JP2009046344A - Method for preparing sol - Google Patents

Method for preparing sol Download PDF

Info

Publication number
JP2009046344A
JP2009046344A JP2007213144A JP2007213144A JP2009046344A JP 2009046344 A JP2009046344 A JP 2009046344A JP 2007213144 A JP2007213144 A JP 2007213144A JP 2007213144 A JP2007213144 A JP 2007213144A JP 2009046344 A JP2009046344 A JP 2009046344A
Authority
JP
Japan
Prior art keywords
zinc
ion
sol
producing
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007213144A
Other languages
Japanese (ja)
Other versions
JP5131824B2 (en
Inventor
Naofumi Kamikawa
直文 上川
Akinori Yamazaki
晃範 山崎
Kazuyuki Kakegawa
一幸 掛川
Takashi Kojima
小島  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2007213144A priority Critical patent/JP5131824B2/en
Publication of JP2009046344A publication Critical patent/JP2009046344A/en
Application granted granted Critical
Publication of JP5131824B2 publication Critical patent/JP5131824B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing a sol containing zinc oxide fine particles whose property of emitting fluorescence is improved much more. <P>SOLUTION: The method for preparing the sol containing zinc oxide fine particles comprises the steps of: dispersing zinc hydroxide and a cation in a solution containing at least one of di- or more-valent alcohol and alkyl ether; and heat-treating the resulting solution. As a result, the sol containing zinc oxide fine particles whose property of emitting fluorescence is improved much more can be provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、酸化亜鉛微粒子を含有するゾルの製造方法に関する。   The present invention relates to a method for producing a sol containing zinc oxide fine particles.

酸化亜鉛(ZnO)は、その結晶構造に含まれる格子欠陥により紫外線照射又は電子線照射によって蛍光を発光することが知られている。この蛍光の発光は現在様々な製品への応用が期待されており、例えばフラットパネルディスプレイ用発光体として発光型表示デバイスに応用されている。   Zinc oxide (ZnO) is known to emit fluorescence by ultraviolet irradiation or electron beam irradiation due to lattice defects contained in its crystal structure. This fluorescent light emission is currently expected to be applied to various products. For example, it is applied to a light emitting display device as a light emitter for a flat panel display.

ところで、酸化亜鉛を製品に応用するためには均一であることが重要である。例えばフラットパネルディスプレイ用発光体として用いる場合、基板上に如何に均一な薄膜を形成するかがポイントとなる。   By the way, in order to apply zinc oxide to products, it is important to be uniform. For example, when used as a light emitter for a flat panel display, the point is how to form a uniform thin film on a substrate.

基板上に均一な薄膜を形成する方法として、例えば酸化亜鉛又はその前駆体を分散した溶液を基板に塗布し、乾燥させる方法が挙げられる。これは複雑な工程を必要とせず非常に簡便な方法であり、低コスト化にも極めて有用である。   As a method for forming a uniform thin film on a substrate, for example, a method in which a solution in which zinc oxide or a precursor thereof is dispersed is applied to the substrate and dried is cited. This is a very simple method that does not require a complicated process, and is extremely useful for cost reduction.

上記方法に好適に用いることができると考えられる公知の技術として、例えば下記特許文献1には、水酸化亜鉛を、2価以上の多価アルコール又はアルキルエーテルに分散させて加熱処理する方法が開示されている。   As a known technique that can be suitably used for the above-described method, for example, Patent Document 1 below discloses a method in which zinc hydroxide is dispersed in a dihydric or higher polyhydric alcohol or alkyl ether and subjected to heat treatment. Has been.

特開2007−070188号公報JP 2007-070188 A

確かに、上記特許文献1に記載の技術を用いると、非常に小さな酸化亜鉛微粒子を含有するゾルを得ることができる。しかしながら、上記特許文献1には蛍光発光特性において検討すべき余地を残している。   Certainly, when the technique described in Patent Document 1 is used, a sol containing very small zinc oxide fine particles can be obtained. However, the above-mentioned Patent Document 1 leaves room for studying fluorescence emission characteristics.

そこで、本発明は、より蛍光発光特性が改善された酸化亜鉛微粒子を含有するゾルの製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for producing a sol containing zinc oxide fine particles having further improved fluorescence emission characteristics.

本発明者らは、上記課題について鋭意検討を行っていたところ、水酸化亜鉛と陽イオンを多価アルコール及びアルキルエーテルの少なくともいずれかを有する溶液に分散させ、加熱処理することで蛍光発光特性が格段に改良されることを見出し、本発明を想到するに至った。   The inventors of the present invention have been diligently studying the above-mentioned problem. As a result, zinc hydroxide and a cation are dispersed in a solution containing at least one of a polyhydric alcohol and an alkyl ether, and heat treatment is performed, whereby fluorescence emission characteristics are obtained. The inventors have found that the present invention can be remarkably improved and have come up with the present invention.

即ち、本発明の一手段に係るゾルの製造方法は、水酸化亜鉛と陽イオンを、2価以上の多価アルコール及びアルキルエーテルの少なくともいずれかを含む溶液に分散し、加熱処理する。   That is, in the method for producing a sol according to one means of the present invention, zinc hydroxide and a cation are dispersed in a solution containing at least one of a dihydric or higher polyhydric alcohol and an alkyl ether, followed by heat treatment.

本発明によると、より蛍光発光特性を改善することが可能な酸化亜鉛微粒子を含有するゾルを提供することができる。この原理については不明な点もあるが、水酸化亜鉛を多価アルコール溶液中又はアルキルエーテル中で加熱処理する際に陽イオンを共存させることで、酸化亜鉛結晶構造生成時に陽イオンの結晶格子への取り込み速度が速くなり、酸素欠陥など結晶格子中の欠陥構造格の導入が促進され、この結晶格子中の欠陥構造により酸化亜鉛の蛍光発光特性や電気電導特性が格段に改善されると考えられる。   According to the present invention, it is possible to provide a sol containing zinc oxide fine particles capable of further improving fluorescence emission characteristics. Although there is an unclear point about this principle, the presence of cations when zinc hydroxide is heat-treated in a polyhydric alcohol solution or alkyl ether allows the cation crystal lattice to be formed during the formation of a zinc oxide crystal structure. The incorporation rate of defects such as oxygen defects is promoted in the crystal lattice, and the defect structure in the crystal lattice is thought to significantly improve the fluorescence and electrical conductivity characteristics of zinc oxide. .

以下、本発明の実施の形態について、詳細に説明するが、本発明は多くの異なる態様による実施が可能であり、以下に示す実施形態、実施例の記載そのものに限定されるものでないことはいうまでもない。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention can be implemented in many different modes and is not limited to the description of the embodiments and examples shown below. Not too long.

本実施形態は、ゾルの製造方法に係るものであり、本実施形態に係るゾルの製造方法は、水酸化亜鉛と陽イオンを、2価以上の多価アルコール及びアルキルエーテルの少なくともいずれかを含む溶液に分散し、加熱処理することを特徴の一つとする。   The present embodiment relates to a sol manufacturing method, and the sol manufacturing method according to the present embodiment includes zinc hydroxide and a cation, at least one of a dihydric or higher polyhydric alcohol and an alkyl ether. One feature is that it is dispersed in a solution and heat-treated.

本実施形態において水酸化亜鉛は限定されるわけではないが上記溶液に対し、0.001mol/l以上0.5mol/l以下の範囲であることが好ましい。0.001mol/l以上とすることで酸化亜鉛の生成反応を速めることができ、0.5mol/l以下とすることで生成した酸化亜鉛粒子の凝集を抑制することができる。   In the present embodiment, zinc hydroxide is not limited, but it is preferably in the range of 0.001 mol / l to 0.5 mol / l with respect to the solution. By making it 0.001 mol / l or more, the production | generation reaction of zinc oxide can be accelerated, and aggregation of the zinc oxide particle produced | generated by setting it to 0.5 mol / l or less can be suppressed.

本実施形態における陽イオンは、限定されるわけではないが、亜鉛イオン、リチウムイオン、ナトリウムイオン、カリウムイオン、セシウムイオン、カルシウムイオン、バリウムイオン、アルミニウムイオン、鉄イオン、マンガンイオン、コバルトイオン、クロムイオン、アンモニウムイオン及びテトラメチルアンモニウムイオンのうち少なくともいずれかを含むことが好ましい。   The cation in this embodiment is not limited, but zinc ion, lithium ion, sodium ion, potassium ion, cesium ion, calcium ion, barium ion, aluminum ion, iron ion, manganese ion, cobalt ion, chromium It is preferable to include at least one of ions, ammonium ions, and tetramethylammonium ions.

また本実施形態における陽イオンは、限定されるわけではないが、上記溶液に対し0.001mol/l以上0.5mol/l以下の範囲で含まれていることが好ましい。0.001mol/l以上とすることで、添加した陽イオンが酸化亜鉛粒子の成長過程へ効果的に作用し物性の制御が容易となり、0.5mol/l以下とすることで粒子成長中の粒子の凝集を抑制し粒径が均一で凝集の少ない粒子の製造が容易となる。   Moreover, although the cation in this embodiment is not necessarily limited, It is preferable that it is contained in 0.001 mol / l or more and 0.5 mol / l or less with respect to the said solution. When the amount is 0.001 mol / l or more, the added cation effectively acts on the growth process of the zinc oxide particles, and the physical properties can be easily controlled. When the amount is 0.5 mol / l or less, the particles are growing. The agglomeration is suppressed, and the production of particles having a uniform particle size and little aggregation is facilitated.

また本実施形態における陽イオンは、限定されるわけではないが、溶媒への溶解度が高い塩の方が反応しやすい理由から、塩化物、硝酸塩、硫酸塩などの形で溶解させることが望ましい。   Further, the cation in the present embodiment is not limited, but it is desirable to dissolve in the form of chloride, nitrate, sulfate, etc., because a salt having higher solubility in a solvent is more likely to react.

また本実施形態における多価アルコールは、2価以上であれば限定されることなく種々のものを採用することができるが、例えばエチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール及びグリセリンの少なくともいずれかを含むことが均一な粒径の酸化亜鉛粒子を得るためにより好ましい。特に、2価以上の多価アルコールは金属陽イオンへの配位相互作用が強く酸化亜鉛粒子の成長速度を抑制する。従って2価以上の多価アルコールを用いることで粒径が20nm以下の微細な酸化亜鉛粒子を合成しやすい反応条件を作り出すことが出来る。さらに添加した陽イオンにも配位する事で陽イオン添加による粒子の凝集の発生を抑制する効果も期待できる。   In addition, the polyhydric alcohol in the present embodiment is not limited as long as it is divalent or higher, and various alcohols can be employed. For example, ethylene glycol, propylene glycol, 1,3-butanediol, 1,4- It is more preferable to obtain at least one of butanediol and glycerin in order to obtain zinc oxide particles having a uniform particle diameter. In particular, a dihydric or higher polyhydric alcohol has a strong coordination interaction with a metal cation and suppresses the growth rate of zinc oxide particles. Therefore, reaction conditions that facilitate the synthesis of fine zinc oxide particles having a particle diameter of 20 nm or less can be created by using a polyhydric alcohol having a valence of 2 or more. Furthermore, by coordinating with the added cation, an effect of suppressing the occurrence of particle aggregation due to the addition of the cation can also be expected.

また、本実施形態におけるアルキルエーテルは、限定されることなく種々のものを採用することができるが、例えば2−メトキシエタノール、3−メトキシプロパノールの少なくともいずれかを含むことが塩の溶解度を高める観点から好ましい。アルキルエーテル類は2価以上の多価アルコールと比べて溶液の粘度が低いものが多く、アルキルエーテル類を用いることで溶液全体で均一な反応条件が実現し粒径などの制御がしやすいという特徴がある。   In addition, the alkyl ether in the present embodiment is not limited, and various ones can be employed. For example, the inclusion of at least one of 2-methoxyethanol and 3-methoxypropanol increases the salt solubility. To preferred. Alkyl ethers often have a lower solution viscosity than polyhydric alcohols having a valence of 2 or more, and the use of alkyl ethers makes it possible to achieve uniform reaction conditions throughout the solution and to easily control particle size and the like. There is.

また、本実施形態における水酸化亜鉛は、限定されるわけではないが、亜鉛化合物と塩基性溶液を混合して得たものであることも好ましい態様である。この方法で得られた水酸化亜鉛は反応性が高く30℃においても比較的速やかに酸化亜鉛へ構造が変化する特徴を有しており酸化亜鉛粒子の合成を低温短時間で行うのに適した前駆体となる。なお亜鉛化合物は、限定されるわけではないが硝酸亜鉛、塩化亜鉛、酢酸亜鉛又はそれらの水和物であることが好ましく、塩基性溶液も限定されるわけではないがアンモニア、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、炭酸ナトリウム、炭酸リチウム、炭酸カリウム、水酸化カルシウム、水酸化セシウム及びヒドロキシテトラメチルアンモニウムの少なくともいずれかを含むことが好ましい。   Moreover, although the zinc hydroxide in this embodiment is not necessarily limited, it is also a preferable aspect that it is obtained by mixing a zinc compound and a basic solution. Zinc hydroxide obtained by this method is highly reactive and has a feature that the structure changes to zinc oxide relatively quickly even at 30 ° C., and is suitable for the synthesis of zinc oxide particles in a short time at low temperature. It becomes a precursor. The zinc compound is not limited, but is preferably zinc nitrate, zinc chloride, zinc acetate or a hydrate thereof, and the basic solution is not limited, but ammonia, sodium hydroxide, water It is preferable to contain at least one of lithium oxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, calcium hydroxide, cesium hydroxide, and hydroxytetramethylammonium.

また本実施形態におけるゾルの製造方法は、限定されるわけではないが15℃以上180℃以下の温度範囲で加熱処理することが好ましく、より好ましくは30℃以上120℃以下である。15℃以上とすることで酸化亜鉛粒子の生成速度を高めることができ、30℃以上とすることでこの効果をより顕著とすることができる。また、180℃以下とすることで過度な粒成長による粒子の凝集を防ぐことができ、120℃以下とすることでこの効果をより顕著にすることができる。   In addition, the sol production method in the present embodiment is not limited, but is preferably heat-treated in a temperature range of 15 ° C. or higher and 180 ° C. or lower, more preferably 30 ° C. or higher and 120 ° C. or lower. By setting the temperature to 15 ° C. or higher, the production rate of zinc oxide particles can be increased, and by setting the temperature to 30 ° C. or higher, this effect can be made more remarkable. Moreover, aggregation of the particle | grains by excessive grain growth can be prevented by setting it as 180 degrees C or less, and this effect can be made more remarkable by setting it as 120 degrees C or less.

また本実施形態におけるゾルの製造方法は、限定されるわけではないが15分以上48時間以下の範囲で加熱処理することが好ましく、より好ましくは30分以上24時間以下である。15分以上とすることで酸化亜鉛への結晶化を促進することができ、30分以上とすることでこの効果がより顕著となる。また、加熱時間を48時間以下とすることで粒成長による粒子の凝集を抑制することができるようになり、24時間以下とすることでこの効果がより顕著となる。   In addition, the sol production method in the present embodiment is not limited, but is preferably heat-treated in the range of 15 minutes to 48 hours, more preferably 30 minutes to 24 hours. By making it 15 minutes or more, crystallization to zinc oxide can be promoted, and by making it 30 minutes or more, this effect becomes more remarkable. Further, the aggregation of particles due to grain growth can be suppressed by setting the heating time to 48 hours or less, and this effect becomes more remarkable by setting the heating time to 24 hours or less.

本実施形態によると、溶液中に陽イオンが存在するため核発生が促進され、条件にもよるが約20nm以下の粒径の酸化亜鉛ナノ粒子が凝集することなく安定に分散したゾルを精製することができ、蛍光発光に寄与する酸化亜鉛粒子表面の欠陥構造を安定に保持することができる。そして、溶液中における酸化亜鉛結晶格子の形成時に陽イオンの取り込みが促進されることで相対的に酸素欠陥が導入されやすくなり、蛍光発光特性が格段に改善される。また本実施形態に係るゾルは、上記効果のほか、公知技術に比べ粒子径を小さくできる効果を有する。また、酸化亜鉛ナノ粒子の生成速度を促進し75℃の加熱処理では30分の溶液の加熱処理により酸化亜鉛ナノ粒子を生成させることができる。   According to the present embodiment, since cations are present in the solution, nucleation is promoted, and a sol in which zinc oxide nanoparticles having a particle diameter of about 20 nm or less are stably dispersed without purification is purified depending on conditions. And the defect structure on the surface of the zinc oxide particles contributing to fluorescence emission can be stably maintained. Further, since the incorporation of cations is promoted during the formation of the zinc oxide crystal lattice in the solution, oxygen defects are relatively easily introduced, and the fluorescence emission characteristics are remarkably improved. In addition to the above effects, the sol according to the present embodiment has an effect that the particle diameter can be reduced as compared with the known technique. Moreover, the production | generation speed | rate of a zinc oxide nanoparticle is accelerated | stimulated, and a zinc oxide nanoparticle can be produced | generated by the heat processing of a solution for 30 minutes by 75 degreeC heat processing.

以上、本実施形態により、より蛍光発光特性を改善することが可能な酸化亜鉛微粒子を含有するゾルを提供することができる。   As described above, according to the present embodiment, it is possible to provide a sol containing zinc oxide fine particles capable of further improving the fluorescence emission characteristics.

(実施例1)
以下、上記実施形態に係るゾルの製造方法を実際に行い、効果を確認した。以下に詳細に説明する。
Example 1
Hereinafter, the method for producing a sol according to the above embodiment was actually performed, and the effect was confirmed. This will be described in detail below.

(1)硝酸亜鉛6水和物とアンモニア水溶液を混合して水酸化亜鉛ゲルを得る工程。
硝酸亜鉛6水和物2.97g(0.01mol)を蒸留水に溶解し全体積を100mlとし0.1mol/lの硝酸亜鉛水溶液100mlを調製した。次に濃アンモニア水(15mol/l)0.66mlを蒸留水に溶解し全体積を100mlとし0.1mol/lのアンモニア水100mlを調製した。このアンモニア水を先の硝酸亜鉛水溶液に加えると直ちに白色ゲル状の水酸化亜鉛の沈殿が生じた。この沈殿を遠心分離(3000r.p.m,5min)した後、蒸留水100ml中に分散し、先と同じ条件にて遠心分離を行った。更に蒸留水中に分散した後遠心分離の操作を行い水酸化亜鉛のゲル状沈殿中に含まれる未反応のアンモニウムイオン、硝酸イオンを除去した。
(1) A step of obtaining zinc hydroxide gel by mixing zinc nitrate hexahydrate and aqueous ammonia solution.
2.97 g (0.01 mol) of zinc nitrate hexahydrate was dissolved in distilled water to make the total volume 100 ml, and 100 ml of a 0.1 mol / l zinc nitrate aqueous solution was prepared. Next, 0.66 ml of concentrated aqueous ammonia (15 mol / l) was dissolved in distilled water to make the total volume 100 ml, and 100 ml of 0.1 mol / l aqueous ammonia was prepared. When this aqueous ammonia was added to the aqueous zinc nitrate solution, white gel-like zinc hydroxide was immediately precipitated. The precipitate was centrifuged (3000 rpm, 5 min), dispersed in 100 ml of distilled water, and centrifuged under the same conditions as above. Further, after being dispersed in distilled water, the centrifugal operation was performed to remove unreacted ammonium ions and nitrate ions contained in the zinc hydroxide gel precipitate.

(2)水酸化亜鉛ゲルを亜鉛イオン(Zn2+)を含有するエチレグリコール中に分散させる工程。
300mlビーカーに硝酸亜鉛6水和物粒子を秤り取りエチレングリコールを加え完全に溶解し全体積を100mlとした。このとき溶液中の亜鉛イオン濃度が0mol/l,0.001mol/l,0.01mol/l,0.1mol/lの各濃度となるようにした。この硝酸亜鉛水和物が溶解したエチレングリコール溶液に、さきの水酸化亜鉛のゲル状沈殿を加えガラス棒で攪拌し均一に分散した後、密栓をした。
(2) A step of dispersing zinc hydroxide gel in ethyl glycol containing zinc ions (Zn 2+ ).
Zinc nitrate hexahydrate particles were weighed in a 300 ml beaker, ethylene glycol was added and completely dissolved to make the total volume 100 ml. At this time, the zinc ion concentration in the solution was set to 0 mol / l, 0.001 mol / l, 0.01 mol / l, and 0.1 mol / l. To this ethylene glycol solution in which zinc nitrate hydrate was dissolved, the gelatinous precipitate of zinc hydroxide was added and stirred with a glass rod to uniformly disperse, and then sealed.

(3)分散した水酸化亜鉛ゲルを加熱して酸化亜鉛ナノ粒子分散ゾルを得る工程。(温度35℃の場合)
エチレングリコール中に水酸化亜鉛のゲル状沈殿が分散した溶液を、35℃に恒温に保たれている恒温槽中に入れ24時間静置した。これにより乳白色から透明に近いゾルが得られた。得られたゾルは6ヶ月以上沈殿することなく安定な分散状態を保持した。
(3) A step of heating the dispersed zinc hydroxide gel to obtain a zinc oxide nanoparticle-dispersed sol. (When temperature is 35 ° C)
A solution in which a gelatinous precipitate of zinc hydroxide was dispersed in ethylene glycol was placed in a thermostatic bath maintained at 35 ° C. and allowed to stand for 24 hours. This gave a milky white to nearly transparent sol. The obtained sol maintained a stable dispersed state without precipitation for more than 6 months.

(4)上記工程より得られる酸化亜鉛ナノ粒子分散ゾルの蛍光発光特性の評価。
得られたゾル中に含まれるナノ粒子について蛍光発光特性の評価を行った。ゾルを無蛍光セルに入れ励起波長365nmにて蛍光発光スペクトルを蛍光光度分光計(島津製作所 RF5300PC)により測定した。測定結果を図1に示す。亜鉛イオンを含まないエチレングリコール中で水酸化亜鉛を35℃にて24時間静置して得られたゾルの蛍光発光スペクトルには、波長が505nmに強度が195のピークを有していた。これに対して、硝酸亜鉛6水和物が0.001mol/lの濃度で溶解したエチレングリコール中で水酸化亜鉛を35℃にて24時間静置して得られたゾルの蛍光発光スペクトルには、波長が510nmに強度が290のピークを有していた。さらに、硝酸亜鉛6水和物が0.01 mol/lおよび0.1mol/lの濃度で溶解したエチレングリコール中で水酸化亜鉛を35℃にて24時間静置して得られたゾルの蛍光発光スペクトルには、それぞれ波長が514nm,および520nmに強度が710および990のピークを有していた。このように、亜鉛イオンを含有するエチレングリコール中に水酸化亜鉛を静置した場合、亜鉛イオン濃度の増加に伴い、亜鉛イオンを含有していないエチレングリコールを用いた場合と比べて5倍程度蛍光発光強度が増加していることを確認した。
(4) Evaluation of fluorescence emission characteristics of the zinc oxide nanoparticle-dispersed sol obtained from the above process.
Fluorescence emission characteristics of the nanoparticles contained in the obtained sol were evaluated. The sol was placed in a non-fluorescent cell and the fluorescence emission spectrum was measured with a fluorescence spectrophotometer (Shimadzu RF5300PC) at an excitation wavelength of 365 nm. The measurement results are shown in FIG. The fluorescence emission spectrum of a sol obtained by allowing zinc hydroxide to stand at 35 ° C. for 24 hours in ethylene glycol containing no zinc ions had a peak at a wavelength of 505 nm and an intensity of 195. In contrast, the fluorescence emission spectrum of a sol obtained by leaving zinc hydroxide standing at 35 ° C. for 24 hours in ethylene glycol in which zinc nitrate hexahydrate was dissolved at a concentration of 0.001 mol / l is shown in FIG. And a peak at an intensity of 290 at a wavelength of 510 nm. Furthermore, the fluorescence of the sol obtained by allowing zinc hydroxide to stand at 35 ° C. for 24 hours in ethylene glycol in which zinc nitrate hexahydrate was dissolved at concentrations of 0.01 mol / l and 0.1 mol / l. The emission spectrum had peaks with wavelengths of 514 nm and 520 nm and intensities of 710 and 990, respectively. Thus, when zinc hydroxide is allowed to stand in ethylene glycol containing zinc ions, as the zinc ion concentration increases, it is approximately five times more fluorescent than when ethylene glycol containing no zinc ions is used. It was confirmed that the emission intensity increased.

(5)上記工程より得られる酸化亜鉛ナノ粒子の結晶性の評価。
得られたゾル100mlに0.2mol/lのアンモニア水100mlを加えよく攪拌し、ゾル中に含まれる酸化亜鉛ナノ粒子を凝集沈殿させた。生成した沈殿を3000r.p.m.で5min遠心分離を行い分離した後、沈殿に残留しているエチレングリコールおよびアンモニウムイオンを除去洗浄するために、該沈殿を蒸留水100ml中に分散し更に先と同様の条件にて遠心分離を行った。
(5) Evaluation of crystallinity of zinc oxide nanoparticles obtained from the above process.
To 100 ml of the obtained sol, 100 ml of 0.2 mol / l ammonia water was added and stirred well to aggregate and precipitate the zinc oxide nanoparticles contained in the sol. The precipitate formed is 3000 r. p. m. After separating by centrifugation for 5 minutes, in order to remove and wash ethylene glycol and ammonium ions remaining in the precipitate, the precipitate is dispersed in 100 ml of distilled water and further centrifuged under the same conditions as above. It was.

得られた沈殿を、35℃で12時間静置して乾燥し得られた粉体についてX線回折測定装置(ブルカーエイエックスエス製 MPX18)によって銅ターゲットを用い、加速電圧40kV、電流100mAの測定条件で測定した。その結果を図2に示す。本X線回折パターン中に見られるピークはすべて酸化亜鉛によるものである。これより、水酸化亜鉛をエチレングリコール中および硝酸亜鉛水和物が溶解したエチレングリコール中にて35℃で24時間加熱処理することによって酸化亜鉛に結晶化したことがわかった。   The obtained precipitate was allowed to stand at 35 ° C. for 12 hours and dried, and the powder obtained was measured with an X-ray diffractometer (MPX18 manufactured by Bruker AXS) at an acceleration voltage of 40 kV and a current of 100 mA. Measured under conditions. The result is shown in FIG. All peaks seen in this X-ray diffraction pattern are due to zinc oxide. From this, it was found that zinc hydroxide was crystallized into zinc oxide by heat treatment at 35 ° C. for 24 hours in ethylene glycol and ethylene glycol in which zinc nitrate hydrate was dissolved.

(実施例2)
以下に、上記実施例で用いた硝酸亜鉛6水和物が溶解したエチレングリコール中に水酸化亜鉛を分散し35℃にて静置した場合と、陽イオンを含まない純粋なエチレングリコール中に水酸化亜鉛を分散し35℃にて静置した場合とについて分散溶液の蛍光発光強度の経時変化に関する例を述べる。
(Example 2)
In the following, zinc hydroxide is dispersed in ethylene glycol in which the zinc nitrate hexahydrate used in the above examples is dissolved and allowed to stand at 35 ° C., and water is added in pure ethylene glycol containing no cation. An example relating to the time-dependent change of the fluorescence emission intensity of the dispersion solution for the case where zinc oxide is dispersed and left at 35 ° C. will be described.

実施例1に示された方法と同じ方法により水酸化亜鉛のゲル状沈殿を調製した後、硝酸亜鉛6水和物が0.05mol/lの濃度になる様に溶解したエチレングリコール溶液100ml中に水酸化亜鉛を分散した。次に、この溶液を35℃の空気恒温相中で静置した。この溶液から30分おきに溶液を2ml分取し蛍光発光特性の評価を行った。ゾルを無蛍光セルに入れ励起波長365nmにて蛍光発光スペクトルを蛍光光度分光計(島津製作所 RF5300PC)により測定した。分取された溶液の蛍光発光スペクトルの400nmから600nmの波長範囲での最大強度と静置時間の関係を図3に示す。更に、図3には比較のため陽イオンを含有しない純粋なエチレングリコールを用いて調製した場合のデータも示した。   After preparing a zinc hydroxide gel-like precipitate by the same method as shown in Example 1, in 100 ml of an ethylene glycol solution in which zinc nitrate hexahydrate was dissolved to a concentration of 0.05 mol / l. Zinc hydroxide was dispersed. Next, this solution was allowed to stand in an air constant temperature phase of 35 ° C. From this solution, 2 ml of the solution was taken every 30 minutes, and the fluorescence emission characteristics were evaluated. The sol was placed in a non-fluorescent cell and the fluorescence emission spectrum was measured with a fluorescence spectrophotometer (Shimadzu RF5300PC) at an excitation wavelength of 365 nm. FIG. 3 shows the relationship between the maximum intensity in the wavelength range of 400 nm to 600 nm and the standing time of the fluorescence emission spectrum of the collected solution. In addition, FIG. 3 also shows data obtained by using pure ethylene glycol containing no cation for comparison.

図3の白丸で示した亜鉛イオンを含有しない純粋なエチレングリコール中に水酸化亜鉛を分散し35℃にて静置した場合静置時間の増加と共に蛍光発光の極大強度も徐々に増加し24時間静置後に195となった。これに対して図3の黒丸で示した硝酸亜鉛6水和物を0.05mol/l溶解したエチレングリコール中に水酸化亜鉛を分散し35℃にて静置した場合、急速に蛍光発光強度が増加し静置時間12時間で極大強度が850に達した。蛍光の極大強度の静置時間依存性は蛍光体粒子の生成挙動を反映している。この様に、亜鉛イオンを含有するエチレングリコール中で水酸化亜鉛を静置することによって蛍光発光強度が増加するのみならず、蛍光体粒子の生成速度も増加することが明らかとなった。   When zinc hydroxide is dispersed in pure ethylene glycol containing no zinc ions as shown by white circles in FIG. 3 and allowed to stand at 35 ° C., the maximum intensity of fluorescence emission gradually increases as the standing time increases and 24 hours. After standing still, it became 195. On the other hand, when zinc hydroxide is dispersed in ethylene glycol in which 0.05 mol / l of zinc nitrate hexahydrate shown by the black circles in FIG. 3 is dispersed and allowed to stand at 35 ° C., the fluorescence emission intensity rapidly increases. The maximum intensity reached 850 after 12 hours of standing. The dependence of the maximum intensity of fluorescence on the standing time reflects the generation behavior of the phosphor particles. As described above, it has been clarified that by standing zinc hydroxide in ethylene glycol containing zinc ions, not only the fluorescence emission intensity increases but also the generation rate of phosphor particles increases.

(実施例3)
以下に、上記実施例で用いた硝酸亜鉛6水和物が溶解したエチレングリコールに代えて、硝酸アルミニウム9水和物が溶解したエチレングリコール中に水酸化亜鉛を分散した例を述べる。
(Example 3)
In the following, an example will be described in which zinc hydroxide is dispersed in ethylene glycol in which aluminum nitrate nonahydrate is dissolved instead of ethylene glycol in which zinc nitrate hexahydrate is used in the above examples.

実施例1に示された方法と同じ方法により水酸化亜鉛のゲル状沈殿を調製した後、硝酸アルミニウム9水和物が0.01mol/lの濃度になる様に溶解したエチレングリコール溶液100ml中に水酸化亜鉛を分散した。次に、この溶液を35℃の空気恒温相中で24時間静置した。これにより、酸化亜鉛ナノ粒子が安定に分散したゾルが得られた。得られたゾル中に含まれるナノ粒子について蛍光発光特性の評価を行った。ゾルを無蛍光セルに入れ励起波長365nmにて蛍光発光スペクトルを蛍光光度分光計(島津製作所RF5300PC)により測定した。測定結果を図4に示す。更に、図4には比較のため陽イオンを含有しない純粋なエチレングリコールを用いて調製した場合のスペクトルと0.05mol/lの濃度になる様に硝酸亜鉛6水和物を溶解した亜鉛イオンを含むエチレングリコール溶液をもちいて調製して得られたゾルの蛍光発光スペクトルを示した。   After preparing a zinc hydroxide gel precipitate by the same method as shown in Example 1, in 100 ml of an ethylene glycol solution in which aluminum nitrate nonahydrate was dissolved to a concentration of 0.01 mol / l. Zinc hydroxide was dispersed. Next, this solution was allowed to stand for 24 hours in an air constant temperature phase of 35 ° C. Thereby, a sol in which zinc oxide nanoparticles were stably dispersed was obtained. Fluorescence emission characteristics of the nanoparticles contained in the obtained sol were evaluated. The sol was placed in a non-fluorescent cell, and the fluorescence emission spectrum was measured with a fluorescence spectrophotometer (Shimadzu RF5300PC) at an excitation wavelength of 365 nm. The measurement results are shown in FIG. Further, for comparison, FIG. 4 shows a spectrum obtained by using pure ethylene glycol containing no cation and zinc ions in which zinc nitrate hexahydrate is dissolved so as to have a concentration of 0.05 mol / l. The fluorescence emission spectrum of the sol obtained by using the ethylene glycol solution containing it was shown.

図4に示されたように硝酸アルミニウム9水和物を溶解したエチレングリコール中に水酸化亜鉛を分散して得られたゾルの蛍光発光強度は、蛍光波長が400nmから650nmの範囲では10から80であり、陽イオンを含まないエチレングリコール中よりも蛍光発光強度が大きく減少してしまった。この様に亜鉛イオンを含有するエチレングリコール中で加熱処理した場合と大きく異なる結果が得られた。これは、エチレングリコール中に溶解している陽イオンにより、得られる酸化亜鉛ナノ粒子の蛍光発光特性が大きな影響を受けることを示している。   As shown in FIG. 4, the fluorescence emission intensity of the sol obtained by dispersing zinc hydroxide in ethylene glycol in which aluminum nitrate nonahydrate is dissolved is 10 to 80 when the fluorescence wavelength is in the range of 400 nm to 650 nm. Thus, the fluorescence emission intensity was greatly reduced as compared with ethylene glycol containing no cation. In this way, a result greatly different from the case of heat treatment in ethylene glycol containing zinc ions was obtained. This indicates that the fluorescence emission characteristics of the obtained zinc oxide nanoparticles are greatly influenced by the cation dissolved in ethylene glycol.

本発明は、ゾルの製造方法として利用可能であり、このゾルを用いて例えばディスプレイ等における酸化亜鉛層形成に有用であり、産業上の利用可能性がある。   The present invention can be used as a method for producing a sol, and is useful for forming a zinc oxide layer in, for example, a display using the sol, and has industrial applicability.

エチレングリコールおよび硝酸亜鉛6水和物を溶解したエチレングリコール中に水酸化亜鉛を分散し35℃,24時間静置して得られたゾルの蛍光発光スペクトルを示す図である(励起波長は365nm)。It is a figure which shows the fluorescence emission spectrum of the sol obtained by disperse | distributing zinc hydroxide in ethylene glycol which melt | dissolved ethylene glycol and zinc nitrate hexahydrate, and leaving still at 35 degreeC for 24 hours (excitation wavelength is 365 nm) . エチレングリコールおよび硝酸亜鉛6水和物を溶解したエチレングリコール中に水酸化亜鉛を分散し35℃,24時間静置して得られたゾル中に含まれる粒子のX線回折図である。FIG. 3 is an X-ray diffraction pattern of particles contained in a sol obtained by dispersing zinc hydroxide in ethylene glycol in which ethylene glycol and zinc nitrate hexahydrate are dissolved and allowing to stand at 35 ° C. for 24 hours. エチレングリコールおよび硝酸亜鉛6水和物を溶解したエチレングリコール中に水酸化亜鉛を分散し35℃にて静置して得られたゾルの蛍光発光スペクトルの極大蛍光強度(400nmから600nm)と静置時間の関係を示す図である。The maximum fluorescence intensity (400 nm to 600 nm) of the fluorescence emission spectrum of the sol obtained by dispersing zinc hydroxide in ethylene glycol in which ethylene glycol and zinc nitrate hexahydrate are dissolved and allowing to stand at 35 ° C. and standing. It is a figure which shows the relationship of time. エチレングリコールおよび硝酸亜鉛6水和物を溶解したエチレングリコール中および硝酸アルミニウム9水和物を溶解したエチレングリコールに水酸化亜鉛を分散し35℃,24時間静置して得られたゾルの蛍光発光スペクトルを示す図である(励起波長は365nm)。Fluorescence emission of sol obtained by dispersing zinc hydroxide in ethylene glycol in which ethylene glycol and zinc nitrate hexahydrate are dissolved and in ethylene glycol in which aluminum nitrate nonahydrate is dissolved and leaving it at 35 ° C. for 24 hours. It is a figure which shows a spectrum (excitation wavelength is 365 nm).

Claims (9)

水酸化亜鉛と陽イオンを、2価以上の多価アルコール及びアルキルエーテルの少なくともいずれかを含む溶液に分散し、加熱処理する、酸化亜鉛微粒子を含むゾルの製造方法。   A method for producing a sol containing fine zinc oxide particles, wherein zinc hydroxide and a cation are dispersed in a solution containing at least one of a dihydric or higher polyhydric alcohol and an alkyl ether, and heat-treated. 前記陽イオンは、亜鉛イオン、リチウムイオン、ナトリウムイオン、カリウムイオン、セシウムイオン、カルシウムイオン、バリウムイオン、鉄イオン、マンガンイオン、コバルトイオン、クロムイオン、アンモニウムイオン及びテトラメチルアンモニウムイオンのうち少なくともいずれかを含む請求項1記載のゾルの製造方法。   The cation is at least one of zinc ion, lithium ion, sodium ion, potassium ion, cesium ion, calcium ion, barium ion, iron ion, manganese ion, cobalt ion, chromium ion, ammonium ion and tetramethylammonium ion. The method for producing a sol according to claim 1, comprising: 前記陽イオンを、0.001mol/l以上0.5mol/l以下の範囲で含む請求項1記載のゾルの製造方法。   The method for producing a sol according to claim 1, comprising the cation in a range of 0.001 mol / l to 0.5 mol / l. 前記多価アルコールは、エチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール及びグリセリンの少なくともいずれかを含む請求項1記載のゾルの製造方法。   The method for producing a sol according to claim 1, wherein the polyhydric alcohol contains at least one of ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, and glycerin. 前記アルキルエーテルは、2−メトキシエタノール、3−メトキシプロパノール及び3−メトキシブタノールの少なくともいずれかを含む請求項1記載のゾルの製造方法。   The method for producing a sol according to claim 1, wherein the alkyl ether contains at least one of 2-methoxyethanol, 3-methoxypropanol, and 3-methoxybutanol. 前記水酸化亜鉛を、亜鉛化合物と塩基性溶液を混合して得る請求項1記載のゾルの製造方法。   The method for producing a sol according to claim 1, wherein the zinc hydroxide is obtained by mixing a zinc compound and a basic solution. 前記亜鉛化合物は、硝酸亜鉛、塩化亜鉛、酢酸亜鉛又はそれらの水和物の少なくともいずれかを含む請求項4記載のゾルの製造方法。   The method for producing a sol according to claim 4, wherein the zinc compound contains at least one of zinc nitrate, zinc chloride, zinc acetate, or a hydrate thereof. 前記塩基性溶液は、アンモニア、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、炭酸ナトリウム、炭酸リチウム、炭酸カリウム、水酸化カルシウム、水酸化セシウム及びヒドロキシテトラメチルアンモニウムの少なくともいずれかを含む請求項4記載のゾルの製造方法。   The basic solution contains at least one of ammonia, sodium hydroxide, lithium hydroxide, potassium hydroxide, sodium carbonate, lithium carbonate, potassium carbonate, calcium hydroxide, cesium hydroxide, and hydroxytetramethylammonium. A method for producing the sol as described. 前記加熱処理は、15℃以上180℃以下である請求項1記載のゾルの製造方法。





The method for producing a sol according to claim 1, wherein the heat treatment is performed at 15 ° C. or higher and 180 ° C. or lower.





JP2007213144A 2007-08-17 2007-08-17 Method for producing sol Expired - Fee Related JP5131824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007213144A JP5131824B2 (en) 2007-08-17 2007-08-17 Method for producing sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007213144A JP5131824B2 (en) 2007-08-17 2007-08-17 Method for producing sol

Publications (2)

Publication Number Publication Date
JP2009046344A true JP2009046344A (en) 2009-03-05
JP5131824B2 JP5131824B2 (en) 2013-01-30

Family

ID=40498935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007213144A Expired - Fee Related JP5131824B2 (en) 2007-08-17 2007-08-17 Method for producing sol

Country Status (1)

Country Link
JP (1) JP5131824B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013525250A (en) * 2010-04-28 2013-06-20 ビーエーエスエフ ソシエタス・ヨーロピア Method for preparing zinc complexes in solution
JP2014084256A (en) * 2012-10-24 2014-05-12 Sakai Chem Ind Co Ltd Method for producing zinc oxide particle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232919A (en) * 1994-02-22 1995-09-05 Nippon Shokubai Co Ltd Production of fine zinc oxide particles
JPH07328421A (en) * 1994-06-06 1995-12-19 Nippon Shokubai Co Ltd Inorganic compound fine particle, its production and its use
JP2007070188A (en) * 2005-09-08 2007-03-22 Chiba Univ Method for producing zinc oxide fine particle and aggregate and dispersion solution of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232919A (en) * 1994-02-22 1995-09-05 Nippon Shokubai Co Ltd Production of fine zinc oxide particles
JPH07328421A (en) * 1994-06-06 1995-12-19 Nippon Shokubai Co Ltd Inorganic compound fine particle, its production and its use
JP2007070188A (en) * 2005-09-08 2007-03-22 Chiba Univ Method for producing zinc oxide fine particle and aggregate and dispersion solution of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6008048149; Sheng-Yuan CHU et al.: 'Analysis of ZnO varistors prepared by the sol-gel method' Ceramics International 2000, Vol.26, pp.733-737 *
JPN6008048150; D. JEZEQUEL et al.: 'Preparation and morphological characterization of fine, spherical, monodisperse particles of ZnO' Materials Science Forum 1994, Vols.152-153, pp.339-342 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013525250A (en) * 2010-04-28 2013-06-20 ビーエーエスエフ ソシエタス・ヨーロピア Method for preparing zinc complexes in solution
JP2014084256A (en) * 2012-10-24 2014-05-12 Sakai Chem Ind Co Ltd Method for producing zinc oxide particle

Also Published As

Publication number Publication date
JP5131824B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP4304343B2 (en) Zinc oxide fine particles, method for producing aggregates thereof and dispersion solution
Siddiqui et al. Optimization of process parameters and its effect on structure and morphology of CuO nanoparticle synthesized via the sol− gel technique
JP4843779B2 (en) Method for producing zinc oxide nanoparticles for ultraviolet light emitters
JP5512958B2 (en) Method for producing nanophosphor particles
JP2014152094A (en) Rod-shaped magnesium hydroxide particle and rod-shaped magnesium oxide particle having high specific surface area, and their production method
Lang et al. Synthesis, characterization and photoluminescence property of La-doped ZnO nanoparticles
JP5131824B2 (en) Method for producing sol
JP5339346B2 (en) Method for producing aluminum-substituted α-type nickel hydroxide
JP4524405B2 (en) Tin-containing indium oxide nanoparticles and method for producing a dispersion thereof
JP5030108B2 (en) Method for producing zinc oxide nanoparticles for ultraviolet light emitters
KR20130116671A (en) Manufacturing methods of colloidal cerium oxides
JP6146715B2 (en) Method for producing zinc oxide particles using ozone
Preda et al. Morphology-controlled synthesis of ZnO structures by a simple wet chemical method
JP2007230826A (en) Method for production of willemite crystal, and method of producing fluorescent material including willemite crystal as matrix crystal
JP2005272516A (en) Method for producing compound semiconductor ultra fine particle
JP2003073120A (en) Fine complex particle and its producing method
JP5807886B2 (en) Method for producing zinc oxide fine particles and / or zinc oxide film
WO2022070785A1 (en) Strontium titanate microparticles
JP2010053009A (en) Method for producing zinc oxide
JP5157446B2 (en) Nanoparticle phosphor of chalcogenite compound and method for producing the same
JP5394914B2 (en) Iridium element-containing phosphor and method for producing the same
JP6774014B2 (en) Method for producing metal oxide nanoparticles
JP5966719B2 (en) Method for producing trimanganese tetraoxide
CN111849479B (en) Blue-light perovskite quantum dot and preparation method thereof
Vorontsov et al. Effect of Nature of the Inorganic Salt Matrix on the Optical Properties and Photostability of CdTe/CdS Quantum Dots

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5131824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees