾
Kinya Nakamura
欽彌 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACCORD SYSTEM KK
NATSU KOOPU KK
Original Assignee
ACCORD SYSTEM KK
NATSU KOOPU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACCORD SYSTEM KK, NATSU KOOPU KK filed Critical ACCORD SYSTEM KK
Priority to JP2007241560A priority Critical patent/JP2009046645A/en
Publication of JP2009046645A publication Critical patent/JP2009046645A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pretreatment method and an attachment device for performing high-level reforming of an emulsion fuel of W/O type or the like. <P>SOLUTION: In a pretreatment for dispersion operation of a main treatment of mixing a combustible agent 2 of oily agent with a low-combustible agent 1 such as water through an assistant followed by emulsion fuel production, a pretreatment operation for microparticulating and filtering an undiluted solution is performed once or twice or more so that fine particles of the undiluted solution before mixing have a particle size distribution spectrum peak value of 30 micrometers or less. The pretreatment operation comprises ultrafiltering the individual raw materials by use of an attachment device provided with a microparticulation part with linear hole for microparticulating operation so that mixing of microparticulated raw materials can be performed by microparticulating the individual raw materials in the raw material stage. According to this, the quality preservation property of a finally produced liquid can be easily improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

発明が属する技術分野Technical field to which the invention belongs

本発明はエマルション溶液製造技術に係り、水と重油などを化学的、物理的に混合して一液に混和し、燃焼時の排ガスCO等を低濃度にする燃料生成技術であり、特に生成から消費迄の期間、性状安定化が続くように前処理を充実させる技術に関するものである。The present invention relates to an emulsion solution manufacturing technology, which is a fuel generation technology that mixes water and heavy oil, etc., chemically and physically into a single solution to reduce the concentration of exhaust gas CO 2 and the like during combustion. The present invention relates to a technique for enhancing pretreatment so that the property stabilization continues during the period from consumption to consumption.

近年、地球温暖化抑制の点からCO等の排出ガス懸念が低い代替燃料、例えば廃油生成から得るリュース系燃料、陸地作物から得るバイオ系燃料、油(O)と水(W)の混合したW/O系エマルションがあり、これらの燃料開発が盛んである。エマルションにはW/O系とO/W系があり、以下、総称してW/O燃料と仮称し、排気ガスを単に排ガスと略称する。In recent years, alternative fuels with low concerns about emissions such as CO 2 from the viewpoint of suppressing global warming, for example, Lius fuel obtained from waste oil production, bio fuel obtained from land crops, oil (O) and water (W) mixed There are W / O emulsions, and these fuels are actively developed. There are two types of emulsions, W / O system and O / W system. Hereinafter, they are collectively referred to as W / O fuel, and exhaust gas is simply referred to as exhaust gas.

他に社会的評価を受ける燃料に、油(O)と水(W)を混合して得るW/O系エマルション燃料がある。この燃料は水の混合比を高めると、燃焼排出ガスのCO等は低濃度となり、燃焼条件を良好に保つと水混合比以上の排気ガス低減率が得られることが判っているが、油単独燃焼の場合より燃焼に不安定で効率が悪い製品に成り易い。ここに、混合するとは二原液以上を混合することを指す。
W/O燃料の生成には、攪拌機を回転させ、原液を混合した液を機械剪断する物理的分散法、原液の混合液に界面活性剤を加えて界面調製する解膠(かいこう)法と称する化学的分散法に加え、近年、微細な孔を開口する中空糸膜などの、孔径(1ミクロン[μm]前後)が一定大きさのポーラス膜(0.1〜0.2mm厚)に混合液を圧入して通過させる際に液を孔入り口で剪断し、μmサイズに微細化する限外ろ過が利用され、この方法と解膠法を組み合わせた液膜乳化法が普及してきた。この孔構造は、図15(B)に示すように布を引き裂いて隙間を作る開口膜が重層に不規則状に積み重なる形をしている。(非特許文献1:図3.11、p63〜p66)。
これら生成法は一般に、混和槽の中で原液投入から機械攪拌を経て最終生成液とするか、他の方法として、例えば油を限外ろ過して孔剪断、液膜化し、その直後に他方液と混合する一段階操作に基づく物理的分散法によって、混合液を生成し、得た液細粒に界面活性剤を注入して界面調整しながら両液細粒をよく混ざり合わせて最終混和液にする。
なお従来の本処理では、乳化補助のために超音波または振動適用の乳化機、磁力線照射装置などが併用されることがある(特許文献1:p5.41行)。
Another fuel that has received social evaluation is a W / O emulsion fuel obtained by mixing oil (O) and water (W). This fuel increase the mixing ratio of water, the CO 2 or the like of the combustion exhaust gas becomes low concentration, but well keep the water mixing ratio or more exhaust gas reduction rate combustion condition has been found that the resulting oil It tends to be a product that is unstable and inefficient in combustion than in the case of single combustion. Here, mixing refers to mixing two or more stock solutions.
The production of W / O fuel is called a physical dispersion method in which the liquid obtained by mixing the stock solution is mechanically sheared by rotating the stirrer, and a peptization method in which a surfactant is added to the mixed solution of the stock solution to prepare the interface. In addition to the chemical dispersion method, in recent years, mixed liquids have been formed into porous membranes (0.1 to 0.2 mm thick) with a constant pore diameter (around 1 micron [μm]), such as hollow fiber membranes that open fine pores. Ultrafiltration that shears the liquid at the entrance of the hole when it is pressed and passed and is refined to a μm size is used, and a liquid film emulsification method combining this method and the peptization method has become widespread. In this hole structure, as shown in FIG. 15B, the opening membranes that tear the cloth and create gaps are stacked irregularly on the multilayer. (Nonpatent literature 1: FIG. 3.11, p63-p66).
In general, these production methods are carried out by mixing the stock solution in the mixing tank to make the final product solution through mechanical stirring, or as another method, for example, by ultrafiltration of oil to form pore shear and liquid film, and immediately after that, the other solution The mixture is produced by a physical dispersion method based on a one-step operation of mixing with a liquid, and a surfactant is injected into the obtained liquid fine particles, and the two liquid fine particles are mixed well while adjusting the interface to obtain the final mixture. To do.
In this conventional process, an emulsifier using ultrasonic waves or vibration, a magnetic field irradiation device, or the like may be used together for emulsification assistance (Patent Document 1: line p5.41).

図14は、従来技術を説明する燃料系エマルション生成処理工程の概要ブロック図であって、原料の水1、油性剤2の重油などを混合する際の混合比に対応して界面活性剤4を調整し、それらを注入、混合する操作を前処理として行い、次いで分散槽併用の混合槽7内にそれらを投入し、投入液に高速攪拌翼を回転する機械攪拌を加える剪断型分散装置を操作し、これら混合槽内処理を本処理としてエマルション生成操作19を完成させる。この剪断型分散装置を用いた物理的分散法生成の液粒子は、粒径分布帯域を狭い範囲に規制できず、図12に示す相対粒子量と粒径分布の点線表示のヒストグラムのように広帯域でスペクトルピーク値が低いので、内部に大粒径粒子が有力数残留する。この燃やし難い大粒径液粒は、ヒストグラムを狭域化できれば減少し、燃焼性を改善する。ここに図12は、本発明前処理法の機能を説明する、その微粒子効果を示す模式図である。
限外ろ過器は、前記剪断型装置に代えて、剪断を液に対し繰り返さないで、液剪断をろ過で行うもので、一段階乳化という。この限外ろ過の液膜乳化法では、、高粘性の油を多孔質細孔に圧入して通過させ、これにより得た微粒子化油液を液流状態の水原液中に分散させてエマルションを生成する。
ところで浄水器や純水製造技術に用いる限外ろ過法において、原液を膜ろ過して前処理する工程がある。この膜ろ過前処理では。原液中の懸濁微細粒物質に反応する凝集剤を加え、または時間を掛けて静置、沈殿させ、次いで本処理のろ過を行うものであり、混合操作には併用されてない。以下に、本発明に係る前処理操作の背景技術について可燃性の高い油性剤を「油」とし、その実施例は重油と軽油を試料とし、可燃性の最も低い原液を軟水とし、単に「水」と記載して説明する。
FIG. 14 is a schematic block diagram of a fuel-based emulsion generation process for explaining the prior art, in which the surfactant 4 is added in accordance with the mixing ratio when the raw water 1 and the oily oil 2 are mixed. Adjusting, injecting and mixing them as pretreatment, then putting them into the mixing tank 7 used together with the dispersing tank, and operating the shearing type dispersing device that adds mechanical stirring to rotate the high-speed stirring blades And the emulsion production | generation operation 19 is completed by making these processing in a mixing tank into this processing. The liquid particles produced by the physical dispersion method using this shearing type dispersion device cannot restrict the particle size distribution band to a narrow range, but have a wide band like the histogram of the relative particle amount and the particle size distribution shown in dotted lines in FIG. Since the spectrum peak value is low, a large number of large-sized particles remain inside. The inflammable large particle size liquid particles are reduced if the histogram can be narrowed to improve the combustibility. FIG. 12 is a schematic diagram illustrating the function of the pretreatment method of the present invention and illustrating the fine particle effect.
The ultrafilter is a one-stage emulsification, which replaces the shear type device and performs liquid shearing by filtration without repeating shearing with respect to the liquid. In this ultrafiltration liquid membrane emulsification method, highly viscous oil is pressed through porous pores, and the finely divided oil solution thus obtained is dispersed in a liquid water solution to obtain an emulsion. Generate.
By the way, in the ultrafiltration method used for a water purifier and a pure water manufacturing technique, there exists a process which pre-processes by carrying out membrane filtration of the undiluted | stock solution. In this membrane filtration pretreatment. A flocculant that reacts with the suspended fine particles in the stock solution is added, or the mixture is allowed to stand and settle over time, and then subjected to filtration in this treatment, and is not used in the mixing operation. Hereinafter, regarding the background art of the pretreatment operation according to the present invention, a highly flammable oil agent is referred to as “oil”, and in the examples, heavy oil and light oil are used as samples, the least flammable stock solution is defined as soft water, and simply “water” is used. "And described.

水と油のエマルション生成用界面活性剤には、弱アルカリ性を示すアニオン(陰イオン)系、乳化に使われるカチオン(陽イオン)系、他の活性剤と併用する両性系、イオンを生じないノニオン(非イオン)系がある。これらとともに、分散装置や配管を保護する防錆剤や他の目的に併用する補助剤が、エマルション生成に選定される(特許文献2)。  Surfactants for forming water and oil emulsions include weakly alkaline anions (anions), cations used for emulsification, amphoteric systems used in combination with other active agents, and nonions that do not generate ions. There are (non-ionic) systems. Along with these, a rust preventive agent for protecting the dispersing device and the piping and an auxiliary agent used for other purposes are selected for emulsion generation (Patent Document 2).

近年、一段階乳化法が、前記ヒストグラムを狭域化できないので、SGP膜という多孔質ガラス膜を用い、二段階ろ過して乳化を加えるW/O燃料の二段階乳化生成法が開発された。この法は、ろ過操作の第一段階で、粘性が高い方の油を多孔質細孔に圧入して通過させ、孔を出た微粒子化油液を、液流状態の水原液中に分散し、次いで混合操作し、第二段階で行う限外ろ過でその混合液を別設のSGP膜に圧入、通過させて微粒子化する。
ここにSGP膜(0.4〜2.mm厚)の孔構造は、図15(A)に示すように異種口径(0.1〜5.μmφ)の集まりから成る円筒型トンネル構造をしている。
混合液になった後、多孔質膜孔を通る水は、膜孔入口で剪断を受けて成形される。孔剪断前に不揃いであった水粒子は、その相異状態のまま、ろ過し剪断される。膜孔通過後に混合液から圧入圧が除かれると、混合液中の水液は復元膨脹して高圧縮を受けていた一部は大粒径に変容するものと考えられる。
In recent years, since the one-step emulsification method cannot narrow the histogram, a two-step emulsification generation method of W / O fuel has been developed in which a porous glass membrane called an SGP membrane is used to perform emulsification by two-step filtration. In this method, in the first stage of the filtration operation, the oil having the higher viscosity is pressed into the porous pores, and the finely divided oil solution exiting the pores is dispersed in the water stock solution in the liquid state. Then, the mixing operation is performed, and the mixed solution is press-fitted and passed through a separate SGP membrane by ultrafiltration performed in the second stage to form fine particles.
Here, the pore structure of the SGP film (0.4 to 2. mm thick) is a cylindrical tunnel structure composed of a collection of different diameters (0.1 to 5. μmφ) as shown in FIG. Yes.
After becoming a mixed solution, the water passing through the porous membrane pores is subjected to shearing at the membrane pore inlet and shaped. Water particles that were irregular before pore shearing are filtered and sheared in the different state. When the press-fitting pressure is removed from the mixed solution after passing through the pores of the membrane, it is considered that the aqueous liquid in the mixed solution is restored and expanded, and a part that has been subjected to high compression is transformed into a large particle size.

しかし一段階乳化法生成のW/O燃料が貯蔵中に水が分離して、それが原因で燃焼中にトラブルが生じる難点があったと同様に、二段階乳化法のW/O燃料は水の分離は明かでなかったが、燃焼時の着火性や燃焼中の失火トラブルは起こった。そこで二段階乳化法による液膜乳化の第一段階で、水より圧縮率が低い油を、第二段階で水を加えた混合液を、順次、SGP膜孔で限外ろ過すると原液混合比で水3、軽油7割合のW/O系燃料ではエマルション平均粒径0.3〜40μmが得られたという。このことは孔径の約8倍大の微粒子エマルションを生成し、広帯域の粒径の液粒を混在することを示す(特許文献3、第5欄、第7欄)。
以上の点から、上記生成エマルション液粒が広帯域の粒径分布を示すと燃焼時のトラブルを起こし易いことが推定できる。それは外部から加えられ予熱エネルギーや燃焼中の前段階がら持ち越され液粒子に化体される保持エネルギーが、広帯域の異なる粒径粒子に伝達するとき、それぞれ熱的質量大きさが異なる個々の液粒に燃焼可能になるためには、燃焼室内に散在する外熱の保持エネルギーがその位置にある液粒の熱的質量大きさより大きく、かつ潜熱状態から顕熱状態を経て着火状態以上に状態変化できる、継続的な熱量供給が必要となる。前記失火は、広域帯の粒径分布を示すエマルションの粒径大の液粒は粒径小の液粒よりは遠方に供給され勝ちであり、一方、前記外熱は、熱供給口近くから消費されて、遠方に行く程、供給熱量は減少し、粒径大の液粒が着火状態以下の熱的環境を受け易いことにあると仮設できる。ここに着火時のみ必要なのが外熱であり、エマルション燃料には自燃が求めらるので、燃焼室内の遠近に係わらない持続的燃焼環境が必要となる。
However, the W / O fuel produced by the one-stage emulsification method has a difficulty in causing trouble during combustion due to the separation of water during storage and the W / O fuel produced by the two-stage emulsification method is water. Although the separation was not clear, ignitability during combustion and misfire trouble during combustion occurred. Therefore, in the first stage of liquid film emulsification by the two-stage emulsification method, when the oil mixture having a lower compressibility than water and the mixture liquid with water added in the second stage are sequentially ultrafiltered through the SGP membrane pores, It is said that an emulsion average particle size of 0.3 to 40 μm was obtained with a W / O fuel of water 3 and light oil 7 ratio. This indicates that a fine particle emulsion having a diameter of about 8 times larger than the pore diameter is generated, and liquid particles having a broad particle diameter are mixed (Patent Document 3, columns 5 and 7).
From the above points, it can be presumed that when the produced emulsion liquid particles exhibit a broad particle size distribution, troubles during combustion are likely to occur. When the preheating energy applied from the outside and the holding energy carried over from the previous stage of combustion and transformed into liquid particles are transferred to particles of different particle sizes in a wide band, each liquid particle having a different thermal mass size. In order to be combustible, the energy of the external heat scattered in the combustion chamber is larger than the thermal mass of the liquid particles at that position, and the state can be changed from the latent heat state to the ignition state through the sensible heat state. Therefore, continuous heat supply is required. In the misfire, a liquid particle having a large particle size of an emulsion showing a particle size distribution in a wide band tends to be supplied farther than a liquid particle having a small particle size, while the external heat is consumed near the heat supply port. Then, the farther away, the amount of heat supplied decreases, and it can be temporarily assumed that liquid particles having a large particle size are likely to be subjected to a thermal environment below the ignition state. Here, external heat is required only at the time of ignition, and self-combustion is required for the emulsion fuel. Therefore, a continuous combustion environment that is not related to the distance in the combustion chamber is required.

上記検討結果を多数回実験し、W/O燃料の燃焼環境を考察した結果を図に示す。図16は、ろ過液の粒径分布に対応する燃焼特性を説明するもので、粒径分布特性に係るエクセルギー領域の模式比較図である。ここに、縦軸に狭→広として上方に向かう相対粒子量の粒径分布帯域を、横軸に左から右方へ大きくなる粒径分布のスペクトルピーク値を示す粒径[d]を示すグラフであって、この粒径分布は、粒径[d]が相対粒子量を100とした場合に示す液粒のヒストグラムを想定している。WBは、燃焼(着火)温度TBを基準温度、Tを燃焼室温度ないし個々に液粒温度として作成したエマルション液のエクセルギーであって、これが負領域では着火せず、正領域が燃焼可能域であり、WB=0の下方、網目表示帯では難燃域、斜線帯では失火が発生する可能性ある領域を示す。さらにヒストグラム状態を説明する[P]は多峰性、[S]は単峰性、[skr]は粒径分布の右側、すなわち粒径[d]より粒径大の範囲に粒径が広がる「裾」を示すもの、[skl]は粒径分布の左側(粒径[d]より粒径小の範囲)に「裾」の、それぞれ異質性を示すもの、を表す。そしてx軸基準上の[dn]は、失火が発生する可能性のないWBライン領域の前記スペクトルピーク値を示す粒径、同じく[dn+1]は、失火発生可能性ライン下限の境界にある、[dn]と同じ基準線上に設ける、スペクトルピーク値の粒径を示す。例えば図12に示す点線表示の粒径分布は、図16の[S]縦領域と「広」横領域の交差領域にあってWBの負領域が想定され、同図図示の実線表示分布は図16の[skr]と「狭→広」の中程の交差領域にあり、液粒微細化に努めなければ、燃焼が継続しないことを図示している。  The above examination results were tested many times, and the results of examining the combustion environment of W / O fuel are shown in the figure. FIG. 16 illustrates combustion characteristics corresponding to the particle size distribution of the filtrate, and is a schematic comparison diagram of exergy regions related to the particle size distribution characteristics. Here, the vertical axis indicates the particle size distribution band of the relative particle amount that is narrow to wide and moves upward, and the horizontal axis indicates the particle size [d] indicating the spectral peak value of the particle size distribution that increases from left to right. And this particle size distribution assumes the histogram of a liquid particle shown when the particle size [d] makes the relative particle amount 100. WB is the exergy of the emulsion liquid created by setting the combustion (ignition) temperature TB as the reference temperature and T as the combustion chamber temperature or individually the liquid droplet temperature. This does not ignite in the negative region, and the positive region is the combustible region. Below WB = 0, the mesh display band indicates a flame retardant area, and the hatched band indicates an area where misfire may occur. Further explaining the histogram state [P] is multimodal, [S] is unimodal, [skr] is on the right side of the particle size distribution, that is, the particle size extends in the range larger than the particle size [d]. [Skl] represents the “bottom”, and “skl” represents the “bottom” on the left side of the particle size distribution (in the range smaller than the particle size [d]), each indicating heterogeneity. [Dn] on the x-axis reference is a particle size indicating the spectrum peak value in the WB line region where misfire does not occur, and [dn + 1] is at the lower limit boundary of misfire occurrence line, [ dn] indicates the particle diameter of the spectral peak value provided on the same reference line. For example, the particle size distribution of the dotted line display shown in FIG. 12 is assumed to be a negative region of WB in the intersection region of the [S] vertical region and the “wide” horizontal region of FIG. 16, and the solid line display distribution shown in FIG. 16 [skr] and “narrow → wide” in the middle of the crossing region, and it shows that combustion does not continue unless efforts are made to refine the liquid droplets.

主要な問題点は、W/O燃料の液粒の粒径分布が、ヒストグラムが狭帯域の単峰性であるか、粒径[d]ができるだけ小径側にある液粒を生成できるかということである。
ポーラス膜質孔やSGP膜孔が生成する液粒は、その孔構造から粒径分布が広帯域型であることが判る。従ってこのことを図16に照合すれば、それら生成燃料の燃焼時の失火トラブル原因を解消するには、その孔構造上、狭帯域にはできない。そこで粒径[d]を小にする必要がある、という問題点があった。
The main problem is whether the particle size distribution of the W / O fuel droplets is unimodal with a narrow band in the histogram, or whether the particle size [d] can be as small as possible. It is.
From the pore structure, it can be seen that the particle size distribution of the liquid particles generated by the porous membrane pores and the SGP membrane pores is a broadband type. Therefore, if this is collated with FIG. 16, in order to eliminate the cause of the misfire trouble at the time of combustion of these generated fuels, it is not possible to narrow the band due to the hole structure. Therefore, there is a problem that it is necessary to make the particle size [d] small.

以上のように構成するW/O燃料生成の二段階乳化法による改善策では、原液段階と混合液段階の二回の微粒子化操作を行ったが、圧縮率小の油液には充分なろ過回数であった。しかし、狭域化に寄与する圧縮率大の水には充分ではなかった、という問題点がある。このことは生成エマルション粒子の微細化状態の検証において、粒子分布の狭域化への試みは殆ど行われてなく、原液の品質とその液粒子大きさの条件作りにあった不徹底さに問題点があった。その結果、最終生成品の生成から消費までの保留期間が数日を超えると、微粒子再凝集による混合液の分解が生じ、それが燃焼時に失火を起こし易くし、品質保持することが困難であるという問題点があった。
国際公開WO2004/004881号公報 特開平7−233381号公報 特許第2733729号公報 岡崎稔他著「超純水のはなし」日刊工業新聞社、2002年
In the improvement measures by the two-stage emulsification method for W / O fuel generation configured as described above, the fine particle operation was performed twice in the raw liquid stage and the mixed liquid stage, but sufficient filtration was performed for oil liquids with low compressibility. It was the number of times. However, there is a problem that it is not sufficient for water with a large compression ratio that contributes to narrowing the area. This is because in the verification of the refined state of the resulting emulsion particles, almost no attempt has been made to narrow the particle distribution, and there is a problem with the inadequacy of the quality of the stock solution and the creation of conditions for the size of the liquid particles. There was a point. As a result, if the holding period from the production of the final product to the consumption exceeds several days, the liquid mixture is decomposed by fine particle re-aggregation, which easily causes misfire during combustion, and it is difficult to maintain the quality. There was a problem.
International Publication No. WO2004 / 004881 Japanese Patent Application Laid-Open No. 7-233381 Japanese Patent No. 2733729 Okazaki Atsushi et al., “The story of ultrapure water”, Nikkan Kogyo Shimbun, 2002

解決しようとする問題は、W/O燃料系エマルションの前処理段階における原液粒子の管理が徹底されていない点、限外ろ過処理操作を通じて最終生成品の粒径分布の帯域の狭域化と、粒径分布内に粒径大の液粒が混在する点を、さらに超微細の細粒化を均質、単峰性の微粒子化ヒストグラムに移行し得ない点、これらの問題を解決する限外ろ過装置が存在しない点などである。  The problem to be solved is that the control of the stock solution particles in the pretreatment stage of the W / O fuel system emulsion is not thorough, narrowing the range of the particle size distribution of the final product through the ultrafiltration treatment operation, Ultrafiltration that solves these problems, with the point that liquid particles with a large particle size are mixed in the particle size distribution, and the ultrafine refinement cannot be transferred to a uniform, unimodal micronization histogram. For example, there is no device.

本発明の、低濃度排ガス燃料系エマルション生成前処理法は、水と可燃性液を主体とする生成法において、原液を混合する前に、最終工程で得る混和液の液粒を粒径分布スペクトルピーク値の粒径を目標管理して、原液の粒子化液の混合前原液粒径を30μm以下、好ましくは10μm以下に粒径分布スペクトルピーク値の粒径を得るまで原液を粒子化する限外ろ過操作を行うことを最も主要な特徴とする。  The pretreatment method for producing low-concentration exhaust gas fuel emulsion of the present invention is a production method mainly comprising water and a combustible liquid. The target value of the particle size of the peak value is controlled, and the stock solution is granulated until the particle size of the particle size distribution spectrum peak value is obtained so that the stock solution particle size before mixing of the stock solution into 30 μm or less, preferably 10 μm or less. The most important feature is to perform the filtration operation.

また本発明方法のために構成する付属装置は、出入口配管口座を付設する外ケースと、その内部に細孔板付き微粒子化部を設けて、液入口側流入域と液出口側流出域に分けた密閉空間に仕切り、微粒子化部は単層または複層の有孔壁体で構成し、有孔壁体には流出域側に配設する単層の壁体に、約20μm幅以下、好ましくは3μm幅以下の微細幅に開口する線状孔付き有孔板を形成し、配設する丸形または線状孔の孔周りには加工バリを残置形成して成形孔とする微粒子化装置本体を構成した上で、微粒子化装置本体を直列に複数連結して一ユニットに組成して配設可能にすると共に、微粒子化処理量に応じて微粒子化ユニットを並列に複数連結ユニット化して、処理液の分配を可能に配設する微粒子化装置セットを構成することを最も主要な特徴とする。  In addition, the accessory device configured for the method of the present invention is divided into a liquid inlet side inflow region and a liquid outlet side outflow region by providing an outer case with an inlet / outlet pipe account and a fine particle part with a pore plate inside thereof. The finely divided part is composed of a single-layer or multi-layer perforated wall body, and the perforated wall body has a width of about 20 μm or less, preferably a single-layer wall body disposed on the outflow area side. Forms a perforated plate with a linear hole that opens to a fine width of 3 μm or less, and a processing burr is left around the hole of the round or linear hole to be arranged to form a molding hole. In addition, a plurality of atomization device bodies can be connected in series to form a single unit and disposed, and according to the amount of atomization processing, a plurality of atomization units can be connected in parallel to form a unit. The most important thing is to configure a micronizer set that enables liquid distribution. Features.

そして本発明付属装置は、吸着構造を配設する付属装置であって、その微粒子化部が流入域に突出状に形成するヒダ様突起をろ過孔周りに設ける有孔板、または有孔壁体の流入域側に前置して吸着シートを付設する吸着構造を選択的に配設して、微粒子化部通過液含有沈着物質を付着可能の有孔壁体構造に構成することを主要な特徴とする。
ここで、図16に照合して、図内記号との対称を行えば、スペクトルピーク値を示す粒径[dn+1]は、本発明方法においては30μm以下、同[dn]は10μm以下の数値範囲に相当し、本発明付属装置に開口するろ過線状孔の微細幅に対応するものは、同[dn+1]は約20μm幅以下、同[dn]は3μm幅以下の数値範囲の条件付けに対応する。
The accessory device of the present invention is an accessory device in which an adsorbing structure is provided, and a perforated plate or a perforated wall body in which a fine-grained portion is formed around the filtration hole so as to project in the inflow region. Main feature is that it has a perforated wall structure that can be attached to the adsorbent structure that is placed in front of the inflow area of the gas and selectively attaches the adsorbent sheet, allowing the deposit material containing the liquid passing through the fine particles to adhere And
Here, referring to FIG. 16, symmetric with the symbols in the figure, the particle size [dn + 1] indicating the spectral peak value is 30 μm or less in the method of the present invention, and [dn] is a numerical range of 10 μm or less. Corresponding to the fine width of the filtration linear hole opened in the accessory apparatus of the present invention corresponds to the condition of the numerical range of [dn + 1] of about 20 μm width or less and [dn] of 3 μm width or less. .

本発明の、低濃度排ガス燃料系エマルション生成前処理法は、原液を個別に限外ろ過法による微粒子化を行い、その後に混合した混合液を限外ろ過微粒子化手段を用いて再微粒子化を行えるように準備するものであって、初段階の微粒子化で原液を一定の粒径範囲に揃えて粒径を選別した原液を次の微粒子化段階でより精細に限外ろ過できるようにするので、本操作におけるエマルション生成液の粒径分布帯域のさらなる狭域化とピーク値[P]を微小側に移行させ易くなる。前処理での微粒子化により、他の補助分散処理、例えば混合前の磁力線照射処理の効果が高められる。さらに混合比がW/O燃料の原液混合比がどのように変わっても、分散後の混合物粒径分布を狭域化することは、混合液内に可燃性分子を均一分散させることに役立つエマルション液が生成できるという利点がある。  In the pretreatment method for producing a low-concentration exhaust gas fuel system emulsion of the present invention, the stock solution is individually microparticulated by ultrafiltration, and then the mixed liquid is re-particulated using ultrafiltration microparticulation means. It is prepared so that the stock solution can be ultrafiltered more finely in the next micronization stage, with the stock solution being sorted to a certain particle size range in the first stage of micronization and the particle size selected. In this operation, it becomes easier to further narrow the particle size distribution band of the emulsion forming liquid and shift the peak value [P] to the minute side. The effect of the other auxiliary dispersion treatment, for example, the magnetic field irradiation treatment before mixing, is enhanced by the fine particle formation in the pretreatment. Furthermore, no matter how the mixing ratio of the W / O fuel stock solution changes, narrowing the particle size distribution of the mixture after dispersion helps to uniformly disperse flammable molecules in the mixture. There is an advantage that a liquid can be generated.

本発明方法のために構成する付属装置は、線状孔をろ過用貫通孔の主体として形成する微粒子装置本体から成り、有孔板厚さの縦断面ほぼ線幅のまま長方形の流路を形成し、平面上は、一本線や曲線、枝分かれ線、交差線を描く線形の長さを示し、線状孔を通過する液粒には、丸孔に通過する際に液粒が受ける場合とは異なる、緩和された圧密性が働くなどの内部液粒に液内圧を流路途中で緩和する作用が得られる。例えば孔内部の液粒は線幅方向には規制を受けるが、線状孔の長手方向には伸張できるので、加工された孔姿形に従って変形し、液保有の表面張力、液粒子内圧に均衡が生じる境界条件に対応する自然分断が生じ易くなる。孔内部で分断後は、液粒の事前にあった内圧均衡は除かれ、新規に緩和された圧密性の取得が生じる。入り口にあるバリの他、孔中央接液面に存在する凹凸が、通液する微粒子塊をさらに細断し、貫通孔の他方の孔出口に達する液粒は、加工バリに触れて、孔入口側で切断されたと同様の微細化が作用する。また直後、流出域に解放された液は、その膨脹する度合いは軽度化され、過大な粒径の生成を抑制する、という効果がある。  The accessory device configured for the method of the present invention is composed of a fine particle device main body that forms a linear hole as a main body of a through-hole for filtration, and forms a rectangular channel with a longitudinal cross-section of the perforated plate thickness almost the same as the line width. However, on the plane, it indicates the length of a line that draws a single line, curve, branch line, crossing line, and the liquid particle that passes through the linear hole is the case that the liquid particle receives when passing through the round hole The action of relaxing the internal pressure of the internal liquid particles in the middle of the flow path can be obtained, such as different and relaxed compactness acting. For example, the liquid particles inside the hole are regulated in the line width direction, but can extend in the longitudinal direction of the linear hole, so it deforms according to the processed hole shape and balances with the surface tension of the liquid and the internal pressure of the liquid particle Natural fragmentation corresponding to the boundary condition in which the phenomenon occurs is likely to occur. After dividing inside the hole, the internal pressure balance that was previously in the liquid droplet is removed, and a newly relaxed compactness is obtained. In addition to the burr at the entrance, the unevenness present on the liquid contact surface at the center of the hole further chops the fine particle mass that passes through, and the liquid particle that reaches the other hole outlet of the through hole touches the processing burr and enters the hole entrance The same refinement works as it was cut on the side. Immediately after that, the liquid released to the outflow zone has an effect of reducing the degree of expansion and suppressing the generation of excessive particle size.

このような微細液粒でも原液段階で懸濁状態の沈着物質を含むと、孔口はいずれ閉塞する。この閉塞現象に対処する付属装置内設の有孔壁体に設ける吸着構造は、付属装置のメンテナンス期間を延長させる効果がある。  Even in the case of such fine liquid particles, if the suspended substance is included in the stock solution stage, the pore opening will eventually be blocked. The adsorption structure provided on the perforated wall body provided in the attachment device to cope with this blocking phenomenon has an effect of extending the maintenance period of the attachment device.

図13は、本発明の前処理法を適用した直後の生成エマルション像を説明するもので、その1実施例の顕微鏡写真を示すイメージ図であって、微粒子化を行う付属装置本体内で限外ろ過された液粒は、複数連結ユニット化した装置において一度の限外ろ過操作、または付属装置本体に二回通過させる微粒子化操作を行うと、図12に図示するように粒径分布が単峰性ヒストグラム傾向の狭い帯域に集成し、同時に微粒子化側へ粒径移行が得られることが明示されている。
ここに示される特性は、エクセルギー模式図に照応すると、失火の恐れのない燃焼可能域の充分下方に移行する傾向があって、本操作でも行われる限外ろ過を行う場合に、生成操作の最終段階においては生成エマルションの均一性と改質性に明かな効果が顕れることを示唆する。
FIG. 13 is a diagram illustrating a formed emulsion image immediately after the pretreatment method of the present invention is applied, and is an image diagram showing a micrograph of one example thereof, and ultrafiltration is performed in an accessory device body for atomization. When the obtained liquid particles are subjected to a single ultrafiltration operation or a microparticulation operation that is passed twice through the main body of the accessory device in a device connected to a plurality of connected units, the particle size distribution is unimodal as shown in FIG. It is clearly shown that the particles are gathered in a narrow band with a histogram tendency, and at the same time, a particle size shift to the fine particle side can be obtained.
The characteristics shown here tend to shift sufficiently below the combustible area where there is no risk of misfire, in response to the exergy schematic diagram, and when performing ultrafiltration, which is also performed in this operation, This suggests that in the final stage, a clear effect appears on the uniformity and reformability of the resulting emulsion.

水などの低可燃性液を油などの高可燃性液と混合して、最適機能を発揮する低濃度排ガス燃料系エマルションを生成するための前処理として、原液を微小形状に前処理して、その後に混合液の生成操作を行うという目的を、各原料を個別に微粒子化して混合原液をほぼ均一粒径の状態で混合できるようにし、そのための手段に、線幅一定に開口大きさを揃えた線状孔を、通液する限外ろ過式付属装置のろ過孔に用い、その結果として狭帯域でピーク値粒径[P]が粒径小の左方へできるだけ移行する原液加工を行って、本操作で行う生成エマルションの改質が可能な、W/O燃料生成のための前処理効果を計った。  As a pretreatment to mix a low flammable liquid such as water with a highly flammable liquid such as oil to produce a low-concentration exhaust gas fuel system emulsion that performs optimal functions, the raw liquid is pretreated into a fine shape, After that, the purpose of performing the mixed liquid generation operation is to finely divide each raw material individually so that the mixed stock solution can be mixed in a state of almost uniform particle size, and the means for that is to align the opening size with a constant line width As a result, the stock solution is processed so that the peak value particle size [P] shifts as much as possible to the left of the small particle size in a narrow band. The pretreatment effect for producing W / O fuel, which can modify the emulsion formed in this operation, was measured.

図1は、本発明に係る低濃度排ガス燃料系エマルション生成前処理法において、低可燃性液に対して行う基本工程を説明するもので、(A)はその基本工程の実施例を示すブロック図、(B)は電磁気的補助処理を加える実施例を示すブロック図、(C)は混合液微粒子化処理を加える実施例を示すブロック図である。
同図(A)に示す本発明前処理法の実施例1において、予め沈着物質を沈殿除去し、硬水軟化処理をした低可燃性の水1は、原液段階に微粒子化操作5を行い、限外ろ過後に粒径分布が30μm以下(以下、原液粒調整という)、好ましくは10μm以下(以下、二液粒前調整という)にスペクトルピーク値[P]が得られる粒子化液1aに加工する。次いで油性剤2の原液との混合処理3を行って混合液3aとし、液質調整や攪拌のエマルション生成用の混和操作7に移行する。この移行までの処理が本発明の前処理工程である。
なお本実施例では、ここに図示しないが、本処理の調整操作において界面活性剤の注入が行われることを前提とした場合の工程である。
FIG. 1 illustrates a basic process performed on a low-flammable liquid in a low-concentration exhaust gas fuel system emulsion pretreatment method according to the present invention. FIG. 1A is a block diagram illustrating an example of the basic process. (B) is a block diagram which shows the Example which adds an electromagnetic auxiliary | assistant process, (C) is a block diagram which shows the Example which adds a liquid mixture micronization process.
In Example 1 of the pretreatment method of the present invention shown in FIG. 5 (A), the low combustible water 1 obtained by precipitating and removing the deposited substances and softening the water with water is subjected to the micronization operation 5 in the stock solution stage, After the outer filtration, the particles are processed into a granulated liquid 1a having a spectral peak value [P] of 30 μm or less (hereinafter referred to as raw liquid particle adjustment), preferably 10 μm or less (hereinafter referred to as two liquid particle preconditioning). Subsequently, the mixing process 3 with the stock solution of the oily agent 2 is performed to obtain a mixed liquid 3a, and the process proceeds to a mixing operation 7 for producing a emulsion for liquid quality adjustment and stirring. The process up to this transition is the pretreatment process of the present invention.
In this embodiment, although not shown here, it is a process on the assumption that the surfactant is injected in the adjustment operation of this process.

原液粒調整段階の微粒子化操作は、第一に混合操作が粒子径が大きなレベルでも燃焼効果が上がるW/O燃料が作れて、例えば硬度が充分に低い軟水と揮発性の高い油性剤を混合する場合、また油性剤リッチの混合比によってW/O燃料を作ったり、本処理工程で、高精細な限外ろ過操作の実施可能性が必須である場合、等に採用する。この場合には、使用する微粒子化装置の貫通孔大きさは比較的大径にして設けて、それに通液してもよい。
二液粒前調整の微粒子化操作は、原液粒調整段階の操作対象には入らない混合液生成条件に対応して行うもので、可燃性液が低揮発性で、原料混合比が水リッチである場合、事前に原液粒調整段階の微粒子化操作を行い、その後の微粒子化操作を行い、混合操作前に高精細な限外ろ過を行う必然性がある場合などで、微細化を最高精細に行う微粒子化装置の貫通孔大きさは1μm以下の孔径に加工してそれに通液して限外ろ過する。
The fine particle operation in the stock solution adjustment stage is to produce a W / O fuel that improves the combustion effect even when the mixing operation has a large particle size. For example, soft water with sufficiently low hardness and highly volatile oily agent are mixed. In this case, W / O fuel is produced with a mixture ratio rich in an oily agent, or when it is essential to perform a high-definition ultrafiltration operation in this processing step, etc. In this case, the size of the through-hole of the micronizing device to be used may be provided with a relatively large diameter, and liquid may be passed therethrough.
The pre-adjustment of the two liquid droplets is performed in accordance with the mixed liquid generation conditions that are not included in the operation of the raw liquid particle adjustment stage. The combustible liquid has low volatility and the raw material mixing ratio is water-rich. In some cases, the fine particle size is refined to the highest level in cases where it is necessary to perform the fine particle operation in the stock solution adjustment stage in advance, then perform the fine particle operation, and then perform high-definition ultrafiltration before the mixing operation. The through-hole size of the micronizer is processed into a pore size of 1 μm or less, and the solution is passed through and ultrafiltered.

前記実施例1の変法として同図(B)に示すように、微粒子化操作5で得た水の粒子化液1aに対し、ろ過剪断した液粒子の解離を容易にする磁性体付設流路6を設け、一方、油である原液2を油の粒子化液2aに変え、それを磁化微粒子化液6aに改質し、混合処理3してもよい。磁化加工により得られたここに示さない本処理後の顕微鏡観察から、この加工を行わない場合と比べて、図12に示す比較結果が得られたので、本処理前混合液のクラスターをより小塊化できたものと推量する。
また図1(C)に示すように、さらに原液粒調整5aして得た前記混合液に対し、二液粒前調整5bを行い、本処理に移行させてもよい。なおここには図示しないが、原液粒調整5aを介在させる管路に循環返送回路を設け、該管路に一定時間通液を繰り返す微粒子化を行ってから、相手の微粒子化液の原液と混合する混合調整をして混合液3aを得るようにしても良い。これら本処理前操作によって、原液粒子の過大な粒径粒子が混合液中に混在し、不均質が生じない予防操作を行うことができた。
As a modified example of the first embodiment, as shown in FIG. 5B, a magnetic material-attached flow path that facilitates dissociation of the filtered and sheared liquid particles from the water granulated liquid 1a obtained in the micronization operation 5 On the other hand, the stock solution 2 that is oil may be changed to the oil particle liquid 2a, which is modified into the magnetized fine particle liquid 6a, and the mixing process 3 may be performed. Compared with the case where this processing is not performed, the comparison result shown in FIG. 12 was obtained from the microscopic observation after the main processing not shown here obtained by the magnetizing processing. I guess it was agglomerated.
Moreover, as shown in FIG.1 (C), you may make 2 liquid grain preconditioning 5b with respect to the said liquid mixture obtained by having further carried out the stock liquid grain adjustment 5a, and may transfer to this process. Although not shown in the figure, a circulation return circuit is provided in a pipe line through which the raw liquid particle adjustment 5a is interposed, and the fine particle is repeatedly passed through the pipe for a certain period of time. The mixed solution 3a may be obtained by adjusting the mixing. By these pre-treatment operations, it was possible to carry out a preventive operation in which excessively large particle sizes of the stock solution particles were mixed in the mixed solution, and inhomogeneity did not occur.

図2は、本発明方法の別の工程実施例を説明するもので、(A)は界面活性剤補助処理を加える実施例を示すブロック図、(B)は混合前液全てに微粒子化処理を加える実施例を示すブロック図、(C)は助剤添加に代え混合液に微粒子化処理を加える実施例を示すブロック図、および図3は、同じく他の実施例を説明するもので、混合前液全てと混合液に適用する全ての補助処理を加える実施例を示すブロック図である。
実施例2は、実施例1の前処理に界面活性剤4の注入操作を加える場合である。図2(A)に示すものは、図1(A)に示す実施例に対応する。また図2(B)に示すものは、図2(A)に対応する。これら二つの事例に対し、可燃性液である油2に原液粒調整5aを加えて、微粒子化した原液同士(1a、2a)を混合し、その混合箇所で界面調整操作を行うものである。
ここに使用する界面活性剤は、非イオン界面活性剤または水溶性の両性界面活性剤のどちらを用いてもよい。なお図2(C)に示すものは、図1(C)に示す実施例に対応する事例であって、油2に原液粒調整5aを加え、二液粒の前調整5bを行う前処理工程を進めるものである。ここに点線矢印で示した界面活性剤4は、原液混合後のpH調整に、界面調整に用いた界面活性剤の単または複数種を添加し、かつその調整pH値保持操作を行うことを示す。
図3に図示する実施例3においては、図1、図2に示す様々な工程を、全て行うようにした前処理操作である。点線枠内に示した操作は、混合対象液の相関または相反条件によっては、取り止めても差し支えない操作である。
2A and 2B illustrate another embodiment of the method of the present invention. FIG. 2A is a block diagram showing an embodiment in which a surfactant auxiliary treatment is added, and FIG. The block diagram which shows the Example which adds, (C) is a block diagram which shows the Example which adds the micronization process to a liquid mixture instead of auxiliary agent addition, and FIG. It is a block diagram which shows the Example which adds all the auxiliary processes applied to all the liquids and a liquid mixture.
Example 2 is a case where an injection operation of the surfactant 4 is added to the pretreatment of Example 1. The structure shown in FIG. 2A corresponds to the embodiment shown in FIG. 2B corresponds to FIG. 2A. In these two cases, the stock solution adjustment 5a is added to the oil 2 which is a flammable liquid, the fine stock solutions (1a, 2a) are mixed, and the interface adjustment operation is performed at the mixing location.
As the surfactant used here, either a nonionic surfactant or a water-soluble amphoteric surfactant may be used. 2C is an example corresponding to the embodiment shown in FIG. 1C, and is a pretreatment step in which the raw liquid particle adjustment 5a is added to the oil 2 and the two liquid particle preconditioning 5b is performed. Is to advance. The surfactant 4 indicated by a dotted arrow here indicates that one or more surfactants used for the interface adjustment are added to the pH adjustment after mixing the stock solution, and the adjusted pH value is maintained. .
In the third embodiment shown in FIG. 3, this is a preprocessing operation in which all the various steps shown in FIGS. 1 and 2 are performed. The operation shown in the dotted line frame is an operation that can be canceled depending on the correlation or reciprocal condition of the liquid to be mixed.

本発明方法の実施例2と3において使用する、界面活性剤は、乳化効果と共にエマルション生成を行うシステム全体にとって使用管路内を防錆する効果も考慮するとよい。
個別原液に対する原液粒調整5aや二液粒前調整5bを行うことによって、本処理段階に移行させる混合液3aは、その粒径分布が狭域化傾向条件を与える事前誘導効果がある。従って本操作処理において、さらなる微粒子化操作を行う際には、その生成エマルションは、狭帯域化して均一傾向になり、ピーク値[P]が左方へ移行するような粒径分布に変わっていき、均質な溶液を得易くする効果があった。具体的には、図12によって明かな傾向を示しており、図13に示すイメージ図には、0.5〜1μm(大小比:1/0.5≒2)の粒径のものが大部分であり、0.3〜40μm(大小比:40/0.3≒13)の粒径分布を示したSGP膜質による限外ろ過効果より、狭帯域移行効果を得た。ここに当該表示イメージは、島津製作所製デジタルマイクロスコープGLB−B1500NB1の使用顕微鏡によるもので、その対象溶液は、水20(実質19.8)%、軽油80(実質79.4)%、ノニオン性界面活性剤を約0.8%添加した混合液を板厚1mm、そこに開口する線状孔大きさが線幅1μm、全長10μmの限外ろ過孔に二回通液した場合に得られた液粒の拡大写真である。そしてこのイメージ図からは、1μm以上の粒径分子は特に観察できない。この線状孔と通液微粒子化液が示す数値傾向から、「混液微細化」を目指すとき、線状孔条件を決めると液粒状態を予想できるという効果がある。
The surfactant used in Examples 2 and 3 of the method of the present invention should take into consideration the effect of preventing rusting in the use pipeline for the entire system for producing an emulsion as well as the emulsifying effect.
By performing the stock solution adjustment 5a and the two-component pre-adjustment 5b for the individual stock solution, the mixed solution 3a to be transferred to the present processing stage has a prior induction effect that the particle size distribution gives a narrowing tendency condition. Therefore, in this operation process, when further micronization operation is performed, the resulting emulsion is narrowed to a uniform tendency, and the particle size distribution changes so that the peak value [P] shifts to the left. There was an effect of easily obtaining a homogeneous solution. Specifically, FIG. 12 shows a clear tendency. In the image diagram shown in FIG. 13, most of the particles have a particle diameter of 0.5 to 1 μm (large / small ratio: 1 / 0.5≈2). Yes, a narrow-band transition effect was obtained from the ultrafiltration effect by the SGP film quality showing a particle size distribution of 0.3 to 40 μm (magnitude ratio: 40 / 0.3≈13). Here, the display image is based on a microscope using a digital microscope GLB-B1500NB1 manufactured by Shimadzu Corporation, and the target solution is water 20 (substantially 19.8)%, light oil 80 (substantially 79.4)%, nonionic property. This was obtained when the mixed solution containing about 0.8% of the surfactant was passed twice through an ultrafiltration hole having a plate thickness of 1 mm, a linear pore size of 1 μm, and a total length of 10 μm. It is an enlarged photograph of a liquid grain. And from this image figure, the particle size molecule | numerator of 1 micrometer or more cannot be observed especially. From the numerical tendency indicated by the linear holes and the liquid fine particles, when aiming at “mixed liquid miniaturization”, there is an effect that the liquid particle state can be predicted by determining the linear hole conditions.

図4は、本発明前処理法の付属装置を説明するもので、(A)はその基本構造を側断面によって示す全体図、(B)は基本構造における粒子化状態を示す部分側断面図、(C)は粒子化開口部分を示す部分平面図、図5は、同じくその細部を説明してその開孔構造を示す部分側断面図、図6は、同じくその装置の1実施例を説明するもので、複層細孔板を示す部分側断面図、図8は、同じくその有孔部極微細孔形状の実施例を説明し、(A)は線状孔形状を示す部分平面図、(B)は基本孔形状を示す部分平面図、そして図11は、同じくその装置の合成ユニット構成を説明するもので、その実施例を示す模式図である。
本発明付属装置の実施例1は、図4(A)に示すように、流入管と流出管との間に膨脹管部を形成する密閉状の外ケース12と、流入管側スペースの流入域▲1▼と、流出管に一端を開放し他端を閉じて設ける流出域▲2▼とを区画する仕切り板に孔加工を施して微粒子化部9を形成、配設して、微粒子化装置10を構成したものである。該微粒子化部は、主材が鋼板製でほぼ円筒状を形成し、前記孔加工部分を介して処理液を通液するとき、限外ろ過操作を行う。なお孔加工は、レーザーや半導体加工技術を手段に用いて開口する。
ここに、付属装置単体を工程中に用いる場合に微粒子化装置10といい、該微粒子化装置が複数、組み合わせて微粒子化装置全体を示す場合には装置セットないし装置ユニット21といい、該ユニットを構成する一つの装置単位に対しては、装置本体10と称する。
微粒子化部9は、同図(B)に示すように、丸や角状の貫通細孔を複数開口する鋼板製支持板8aにシリコンや四弗化エチレン重合樹脂(商標名テフロン)などから成る軟質膜8を貼着して添わせ、該軟質膜の微細孔15aは前記支持板の貫通細孔の外径より小径とする、線状孔にて開口する。
4A and 4B are diagrams for explaining an attachment device of the pretreatment method of the present invention, in which FIG. 4A is an overall view showing the basic structure by a side cross section, and FIG. 4B is a partial side cross sectional view showing a particle state in the basic structure. (C) is a partial plan view showing the graining opening, FIG. 5 is a partial side sectional view showing the opening structure of the same, explaining the details thereof, and FIG. 6 is also explaining an embodiment of the apparatus. FIG. 8 is a partial cross-sectional view showing a multilayered porous plate, FIG. 8 explains an embodiment of the perforated portion ultrafine pore shape, and (A) is a partial plan view showing a linear pore shape. B) is a partial plan view showing the basic hole shape, and FIG. 11 is a schematic view showing the embodiment, similarly explaining the composition unit configuration of the apparatus.
As shown in FIG. 4 (A), the first embodiment of the accessory device of the present invention includes a sealed outer case 12 that forms an expansion pipe portion between an inflow pipe and an outflow pipe, and an inflow area of the inflow pipe side space. A microparticulation device 9 is formed and arranged by drilling holes in a partition plate that divides (1) and an outflow region (2) provided with one end open to the outflow pipe and the other end closed. 10 is constituted. The fine particle part is made of a steel plate and has a substantially cylindrical shape, and performs an ultrafiltration operation when the treatment liquid is passed through the hole processed part. The hole processing is performed by using a laser or semiconductor processing technique as a means.
Here, when the accessory device alone is used in the process, it is referred to as a micronizing device 10, and when a plurality of micronizing devices are combined to indicate the entire micronizing device, it is referred to as a device set or device unit 21. A single device unit is referred to as a device body 10.
As shown in FIG. 2B, the fine particle part 9 is made of a steel plate support plate 8a having a plurality of round and square through-holes and made of silicon, tetrafluoroethylene polymer resin (trade name: Teflon), or the like. The soft film 8 is stuck and attached, and the fine holes 15a of the soft film are opened by linear holes whose diameter is smaller than the outer diameter of the through-holes of the support plate.

同図(C)に示すように、該微細孔は幅d、長さWの原則、線状孔であり、図5に示すように、縦断面孔周りに、入口側の上側バリu1、内部凹凸u2、出口側の下側バリu3を、単層細孔板9aに残置させた極微細孔15である。ここに該単層細孔板の極微細孔は、原則全て線状孔15aに加工し、丸系孔15bの加工は例外的に付設するものである。ここに丸系孔とは、真円、楕円、変形円や変形楕円の形状をした開口を指す。
付属装置の実施例2において、微粒子化部9は、単層細孔板9aから成る以外に、図6に示すように、選択的に単層細孔板を二枚並置した複層細孔板9bを形成して、有孔壁体として構成する。該複層細孔板は、流入域▲1▼に面する前ろ過開口板20をスペーサ16を介して流出域▲2▼に面する単層細孔板9aと組み合わせて有孔壁体を構成したもので、該単層細孔板の細孔15a大きさdは前ろ過開口板細孔15b大きさDより小径になるように、孔配置を行っている。
複層細孔板9bの前ろ過開口板20には線状孔15aと丸系孔15b、いずれかの加工を選択的に行うが、単層細孔板9aからなる有孔壁体には、全て線状孔15aを加工する。これら微細孔の孔大きさは、前ろ過開口板20にあっては、線幅ないし丸径が20μm以下、単層細孔板9aの線状孔線幅は3μm以下とする。 細孔板9a、9bの加工孔15a、15bの形状は、基本的には図8(B)に示すように、(ホ)線状と(ヘ)丸系の貫通孔であり、孔の縦断面においてはほぼ矩形状断面をして、入口側から出口側へ向かって最短距離で貫通する開口である。
線状孔の形状は、平面的には図8(A)に、(イ)から(ニ)にかけて示すように、単純折れ線、交差線、曲線、山形線など、種々な形状の孔姿によって開口する。
As shown in FIG. 5C, the fine hole is basically a linear hole having a width d and a length W, and as shown in FIG. u2 is the ultrafine hole 15 in which the lower burr u3 on the outlet side is left on the single-layered pore plate 9a. Here, in principle, all the ultrafine holes of the single-layer perforated plate are processed into linear holes 15a, and the processing of the round holes 15b is exceptionally attached. Here, the round hole refers to an opening in the shape of a perfect circle, an ellipse, a deformed circle, or a deformed ellipse.
In Example 2 of the accessory device, the microparticulate portion 9 is composed of a single layer porous plate 9a, as shown in FIG. 9b is formed and configured as a perforated wall body. The multilayered porous plate comprises a perforated wall body by combining the prefiltration aperture plate 20 facing the inflow region (1) with the single-layered porous plate 9a facing the outflow region (2) via the spacer 16. Therefore, the pores are arranged so that the size d of the pores 15a of the single-layer pore plate is smaller than the size D of the prefiltration aperture plate pores 15b.
The pre-filtration aperture plate 20 of the multilayered porous plate 9b is selectively processed by either the linear hole 15a or the round hole 15b, but the perforated wall body composed of the single-layered porous plate 9a All the linear holes 15a are processed. With respect to the size of these fine holes, in the prefiltration aperture plate 20, the line width or round diameter is 20 μm or less, and the linear hole line width of the single-layer pore plate 9a is 3 μm or less. The shape of the processed holes 15a and 15b of the pore plates 9a and 9b is basically (e) linear and (f) round through-holes as shown in FIG. The surface is an opening having a substantially rectangular cross section and penetrating at a shortest distance from the inlet side to the outlet side.
As shown in FIG. 8 (A), from (A) to (D), the shape of the linear hole is opened by a hole shape of various shapes such as a simple broken line, an intersection line, a curved line, and a chevron line. To do.

このような構成の線状孔付き微粒子化部9を採用したので、該微粒子化部内部に通過させる溶液は、通過液入口の孔形状の大きさに原因して切断が起こる第一の作用と、溶液が有する表面張力や粒子内部応力で決まる液粒側条件と、液粒が受ける外力とが釣り合う境界域で、力の不均衡が生じたときに起こる液粒子の自己分断や線状孔姿形に原因する切断の第二の作用が決まる。それに孔のバリ作用による切断が第三の作用となり、孔内の強制枠内から流出域▲2▼へ送り出されて定まる液粒は、第二の作用によって液内圧が分断で小さくなった分、流出域▲2▼内での膨脹の割合が少なくなり、孔内圧から開放されて球形化する第四の作用が生じ、前記した原液粒調整時ばかりでなく、二液粒前調整においても同様に作用が働く。従って図12に示したように、液の粒径が安定して均一化する効果がある。
原液の混在物の9割は、通常、粘稠性物であり、それを効果的に減少させたり、液粒塊が大きく二回剪断が好ましい場合など、複層細孔板9bを用いる。この構造を選択すれば、原液の限外ろ過は効果的に行える。なお処理量がふえる場合、装置ユニット21を介して微粒子化し、W/O燃料設定量に容易に対応させることが出来る。
上述では、微粒子化部9における種々の加工バリuについて説明したが、線状孔15aや丸系孔15bそれぞれの孔大きさがcmやmmサイズの線幅や孔径であって、その孔接液部に残した加工バリによって、穴内に軟質異物を通過させて孔剪断、細片化させ、異物を無効化できる。従って軟質異物無効化機構のコア技術としても本発明装置は有効である。
Since the linear microparticulate part 9 having such a configuration is adopted, the solution that passes through the microparticulate part has a first action in which cutting occurs due to the size of the hole shape of the passage liquid inlet. In the boundary region where the liquid-side conditions determined by the surface tension and internal stress of the solution and the external force applied to the liquid particle are balanced, the self-segmentation and linear pore shape of the liquid particles that occur when a force imbalance occurs The second effect of cutting due to shape is determined. In addition, the cutting by the burr action of the hole becomes the third action, and the liquid particles determined by being sent out from the forced frame in the hole to the outflow area (2) are the amount that the liquid pressure is reduced by the second action, The ratio of expansion in the outflow area (2) is reduced, and a fourth action of releasing from the bore pressure to spheroidize occurs, and not only during the above-mentioned stock solution adjustment but also in the preparation of the second solution The action works. Therefore, as shown in FIG. 12, there is an effect that the particle size of the liquid is stabilized and uniform.
Ninety percent of the mixture of stock solutions is usually a viscous material, and the multi-layered pore plate 9b is used when it is effectively reduced or when the liquid particle mass is large and double shearing is preferred. If this structure is selected, ultrafiltration of the stock solution can be performed effectively. When the processing amount is increased, it can be made fine through the device unit 21 and can easily correspond to the W / O fuel set amount.
In the above description, the various processing burrs u in the microparticulate portion 9 have been described. However, the hole size of each of the linear hole 15a and the round hole 15b is a line width or a hole diameter of cm or mm, and the hole wetted liquid. By the processing burr remaining in the part, the soft foreign matter can be passed through the hole, and the hole can be sheared and cut into pieces to invalidate the foreign matter. Therefore, the device of the present invention is also effective as a core technology of the soft foreign matter invalidating mechanism.

図7は、本発明前処理法の付属装置の他の実施例を説明するもので、(A)は単層細孔板構造を示す部分側断面図、(B)は複層細孔板構造を示す部分側断面図、そして図9は、同じく装置の有孔部の他の実施例を説明するもので、(A)は開孔構造を示す部分側断面図、(B)は(A)のA−A′矢視図である。
図7に示すように、付属装置の実施例3は、微粒子化部を構成する細孔板9a、9bに、極微細孔15の孔周りにヒダないし突起14bを形成するものである。同図(A)に示す単層細孔板9aにおいては線状孔部分が、図示上方から下方に液流があるときに上側を凹にするヒダ付き開口板14を形成する。そのヒダや突起は、線幅dの孔周り全体が凹形状に形成して、渦流が生じる加工を行う。
同図(B)に示す複層細孔板9bでは、単層細孔板9aに開口する線状孔15aの大きさdより直径または線幅Dが充分大きな開口を設けた、丸系孔または線状孔15付きのヒダ付き開口板14を、前濾過開口板20の流入域▲1▼側に付設する。
図9に付属装置の実施例4を示す。これは複層細孔板の密着合板形であって、微粒子化部細孔板孔部分を平坦のまま、ヒダまたは突起14bを設けるものである。流入域▲1▼側にヒダ/突起部14aを位置させ、その内側に開口するのは丸系孔15bであって、ヒダ等はその配置を孔周りに環状に設け、ヒダが内側と外側では液粒に対し相互に遮蔽関係になるように配置される。丸系孔15b下側に前記軟質膜を貼着し、該膜に線状孔15aを前記丸系孔に重ね合わせるように開口させている。
FIGS. 7A and 7B illustrate another embodiment of the accessory device of the pretreatment method of the present invention, in which FIG. 7A is a partial side sectional view showing a single-layer pore plate structure, and FIG. FIG. 9 is a partial side cross-sectional view showing another embodiment of the perforated part of the apparatus, and FIG. 9 (A) is a partial side cross-sectional view showing an aperture structure, and FIG. It is an AA 'arrow directional view.
As shown in FIG. 7, in the third embodiment of the accessory device, pleats or projections 14 b are formed around the pores of the ultrafine holes 15 on the pore plates 9 a and 9 b constituting the fine particle part. In the single-layer pore plate 9a shown in FIG. 5A, the linear hole portion forms a pleated aperture plate 14 that is concave on the upper side when there is a liquid flow from the upper side to the lower side in the figure. The folds and protrusions are processed so that the entire periphery of the hole having the line width d is formed into a concave shape to generate a vortex.
In the multilayered porous plate 9b shown in FIG. 5B, a round hole or a hole having a diameter or a line width D sufficiently larger than the size d of the linear hole 15a opened in the single-layered porous plate 9a. A pleated aperture plate 14 with a linear hole 15 is attached to the inflow region {circle around (1)} side of the prefiltration aperture plate 20.
FIG. 9 shows an embodiment 4 of the accessory device. This is an adhesive plywood shape of a multilayered porous plate, and is provided with pleats or protrusions 14b while the fine particle portion porous plate hole portion remains flat. The crease / projection 14a is located on the inflow area (1) side, and the inside of the crease / opening 14a is a round hole 15b. It arrange | positions so that it may become a mutual shielding relationship with respect to a liquid particle. The soft film is attached to the lower side of the round hole 15b, and a linear hole 15a is opened in the film so as to overlap the round hole.

図10は、同じく装置の微粒子化部の別の実施例を説明する有孔部を示す部分側断面図である。同じく実施例5として、図10に示すのは、前記ヒダや突起加工に代え、単層開口板9aまたは密着合板形複層細孔板9bなどの流入域▲1▼側に、細孔板に離隔して吸着層17を設けるものである。該吸着層は、対象通過液が含有する微細な沈殿物質および懸濁物質等を捕捉する、沈着物質に親和性を持つ物質を含有する成形した吸着シート17aやビーズを吸着ネットまたは多孔質球状体として形成する、単層体または複層体から成る。吸着層17は、鋼製のネットや有孔板で形成する支持体18によって保持され、前記吸着層面に加わる通過液の圧力に耐えるように構成する。流出域▲2▼側に面する細孔板の貫通孔は線状孔15aである。  FIG. 10 is a partial side cross-sectional view showing a perforated portion for explaining another embodiment of the fine particle portion of the apparatus. Similarly, as Example 5, FIG. 10 shows, in place of the pleats and protrusions, on the inflow region {circle around (1)} side of the single-layer aperture plate 9a or the close-contact laminated ply-type multilayer pore plate 9b. The adsorption layer 17 is provided separately. The adsorption layer captures a fine adsorbed substance and a suspended substance contained in the target passage liquid, and adsorbs the formed adsorbing sheet 17a and beads containing a substance having an affinity for the depositing substance to an adsorbing net or a porous spherical body. It consists of a single layer or a multilayer. The adsorption layer 17 is held by a support 18 formed of a steel net or a perforated plate, and is configured to withstand the pressure of the passing liquid applied to the adsorption layer surface. The through hole of the fine plate facing the outflow region {circle around (2)} is a linear hole 15a.

これらを構成する吸着構造付き微粒子化部9は、ヒダ付開口板14に流れ込む原液1、2が、突起14b表面に衝突し、添って流れて孔15へ向かうので、当たった突起壁表面に含有する粘稠性沈着物質を捕捉するという作用が起こる。原液中のろ過阻害物質が閉塞する線状孔の線幅は、数十ミクロンからミクロン以下の大きさの狭小孔であり、この孔サイズによって線状孔はW/O燃料生成用の限外ろ過処理を行う。極微細孔15に付着する主な閉窄物はヌルヌルしたアルコール性粘着物であって、その中に微細な懸濁物質が取り込まれている。前記通過液が当たった場所が前記粘着物で被覆されれば、次からはその場所に含有沈着物質が付着し易くなって捕捉効果が高まる。
ヒダ付開口板14に代えまたはその開口板に付け加えて、吸着シート17aを配置すれば、予め使用原液の含有物質を検証しておくことは、微細な沈殿物質を含む有効な含有沈着物質の除去が効果的に行えて有益である。細孔板9a、9bに離隔して吸着層17を設けることは、線状孔を含む極微細孔15に流れ込む原液を、通過流れの乱れを平均化させる効果がある。
このように線状孔15a付き微粒子化部9を内部に構成した微粒子化装置本体10は、外ケース12内部に圧送された限外ろ過対象液は、貫通孔入口大きさと形状に原因して剪断される第一の作用と、孔中に進入した液粒の内部応力や保有表面張力や粘性の、対象液側条件と、外力と濡れ面係数などの孔内壁材物性条件とが決める境界域で、両者に不均衡が生じたときに液粒側に生じる自己分断や線状孔姿形に原因する切断などの第二の作用、孔のバリu1〜u3が原因する切断の第三の作用、孔内で分断が生じた場合に、液内圧が小さくなる分、孔出口から開放されて液粒が膨脹する割合が二次元容積から三次元体積の球形に変化する第四の作用が生じ、大きな粒径が混在しない環境を生む効果がある。
そして図13に前記した液粒観察から分散が均一化するという効果、また界面調整が再調整され、均質化するという傾向も得られる。
また原液に粘稠性内在物が懸濁している場合や対象液が大小二回の剪断が好ましい場合、複層細孔板9bを用いれば、線状孔15bの閉塞原因を減少させる効果がある。なお、加工バリu付き貫通孔15を線幅や丸孔径がcmやmmサイズにして、視認可能の軟質物が生物の場合、それを孔貫通させて、細断併用のろ過を行い、軟質物を無効化できる効果がある。
本発明付属装置に液通過させて限外ろ過する場合、予め前処理で原液粒調整を1回以上行って、本処理工程で行う二液粒前調整を加えれば、生成工程全体で二回以上限外ろ過することになり、微粒子化効果の向上に大いに役立つのは確実である。
The finely divided part 9 having an adsorption structure constituting these components contains the liquid stocks 1 and 2 flowing into the pleated aperture plate 14 because they collide with the surface of the projection 14b and flow to the hole 15 so The action of trapping viscous deposits occurs. The line width of the linear hole that is blocked by the filtration inhibitor in the stock solution is a narrow hole with a size of several tens of microns to less than a micron, and the linear hole becomes an ultrafiltration for generating W / O fuel depending on the hole size. Process. The main constricted matter adhering to the ultrafine holes 15 is a slimy alcoholic adhesive, in which fine suspended substances are incorporated. If the place where the passing liquid hits is covered with the adhesive, the deposited substance is likely to adhere to the place and the trapping effect is enhanced.
If the suction sheet 17a is arranged in place of or in addition to the pleated aperture plate 14, the material contained in the used stock solution is verified in advance to remove effective contained deposited material including fine precipitated material. Is effective and useful. Providing the adsorbing layer 17 apart from the pore plates 9a and 9b has an effect of averaging the disturbance of the passing flow of the stock solution flowing into the ultrafine holes 15 including linear holes.
In this way, the micronizer main body 10 having the micronization part 9 with the linear holes 15a inside is subjected to shearing of the ultrafiltration target liquid fed into the outer case 12 due to the size and shape of the through-hole inlet. In the boundary region determined by the first action to be performed, the conditions of the target liquid side of the internal stress, retained surface tension, and viscosity of the liquid particle that has entered the hole, and the physical properties of the inner wall material such as the external force and wettability coefficient , A second action such as self-cutting that occurs on the liquid particle side when an imbalance occurs between them or a cutting caused by a linear hole shape, a third action of cutting caused by burrs u1 to u3 of the hole, When a break occurs in the hole, there is a fourth effect in which the ratio of the liquid particle expanding from the hole outlet to expand from the two-dimensional volume to the three-dimensional volume is reduced by the amount that the liquid pressure decreases. It has the effect of creating an environment where particle sizes are not mixed.
And the effect that dispersion | distribution becomes uniform from the above-mentioned liquid particle observation in FIG. 13, and the tendency that interface adjustment is readjusted and homogenized are also acquired.
In addition, when the viscous intrinsic substance is suspended in the stock solution or when the target liquid is preferably sheared twice in size, the use of the multilayered pore plate 9b has an effect of reducing the cause of the blockage of the linear holes 15b. . In addition, when the through-hole 15 with the processing burr 15 has a line width or a round hole diameter of cm or mm, and a visible soft substance is a living thing, the hole is penetrated and filtration is performed in combination with shredding. There is an effect that can be invalidated.
When ultrafiltration is performed by passing the liquid through the accessory apparatus of the present invention, if the raw liquid particle adjustment is performed once or more in advance in the pretreatment, and the two liquid particle preconditioning performed in the present treatment process is added, the entire production process is performed twice or more. The ultrafiltration will surely help greatly improve the effect of atomization.

ここに、重油と軽油を用いた実施例を、液膜乳化法を用いて得た比較例と比べた。その結果を下記の表に示す。  Here, the example using heavy oil and light oil was compared with the comparative example obtained using the liquid film emulsification method. The results are shown in the table below.

Figure 2009046645
Figure 2009046645

表1において、本発明の付属装置は、比較例の2〜4倍の圧入加圧力となった。原液に対する前処理微粒子化を10μm前後のピーク値[P]になる液膜化処理を行った。すると、図12に示した当初点線表示分布をしていた多峰性分布が、単峰性化した。ここに比較例は、SGP膜による液膜乳化法によって得た試料によるもので、多峰性分布は単峰性化しなかった。さらに本操作処理をして得たW/O燃料の保留期間中、原液の凝集、すなわちクリーミングによって、ほぼ生成1週間以内で分散現象が生じた。一方、本操作後のW/O燃料を生成から消費まで約1ヶ月保留したが、その性状はほぼ初期状態にあり、その燃焼操作時の炎の状態は、製造直後状態と違いはなく、燃焼温度も一定であった。  In Table 1, the attachment device of the present invention had a press-fitting pressure 2 to 4 times that of the comparative example. A pretreatment micronization for the stock solution was performed to form a liquid film having a peak value [P] of about 10 μm. As a result, the multimodal distribution that was initially dotted line display distribution shown in FIG. 12 has become unimodal. Here, the comparative example is based on a sample obtained by a liquid film emulsification method using an SGP film, and the multimodal distribution was not unimodal. Further, during the holding period of the W / O fuel obtained by this operation treatment, a dispersion phenomenon occurred within approximately one week due to aggregation of the stock solution, that is, creaming. On the other hand, the W / O fuel after this operation was held for about one month from generation to consumption, but its properties are almost in the initial state, and the state of the flame at the time of the combustion operation is not different from the state immediately after manufacture, and combustion The temperature was also constant.

本発明の前処理技術は、原液段階に混合する対象液の粒径を揃えてから混合処理段階に移行するという利点を示したので、この利点は燃料系エマルション生成の前処理に限らず、微細粉末と乳液を混和させる化粧乳液生成や医学上の微細化工法に用いて、均質な処理液や超薄層の被膜を得るのに適用できる。その微粒子化の際に薄鋼板に線状孔加工をした限外ろ過による微粒子化手段を用いる利点を加えたので、限外ろ過対象液のpH値の如何に係わらず、微粒子化操作が行えると共に、特定対象液ばかりでなく広く適用物質範囲を拡げて選択し微粒子化が行える。従って、微粒子化して品質を向上したい流動性溶液の改質手法として、おおいに役立つ。その上、加工バリ付き線状孔は、孔中に軟質異物を通過させて微粉砕して、有害異物を無害細片にする手段としても役立つ。  The pretreatment technique of the present invention has shown the advantage of shifting to the mixing treatment stage after aligning the particle sizes of the target liquids to be mixed in the stock solution stage. It can be applied to the production of a cosmetic emulsion in which a powder and an emulsion are mixed, and to a medical refinement method to obtain a uniform treatment solution and an ultrathin film. In addition to the advantage of using ultrafiltration micronization means in which a thin steel plate is processed with a linear hole during the micronization, the micronization operation can be performed regardless of the pH value of the ultrafiltration target liquid. In addition to specific target liquids, a wide range of applicable substances can be selected to make fine particles. Therefore, it is very useful as a modification method for a fluid solution that is desired to be finely divided to improve quality. In addition, the linear hole with a processed burr also serves as a means for passing a soft foreign substance into the hole and finely pulverizing the harmful foreign substance into harmless fine pieces.

本発明に係る低濃度排ガス燃料系エマルション生成前処理法において、低可燃性液に対して行う基本工程を説明するもので、(A)はその基本工程の実施例を示すブロック図、(B)は電磁気的補助処理を加える実施例を示すブロック図、(C)は混合液微粒子化処理を加える実施例を示すブロック図である。The basic process performed with respect to a low combustible liquid in the low concentration exhaust gas fuel type | system | group emulsion pre-processing method which concerns on this invention is demonstrated, (A) is a block diagram which shows the Example of the basic process, (B) FIG. 6 is a block diagram showing an embodiment in which electromagnetic auxiliary processing is added, and FIG. 6C is a block diagram showing an embodiment in which mixed liquid micronization processing is added. 本発明前処理法の別の工程実施例を説明するもので、(A)は界面活性剤補助処理を加える実施例を示すブロック図、(B)は混合前液全てに微粒子化処理を加える実施例を示すブロック図、(C)は助剤添加に代え混合液に微粒子化処理を加える実施例を示すブロック図である。FIG. 2 is a block diagram showing an embodiment in which a surfactant auxiliary treatment is added, and FIG. 4B is an implementation in which a micronization treatment is added to all the pre-mixing solutions. The block diagram which shows an example, (C) is a block diagram which shows the Example which replaces with auxiliary agent addition and adds the micronization process to a liquid mixture. 同じく他の実施例を説明するもので、混合前液全てと混合液に適用する全ての補助処理を加える実施例を示すブロック図である。FIG. 11 is a block diagram showing another embodiment, in which all the pre-mixing liquid and all auxiliary processes applied to the mixed liquid are added. 本発明前処理法の付属装置を説明するもので、(A)はその基本構造を側断面によって示す全体図、(B)は基本構造における粒子化状態を示す部分側断面図、(C)は粒子化開口部分を示す部分平面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining an auxiliary device of the pretreatment method of the present invention. It is a fragmentary top view which shows a particle-ized opening part. 本発明付属装置の細部を説明するもので、開孔構造を示す部分側断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial side cross-sectional view for explaining details of an auxiliary device of the present invention and showing an opening structure. 本発明付属装置の1実施例を説明するもので、複層細孔板を示す部分側断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial side cross-sectional view illustrating a multilayer porous plate for explaining one embodiment of an accessory device of the present invention. 本発明付属装置の他の実施例を説明するもので、(A)は単層細孔板構造を示す部分側断面図、(B)は複層細孔板構造を示す部分側断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial side cross-sectional view showing a single-layer pore plate structure, and FIG. . 本発明付属装置の有孔部極微細孔形状の実施例を説明するもので、(A)は線状孔形状を示す部分平面図、(B)は基本孔形状を示す部分平面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial plan view showing a linear hole shape, and FIG. 4B is a partial plan view showing a basic hole shape. 本発明付属装置有孔部の他の実施例を説明するもので、(A)は開孔構造を示す部分側断面図、(B)は(A)のA−A′矢視図である。The other examples of the perforated part of the accessory device of the present invention will be described. (A) is a partial side sectional view showing an opening structure, and (B) is a view taken along the line AA ′ of (A). 本発明付属装置微粒子化部の別の実施例を説明する有孔部を示す部分側断面図である。It is a fragmentary sectional side view which shows the perforated part explaining another Example of this invention attachment apparatus microparticulation part. 本発明付属装置の合成ユニット構成を説明するもので、その実施例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram illustrating an example of the composition unit configuration of an auxiliary device of the present invention. 本発明前処理法の機能を説明するもので、その微粒子効果を示す比較図である。It explains the function of the pretreatment method of the present invention, and is a comparative view showing the fine particle effect. 本発明前処理法を適用した直後の生成エマルション像を説明するもので、その1実施例の顕微鏡写真を示すイメージ図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an image of a formed emulsion immediately after applying the pretreatment method of the present invention, and is an image diagram showing a micrograph of one example thereof. 従来技術を説明する燃料系エマルション生成処理工程の概要ブロック図である。It is a general | schematic block diagram of the fuel type | system | group emulsion production | generation process explaining a prior art. 従来技術の限外ろ過孔構造を説明するもので、(A)は多孔質ガラス質膜ろ過孔を示す部分縦断面模式図、(B)はポーラス膜質ろ過孔を示す部分平面模式図である。The ultrafiltration hole structure of a prior art is demonstrated, (A) is a partial longitudinal cross-section schematic diagram which shows a porous vitreous membrane filtration hole, (B) is a partial plane schematic diagram which shows a porous membrane filter hole. ろ過液の粒径分布に対応する燃焼特性を説明するもので、粒径分布特性に係るエクセルギー領域の模式比較図である。It explains combustion characteristics corresponding to the particle size distribution of the filtrate, and is a schematic comparison diagram of exergy regions related to the particle size distribution characteristics.

符号の説明Explanation of symbols

1 低可燃性液(水)
1a、2a,3a 粒子化液(低可燃性液の)
2 可燃性液(油、油性剤)
3 混合処理
3a 混合液(粒子化)
4 界面活性剤/助剤
5 微粒子化操作(〜処理)
5a 原液粒調整
5b 二液粒前調整
6 磁性体付設流路
7 攪拌/調整/混和処理
8 軟質膜
9 微粒子化部
9a 単層細孔板
9b 複層細孔板
10、10a、10b 微粒子化装置
14 ヒダ付開口板
15a 線状孔
17 吸着剤層
18 有孔支持体
19 生成操作(エマルションの)
20 前濾過開口板
21 装置ユニット
▲1▼ 流入域
▲2▼ 流出域
d 幅(線状孔)
u1、u3 加工バリ(加工残置部分)
1 Low flammable liquid (water)
1a, 2a, 3a Granulated liquid (of low flammable liquid)
2 Flammable liquid (oil, oil-based agent)
3 Mixing process 3a Mixture (particulate)
4 Surfactant / auxiliary agent 5 Microparticulation operation (~ treatment)
5a Raw liquid particle adjustment 5b Two-liquid particle pre-adjustment 6 Magnetic material-attached flow path 7 Stirring / adjustment / mixing process 8 Soft film 9 Fine particle part 9a Single-layer pore plate 9b Multi-layer pore plate 10, 10a, 10b Fine particle generator 14 Opening plate with fold 15a Linear hole 17 Adsorbent layer 18 Perforated support 19 Production operation (for emulsion)
20 Pre-filter aperture plate 21 Device unit (1) Inflow area (2) Outflow area d Width (Linear hole)
u1, u3 processing burr (remaining processing part)

Claims (6)

水などの低可燃性液を可燃性液と混合する際に、原液から沈殿性物質を除去し、混合原液の軟化確認処理と、攪拌、磁気照射などの物理的処理と各種化学性剤注入操作を行って、代替燃料を製造する低濃度排ガス燃料系エマルション生成前処理法において、
前処理操作が、混合操作を行う前に少なくとも低可燃性原液(1)の限外濾過(5)処理と、個々の他の混和対象原液(1、2)に対して選択的に限外濾過(5)操作を行い、それら原液の粒子化液(1aないし2a)の原液粒径が約30ミクロン以下、好ましくは10ミクロン以下に粒径分布スペクトルピーク値を得る1ないし2以上の回数、原液を微粒子化する操作であることを特徴とする低濃度排ガス燃料系エマルション生成前処理法。
When mixing low flammable liquids such as water with flammable liquids, the precipitating substances are removed from the stock solution, softening confirmation processing of the mixed stock solution, physical treatment such as stirring and magnetic irradiation, and various chemical agent injection operations In the pretreatment method for producing a low-concentration exhaust gas fuel emulsion to produce an alternative fuel,
Before the mixing operation is performed, the ultrafiltration (5) treatment of at least the low flammable stock solution (1) and the selective ultrafiltration selectively for each other undiluted stock solution (1, 2) (5) One or more times to obtain the particle size distribution spectrum peak value when the operation is performed and the particle size of the particle solution (1a to 2a) of these undiluted solutions is about 30 microns or less, preferably 10 microns or less. A pretreatment method for producing a low-concentration exhaust gas fuel emulsion, characterized in that it is an operation to make a fine particle.
請求項1記載の限外濾過を行う付属装置であって、混和対象の原液(1、2)の入口配管口座を有する密閉状の外ケース(1a)と、そのケース内空間を、原液を導入する流入域(▲1▼)と、貫通孔(15)付き有孔壁体(9a、9b)によって限外濾過した微粒子化液を導入する流出域(▲2▼)とを形成する微粒子化部(9)と、該流出域に出口配管口座とを配設して形成する微粒子化装置(10)を構成し、かつ単数細孔板または複数重層に形成する細孔板から成る有孔壁体(9a、9b)を配設する微粒子化部(9)を形成するとともに、形状が線状孔(15a)である貫通孔(15)を加工する細孔板をろ過主体とする微粒子化部(9)を構成することを特徴とする付属装置。  The auxiliary device for performing ultrafiltration according to claim 1, wherein the stock solution is introduced into the sealed outer case (1a) having an inlet piping account of the stock solution (1, 2) to be mixed and the space in the case. Part to form an inflow region (1) that flows through and an outflow region (2) that introduces the micronized liquid ultrafiltered by the perforated walls (9a, 9b) with through holes (15) (9) and a perforated wall body comprising a fine particle device (10) formed by disposing an outlet pipe account in the outflow region, and comprising a single porous plate or a porous plate formed in multiple layers (9a, 9b) is formed as a fine particle part (9), and a fine particle part (mainly a fine plate for processing a through hole (15) whose shape is a linear hole (15a) (15a). 9) Attached device characterized by constituting. 微粒子化部(9)配設の細孔板に開口する線状孔(15a)が、その開口幅を約20ミクロン以下、好ましくは3ミクロン以下とすることを特徴とする請求項2記載の付属装置。  Attachment according to claim 2, characterized in that the linear hole (15a) opening in the fine plate provided with the fine particle part (9) has an opening width of about 20 microns or less, preferably 3 microns or less. apparatus. 微粒子化装置の微粒子化部(9)が、有孔壁体(9a、9b)に開口する貫通孔(15)に加工バリを付設した成形孔を有する構成である請求項2記載の付属装置。  The accessory device according to claim 2, wherein the atomizing part (9) of the atomizing device has a forming hole in which a processing burr is attached to a through hole (15) opened in the perforated wall body (9a, 9b). 微粒子化装置の微粒子化部(9)が、流入域(▲1▼)側に突出状に形成するヒダ様突起(14a)を孔周りの加工面に有する有孔体(9)、または有孔壁体(9a、9b)の流入域(▲1▼)側に吸着シート(17a)を付設する吸着構造(14、17)を付設して、通過液含有沈着物質を付着可能の構造を加えた構成にすることを特徴とする請求項2記載の付属装置。  The micronized part (9) of the micronizing device has a perforated body (9) having a ridge-like protrusion (14a) formed in a protruding shape on the inflow region (1) side on the processing surface around the hole, or perforated An adsorbing structure (14, 17) for attaching an adsorbing sheet (17a) to the inflow region (1) side of the wall (9a, 9b) is added, and a structure capable of adhering a deposit containing the passing liquid is added. The attachment device according to claim 2, wherein the attachment device is configured. 微粒子化装置(10)が、直列に複数連結状にセット化して配設可能にするとともに、混和対象液(1、2)の処理混和量に応じてセット化した微粒子化装置本体を並列に複数連結状にユニット化し、該ユニット化した装置本体へ被処理液が均一に分配可能に構成することを特徴とする請求項2および5記載の付属装置。  A plurality of atomization devices (10) can be arranged and connected in series in series, and a plurality of atomization device bodies set in accordance with the amount of mixing of the liquids to be mixed (1, 2) are arranged in parallel. 6. The accessory device according to claim 2 or 5, characterized in that the unit liquid is unitized and the liquid to be processed can be uniformly distributed to the unitized apparatus main body.
JP2007241560A 2006-08-22 2007-08-21 Pretreatment method for formation of low-concentration exhaust gas fuel-based emulsion and attachment device Pending JP2009046645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241560A JP2009046645A (en) 2006-08-22 2007-08-21 Pretreatment method for formation of low-concentration exhaust gas fuel-based emulsion and attachment device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006253457 2006-08-22
JP2007212486 2007-07-20
JP2007241560A JP2009046645A (en) 2006-08-22 2007-08-21 Pretreatment method for formation of low-concentration exhaust gas fuel-based emulsion and attachment device

Publications (1)

Publication Number Publication Date
JP2009046645A true JP2009046645A (en) 2009-03-05

Family

ID=40499158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241560A Pending JP2009046645A (en) 2006-08-22 2007-08-21 Pretreatment method for formation of low-concentration exhaust gas fuel-based emulsion and attachment device

Country Status (1)

Country Link
JP (1) JP2009046645A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147842A (en) * 2014-02-05 2015-08-20 地方独立行政法人青森県産業技術センター Emulsion fuel, method for producing the same, and combustion equipment for emulsion fuel
WO2016046925A1 (en) * 2014-09-25 2016-03-31 株式会社ワールドビジネス Microemulsion production device
WO2017208459A1 (en) * 2016-06-03 2017-12-07 株式会社エバーグリーン Fuel mixing device
WO2019218312A1 (en) * 2018-05-17 2019-11-21 Fontem Holdings 1 B.V. Atomization system for electronic cigarette

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147842A (en) * 2014-02-05 2015-08-20 地方独立行政法人青森県産業技術センター Emulsion fuel, method for producing the same, and combustion equipment for emulsion fuel
WO2016046925A1 (en) * 2014-09-25 2016-03-31 株式会社ワールドビジネス Microemulsion production device
WO2017208459A1 (en) * 2016-06-03 2017-12-07 株式会社エバーグリーン Fuel mixing device
WO2019218312A1 (en) * 2018-05-17 2019-11-21 Fontem Holdings 1 B.V. Atomization system for electronic cigarette

Similar Documents

Publication Publication Date Title
Hubadillah et al. A novel green ceramic hollow fiber membrane (CHFM) derived from rice husk ash as combined adsorbent-separator for efficient heavy metals removal
Lin et al. Emulsification characteristics of three-and two-phase emulsions prepared by the ultrasonic emulsification method
Panpanit et al. The role of bentonite addition in UF flux enhancement mechanisms for oil/water emulsion
Kundu et al. Removal of emulsified oil from oily wastewater (oil-in-water emulsion) using packed bed of polymeric resin beads
JP2009046645A (en) Pretreatment method for formation of low-concentration exhaust gas fuel-based emulsion and attachment device
DE112011102094T5 (en) Modular filter elements for use in a filter-in-filter cartridge
DE2846462A1 (en) METHOD AND DEVICE FOR EMULSIONING WITH ULTRASOUND
Guha et al. Separating nanoscale emulsions: Progress and challenges to date
JP2008063355A (en) Method for producing w/o-type emulsion fuel and apparatus for producing w/o-type emulsion fuel
JP2008214546A (en) Method and apparatus for producing emulsion fuel
Zhou et al. Evaluation of electrowet coalescer in series with PVDF-HFP electrospun fiber membranes for separation of water from ULSD
US6030424A (en) Water-in-oil emulsion fuel oil production system
Turk et al. A simple and green preparation of red mud-coated membrane for efficient separation of oil-in-water emulsions
Hu et al. Fibrous coalescer for the treatment of hydrometallurgical oil dispersions
Kazemi Abadshapoori et al. Static and dynamic investigation of effective parameters on water injection performance in the presence of nanofluids
Krasiński et al. Effect of fiber surface modifications on the coalescence performance of polybutylene terephthalate filter media applied for the water removal from the diesel fuel
DE102018211641A1 (en) Device and method for producing particles
Schramm Nano-and Microtechnology from A-Z: From Nanosystems to Colloids and Interfaces
Shakeel et al. Removal of xylenol orange from its aqueous solution using SDS self-microemulsifying systems: optimization by Box–Behnken statistical design
DE102018211650A1 (en) Particle manufacturing apparatus
Wang et al. Simultaneously demulsification and coalescence deoiling of O/W emulsion by a zeolite composite material
US20230134670A1 (en) Method and apparatus for producing emulsion
JP2006281123A (en) Oil/water separator
Jing et al. Monodispersed W/O emulsion prepared by hydrophilic ceramic membrane emulsification
WO2020122042A1 (en) Method for producing mixture containing liquid, gas, or solid with regulated fine particle diameter