JP2009045597A - Tar reforming catalyst, manufacturing method thereof, and steam reforming method for tar using the catalyst - Google Patents

Tar reforming catalyst, manufacturing method thereof, and steam reforming method for tar using the catalyst Download PDF

Info

Publication number
JP2009045597A
JP2009045597A JP2007216429A JP2007216429A JP2009045597A JP 2009045597 A JP2009045597 A JP 2009045597A JP 2007216429 A JP2007216429 A JP 2007216429A JP 2007216429 A JP2007216429 A JP 2007216429A JP 2009045597 A JP2009045597 A JP 2009045597A
Authority
JP
Japan
Prior art keywords
tar
catalyst
reforming
nickel
dolomite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007216429A
Other languages
Japanese (ja)
Other versions
JP4719194B2 (en
Inventor
Shigeru Hashimoto
茂 橋本
Kenji Asami
賢二 朝見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007216429A priority Critical patent/JP4719194B2/en
Publication of JP2009045597A publication Critical patent/JP2009045597A/en
Application granted granted Critical
Publication of JP4719194B2 publication Critical patent/JP4719194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst which suppresses a carbon deposition, and converts efficiently tar produced by a heat decomposition of a carbonaceous resource into a combustible gas, and is strong to a sulfur (hydrogen sulfide) poisoning by paying attention to an iron-dolomite-based catalyst available at low costs and easy to prepare, a manufacturing method for the catalyst, and a reforming method. <P>SOLUTION: The catalyst is used for the method for reforming tar in which the phyrolysis gas containing tar, produced by the heat decomposition of the carbonaceous resource, is steam-reformed, by which the reformed gas containing mainly carbon monoxide and hydrogen is produced. The catalyst for reforming tar comprises a mixture of ironstone, dolomite, and nickel. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、各種炭素質資源を原燃料ガスに転換する方法を使用する際に、熱分解にて発生するタールを効率的にガスへ転換(水蒸気改質)する技術に関するもので、特に、タール改質用の触媒、タール改質用触媒の製造方法、及び、タール改質用触媒を用いたタールの水蒸気改質方法に関するものある。   TECHNICAL FIELD The present invention relates to a technology for efficiently converting tar generated by pyrolysis (steam reforming) when using a method for converting various carbonaceous resources into raw fuel gas. The present invention relates to a reforming catalyst, a method for producing a tar reforming catalyst, and a steam reforming method for tar using the tar reforming catalyst.

近年、3R(reduce:削減、reuse:再使用、recycle:再利用)の考え方が、政策の後押しもあり、共通概念として認知され初めている。使用後または故障・破壊後の製品や製品製造時の副生品等のいわゆる廃棄物は、焼却あるいは埋め立てが主な処理方法であり、最終処分場の逼迫する現実と相まって、それらを有効に利用することは、地球温暖化問題への対応の一つの解答となるであろう。しかしながら廃棄物は、種々雑多な性状を有しており、エネルギー密度の低いものが多く含まれる、処理後のガス精製負担が大きい等の理由で、作業、設備に手間とコストが掛かり、特に小規模で経済的に自立可能なプロセスは少ない。   In recent years, the concept of 3R (reduce, reduce, reuse, recycle) has started to be recognized as a common concept, supported by policies. The so-called waste such as products after use or after breakdown / destruction and by-products at the time of product production is mainly incinerated or landfilled. Doing this will be one answer to the response to the global warming issue. However, wastes have various properties, many of them have low energy density, and the burden of gas purification after processing is large. There are few processes that can be economically independent on a scale.

廃棄物の多くは炭素を含んでおり、発熱量は一般的には低いものの、石炭、石油、天然ガス等と変わりない炭素質資源と見ることができる。   Most of the waste contains carbon, and although the calorific value is generally low, it can be regarded as a carbonaceous resource that is not different from coal, oil, natural gas, etc.

廃棄物の処理の代表的な例としては、一般廃棄物ゴミ(家庭ゴミ)を対象とし、ゴミ焼却に蒸気発電を組み合わせて電力として回収するゴミ焼却発電方式がある。近年、従来の10〜15%の送電端効率から、ボイラ材質改良や原料調整(RDF化)、外部燃料使用による効率向上(スーパーゴミ発電)等により、30%近い送電端効率で発電している焼却炉が実機運用され始めた。また、最終処分場の逼迫やダイオキシン規制により自治体での実機採用が増加しつつある処理方法として、灰分の減容・無害化処理やダイオキシン低減を狙い、高温でガス化溶融して灰分を溶融・スラグ化し、発電まで持ってゆくいわゆる廃棄物ガス化溶融技術がある。この技術は種類が多く、大きくi)直接溶融型(シャフト炉等を使い、熱分解、ガス化、燃焼・溶融を前段の反応器で行い、後段では燃焼してボイラ、蒸気タービンでエネルギー回収を行うものが主。)、ii)熱分解+燃焼・溶融型(キルン等で低温熱分解して生成したガス、タール、チャーを充分な空気で高温燃焼し、ボイラ、蒸気タービンでエネルギー回収。)、iii)熱分解+ガス化型(流動床、シャフト炉等で低温熱分解して生成したガス、チャーを高温ガス化し、可燃性ガスを発生させ、除塵、ガス精製工程を経てクリーンアップしたあとガスタービン、ガスエンジンによる発電または化学原料としてガスを利用。)に分けられる。   As a typical example of waste processing, there is a waste incineration power generation method that collects waste waste (household waste) as a target, and collects the waste incineration with steam power generation and collects it as electric power. In recent years, power generation at a power transmission end efficiency of nearly 30% has been achieved by improving boiler materials, adjusting raw materials (using RDF), improving efficiency by using external fuel (super garbage power generation), etc., from the conventional power transmission end efficiency of 10-15%. The incinerator began to operate as a real machine. In addition, as a treatment method where the adoption of actual equipment in the local government is increasing due to tightness of final disposal sites and dioxin regulations, aiming at volume reduction / detoxification treatment of ash and reduction of dioxin, gasification melting at high temperature to melt ash There is a so-called waste gasification and melting technology that turns slag into power generation. There are many types of this technology. I) Direct melting type (using a shaft furnace, etc., thermal decomposition, gasification, combustion and melting are performed in the reactor in the previous stage, and combustion is performed in the subsequent stage to recover energy in the boiler and steam turbine. Ii) Pyrolysis + combustion / melting type (gas, tar and char generated by low temperature pyrolysis in kiln etc. are burned at high temperature with sufficient air, and energy is recovered by boiler and steam turbine.) Iii) Pyrolysis + gasification type (After generating low temperature pyrolysis in fluidized bed, shaft furnace, etc., gas is converted to high temperature, combustible gas is generated, and after cleaning up through dust removal and gas purification processes Gas turbines, power generation by gas engines, or gas as chemical raw materials.)

i)及びii)の燃焼−蒸気発電方式では、廃棄物中に含まれる塩素等によるボイラーチューブ腐食のために、チューブ側(蒸気)温度を酸腐食温度以下とする必要があり、回収する蒸気条件に制約があることから、発電効率を現状よりも上げることは難しい。   In the combustion-steam power generation method of i) and ii), the tube side (steam) temperature needs to be lower than the acid corrosion temperature due to boiler tube corrosion due to chlorine contained in the waste, and the steam conditions to be recovered Therefore, it is difficult to increase the power generation efficiency from the current level.

本発明は、主に、前述iii)の技術範疇に属しており、高効率エネルギー転換が可能である一方、残存タールの処理が一つの課題であり、通常は安水フラッシング等水処理系設備を使用している。   The present invention mainly belongs to the technical category of iii) described above, and while high-efficiency energy conversion is possible, the treatment of residual tar is one problem. I use it.

この範囲に属する技術の特許としては、本発明者らが特許文献1において、熱分解、ガス化、改質を組み合わせ、従来技術より高効率に廃棄物をガス化する方式を提案している。   As patents of technologies belonging to this range, the inventors of the present invention have proposed a method of gasifying waste with higher efficiency than the prior art by combining thermal decomposition, gasification, and reforming in Patent Document 1.

またそれより以前の従来技術・特許としては、特許文献2において廃棄物を熱分解し、熱分解チャーの部分酸化ガスで熱分解タールを改質して可燃ガスを製造する方法及び装置が提案されている。   Further, as a prior art / patent before that, Patent Document 2 proposes a method and apparatus for pyrolyzing waste and reforming pyrolysis tar with a partial oxidation gas of pyrolysis char to produce a combustible gas. ing.

特許文献1、2では、熱分解で発生したタールは、改質炉で水蒸気改質反応を起こし、一酸化炭素と水素に転換される。特許文献1での改質温度は900℃〜1200℃(900℃未満でタールトラブル、1200℃超で飛灰の融着・付着がある)、その中でダイオキシン生成を特に抑えたい場合は1000℃〜1200℃、特許文献2での改質温度は800℃以上(特に理由に付き言及無し)とされている。   In Patent Documents 1 and 2, tar generated by thermal decomposition undergoes a steam reforming reaction in a reforming furnace, and is converted into carbon monoxide and hydrogen. The reforming temperature in Patent Document 1 is 900 ° C. to 1200 ° C. (tar trouble at less than 900 ° C., and fusion / adhesion of fly ash above 1200 ° C.). The reforming temperature in ˜1200 ° C. and Patent Document 2 is 800 ° C. or higher (no particular mention is made for the reason).

一般的には、非特許文献1等で見られるように、石炭(褐炭)タールの水蒸気改質に有効な温度は900℃程度である。また、改質触媒という点では、特許文献3において、ガス化時にドロマイト類とニッケル塩の複合体を使用した触媒が提案されている。これは、有機系被ガス化物をガス化する際に、1000℃未満の場合タールが生じてトラブルが発生することを、ガス化炉自体に触媒を導入し、反応を進めながら温度を下げて解消しようとしている(800℃程度)。一般的には、非特許文献2で示すように、炭化水素の改質用触媒として、メタン改質においてNi触媒で800℃〜900℃という数値が存在する。さらに炭化水素用(タール改質の記載は含まれていない)の触媒種の詳細を提示した特許文献4では、M、Ni、Mg、Oの4種(M:Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Si)を組み合わせた触媒で硫黄被毒に比較的強い炭化水素改質触媒を提案している(実施例でHS濃度2000ppmのときメタン転化率8.2%〜53.8%)。特許文献5では石炭を原料とした熱分解ガス(コークス炉ガス:COG)の水蒸気改質に言及しており、高硫黄化合物(HS濃度2019ppm、ナフサスチームリフォーミングによる水素製造では0.1ppmが望ましいとされる)を含有する粗COGの水蒸気改質にNiがナノクラスター状に担体内部から表面に析出した固溶体触媒等が好適としている(メタン転化率50%。タール改質の記載はあるが、分解後の生成ガス増加量で示しており、タール転化率不明。)。 Generally, as seen in Non-Patent Document 1, etc., the temperature effective for steam reforming of coal (brown coal) tar is about 900 ° C. In terms of a reforming catalyst, Patent Document 3 proposes a catalyst using a composite of dolomite and nickel salt during gasification. This means that when gasifying organic gasified products, tar is generated at temperatures below 1000 ° C, causing troubles. By introducing a catalyst into the gasification furnace itself, the temperature is lowered while the reaction proceeds. I'm trying (around 800 ° C). Generally, as shown in Non-Patent Document 2, as a hydrocarbon reforming catalyst, there is a numerical value of 800 ° C. to 900 ° C. for Ni catalyst in methane reforming. Further, in Patent Document 4 which presented details of catalyst types for hydrocarbons (not including tar reforming), four types of M, Ni, Mg, and O (M: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd, Al, Si) and a hydrocarbon reforming catalyst that is relatively resistant to sulfur poisoning is proposed (H 2 in the examples). When the S concentration is 2000 ppm, the methane conversion rate is 8.2% to 53.8%). Patent Document 5 refers to steam reforming of pyrolysis gas (coke oven gas: COG) using coal as a raw material. High sulfur compounds (H 2 S concentration of 2019 ppm, 0.1 ppm for hydrogen production by naphtha steam reforming) A solid solution catalyst in which Ni is deposited in the form of nanoclusters on the surface from the inside of the support is suitable for steam reforming of crude COG containing (which is desirable) (methane conversion 50%, there is a description of tar reforming) Is shown by the amount of product gas increase after decomposition, and tar conversion is unknown.)

なお、特許文献5で使用している鉄/アルミナ触媒に関しては、性能が良くないとの記述があった。一般的に鉄系触媒は、触媒表面で炭素析出が起こる等、触媒の失活があるとして、改質目的では殆ど使用されていない。   In addition, regarding the iron / alumina catalyst used in Patent Document 5, there was a description that the performance was not good. In general, an iron-based catalyst is hardly used for reforming purposes because the catalyst is deactivated, for example, carbon deposition occurs on the catalyst surface.

特開2004−41848号公報JP 2004-41848 A 特開平11−294726号公報JP 11-294726 A 特開2006−68723号公報JP 2006-68723 A 特開2004−900号公報JP 2004-900 A 特開2003−55671号公報JP 2003-55671 A NEDO国際共同研究助成事業(NEDOグラント)報告書EA-04「ケミカルヒートポンプ概念を導入した低環境負荷高効率発電のための褐炭流動層改質」(1999〜2001)NEDO International Joint Research Grant Project (NEDO Grant) Report EA-04 “Liquefied coal fluidized bed reforming for low environmental load and high efficiency power generation using chemical heat pump concept” (1999-2001) 化学工学便覧第5版、p211Chemical Engineering Handbook 5th edition, p211

触媒の無い系で水蒸気改質を行った場合、タールは高温ほど減少する傾向にあるが、タールがほとんど無い状態(例えば100mg/Nm未満;ガスエンジン等でそのまま燃焼に使用可能なガス中タール濃度)にするには、1100℃以上の高温にする必要があり、その際別の問題が生じる。即ち、1100℃を超えたあたりからススの生成が急激に増加することが問題であり、ガス利用の点からすれば、タール、ススともに要除去物であることから、エネルギーをかけて高温にする意義が低いのである。従って、タールが残存しても、通常温度(発明者ら知見では1100℃程度まで)での操業条件をとらざるを得ない。また、残存したタールは、ガス利用時(ガス燃料として燃焼したり、CO、Hガスとして化学合成の原料として使用等)には使用されないため、発熱量分プロセスの潜熱ロスとなるのみならず、水処理系等の除去工程が必要であり、発生排水処理コスト等、経済性も悪化させる。 When steam reforming is carried out in a system without a catalyst, tar tends to decrease as the temperature increases, but there is almost no tar (for example, less than 100 mg / Nm 3 ; tar in gas that can be used as it is for combustion in a gas engine or the like. In order to obtain a (concentration), it is necessary to increase the temperature to 1100 ° C. or higher, which causes another problem. That is, there is a problem that the generation of soot suddenly increases when the temperature exceeds 1100 ° C. From the viewpoint of gas utilization, both tar and soot are required to be removed. The significance is low. Therefore, even if tar remains, the operating conditions at normal temperature (up to about 1100 ° C. according to the inventors' knowledge) must be taken. In addition, since the remaining tar is not used when gas is used (combusted as gas fuel or used as a raw material for chemical synthesis as CO, H 2 gas, etc.), not only becomes a latent heat loss of the calorific value process. Moreover, the removal process of a water treatment system etc. is required, and economical efficiency, such as generated wastewater treatment cost, deteriorates.

一方触媒のある系では、活性が高いことからNi系触媒が使用されることが多いが、特許文献3によると、ガス化反応全体を流動床で行い、そこにニッケル/ドロマイト系触媒を導入して温度を600℃〜900℃にしている。このガス化反応と触媒反応を同時に行う方式の場合、ガス化条件に制限が生じること(ガス化条件を変更する場合、たとえば酸素比、水蒸気比等操作方法があるが、いずれもガス化温度の変化、ガス成分の変化;特に水蒸気量の変化を伴うため、触媒反応に影響が出る)、触媒活性の低下がガス化特性の低下にも影響すること(ガス化条件は同じでも改質反応が不十分になればタール残存は冷ガス効率やガス転換率を結果的に下げる)等、操業面、性能面での不安定要素が大きい。   On the other hand, in a system with a catalyst, a Ni-based catalyst is often used because of its high activity. However, according to Patent Document 3, the entire gasification reaction is performed in a fluidized bed, and a nickel / dolomite-based catalyst is introduced therein. The temperature is set to 600 ° C to 900 ° C. In the case of the method in which the gasification reaction and the catalytic reaction are performed at the same time, there are limitations on the gasification conditions. Changes, changes in gas components; particularly, changes in the amount of water vapor affect the catalytic reaction), and a decrease in catalytic activity also affects a decrease in gasification characteristics (reforming reaction can be performed under the same gasification conditions) If it becomes insufficient, the remaining tar has a lot of unstable factors in terms of operation and performance, such as lowering the cold gas efficiency and gas conversion rate as a result.

また、一般的にはニッケル系触媒は硫黄被毒が重要な課題であり、これを解決するため、特許文献3では特に耐硫黄被毒性が高い触媒として、ニッケルが5〜30wt%、タングステン酸アンモニウム、硝酸コバルト、モリブデン酸アンモニウムを5〜30wt%(残りドロマイト;推定)、特許文献4ではaM・bNi・cMg・dOで表される触媒(M:Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siのうち少なくとも一種)で、a+b+c=1、0.02≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.97(いずれもモル比)のときに高性能で耐硫黄被毒性を持つ触媒となるとし(HS存在下でメタン転換率10〜99%)、特許文献5では石炭を原料としたCOGの水蒸気改質で、硫化水素を含有する粗COGの水蒸気改質にNiがナノクラスター状に担体内部から表面に析出した固溶体触媒等が好適としている。 Further, in general, sulfur poisoning is an important problem for nickel-based catalysts, and in order to solve this, Patent Document 3 discloses that nickel is 5 to 30 wt%, ammonium tungstate as a catalyst having particularly high sulfur poisoning resistance. , Cobalt nitrate, ammonium molybdate 5-30 wt% (remaining dolomite; estimated), and in Patent Document 4, a catalyst represented by aM · bNi · cMg · dO (M: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd, Al, Si), a + b + c = 1, 0.02 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, 0. In the case of 01 ≦ c ≦ 0.97 (both molar ratios), it becomes a catalyst having high performance and sulfur poisoning resistance (methane conversion rate of 10 to 99% in the presence of H 2 S). COG made from raw materials In steam reforming, a solid solution catalyst such as Ni is deposited on the surface from the carrier inside the nanocluster form the steam reforming of crude COG containing hydrogen sulfide is a preferred.

これらは高価なNi及びその他の遷移金属を5〜30%もの多量で使用する必要があり、更に、複雑な触媒系であったり、特殊な製造方法や特殊な表面状態であったりするため、原料コスト、製造コストのアップや調製法含め厳密な製造管理が必要となる。なお、一般的に炭化水素やタール改質触媒は、安定して70%以上の転換率(炭化水素やタールがガスに転換する質量比率)を保てば優秀とされる。   These require the use of expensive Ni and other transition metals in a large amount of 5 to 30%, and moreover, they are complicated catalyst systems, special manufacturing methods and special surface conditions. Strict manufacturing control is required, including cost and manufacturing cost increases and preparation methods. In general, hydrocarbons and tar reforming catalysts are considered excellent if they stably maintain a conversion rate of 70% or more (mass ratio at which hydrocarbons and tar are converted to gas).

本発明は、安価で入手、調製が容易な鉄・ドロマイト系触媒に注目し、炭素析出を抑制して効率よく炭素質資源の熱分解により発生するタールを可燃ガスに転換し、かつ硫黄(硫化水素)被毒に強い触媒、触媒の製造方法及び改質方法を提供することを目的とする。   The present invention pays attention to an iron / dolomite-based catalyst that is inexpensive and easy to obtain and prepare, and converts tar generated from thermal decomposition of carbonaceous resources efficiently into combustible gas by suppressing carbon deposition, and sulfur (sulfurization). (Hydrogen) It is an object to provide a poison-resistant catalyst, a catalyst production method and a reforming method.

本発明は、以上の課題を解決するに有効な方法であり、以下の特徴を有する。   The present invention is an effective method for solving the above problems and has the following features.

(1)炭素質原料の熱分解により生成したタールを含む熱分解ガスを、水蒸気改質して一酸化炭素と水素を主成分とする改質ガスを生成するタール改質方法に使用する触媒であって、鉄鉱石とドロマイトとニッケルとが混合されてなることを特徴とするタール改質用触媒。   (1) A catalyst used in a tar reforming method in which a pyrolysis gas containing tar generated by pyrolysis of a carbonaceous raw material is steam reformed to generate a reformed gas mainly composed of carbon monoxide and hydrogen. A tar reforming catalyst characterized in that iron ore, dolomite and nickel are mixed.

(2)前記タールを含む熱分解ガスは、更に硫化水素を含有していることを特徴とする(1)記載のタール改質用触媒。   (2) The tar reforming catalyst according to (1), wherein the pyrolysis gas containing tar further contains hydrogen sulfide.

(3)前記炭素質原料として、バイオマス、プラスチック、又は、一般廃棄物ゴミの少なくともいずれかの廃棄物を含むことを特徴とする(1)又は(2)記載のタール改質用触媒。   (3) The tar reforming catalyst according to (1) or (2), wherein the carbonaceous raw material includes at least one of biomass, plastic, and general waste.

(4)(1)〜(3)のいずれか1項に記載のタール改質用触媒の製造方法であって、鉄鉱石とドロマイトとを混合した後、ニッケル含有水溶液を前記混合物に含浸させて乾燥及び焼成してタール改質用触媒を製造する、鉄鉱石にニッケル含有水溶液を含浸させて乾燥及び焼成した後、当該焼成物にドロマイトを混合してタール改質用触媒を製造する、又は、ドロマイトにニッケル含有水溶液を含浸させて乾燥及び焼成した後、当該証生物に鉄鉱石を混合してタール改質用触媒を製造することを特徴とするタール改質用触媒の製造方法。   (4) The method for producing a tar reforming catalyst according to any one of (1) to (3), wherein iron ore and dolomite are mixed, and then the mixture is impregnated with a nickel-containing aqueous solution. Drying and calcining to produce a tar reforming catalyst, impregnating iron ore with a nickel-containing aqueous solution, drying and calcining, and then mixing the calcined product with dolomite to produce a tar reforming catalyst, or A method for producing a tar reforming catalyst comprising impregnating a nickel-containing aqueous solution in dolomite, drying and calcining, and then mixing the iron ore with the proof organism to produce a tar reforming catalyst.

(5)前記触媒を製造する際、前記原料鉄鉱石と前記原料ドロマイトと前記原料ニッケル含有水溶液中のニッケルとの合計質量において、前記原料鉄鉱石の質量比率を30質量%以上70質量%以下とし、かつ前記ニッケルの質量比率を0.05質量%以上とすることを特徴とする(4)記載のタール改質用触媒の製造方法。   (5) When the catalyst is produced, the total mass of the raw iron ore, the raw dolomite, and nickel in the raw nickel-containing aqueous solution is 30% by mass to 70% by mass. And the mass ratio of the said nickel shall be 0.05 mass% or more, The manufacturing method of the catalyst for a tar reform as described in (4) characterized by the above-mentioned.

(6)(1)〜(3)のいずれか1項に記載のタール改質用触媒を用いたタールの水蒸気改質方法であって、その際、水蒸気改質の反応原料である水蒸気とタール中炭素のモル比(水蒸気/タール中炭素)が、1mol/mol以上5mol/mol以下であることを特徴とするタールの水蒸気改質方法。   (6) A tar steam reforming method using the tar reforming catalyst according to any one of (1) to (3), wherein steam and tar are reaction raw materials for steam reforming. A method for steam reforming of tar, wherein a molar ratio of medium carbon (water vapor / carbon in tar) is 1 mol / mol or more and 5 mol / mol or less.

なお、本発明で対象とする炭素質原料は、廃棄物や石炭、オイルシェール等の化石燃料等、発熱量を持つものを指す。たとえば廃棄物としては、バイオマスやプラスチック、一般廃棄物ゴミ等を指し、具体的には、農業系バイオマス(麦わら、サトウキビ、米糠、草木等)、林業系バイオマス(製紙廃棄物、製材廃材、除間伐材、薪炭林等)、畜産系バイオマス(家畜廃棄物)、水産系バイオマス(水産加工残滓)、廃棄物系バイオマス(生ゴミ、RDF:ゴミ固形化燃料;Refused Derived Fuel、庭木、建設廃材、下水汚泥)、硬質プラスチック、軟質プラスチック、シュレッダーダスト等を指す。一般廃棄物ゴミとは産廃指定19種類以外のゴミのことで、自治体単位で収集する家庭系ゴミや事業者から出る紙類を多く含む事業系ゴミである。ただし、炭素質をほとんど含まないもの、すなわち分別された金属、ガラス類、がれき等は対象とはしない。他の炭素質資源としては、熱分解してタールが発生するという本発明の対象原料特性から考えて、地球温暖化対策上は好ましいとはいえないが、大量使用による経済性向上等鑑み、化石燃料である石炭やオイルシェール、オイルサンド等の使用、廃棄物との混合使用をしてもかまわない。   In addition, the carbonaceous raw material made into object by this invention points out what has calorific value, such as fossil fuels, such as a waste material, coal, and oil shale. For example, waste refers to biomass, plastics, general waste, etc., specifically agricultural biomass (straw, sugarcane, rice bran, vegetation, etc.), forestry biomass (paper waste, lumber waste, thinned thinning) Wood, charcoal forest, etc.), livestock biomass (livestock waste), aquatic biomass (fishery processing residue), waste biomass (food waste, RDF: solid waste fuel; Refused Derived Fuel, garden trees, construction waste, sewage Sludge), hard plastic, soft plastic, shredder dust, etc. General waste is garbage other than the 19 types designated as industrial waste, and is business waste that contains a lot of household waste collected by local governments and papers from businesses. However, those that contain almost no carbonaceous matter, that is, separated metals, glass, debris, etc., are not covered. As other carbonaceous resources, considering the target raw material property of the present invention that tar is generated by pyrolysis, it is not preferable for global warming countermeasures. Use of coal, oil shale, oil sand, etc. as fuel, or mixed use with waste may be used.

また、本発明で言うところの「水蒸気改質」とは、炭素と水素と酸素で主に構成されているタールが、水蒸気により一酸化炭素と水素に転換される反応であり、たとえば下記式で表現される。   In the present invention, “steam reforming” is a reaction in which tar mainly composed of carbon, hydrogen, and oxygen is converted into carbon monoxide and hydrogen by steam, for example, Expressed.

l+HO→CO+H
並行して起こる反応として、水蒸気改質より速度は遅いが、例えば下記式による二酸化炭素による改質も生じている。
C n H m O l + H 2 O → CO + H 2
As a reaction that occurs in parallel, the rate is slower than that of steam reforming, but reforming by carbon dioxide, for example, by the following formula has also occurred.

l+CO→CO+H
また、熱分解後のタールは高温ではガス状(気体)であり、触媒によるタール改質反応には一部熱分解ガス中のガス成分の水蒸気改質反応も含む(反応を分離できない。例えばメタンの水蒸気改質反応)。従って、改質反応後に存在しているガスを総じて改質ガスと呼ぶ。
C n H m O l + CO 2 → CO + H 2
Further, the tar after pyrolysis is gaseous (gas) at high temperature, and the tar reforming reaction by the catalyst partially includes a steam reforming reaction of a gas component in the pyrolysis gas (the reaction cannot be separated, for example, methane). Steam reforming reaction). Therefore, the gas existing after the reforming reaction is generally called reformed gas.

安価で入手が容易な鉄鉱石およびドロマイトを使用し、且つ、比較的少量のニッケルを添加することで、炭素質資源の熱分解により発生したタールを、効率良く水蒸気改質することができる触媒を得ることができ、当該触媒を用いて、鉄系触媒において生じ易い炭素析出による触媒活性の低下を抑制して、効率良くタールを水蒸気改質することができるようになる。また、硫化水素が共存する条件下でも効率よく水蒸気改質し、発生する可燃ガスを増加することが可能となる。更に、本発明の好適な例では、Niの添加量を従来のNi系触媒よりも大幅に少なくできるため、従来のNi系触媒に比較して十分に安価な触媒を得ることが可能となる。   A catalyst capable of efficiently steam reforming tar generated by pyrolysis of carbonaceous resources by using inexpensive or readily available iron ore and dolomite and adding a relatively small amount of nickel The catalyst can be used, and a reduction in catalytic activity due to carbon deposition that is likely to occur in an iron-based catalyst can be suppressed, and the tar can be efficiently steam reformed. Further, steam reforming can be performed efficiently even under the condition where hydrogen sulfide coexists, and the generated combustible gas can be increased. Furthermore, in a preferred example of the present invention, the amount of Ni added can be significantly reduced as compared with the conventional Ni-based catalyst, so that it is possible to obtain a sufficiently inexpensive catalyst as compared with the conventional Ni-based catalyst.

本発明の触媒を使用する、炭素質原料熱分解プロセスの代表的なフローを図1に示す。炭素質原料1は熱分解炉2に供給され、熱分解温度まで昇温される(複合炭素質原料の場合、通常500℃以上)。本例の場合、熱分解炉2はシャフト炉を使用しており、上部より供給された炭素質原料1は炉内に積み上がり、徐々に下降しながら昇温され、乾燥、熱分解して熱分解ガス及び熱分解タール3と炭化物4を生成し、炭化物4は炉下部より排出される。炭素質原料1に関しては、数100℃の熱分解でタールを生成する性質の物であれば何でも適用でき、例えば、廃木材チップ(バイオマス)の他、プラスチック、一般廃棄物ゴミ等の使用が可能である。後述の実施例において廃木材チップ(バイオマス)に石炭を混ぜて熱分解・改質を実施しているが、これは、分解が容易で水溶性のタールを多く含む廃木材チップと、高温の熱分解が必要で油溶性の芳香族が中心のタールを多く含む石炭を使用することで、両極端なタールによる触媒改質効果を見ており、本発明では、これらのタールを改質できていることから、その中間の性質を持つタールを生成するプラスチック、一般廃棄物ゴミ、農業系・水産系・廃棄物系バイオマス、を網羅可能と考える。   A typical flow of a carbonaceous feed pyrolysis process using the catalyst of the present invention is shown in FIG. The carbonaceous raw material 1 is supplied to the pyrolysis furnace 2 and heated up to the thermal decomposition temperature (in the case of a composite carbonaceous raw material, usually 500 ° C. or higher). In the case of this example, the pyrolysis furnace 2 uses a shaft furnace, and the carbonaceous raw material 1 supplied from the upper part is piled up in the furnace, heated gradually while descending, dried, pyrolyzed and heated. Cracked gas and pyrolytic tar 3 and carbide 4 are generated, and the carbide 4 is discharged from the lower part of the furnace. As for the carbonaceous raw material 1, any material that generates tar by thermal decomposition at several hundred degrees Celsius can be applied. For example, in addition to waste wood chips (biomass), plastic, general waste, etc. can be used. It is. In the examples described later, waste wood chips (biomass) are mixed with coal for thermal decomposition and reforming. This is because waste wood chips that are easy to decompose and contain a large amount of water-soluble tar, and high-temperature heat By using coal that requires cracking and oil-soluble aromatic-rich coal, we can see the catalytic reforming effect of extreme tars. In the present invention, these tars can be reformed. Therefore, it is considered possible to cover plastics that generate tar with intermediate properties, general waste garbage, agricultural / fishery / waste biomass.

熱分解の熱源は特に制限無いが、本例では可燃ガスの部分燃焼高温ガスまたは炭化物を一部燃焼した燃焼熱を使用している。また熱分解炉2はシャフト炉でなければいけない分けではなく、熱分解が可能な他の炉、例えばキルン、固定床炉、流動床炉を採用して構わない。熱分解炉2から生成した熱分解ガス及び熱分解タール3は300℃〜700℃程度の温度で改質炉5に導入され、タールの水蒸気改質反応によりClで模擬されるタールが、ガス中のHO(不足する場合は改質炉で水蒸気を導入)と反応してCO、Hに転換する。気相中でもタールと水蒸気が接触すると反応が進むが、接触機会が少なく、またある程度の温度(1100℃程度)が必要となるため、触媒を使用して反応の促進、温度の低下(反応速度の向上)を図る。触媒が存在することで、触媒表面の鉄、ニッケルにタールが付着し(中間体を形成)、また近傍の触媒表面(酸素関連基)に水蒸気が付着することで、原料の結合力が変化し(弱まり)、反応が促進する。そのことから触媒がガス(タール)と接触しやすい形態が望まれるが、例えば本発明の実施例では、顆粒状(2〜3mm径、数mm長さ)に成型した改質触媒12を固定床のカゴ(触媒ゾーン)に充填し、改質炉5の直後(後段)に隣接して設置し、ガス全量を通過させることで実現している。設置方法は、固定床(炉内充填、カゴ等固定物内に充填等)、移動床(投入、切り出し機構を備える)、流動床等、特に制限するものではない。 The heat source for the pyrolysis is not particularly limited, but in this example, the combustion heat obtained by partially burning the combustible gas partially combusted hot gas or carbide is used. The pyrolysis furnace 2 is not necessarily a shaft furnace, and other furnaces capable of pyrolysis, such as kilns, fixed bed furnaces, and fluidized bed furnaces, may be employed. The pyrolysis gas and pyrolysis tar 3 generated from the pyrolysis furnace 2 are introduced into the reforming furnace 5 at a temperature of about 300 ° C. to 700 ° C., and simulated by C n H m O 1 by a steam reforming reaction of tar. Tar reacts with H 2 O in the gas (when it is insufficient, steam is introduced in the reforming furnace) and converted to CO and H 2 . The reaction proceeds when the tar and water vapor come into contact with each other even in the gas phase, but there are few opportunities for contact and a certain temperature (about 1100 ° C.) is required. Therefore, the catalyst is used to accelerate the reaction and lower the temperature (reaction rate). Improvement). Due to the presence of the catalyst, tar adheres to iron and nickel on the catalyst surface (forms an intermediate), and water vapor adheres to the nearby catalyst surface (oxygen-related group), thereby changing the binding force of the raw material. (Weakens), the reaction is accelerated. For this reason, it is desired that the catalyst easily come into contact with the gas (tar). For example, in the embodiment of the present invention, the reforming catalyst 12 molded into a granular shape (2 to 3 mm diameter, several mm length) is fixed bed. This is realized by filling the basket (catalyst zone), and installing it immediately after (rear stage) the reforming furnace 5 and allowing the entire amount of gas to pass therethrough. The installation method is not particularly limited, such as a fixed bed (filling in a furnace, filling a fixed object such as a basket, etc.), a moving bed (equipped with a charging and cutting mechanism), a fluidized bed, and the like.

改質されて生成した改質ガス6は、ガス処理装置7で清浄化された後、製品ガス8として後段のガス使用プロセス9で使用される。改質炉5では、触媒によりタールの水蒸気改質反応を進行させ、一酸化炭素と水素を主とした改質ガス6を製造するが、改質反応に必要な温度は、300℃〜700℃の熱分解ガス及び熱分解タール3の持ち込み顕熱と、温度不足分を補うために、酸化剤10(例えば酸素/酸素含有ガス)を使用した熱分解ガスの部分燃焼熱でまかなう。水蒸気改質反応に必要な水蒸気は、炭素質原料1の持ち込み水分、熱分解炉2の熱源を作る過程で生成する燃焼反応水等を使用するが、不足の場合は11から水蒸気を追加供給し、所定の水蒸気/タール中炭素のモル比とする。実際の熱分解ガス中の水蒸気量とタール中炭素の関係は、0.1〜10mol/molであることが多い。なお、ガス中水蒸気は、原料持ち込み水分、熱分解熱源(可燃ガスの部分燃焼高温ガスまたは炭化物を一部燃焼)が含有する水分(反応水)、投入する水蒸気の合計からなり、この合計質量を水の分子量(18)で除してモル数を算出する方法、改質炉前でガス中水蒸気質量を測定し、水の分子量(18)で除してモル数を算出する方法等がある。またタール中炭素は、各種分析方法があるが、例えばタール回収後(等速吸引法等で吸引後、塩化メチレン等溶媒で吸収。後で溶媒をとばしタールとして回収する)、元素分析でCの質量%を測定し、タール量に質量%を乗し、炭素分子量(12)で除してタール中炭素のモル数を算出する。   The reformed gas 6 produced by reforming is purified by the gas processing device 7 and then used as the product gas 8 in the subsequent gas use process 9. In the reforming furnace 5, a steam reforming reaction of tar proceeds with a catalyst to produce a reformed gas 6 mainly composed of carbon monoxide and hydrogen. The temperature required for the reforming reaction is 300 ° C. to 700 ° C. In order to compensate for the sensible heat of the pyrolysis gas and the pyrolysis tar 3 and the lack of temperature, it is covered by the partial combustion heat of the pyrolysis gas using an oxidant 10 (for example, oxygen / oxygen-containing gas). The steam required for the steam reforming reaction uses water brought in from the carbonaceous raw material 1 or combustion reaction water generated in the process of creating the heat source of the pyrolysis furnace 2. And a predetermined water vapor / tar carbon molar ratio. The relationship between the amount of water vapor in the actual pyrolysis gas and carbon in tar is often 0.1 to 10 mol / mol. The water vapor in the gas consists of the total amount of moisture brought into the raw material, the moisture contained in the pyrolysis heat source (partially combusted high-temperature gas or part of the combustion of the combustible gas) and the water vapor to be added. There are a method of calculating the number of moles by dividing by the molecular weight of water (18), a method of measuring the water vapor mass in the gas before the reforming furnace, and calculating the number of moles by dividing by the molecular weight of water (18). There are various analysis methods for carbon in tar. For example, after tar recovery (after suction with a constant velocity suction method, etc., it is absorbed with a solvent such as methylene chloride. The solvent is then stripped and recovered as tar). The mass% is measured, the tar amount is multiplied by the mass%, and divided by the carbon molecular weight (12) to calculate the number of moles of carbon in the tar.

本発明における、タール改質触媒は、鉄鉱石とドロマイトとニッケルとが混合されてなることを特徴とする。   The tar reforming catalyst in the present invention is characterized in that iron ore, dolomite and nickel are mixed.

本発明における質量比率の求め方であるが、触媒質量として、鉄鉱石及びドロマイトは原料の乾燥質量(酸化物の状態)をそのまま採用し、ニッケルはニッケル含有水溶性化合物(鉄鉱石に含浸担持する場合、好適なのは硝酸ニッケル・6水和物:分子量290.8)中に含有される金属ニッケル(原子量58.7)の質量を採用した。即ち、原料鉄鉱石の質量、原料ドロマイトの質量、原料ニッケル含有水溶液中のニッケルの質量の合計を分母とし、原料鉄鉱石、原料ドロマイト、原料ニッケル含有水溶液中のニッケルのそれぞれの質量を質量合計(分母)で除し、100を乗した値を各質量%とした。鉄鉱石、ドロマイト、ニッケルのみの構成の触媒で、鉄鉱石:ドロマイト:ニッケル=50質量%:49質量%、ニッケル1質量%の触媒を作成する場合は、乾燥原料として鉄鉱石:ドロマイト:硝酸ニッケルを質量基準で50:49:4.95の比率で準備すればよい(4.95=1×290.8/58.7)。なお、配合としては、後述の実施例で詳細に示すが、鉄鉱石30質量%以上70質量%以下かつニッケル0.05質量%以上が好適である。   In the present invention, the mass ratio is determined as follows: As the catalyst mass, iron ore and dolomite adopt the raw material dry mass (state of oxide) as it is, and nickel impregnates and supports nickel-containing water-soluble compounds (iron ore). In this case, the mass of nickel nickel (atomic weight 58.7) contained in nickel nitrate hexahydrate: molecular weight 290.8) was preferably used. That is, the total mass of the raw iron ore, the raw material dolomite, and the total nickel mass in the raw nickel-containing aqueous solution is used as the denominator, and the total mass of the raw iron ore, raw dolomite, and nickel in the raw nickel-containing aqueous solution ( A value obtained by dividing by 100 and multiplying by 100 was defined as each mass%. When making a catalyst with only iron ore, dolomite, and nickel, iron ore: dolomite: nickel = 50 mass%: 49 mass%, nickel 1 mass%, iron ore: dolomite: nickel nitrate May be prepared at a ratio of 50: 49: 4.95 on a mass basis (4.95 = 1 × 290.8 / 58.7). In addition, although it shows in detail in the below-mentioned Example as a mixing | blending, iron ore 30 mass% or more and 70 mass% or less and nickel 0.05 mass% or more are suitable.

本触媒に製造工程で不可避的不純物が混入するのは許容される。また、上記以外の金属や金属酸化物、成型用バインダ等を触媒特性に影響ない範囲で使用することもできる。例えば強度発現のために、高温特性がよく粉化耐性が期待できるアルミナ、シリカ等を混入させたり、触媒同士の結合力の弱さを補完する、粘土質のバインダ(アルミナ、シリカ、マグネシア、カルシア等含有する)を配合したりする場合がある。   Inevitable impurities are allowed to be mixed into the catalyst during the production process. Further, metals, metal oxides, molding binders and the like other than those described above can be used as long as they do not affect the catalyst characteristics. For example, in order to develop strength, it is possible to mix alumina, silica, etc., which have good high-temperature characteristics and can be expected to resist pulverization, and to supplement weakness in the bonding force between catalysts (alumina, silica, magnesia, calcia) Etc.) in some cases.

その場合には、硝酸ニッケルと同様に乾燥・焼成前後の質量変化を加味し、投入原料量を決めればよい。なお、ニッケルに関しては、他の化合物(例:塩化ニッケル6水和物、蟻酸ニッケル2水和物等、水溶性で加熱分解してニッケル金属が残るタイプ)や、微粉の金属そのままをニッケル源として使用しても構わない。ドロマイトに関しては、本発明では質量を明らかにし、かつ強度変化を低減させるために、天然ドロマイトを焼成した物を使用しているが、人工構成したドロマイトや、未焼成ドロマイト(水分量を把握し、乾燥・焼成後強度が問題ない条件で使用)でも構わない。   In that case, the amount of input raw material may be determined in consideration of the mass change before and after drying and baking as in the case of nickel nitrate. Regarding nickel, other compounds (eg, nickel chloride hexahydrate, nickel formate dihydrate, etc., which are water soluble and thermally decomposed to leave nickel metal), and fine metal as it is as a nickel source You can use it. As for dolomite, in the present invention, in order to clarify the mass and reduce the change in strength, a natural dolomite fired product is used, but artificially constructed dolomite and unfired dolomite (ascertain the amount of water, It may be used under the condition that there is no problem in strength after drying and firing.

本系で使用する触媒は、鉄鉱石と塩基性物質の焼成ドロマイト(主成分はMgO、CaO)の粉末を物理混合し、加圧成型したあと破砕、整粒したもの(比較用:ニッケルのない触媒)、硝酸ニッケル・6水和物の水溶液にその整粒物を含浸させ、120℃の乾燥機で乾燥し、400℃で2時間空気焼成したもの、硝酸ニッケル・6水和物の水溶液を鉄鉱石の粉末に含浸させ120℃の乾燥機で乾燥し、400℃で2時間空気焼成後、焼成ドロマイトの粉末と物理混合し、加圧成型したあと破砕、整粒したもの、硝酸ニッケル・6水和物の水溶液を焼成ドロマイトに含浸させ120℃の乾燥機で乾燥し、400℃で2時間空気焼成後、鉄鉱石の粉末と物理混合し、加圧成型したあと破砕、整粒したもの、を主に使用した(粉末混合法の一製造例)。他に混練焼成法(製造例:Ni含浸鉄鉱石と焼成ドロマイトの粉末を物理混合後、水を加えペースト状にし、混ぜた後乾燥、焼成する。)、含浸法(製造例:硝酸鉄及び硝酸ニッケルの水溶液中に焼成ドロマイトを加え撹拌し、乾燥、焼成する。)、沈殿法(製造例:硝酸鉄及び硝酸ニッケルと、焼成ドロマイトそれぞれを水に溶解させ、撹拌させながら混合し、吸引ろ過後乾燥、焼成する)等実施したが、粉末混合法と大差なかったため、最も調製が単純で熟練度の不要な粉末混合法を採用している。ニッケル塩を使用し、乾燥、焼成する工程は、水溶液とすることで均一に触媒に分散させて安定化するのは当然のことながら、硝酸塩が分解してNO3を放出するため、改質に適する気孔が生じることも狙っている。 The catalyst used in this system is a mixture of iron ore and basic baked dolomite powder (mainly MgO, CaO), pressure-molded, crushed and sized (comparative: no nickel) Catalyst), an aqueous solution of nickel nitrate hexahydrate impregnated with the granulated product, dried in a dryer at 120 ° C., and air-fired at 400 ° C. for 2 hours, an aqueous solution of nickel nitrate hexahydrate Impregnated with iron ore powder, dried in a dryer at 120 ° C, calcined in air at 400 ° C for 2 hours, physically mixed with calcined dolomite powder, crushed and sized, nickel nitrate 6 An aqueous solution of hydrate is impregnated into a calcined dolomite, dried with a dryer at 120 ° C., air calcined at 400 ° C. for 2 hours, physically mixed with iron ore powder, pressure-molded, crushed and sized, (Manufacturing example of powder mixing method) . In addition, kneading firing method (production example: Ni impregnated iron ore and calcined dolomite powder are physically mixed, then water is added to form a paste, mixed, dried and fired), impregnation method (production example: iron nitrate and nitric acid) After adding calcined dolomite to an aqueous nickel solution, stirring, drying, and calcining), precipitation method (manufacturing example: iron nitrate and nickel nitrate, calcined dolomite dissolved in water, mixing with stirring, and after suction filtration) However, since it was not much different from the powder mixing method, a powder mixing method that is the simplest to prepare and does not require skill is adopted. Using a nickel salt, drying, calcining, while a uniformly things to stabilized dispersed in the catalyst naturally be an aqueous solution, to release the NO 3 nitrate is decomposed, the reforming It also aims to create suitable pores.

なお、本発明で使用する鉄鉱石は、基本的には種類を問わないが、特にピソライト鉱石(褐鉄鉱とも言う:例えば、ローブリバー鉱石、Fe・nHO=FeOOH)がヘマタイト鉱石(Fe)、マグネタイト鉱石(Fe)、マラマンバ鉱石(Fe・FeOOH)よりも好ましい。これは、ピソライト鉱石が魚卵状組織を持ち、適度のサイズの気孔が発達しやすいからであると推測される。 The iron ore used in the present invention is basically of any type, but in particular pisolite ore (also called limonite: for example, lobe river ore, Fe 2 O 3 · nH 2 O = FeOOH) is a hematite ore ( Fe 2 O 3 ), magnetite ore (Fe 3 O 4 ), and maramamba ore (Fe 2 O 3 .FeOOH) are preferred. This is presumed to be because pisolite ore has a fish egg-like structure and easily develops pores of an appropriate size.

(実施例1)
図2に、金属種の違いによるタール改質性能の比較として、本発明の鉄・ドロマイト・Ni触媒の実施例と、比較例としてNiの代わりにCr、Mn、Co、Cu、Znを使用した触媒での、S/C=2および5の場合での改質結果を示した。ここで、S/Cとは、Stean/Carbon=水蒸気/タール中カーボンのモル比のことである。鉄鉱石は、製鉄用に使用するローブリバー鉱石、ドロマイトは上田石灰製造(株)社製焼成ドロマイトを使用した。製造方法に関しては、上述した方法のうち、硝酸ニッケル・6水和物(他金属も硝酸塩を使用)の水溶液を鉄鉱石の粉末に含浸させ120℃の乾燥機で乾燥し、400℃で2時間空気焼成後、焼成ドロマイトの粉末と物理混合し、加圧成型したあと破砕、整粒した方法を使用した。試験条件を合わせるために、添加金属無しの場合は鉄鉱石:焼成ドロマイト=50:50(質量比)、添加金属ありの場合、鉄鉱石:添加金属:焼成ドロマイト=50:1:49(質量比)で触媒調製し、反応温度(改質温度)は900℃、W/F=5.6 g・h/mol(GHSV=4200h-1)、水蒸気/タール中炭素=2と5(いずれもmol/mol)とした。
Example 1
In FIG. 2, as a comparison of tar reforming performance depending on the metal type, an example of the iron / dolomite / Ni catalyst of the present invention and Cr, Mn, Co, Cu, Zn instead of Ni were used as a comparative example. The reforming results with S / C = 2 and 5 for the catalyst are shown. Here, S / C is the molar ratio of stean / carbon = water vapor / carbon in tar. The iron ore was a lobe river ore used for iron making, and the dolomite was a baked dolomite manufactured by Ueda Lime Manufacturing Co., Ltd. Regarding the production method, among the methods described above, an iron ore powder is impregnated with an aqueous solution of nickel nitrate hexahydrate (nitrate is also used for other metals) and dried in a dryer at 120 ° C., and then at 400 ° C. for 2 hours. After air calcination, a method of physically mixing with baked dolomite powder, press molding, crushing, and sizing was used. In order to match the test conditions, iron ore: calcined dolomite = 50: 50 (mass ratio) in the case of no added metal, iron ore: added metal: calcined dolomite = 50: 1: 49 (mass ratio) in the presence of the additive metal. ), The reaction temperature (reforming temperature) is 900 ° C., W / F = 5.6 g · h / mol (GHSV = 4200 h −1 ), steam / carbon in tar = 2 and 5 (both mol / Mol).

なお、炭素質原料熱分解で生成するタールは複合化合物であり、原料によって組成が変化するため、模擬タールとしてトルエンを使用した。本実施例では、直鎖状の炭化水素系タールよりも分解が困難な芳香族系タールであるトルエンを代表模擬タールとしているが、当該タールで水蒸気改質ができれば、直鎖状の炭化水素系タールも容易に水蒸気改質することができるものと考えられる。ここで、水蒸気は水を定量添加(加熱して水蒸気とした)、タール中炭素は、トルエン中炭素(分子量92中84が炭素)を元にモル数を算出した。また、後述のフィールド試験で発生する熱分解ガス及び熱分解タール3には、熱分解タール以外に熱分解ガスが同伴し、その中に微量のメタン、エタン等炭化水素が含有する。この炭化水素ガスの水蒸気改質も並行して起こると推定されるが、極微量であるため、本発明で示した好適な水蒸気/タール中炭素のモル比数値には影響しない(メタン、エタンが非常に多い系であっても、炭素、水素、酸素のマテリアルバランスを算出することで、メタン、エタン等由来の水蒸気改質反応をタールの水蒸気改質と分離可能であるため、算出工程は必要だが影響はほとんどない)。   In addition, since the tar produced | generated by carbonaceous raw material pyrolysis is a composite compound, since a composition changes with raw materials, toluene was used as a simulation tar. In this example, toluene, which is an aromatic tar that is more difficult to decompose than a linear hydrocarbon tar, is used as a representative simulated tar. If the tar can be steam reformed, a linear hydrocarbon tar is used. Tar is also considered to be easily steam reformed. Here, water vapor was quantitatively added with water (heated to make water vapor), and carbon in tar was calculated in terms of moles based on carbon in toluene (84 in molecular weight 92 was carbon). The pyrolysis gas and pyrolysis tar 3 generated in the field test described later are accompanied by pyrolysis gas in addition to the pyrolysis tar, and contain trace amounts of hydrocarbons such as methane and ethane. The steam reforming of this hydrocarbon gas is also estimated to occur in parallel, but since it is extremely small, it does not affect the preferred steam / tar carbon molar ratio shown in the present invention (methane, ethane Even in a very large number of systems, the calculation process is necessary because the steam reforming reaction derived from methane, ethane, etc. can be separated from the steam reforming of tar by calculating the material balance of carbon, hydrogen, and oxygen. But it has little effect).

図2中では、改質後のガス収率(質量基準%)を各触媒ごとに示しており、100%に満たない成分はその他(H、C2+の炭化水素、窒素や測定誤差)になる。タールが反応するとガス(CO、CH、CO等)に転換することから、CO+CH+CO(上から3成分)が反応生成ガス、Cは分解したもののタールに留まっている分、Cは未反応物であり、CO+CH+COが大きい方が触媒特性が優秀と判断できる。図2の試験ではトルエンを模擬タールとしているため、CO+CH+COの合計収率をトルエン転換率(この場合タール転換率と同義)とした。試験的にタール(トルエン)の回収が困難なためであり、実施例4に示したようなフィールド試験では、塩化メチレン可溶分をタールとし、反応前後の実タール量(単位g/Nm)を測定のうえ、下記式によりタール転換率とした。生成側物質基準による計算と、残原料基準による計算の違いはあるが、原料タールがガスに転換した質量比率を求めるという点で同義である。 In FIG. 2, the gas yield (mass basis%) after reforming is shown for each catalyst, and components less than 100% are other (H 2 , C 2+ hydrocarbons, nitrogen and measurement error). Become. When tar reacts, it is converted to gas (CO, CH 4 , CO 2 etc.), so CO + CH 4 + CO 2 (three components from the top) is the reaction product gas, C 6 H 6 is decomposed but remains in tar , C 7 H 8 is an unreacted substance, and it can be judged that the catalyst characteristic is excellent when CO + CH 4 + CO 2 is large. Since toluene is used as a simulated tar in the test of FIG. 2, the total yield of CO + CH 4 + CO 2 is defined as the toluene conversion rate (in this case, synonymous with the tar conversion rate). This is because it is difficult to recover tar (toluene) experimentally. In the field test as shown in Example 4, the methylene chloride soluble matter is tar, and the actual tar amount before and after the reaction (unit: g / Nm 3 ). Was measured to obtain a tar conversion rate according to the following formula. Although there is a difference between the calculation based on the production-side substance standard and the calculation based on the remaining raw material standard, it is synonymous in that the mass ratio of raw material tar converted to gas is obtained.

式:(反応前実タール量−反応後実タール量)/反応前実タール量×100<%>
図2の(a)(S/C=2)では、添加なしに比べ、Co添加、Ni添加触媒がそれぞれ85、79%のガス成分(CO+CH+CO)の割合であり、従来例並の非常に優秀な触媒性能(炭化水素の転換率)を示した。Cr、Mnはそれに準じ、65〜75%であった。Cu、Znは添加無しより性能が悪い結果であった。一方、図2の(b)(S/C=5mol/mol)では、Niのみ突出して性能が良く、85%を超える触媒性能を示した。従って、Niがガス成分に寄らず安定して高い転換率でタールの改質を行えると言える。
(実施例2)
次に、S/C=5とし、鉄鉱石とドロマイトとニッケルの合計質量における鉄鉱石質量比率とニッケル質量比率とを変更した以外は、実施例1と同様の条件にて試験を行い、鉄鉱石質量比率とニッケル質量比率が転換率に与える影響を調査した。
Formula: (actual tar amount before reaction−actual tar amount after reaction) / actual tar amount before reaction × 100 <%>
In FIG. 2 (a) (S / C = 2), the ratio of the gas component (CO + CH 4 + CO 2 ) is 85% and 79% for the Co-added and Ni-added catalysts, respectively, compared to the case of no addition, which is similar to the conventional example Excellent catalyst performance (hydrocarbon conversion). Cr and Mn were 65-75% according to it. Cu and Zn had results worse than those without addition. On the other hand, in FIG. 2B (S / C = 5 mol / mol), only Ni protruded and the performance was good, and the catalyst performance exceeded 85%. Therefore, it can be said that Ni can reform tar with a high conversion rate stably without depending on the gas component.
(Example 2)
Next, S / C = 5, and the test was performed under the same conditions as in Example 1 except that the iron ore mass ratio and the nickel mass ratio in the total mass of iron ore, dolomite, and nickel were changed. The effects of mass ratio and nickel mass ratio on the conversion rate were investigated.

表1に、触媒中の鉄鉱石質量比率とニッケル質量比率をマトリックス化した特性表を示す。転換率が70%以上のものを◎、50%以上70%未満のものを○、50%未満のものを△で示した。◎が充分な転換特性を発揮する触媒である。   Table 1 shows a characteristic table in which the iron ore mass ratio and the nickel mass ratio in the catalyst are matrixed. A conversion rate of 70% or more is indicated by ◎, a conversion rate of 50% or more and less than 70% is indicated by ○, and a conversion rate of less than 50% is indicated by Δ. ◎ is a catalyst that exhibits sufficient conversion characteristics.

Figure 2009045597
Figure 2009045597

表1から優秀な触媒と評価できる範囲は、鉄鉱石30質量%以上70質量%以下かつニッケル0.05質量%以上である。ニッケル質量が多く(〜20質量%)、鉄鉱石質量が少ない(10〜20質量%)範囲も良好なタール転換率を示すが、金属ニッケルの価格は鉄鉱石の600から800倍ほどであり、安価な鉄鉱石を使用して効果を得る本発明においては4質量%以下が好ましい。
(実施例3)
次に、鉄鉱石とドロマイトとニッケルの合計質量における鉄鉱石質量比率を50質量%とし、ニッケル質量比率を1質量%として、S/Cを変更した以外は、実施例1と同様の条件にて試験を行い、S/Cが転換率に与える影響を調査した。
The range that can be evaluated as an excellent catalyst from Table 1 is 30% by mass or more and 70% by mass or less of iron ore and 0.05% by mass or more of nickel. The range of high nickel mass (~ 20 mass%) and low iron ore mass (10-20 mass%) also shows good tar conversion, but the price of metallic nickel is about 600 to 800 times that of iron ore, In the present invention in which an effect is obtained by using an inexpensive iron ore, 4 mass% or less is preferable.
(Example 3)
Next, the iron ore mass ratio in the total mass of iron ore, dolomite, and nickel was 50 mass%, the nickel mass ratio was 1 mass%, and the S / C was changed under the same conditions as in Example 1. Tests were conducted to investigate the effect of S / C on the conversion rate.

その結果、   as a result,

Figure 2009045597
Figure 2009045597

となり、S/Cは、1mol/mol以上5mol/mol以下が、好ましいタール改質条件と考えられる。
(実施例4)
次に、前記結果を受けて実熱分解ガスによるフィールド試験を実施した。
Thus, it is considered that S / C is preferably 1 mol / mol or more and 5 mol / mol or less as a preferable tar reforming condition.
Example 4
Next, a field test using actual pyrolysis gas was performed based on the results.

タールの転換率(単位%:等速吸引・塩化メチレン吸収法による改質炉出入口のタール含有量測定結果を基に、前述式により算出)は92%となった。このときの触媒は、ローブリバー鉄鉱石50質量%、ニッケル1質量%、焼成ドロマイト49%で、硝酸ニッケル・6水和物の水溶液を鉄鉱石の粉末に含浸させ120℃の乾燥機で乾燥し、400℃で2時間空気焼成後、焼成ドロマイトの粉末と物理混合し、加圧成型したあと破砕、整粒したものを使用した。操業条件は、熱分解原料:廃木材チップ(バイオマス)及び石炭、17トン/日、触媒層温度900℃で、入側タール濃度は1.6g/Nm、出側タール濃度は0.1g/Nmであった。水蒸気とタール中炭素のモル比は、改質炉前後でガス中水蒸気量(kg/Nm)とガス中タール量(kg/Nm)を測定し、タール中炭素質量%分析後、水蒸気量を18で除したモル数を、ガス中タール量にタール中炭素質量を乗したものを12で除したモル数で除し、モル比とした。実測定値は4mol/molであった。なお、フィールド試験時のタールとは、改質前後の配管よりガス流れと等速に吸引するサンプリング方法でガスを吸引し、塩化メチレンに可溶する成分をタールとしているが、トルエンを模擬タールとした結果と同等の結果となった。このガスには石炭由来の硫化水素が60〜1200ppm含有しており(濃度変動は原料投入時のガス大量発生等、操業状況変動による。概略平均で1000〜1200ppm)、通常ニッケル含有の改質触媒で望ましいとされる0.1ppmを大幅に超過しているが、特に触媒性能への悪影響はなかった。さらに、触媒への炭素析出であるが、試験後の触媒を分析した結果、炭素量が0.1〜0.3質量%(試験前0〜0.1質量%)と極微量であり、従来言われている鉄系触媒の炭素析出による触媒失活の傾向は見られなかった。なお、触媒成分としては、鉄鉱石を30質量%から70質量%(ニッケル1質量%、残りドロマイト)と変えて試験したが、タール転換率はいずれも70%を超えた良好な結果となった。硫化水素による被毒の影響をあまり受けずに、タール改質ができていることが判る。 The tar conversion rate (unit%: calculated by the above formula based on the tar content measurement result at the inlet and outlet of the reformer by the constant velocity suction / methylene chloride absorption method) was 92%. The catalyst at this time was 50% by mass of lobe river iron ore, 1% by mass of nickel, and 49% of calcined dolomite. The iron ore powder was impregnated with an aqueous solution of nickel nitrate hexahydrate and dried with a 120 ° C. dryer. After calcination in air at 400 ° C. for 2 hours, the mixture was physically mixed with the calcined dolomite powder, pressed, crushed and sized. The operating conditions are: pyrolysis raw material: waste wood chips (biomass) and coal, 17 tons / day, catalyst layer temperature 900 ° C., inlet tar concentration is 1.6 g / Nm 3 , outlet tar concentration is 0.1 g / It was Nm 3. The molar ratio of steam and tars in carbon, gas water vapor content before and after reforming furnace (kg / Nm 3) and gas tar (kg / Nm 3) was measured, after the carbon mass% in tar analysis, the amount of water vapor The number of moles divided by 18 was divided by the number of moles obtained by dividing the amount of tar in the gas by the carbon mass in the tar by 12 to obtain a molar ratio. The actual measured value was 4 mol / mol. The tar in the field test is a sampling method in which gas is sucked from the pipe before and after reforming at the same speed as the gas flow, and the component that is soluble in methylene chloride is tar. The result was equivalent to the result. This gas contains 60 to 1,200 ppm of hydrogen sulfide derived from coal (concentration fluctuations are due to fluctuations in operating conditions such as the generation of a large amount of gas at the time of starting materials. The average is 1000 to 1,200 ppm), usually a nickel-containing reforming catalyst However, there was no adverse effect on the catalyst performance. Furthermore, although it is carbon deposition to a catalyst, as a result of analyzing the catalyst after a test, carbon amount is 0.1-0.3 mass% (0-0.1 mass% before a test) and a trace amount, and it is conventional. There was no tendency of catalyst deactivation due to carbon deposition of the iron-based catalyst. In addition, as a catalyst component, although iron ore was changed from 30 mass% to 70 mass% (1 mass% of nickel, the remaining dolomite), the tar conversion rate was a good result exceeding 70% in all cases. . It can be seen that tar reforming is possible without much influence of poisoning by hydrogen sulfide.

本発明に係る炭素質原料熱分解プロセスの代表的フロー図である。It is a typical flowchart of the carbonaceous raw material pyrolysis process based on this invention. 金属種の違いによるタール改質性能の比較結果を示す図である。It is a figure which shows the comparison result of the tar improvement performance by the difference in a metal kind.

符号の説明Explanation of symbols

1 炭素質原料
2 熱分解炉
3 熱分解ガス及び熱分解タール
4 炭化物
5 改質炉
6 改質ガス
7 ガス処理装置
8 製品ガス
9 ガス使用プロセス
10 酸化剤
11 水蒸気
12 改質触媒
DESCRIPTION OF SYMBOLS 1 Carbonaceous raw material 2 Pyrolysis furnace 3 Pyrolysis gas and pyrolysis tar 4 Carbide 5 Reforming furnace 6 Reforming gas 7 Gas processing apparatus 8 Product gas 9 Gas use process 10 Oxidant 11 Water vapor 12 Reforming catalyst

Claims (6)

炭素質原料の熱分解により生成したタールを含む熱分解ガスを、水蒸気改質して一酸化炭素と水素を主成分とする改質ガスを生成するタール改質方法に使用する触媒であって、鉄鉱石とドロマイトとニッケルとが混合されてなることを特徴とするタール改質用触媒。   A catalyst used in a tar reforming method for generating a reformed gas mainly composed of carbon monoxide and hydrogen by steam reforming a pyrolysis gas containing tar generated by pyrolysis of a carbonaceous raw material, A tar reforming catalyst comprising a mixture of iron ore, dolomite, and nickel. 前記タールを含む熱分解ガスは、更に硫化水素を含有していることを特徴とする請求項1記載のタール改質用触媒。   2. The tar reforming catalyst according to claim 1, wherein the pyrolysis gas containing tar further contains hydrogen sulfide. 前記炭素質原料として、バイオマス、プラスチック、又は、一般廃棄物原料ゴミの少なくともいずれかの廃棄物を含むことを特徴とする請求項1又は2記載のタール改質用触媒。   The tar reforming catalyst according to claim 1 or 2, wherein the carbonaceous raw material contains at least one waste of biomass, plastic, or general waste raw material waste. 請求項1〜3のいずれか1項に記載のタール改質用触媒の製造方法であって、
鉄鉱石とドロマイトとを混合した後、ニッケル含有水溶液を前記混合物に含浸させて乾燥及び焼成してタール改質用触媒を製造する、
鉄鉱石にニッケル含有水溶液を含浸させて乾燥及び焼成した後、当該焼成物にドロマイトを混合してタール改質用触媒を製造する、
又は、ドロマイトにニッケル含有水溶液を含浸させて乾燥及び焼成した後、当該焼成物に鉄鉱石を混合してタール改質用触媒を製造することを特徴とするタール改質用触媒の製造方法。
A method for producing a tar reforming catalyst according to any one of claims 1 to 3,
After mixing iron ore and dolomite, impregnating the mixture with a nickel-containing aqueous solution, drying and calcining to produce a tar reforming catalyst,
After impregnating a nickel-containing aqueous solution into iron ore, drying and calcining, dolomite is mixed with the calcined product to produce a tar reforming catalyst.
Or, after impregnating a nickel-containing aqueous solution into dolomite and drying and calcining, the iron reforming is mixed with the calcined product to produce a tar reforming catalyst.
前記触媒を製造する際、前記原料鉄鉱石と前記原料ドロマイトと前記原料ニッケル含有水溶液中のニッケルとの合計質量において、前記原料鉄鉱石の質量比率を30質量%以上70質量%以下とし、かつ前記ニッケルの質量比率を0.05質量%以上とすることを特徴とする請求項4記載のタール改質用触媒の製造方法。   When producing the catalyst, the total mass of the raw iron ore, the raw dolomite, and nickel in the raw nickel-containing aqueous solution, the mass ratio of the raw iron ore is 30 mass% or more and 70 mass% or less, and the 5. The method for producing a tar reforming catalyst according to claim 4, wherein the mass ratio of nickel is 0.05 mass% or more. 請求項1〜3のいずれか1項に記載のタール改質用触媒を用いたタールの水蒸気改質方法であって、その際、水蒸気改質の反応原料である水蒸気とタール中炭素のモル比(水蒸気/タール中炭素)が、1mol/mol以上5mol/mol以下であることを特徴とするタールの水蒸気改質方法。   A tar steam reforming method using the tar reforming catalyst according to any one of claims 1 to 3, wherein a molar ratio of steam and a carbon in the tar as a reaction raw material for steam reforming is provided. A method for steam reforming of tar, wherein (steam / carbon in tar) is 1 mol / mol or more and 5 mol / mol or less.
JP2007216429A 2007-08-22 2007-08-22 Tar reforming catalyst, method for producing the catalyst, and method for steam reforming tar using the catalyst Active JP4719194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007216429A JP4719194B2 (en) 2007-08-22 2007-08-22 Tar reforming catalyst, method for producing the catalyst, and method for steam reforming tar using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007216429A JP4719194B2 (en) 2007-08-22 2007-08-22 Tar reforming catalyst, method for producing the catalyst, and method for steam reforming tar using the catalyst

Publications (2)

Publication Number Publication Date
JP2009045597A true JP2009045597A (en) 2009-03-05
JP4719194B2 JP4719194B2 (en) 2011-07-06

Family

ID=40498323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216429A Active JP4719194B2 (en) 2007-08-22 2007-08-22 Tar reforming catalyst, method for producing the catalyst, and method for steam reforming tar using the catalyst

Country Status (1)

Country Link
JP (1) JP4719194B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212551A (en) * 2010-03-31 2011-10-27 Nippon Steel Corp Reforming catalyst for tar-containing gas, method for manufacturing the reforming catalyst, and method for reforming tar-containing gas
US9365785B2 (en) 2013-05-29 2016-06-14 Petroleo Brasileiro S.A.-Petrobras Steam reforming process for reducing the tar content of synthesis gas streams
CN109529847A (en) * 2018-11-21 2019-03-29 江汉大学 A kind of method and application preparing carbon base catalyst using waste residue of Chinese herbs
CN112329760A (en) * 2020-11-17 2021-02-05 内蒙古工业大学 Method for recognizing and translating Mongolian in printed form from end to end based on space transformation network
CN113666597A (en) * 2021-08-23 2021-11-19 南京工业大学 Additive for hazardous waste sludge pyrolysis and pyrolysis treatment method
CN114433168A (en) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 Catalyst for biological coke gasification reaction and biological coke gasification raw material
CN114479950A (en) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 Biomass pyrolysis gasification hydrogen production method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5448808A (en) * 1977-09-27 1979-04-17 Mitsui Eng & Shipbuild Co Ltd Gasification of heavy fuel
JP2001089772A (en) * 1999-07-21 2001-04-03 Kobe Steel Ltd Method for hydrogenolysis of petroleium-based heavy oil
JP2004000900A (en) * 2002-03-25 2004-01-08 Nippon Steel Corp Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP2008114121A (en) * 2006-11-01 2008-05-22 Nippon Steel Corp Catalyst for modifying hydrocarbon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5448808A (en) * 1977-09-27 1979-04-17 Mitsui Eng & Shipbuild Co Ltd Gasification of heavy fuel
JP2001089772A (en) * 1999-07-21 2001-04-03 Kobe Steel Ltd Method for hydrogenolysis of petroleium-based heavy oil
JP2004000900A (en) * 2002-03-25 2004-01-08 Nippon Steel Corp Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP2008114121A (en) * 2006-11-01 2008-05-22 Nippon Steel Corp Catalyst for modifying hydrocarbon

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212551A (en) * 2010-03-31 2011-10-27 Nippon Steel Corp Reforming catalyst for tar-containing gas, method for manufacturing the reforming catalyst, and method for reforming tar-containing gas
US9365785B2 (en) 2013-05-29 2016-06-14 Petroleo Brasileiro S.A.-Petrobras Steam reforming process for reducing the tar content of synthesis gas streams
CN109529847A (en) * 2018-11-21 2019-03-29 江汉大学 A kind of method and application preparing carbon base catalyst using waste residue of Chinese herbs
CN114479950A (en) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 Biomass pyrolysis gasification hydrogen production method and system
CN114433168A (en) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 Catalyst for biological coke gasification reaction and biological coke gasification raw material
CN114433168B (en) * 2020-10-30 2024-02-09 中国石油化工股份有限公司 Catalyst for bio-coke gasification reaction and bio-coke gasification raw material
CN112329760A (en) * 2020-11-17 2021-02-05 内蒙古工业大学 Method for recognizing and translating Mongolian in printed form from end to end based on space transformation network
CN112329760B (en) * 2020-11-17 2021-12-21 内蒙古工业大学 Method for recognizing and translating Mongolian in printed form from end to end based on space transformation network
CN113666597A (en) * 2021-08-23 2021-11-19 南京工业大学 Additive for hazardous waste sludge pyrolysis and pyrolysis treatment method
CN113666597B (en) * 2021-08-23 2022-10-21 南京工业大学 Additive for hazardous waste sludge pyrolysis and pyrolysis treatment method

Also Published As

Publication number Publication date
JP4719194B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
Zhao et al. Biomass-based chemical looping technologies: the good, the bad and the future
JP4719194B2 (en) Tar reforming catalyst, method for producing the catalyst, and method for steam reforming tar using the catalyst
Devi et al. A review of the primary measures for tar elimination in biomass gasification processes
Dayton Review of the literature on catalytic biomass tar destruction: Milestone completion report
JP5494135B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
Ramadhani et al. Catalytic tar conversion and the prospective use of iron-based catalyst in the future development of biomass gasification: a review
Singh et al. Tar removal from producer gas: a review
JP2010017701A (en) Reforming method of tar-containing gas
US20110203277A1 (en) Method and apparatus for producing liquid biofuel from solid biomass
JP5659536B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
Surisetty et al. Biomass, availability in Canada, and gasification: an overview
Devi Catalytic removal of biomass tars: olivine as prospective in-bed catalyst for fluidized-bed biomass gasifiers
Zhang et al. Development of iron ore oxygen carrier modified with biomass ash for chemical looping combustion
Liu et al. Steady state modelling of steam-gasification of biomass for H2-rich syngas production
Hossain et al. Hydrogen production by gasification of biomass and opportunity fuels
Yan et al. The state of the art overview of the biomass gasification technology
Twigg et al. Hydrogen production from fossil fuel and biomass feedstocks
JP5659534B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
Zhang et al. Performance of iron ore oxygen carrier modified by biomass ashes in coal‐fueled chemical looping combustion
Mu et al. Assessment of the redox characteristics of iron ore by introducing Biomass ash in the chemical looping combustion process: Biomass ash type, constituent, and operating parameters
Parthasarathy et al. A review on catalytic CO2 pyrolysis of organic wastes to high-value products
JP4731988B2 (en) Gasification method and apparatus for carbonaceous resources
Wu et al. Advanced thermal treatment of wastes for fuels, chemicals and materials recovery
Samprón et al. An innovative Cu-Al oxygen carrier for the biomass chemical looping gasification process
Tamošiūnas et al. Char gasification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350