JP2009045470A - Direct measurement of interdental distance and positioning and guide ingrowth of oral orthodontic micro-implant - Google Patents

Direct measurement of interdental distance and positioning and guide ingrowth of oral orthodontic micro-implant Download PDF

Info

Publication number
JP2009045470A
JP2009045470A JP2008227592A JP2008227592A JP2009045470A JP 2009045470 A JP2009045470 A JP 2009045470A JP 2008227592 A JP2008227592 A JP 2008227592A JP 2008227592 A JP2008227592 A JP 2008227592A JP 2009045470 A JP2009045470 A JP 2009045470A
Authority
JP
Japan
Prior art keywords
implant
micro
guide tube
ray
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008227592A
Other languages
Japanese (ja)
Inventor
Yin-Chao Yao
英 超 姚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2009045470A publication Critical patent/JP2009045470A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method to accurately and quickly judge an implant position of a micro-implant against traditional systems to measure from a copper wire and calculate to decide a micro-implant implanting position. <P>SOLUTION: A stereoscopic network construction 3 with basic measurement unit 2 is made of a radiograph impermeable material, attached to the gingiva to the cheek side or tongue side of a work model for micro-implant, fixed to the dental bite face using a silicone print mold material, irradiated by parallel X-ray irradiation method with an X-ray holder before hardening the material, taken off from the work model after hardening the material, placed in the oral cavity of a patient, inspected with the parallel X-ray irradiation method or the panorama dental X-ray to know a distance between two teeth by an X-ray film and decide the implant position of the micro-implant and to decide the position. The distance between two teeth and the micro-implant implanting position are decided by the stereoscopic network construction, and a drill or the micro-implant is accurately put into a dental groove bone by a right angle system using a guide tube to avoid damage of the neighboring gingiva. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明技術は口腔歯科矯正科で、患者さんの口腔とレントゲン撮影を対照する場合は、直接に二つの歯にどのくらい区間(interdental space)及びマイクロインプラントの内植位置を決めてから、ガイド外筒にガイドされて、マイクロインプラントを直角に骨の正しい位置に着かれ、患者さんの横になり方或いは医者の操作位置による歯根損傷を避けることに関する。In the orthodontic department of the present invention, when contrasting the patient's oral cavity with X-ray photography, the guide space is determined after determining the interval of the two teeth and the implant position of the microimplant directly. To guide the micro-implant at right angles to the correct position of the bone and to avoid root damage due to the patient lying down or the operating position of the doctor.

歯科矯正マイクロインプラントはここ数年に使われて、その失敗原因の一つは隣の歯根を損傷することで、なぜならば、伝統的な位置決め方法は精確でない数値で、レントゲン撮影の平行照射法のミスからである。伝統的には、口腔歯科矯正医者は0.4〜0.5mmの黄銅線でマイクロインプラントを埋め入れる二つの歯隙間に縛る。或いは、ステンレスラインで歯科矯正穴或いは弓糸に固定してレントゲン撮影を受けてから、一つの参考ラインと実際のステンレスライン或いは黄銅線と比較して計算して、大体に位置を見積もる。図14のように、とりあえずドリルで切って或いは直接にマイクロインプラントを埋める。図15、図20、図21のように、その中には、図20はMicroimplants in Orthodontics,Dentos,Inc.,Jae−Hyun Sungら、50ページ図4−34より。Orthodontic microimplants have been used in the last few years, and one of the reasons for their failure is damage to the adjacent roots, because traditional positioning methods are inaccurate figures, Because of mistakes. Traditionally, orthodontic practitioners bind with 0.4-0.5 mm brass wire to two interdental spaces that embed microimplants. Alternatively, after the X-ray image is taken by fixing the orthodontic hole or bow thread with a stainless steel line, the position is roughly estimated by comparing one reference line with the actual stainless steel line or brass wire. As shown in FIG. 14, the micro-implant is buried by drilling or directly. As shown in FIGS. 15, 20, and 21, FIG. 20 is a diagram of Microimplants in Orthodontics, Dentos, Inc. Jae-Hyun Sung et al., Page 50, Figure 4-34.

正しい測定はx線で現れないので、直ちに患者の口腔で正しい位置を探し当てなくて、参考線の実際的な長さ及びx線での長さを利用して、割合によって計算して、それから口腔で実際の距離を測って、時間がかかって精確でなくて、参考線が患者さんの口腔で固定不良による脱ぐこと、或いはx線検査時、ぶつかって脱ぎやすい。その上、科学的な繰り返し性もなくて、第1回のx線と第2回のx線の固定位置が違って、まったく同一位置にになることがあり得ない。The correct measurement does not appear on the x-ray, so do not immediately find the correct position in the patient's oral cavity, use the actual length of the reference line and the length in the x-ray, calculate by percentage, and then In measuring the actual distance, it is time consuming and not accurate, and it is easy to take off the reference line due to improper fixation in the patient's oral cavity or during x-ray inspection. Moreover, there is no scientific repeatability, and the fixed positions of the first x-ray and the second x-ray are different and cannot be exactly the same position.

また、マイクロインプラントの位置を植えることを決定して、常に医師の技術熟達度によって導引管を使う必要があることかどうかを決定して、なぜならば、植入の方向は口腔医師の操作位置がおよび患者の横になる治療椅子の角度と視線方向によって誤差があり、位置が正しく選ぶが、方向の間違によって隣りの歯根を損傷するからであり、初心者にとって、導引管を使って正しい位置にマイクロインプラントを導いて、或いはあらかじめドリルで直角に2つの歯間の歯溝骨に入れるべきである。Also, determine the location of the micro-implant, and always determine whether the guide tube should be used according to the skill level of the doctor, because the direction of implantation depends on the operating position of the oral doctor However, there is an error depending on the angle of the treatment chair and the direction of the line of sight that the patient lies on, and the position is selected correctly, but the adjacent root is damaged by the wrong direction, and it is correct for beginners using the guide tube The micro-implant should be introduced into position or pre-drilled into the sulcus bone between the two teeth at a right angle.

伝統的な診断方式で二つの歯にどのくらい区間(interdental space)があってマイクロインプラントを植入して、すぐに植入位置を判断することができないことを解決するため、レントゲン撮影不透過性の材料、基本測量単位をもった立体網状結構物を利用して二つの歯間に置く。
固定用の立体網状結構物は口腔医者がムラージュをしたシリコン印刷型材或いは樹脂を利用して、それを歯の噛みこみ面に固定して、材料が硬化する前、将来はレントゲン撮影平行照射法のx線ホルダーを利用して材料で記号をつけて、患者さんはX線を撮る時、その方向は平行である。或いは、パノラマ歯x線を撮ってから、x線でどの点がマイクロインプラントの植入点であるか、二つの歯間の距離はどのくらいかをはっきりにする。
In order to solve the problem of how far the interval between two teeth in a traditional diagnostic system can not be implanted and the implantation position cannot be immediately determined, The material is placed between two teeth using a three-dimensional network structure with basic survey units.
The fixed three-dimensional reticulated structure uses a silicone printing mold or resin that has been mulled by an oral doctor, and fixes it to the tooth biting surface. Using the x-ray holder, the material is marked, and when the patient takes an x-ray, the directions are parallel. Alternatively, after taking a panoramic tooth x-ray, it is clear on the x-ray which point is the implantation point of the micro-implant and what is the distance between the two teeth.

本発明は歯の噛み込み面に固定するので、患者さんに上下歯をかみ込ませて、プレドリルをして、或いはマイクロインプラントを植入して、3〜4mm植入して歯の根を損傷すれば、患者さんが違った感じをして、医者はその症状を知っている。Since the present invention is fixed to the tooth biting surface, the patient's upper and lower teeth are bitten, pre-drilled, or micro-implant is implanted, and the tooth root is damaged by implanting 3 to 4 mm. Then the patient feels different and the doctor knows the symptoms.

マイクロインプラントの植入位置を決定したら、本発明は基本測量寸法と同じ、或いは倍数寸法の導引管を持って、例えば基本測量寸法が0.7mmである小格で、マイクロインプラントの直径は1.2mmで、植入位置を探し当てて、骨はあまりに硬いならば、プレドリル(pre−dril)をしなければならなくて、直径が0.5mmで高さが4−5mmで厚さが0.2mmである取外し不可能な導引管を方格上で置いてプレドリルをする。骨は硬くないならば、この時、全部の固定物を患者の口腔からとって、1つの1.4mm×1.4mmの立方体に切って、つまり2倍の基本測量単位で、再び直径が1.2mmで厚さが0.2mmである取外し可能な導引管を案内として、それから直径が1.2mmである自己螺子きりインプラント(self−threading implant)を導引管の導引によって入ってインプラントを植入する。Once the implantation position of the micro-implant is determined, the present invention has a guiding tube having the same or a multiple size as the basic surveying dimension, for example, the basic surveying dimension is 0.7 mm, and the diameter of the micro-implant is 1 If the bone is too stiff to find the implantation position at 2 mm, it must be pre-drilled, 0.5 mm in diameter, 4-5 mm in height and 0. Pre-drill with a 2 mm non-removable guide tube on the square. If the bone is not hard, then take the whole fixture from the patient's mouth and cut it into one 1.4mm x 1.4mm cube, that is, twice the basic survey unit, again with a diameter of 1 Guided by a removable guide tube having a diameter of 0.2 mm and a thickness of 0.2 mm, a self-threading implant having a diameter of 1.2 mm is then introduced by guiding the guide tube. Implant.

導引管の直径はドリル或いはインプラントの直径と同じ、導引管と基本測量単位との距離差は導引管の厚さに補償されるので、導引管は精確に立体網状結構物に置かれて緩まなくて、導引管の末端は鋸歯状で、歯肉を環状にきるので、導引管を沿ってドリルでもマイクロインプラントでも、直角に予期の方向に入って、患者さんの横になり方と医者の操作角度に関わらず、誤差がない。The diameter of the guide tube is the same as the diameter of the drill or implant, and the difference in distance between the guide tube and the basic survey unit is compensated by the thickness of the guide tube, so the guide tube is accurately placed on the three-dimensional network structure. Since the end of the guide tube is serrated and the gingiva is formed in an annular shape, the drill or microimplant along the guide tube enters the expected direction at a right angle and lies on the patient's side. There is no error regardless of the operating angle between the doctor and the doctor.

医師に更に伝統の銅線から測量させ、割合によって計算してどのように適切な歯科矯正マイクロインプラントを選む必要がない。基本測量単位がある立体網状結構物をを貼り付ければ、平行X線検査或いはパノラマ歯x線によって、どの位置は最も適切であるかをよく知って、導引管を利用して、医者は正しい直角方式で正しい位置から歯溝骨に入って、患者が横になる椅子の角度と医者の仕事位置にもかかわらず、誤差がない。There is no need for doctors to further survey from traditional copper wires and calculate the proportions to select the appropriate orthodontic microimplant. If a solid network structure with a basic survey unit is pasted, a parallel X-ray inspection or panoramic tooth x-ray will know the most appropriate position, and using a lead tube, the doctor will be correct There is no error despite the angle of the chair where the patient lies down and the doctor's work position, entering the sulcus bone from the correct position in a right angle manner.

図10を参考いただきます。Please refer to Fig.10.

間接法:まず、患者さんの作業石膏モデルで植入したい歯科矯正マイクロインプラントがどの部位であるか、マイクロインプラントの直径がどのぐらいかを決めて、このところは例を挙げて、直径が1.2mmであるマイクロインプラントを患者さんの第1恒臼歯と第2小臼歯の間に植入するので、適切な基本測量単位がある立体網状構造物をを選んで、例えば、基本測量単位が0.7mmで、この構造物の外形を微調整して、それに人の外形の異なっている歯ぐき(図1のように)に貼ることができて、柔らかいろうを使って石膏模型の歯ぐきで固定して、原則でその長さは口腔粘膜と口底粘膜を刺激できないことである。Indirect method: First, determine which part of the orthodontic microimplant to be implanted in the patient's working plaster model and what is the diameter of the microimplant. Since a 2 mm micro-implant is implanted between the patient's first and second premolars, a three-dimensional network structure with an appropriate basic survey unit is selected. 7mm, you can fine-tune the outer shape of this structure and stick it on the gums with different human profile (as shown in Fig. 1), and fix them with a plaster model gum using a soft wax In principle, its length is that it cannot irritate the oral mucosa and the floor mucosa.

将来はx線平行照射法に用いるx線ホルダー(x−ray holder)を探して、模型で鉛筆で将来平行法x線照射の位置をつけることを用意する。In the future, an x-ray holder used for the x-ray parallel irradiation method is searched for, and it is prepared to position the future parallel x-ray irradiation with a pencil on the model.

シリコンの印型材料を加工して、混合後で網状のものを歯のかみこみ面に(図2)固定して、材料が硬化する前、x線ホルダーで平行照射方式で印型材料に置いて、印型材料で記号をして、将来は患者さんの口中位置は変化することはできない(図3)(図4)。After processing the silicon stamping material, fix the mesh to the tooth biting surface (Fig. 2) after mixing, and place it on the stamping material by parallel irradiation with an x-ray holder before the material hardens In the future, the position of the patient's mouth cannot be changed (Fig. 3) (Fig. 4).

医者さんは技術の一般を感じて、取外し不可能な導引管を利用して(図15)プレドリルして、立体網状結構物を1つの1.4mm×1.4mmの立方体に切って(図7)(図8)、直径が1.2mmで厚さが0.2mmである取外し可能な導引管(図16)(図17)を利用して網状結構物で直径が1.2mmであるインプラントを置いて、導引管を沿ってインプラントを植入して(図10)、インプラントが3〜4mmに入る時、取外し可能な導引管をと取って、全てのインプラントを歯溝骨に植入する。The doctor feels the general technology, pre-drills using a non-removable guide tube (Fig. 15), and cuts the solid reticulated structure into one 1.4mm x 1.4mm cube (Fig. 7) (Fig. 8), using a detachable guide tube (Fig. 16) (Fig. 17) with a diameter of 1.2mm and a thickness of 0.2mm, and a mesh structure with a diameter of 1.2mm Place the implant and implant the implant along the guide tube (Fig. 10) and when the implant enters 3-4mm, take the removable guide tube and place all the implants into the sulcus bone Implant.

医者さんは自分の技術に自信を持って、植入方向が精確であることを確認すれば、直接に基本単位の方格から直径が0.5mmであるドリルを入って(図12)、全ての結構物を取って、1.2mmであるインプラントを植入する。If the doctor is confident in his technique and confirms that the implantation direction is accurate, he directly enters a drill with a diameter of 0.5 mm from the basic unit square (Fig. 12). Then, implant an implant that is 1.2 mm.

医者さんは直径が1.2mmである自己螺子きりインプラント(self−threading implant)を利用すれば、インプラントの中心点で1つの1.4mm×1.4mmの立方網状体に切って(図7)(図8)、マイクロインプラントを植入する(図9)。Using a self-threading implant with a diameter of 1.2 mm, the doctor cuts a single 1.4 mm x 1.4 mm cubic mesh at the center of the implant (Figure 7). (FIG. 8), a microimplant is implanted (FIG. 9).

直接法:患者の歯表面にブラケット(bracket)がないと、適切な基本測量単位がある立体網状構造物をを選んで、柔らかいろうを使って歯の表面に固定して、ブラケットが歯の表面にあると、部分の立体網状構造物を切り整えてブラケットを避けて、更に柔らかいろうを利用してブラケットに固定して、網状構造物を一時固定することができて、また、ブラケットの穴を補充して将来にシリコン印刷型材で立体網状構造物をかみこむ面に固定して、それから1枚の平行法x線をとる(図20)。Direct method: If there is no bracket on the patient's tooth surface, choose a solid network structure with the appropriate basic survey unit and fix it to the tooth surface with a soft wax, and the bracket will be on the tooth surface In this case, it is possible to temporarily fix the network structure by trimming the three-dimensional network structure of the part, avoiding the bracket, and fixing it to the bracket using a softer wax, and to fix the hole of the bracket. Replenish and fix the surface of the three-dimensional network structure with a silicon printing mold in the future, and then take one parallel x-ray (FIG. 20).

x線で最も適当なマイクロインプラントの位置を探して、本ケースで左から右へ第9格を数えて、上から下へ第6格を数えると、最も良い植入位置になって、それから直接ネットで1つの記号(赤色所)(図21)をつけて、植入点になり、直径が0.7mmである自己螺子きり歯科矯正インプラントを採用して、導引管をいらなくてインプラントを植入する同時に、マイクロインプラントと二つの歯の間に距離が十分であるかどうかをよく知っている(図22)。Find the most suitable micro-implant position by x-ray, and in this case, count the 9th case from left to right and the 6th case from top to bottom. A single symbol (red part) (Fig. 21) is attached on the net, and a self-threaded orthodontic implant with a diameter of 0.7 mm is used as the implantation point. At the same time of implantation, we know well whether the distance between the microimplant and the two teeth is sufficient (FIG. 22).

以上の挙げた例は基本測量単位が0.7mmで、一つの模範実施例だけで、一般に本ケースを熟知する医学関連者は発明精神範疇に従って当量の変化あるいは修飾をして、その基本測量単位を改正して、或いは網状の形を改正して、全て以下の本ケースの権利要求書の範囲内になるべきである。In the above example, the basic survey unit is 0.7 mm, and only one exemplary embodiment, the medical person who is familiar with this case generally changes or modifies the equivalent according to the spirit of the invention, and the basic survey unit. Or the net shape should all be within the scope of this case's rights requirements.

は基本測量単位がある立体網状構造物を柔らかいろうで作業石膏の模型で下あごの第1恒臼歯と第2小臼歯の間の頬側歯ぐきでつけることを表す。Indicates that a three-dimensional network structure having a basic surveying unit is attached with a soft wax with a model of work plaster with a buccal gum between the first and second premolars of the lower jaw. はシリコン印刷型材で立体網状構造物を歯のかみこみ面で固定することを表す。Represents fixing a three-dimensional network structure with a tooth-engaging surface with a silicon printing mold. はシリコン印刷型材が硬化する(setting)前に、X線ホルダーで平行法X線をとって位置付けることを表す。Represents the positioning of parallel X-rays with an X-ray holder before the silicon printing mold is set. はシリコン印刷型材が硬化する後で、X線ホルダーの残した記号を取ることを表す。Represents taking the symbol left on the X-ray holder after the silicon printing mold is cured. はこの構造物をとって患者の口腔に転移して、X線の平行法照射を維持することができることを表す。Represents that this structure can be taken and transferred to the patient's oral cavity to maintain parallel X-ray irradiation. は実際的な人体の下顎骨で基本測量単位がある網状構造物を利用してX線で測量する実際的な状況を表す。Represents a practical situation in which X-ray survey is performed using a net-like structure with a basic survey unit in the mandible of the human body. は構造物をとって、歯科ドリル針で2倍の基本測量単位がある方格を磨くことを表す。Represents taking a structure and polishing a square with a double basic survey unit with a dental drill needle. は2つの基本測量単位がある方格を磨いてから、再び患者の口腔に入ってもとの位置を変えないことを表す。Indicates that after refining a square with two basic survey units, it does not change its position when it enters the patient's mouth again. は自己螺子きりインプラント(self−threading implant)を利用して、位置つけの格子から歯科矯正マイクロインプラントをドリルすることを表す。Represents drilling an orthodontic micro-implant from a positioning grid using a self-threading implant. は取外し可能な導引管を利用して、歯科矯正マイクロインプラントを直角方式で位置つけの格子に入ることを表す。Represents the use of a removable guide tube to enter the orthodontic microimplant into the positioning grid in a right angle manner. は取外し不可能な導引管を利用して、歯科矯正マイクロインプラントを直角方式で位置つけの格子に入ることを表す。Represents the use of a non-removable guide tube to enter the orthodontic microimplant into the grid positioned in a right angle manner. は直接に位置つけの格子からドリルで入ることを表す。Means to drill directly from the grid. は伝統的に黄銅線で2歯の間に縛る位置付けの方式を表す。Traditionally represents a positioning system that is tied between two teeth with a brass wire. は伝統的に植入する歯科矯正マイクロインプラントが黄銅線より大体見積値で植入されることを表す。Indicates that orthodontic microimplants that are traditionally implanted are implanted at an estimated value from brass wire. は取外し不可能な導引管の側面図と正投影図を表す。Represents a side view and an orthographic view of a non-removable guide tube. は取外し可能な導引管の開けると閉める時の正投影図を表す。Represents an orthographic projection when the removable guide tube is opened and closed. は取外し可能な導引管の閉める時の側面図を表す。Represents a side view when the removable guide tube is closed. はMicroimplants in Orthodontics,Dentos,Inc.,Jae−Hyun Sungら、50ページ図4−34より。Microimplants in Orthodontics, Dentos, Inc. Jae-Hyun Sung et al., Page 50, Figure 4-34. は伝統的な黄銅線を実際的な人体の下あご骨に位置付けて、それからx線で測量する実際的な状況を表す。Represents a practical situation where a traditional brass wire is positioned on the lower jawbone of a real human body and then surveyed with x-rays. は矯正器をはる患者の口腔で立体網状構造物の写真を直接に貼り付けて、平行X線照射を撮ることを表す。Indicates that a photograph of a three-dimensional network structure is pasted directly on the oral cavity of a patient wearing a corrector and parallel X-ray irradiation is taken. は立体網状構造物の患者さんのx線で表示した状況及びどの点にマイクロインプラントを植入してもいい写真、赤い点が植入点であることを表す。Represents the situation displayed by the x-rays of the patient of the three-dimensional network structure, a photograph in which the microimplant can be implanted at any point, and the red dot being the implantation point. はマイクロインプラントを植入した後の患者の口腔及びマイクロインプラントを表示する状態を表す。Represents a state of displaying the patient's oral cavity and the microimplant after implantation of the microimplant.

符号の説明Explanation of symbols

1.シリコン印刷型材
2.基本測量単位
3.位置付けの立体網状構造物
4.歯科矯正マイクロインプラント
5.取外し可能な導引管が閉める時
6.取外し可能な導引管のハンドル
7.印刷型材でx線ホルダーの記号
8.歯科矯正マイクロインプラントのねじ回し
9.x線で基本測量単位がある立体網状構造物の実際影像
10.固定用の柔らかいろう
11.x線ホルダー
12.x線フィルム
13.シリコン印刷型材が硬化する前
14.x線ガイド
15.ドリルバー
16.ハンドピース
17.二つの基本測量単位の方格
18.取外し不可能な導引管
19.取外し不可能な導引管のハンドル
20.ドリル
21.黄銅線
22.鋸歯状で環状にきる
23.取外し可能な導引管が開ける時
24.マイクロインプラントを植入する点
1. 1. Silicon printing mold material Basic survey unit 3. 3. Positioned three-dimensional network structure 4. Orthodontic microimplants 5. When the removable guide tube closes 6. Detachable guide tube handle 7. x-ray holder symbol for printing molds 8. Screwdriver for orthodontic microimplants 9. Actual image of a three-dimensional network structure with a basic survey unit in x-rays 10. Fixing soft wax X-ray holder 12. X-ray film13. Before the silicone printing mold is cured 14. X-ray guide 15. Drill bar 16. Handpiece 17. 18. Two basic survey unit squares Non-removable guide tube 19. Non-removable guide tube handle 20. Drill 21. Brass wire 22. 23. Serrated and circular. When the removable guide tube opens 24. Points for implanting micro-implants

Claims (3)

レントゲン撮影不透過性の材料から作られる基本測量単位をもった立体網状結構物によって、直接法或いは間接法を利用して、患者さんの二つの歯間の頬側或いは舌側の歯肉につけて、平行x線照射法パノラマ歯x線によってx線フィルム及び口腔で二つの歯間の距離(interdental space)を測って、すぐにマイクロインプラントを植入する装置を決める。Using a three-dimensional reticulated structure with a basic survey unit made of X-ray radiopaque material, using direct or indirect methods, put it on the cheek or lingual gingiva between the patient's two teeth, A parallel x-ray irradiation panoramic tooth x-ray measures the interdental space between the x-ray film and the oral cavity to determine the device for immediate implantation of the microimplant. 以上の位置付けの網状結構物を配合して、取外し可能な導引管と取外し不可能な導引管がある。この二つの導引管の末端に鋸歯状で環状に歯肉組織をきることができる。取外し可能な導引管でマイクロインプラント或いはプレドリルをガイドして、3〜4mm入ると、方向が正確になって、取外し可能な導引管を取って植入或いはドリルを続けて、世界で全てのブランドのマイクロインプラントヘッドはインプラントの直径、即ち導引管の直径より大きい。取外し不可能な導引管はプレドリルに用いて、その直径はプレドリルの直径である。There are a guide tube that can be removed and a guide tube that cannot be removed. Gingival tissue can be cut in a sawtooth shape at the ends of the two guide tubes in an annular shape. Guide the micro-implant or pre-drill with a removable guide tube and enter 3-4mm, the direction will be accurate, take the removable guide tube and continue implantation or drilling, Brand micro-implant heads are larger than the diameter of the implant, ie the diameter of the guide tube. A non-removable guide tube is used for the pre-drill, and its diameter is the diameter of the pre-drill. 導引管の直径は基本測量単位或いはその数倍、例えば、2倍、3倍、及び医者が植入したいマイクロインプラントの直径或いはドリルの直径である。導引管はしっかり網状物に置かれて緩まなくて、導引管と網状物の距離差は導引管の厚さに補償されて、立体網状結構物にしっかり置かれる。The diameter of the lead tube is the basic survey unit or several times, eg, 2 or 3 times, and the diameter of the micro-implant or drill that the physician wishes to implant. The guide tube is firmly placed on the mesh and does not loosen, and the difference in distance between the guide tube and the mesh is compensated by the thickness of the guide tube and placed firmly on the three-dimensional mesh structure.
JP2008227592A 2007-08-14 2008-08-11 Direct measurement of interdental distance and positioning and guide ingrowth of oral orthodontic micro-implant Pending JP2009045470A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096129905A TWI371264B (en) 2007-08-14 2007-08-14 Interdental space direct measurement and orthodontic implants positioning and guiding method

Publications (1)

Publication Number Publication Date
JP2009045470A true JP2009045470A (en) 2009-03-05

Family

ID=40498212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008227592A Pending JP2009045470A (en) 2007-08-14 2008-08-11 Direct measurement of interdental distance and positioning and guide ingrowth of oral orthodontic micro-implant

Country Status (2)

Country Link
JP (1) JP2009045470A (en)
TW (1) TWI371264B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA020939B1 (en) * 2012-05-31 2015-02-27 Закрытое акционерное общество научно-исследовательская производственная компания "Электрон" (ЗАО НИПК "Электрон") Method for determination of sensor geometrical shifts in flat panel x-ray image detector
RU2545503C1 (en) * 2013-11-13 2015-04-10 Закрытое акционерное общество научно-исследовательская производственная компания "Электрон" (ЗАО НИПК "Электрон") Method of determination of geometrical displacement of sensors in flat panel detector of x-ray image
CN110313932A (en) * 2019-07-29 2019-10-11 上海东方肝胆外科医院 A kind of fixation bracket and method for taking the photograph piece for gear division
JP2020524550A (en) * 2017-06-21 2020-08-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method and system for dynamically adjusting oral care routine based on interdental space

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11049276B2 (en) 2018-06-29 2021-06-29 Industrial Technology Research Institute Positioning guidance method and system for tooth brackets

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA020939B1 (en) * 2012-05-31 2015-02-27 Закрытое акционерное общество научно-исследовательская производственная компания "Электрон" (ЗАО НИПК "Электрон") Method for determination of sensor geometrical shifts in flat panel x-ray image detector
RU2545503C1 (en) * 2013-11-13 2015-04-10 Закрытое акционерное общество научно-исследовательская производственная компания "Электрон" (ЗАО НИПК "Электрон") Method of determination of geometrical displacement of sensors in flat panel detector of x-ray image
JP2020524550A (en) * 2017-06-21 2020-08-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method and system for dynamically adjusting oral care routine based on interdental space
JP7184816B2 (en) 2017-06-21 2022-12-06 コーニンクレッカ フィリップス エヌ ヴェ Methods and systems for dynamically adjusting oral care routines based on interdental space
CN110313932A (en) * 2019-07-29 2019-10-11 上海东方肝胆外科医院 A kind of fixation bracket and method for taking the photograph piece for gear division

Also Published As

Publication number Publication date
TW200906371A (en) 2009-02-16
TWI371264B (en) 2012-09-01

Similar Documents

Publication Publication Date Title
US9827075B2 (en) Determination of a three dimensional relation between upper and lower jaws with reference to a temporomandibular joint
US20080057467A1 (en) Dental Implant Surgical Guide
Suzuki et al. Accuracy of miniscrew implant placement with a 3-dimensional surgical guide
JP2019504719A (en) Dental implant drill guide manufacturing method
JP2009045470A (en) Direct measurement of interdental distance and positioning and guide ingrowth of oral orthodontic micro-implant
Wat et al. Precision surgical template for implant placement: a new systematic approach
Terzioğu et al. The Use of a Computerized Tomography--Based Software Program with a Flapless Surgical Technique in Implant Dentistry: A Case Report.
US20120258416A1 (en) Method to define, measure, and display mesiodistal angulation and faciolingual inclination of each whole tooth
CN110946663B (en) 3D printed micro-implant nail guide plate and design method thereof
Pawar et al. A step toward precision: a review on surgical guide templates for dental implants
CN101569535B (en) Interdental space direct measurement method
Abrahams et al. Dental implants and dental CT software programs
Wu et al. Radiographic and surgical template for placement of orthodontic microimplants in interradicular areas: a technical note.
CN216167947U (en) Traction device for embedded tooth
CN215306848U (en) Guide plate for implanting orthodontic anchorage nail
Mayer et al. Divergence correction associated with implant placement: a radiographic study.
Wilson Jr Complications associated with flapless surgery
Chopra et al. Cast-based guided implant placement and prosthetic rehabilitation of a single edentulous space: case report and systematic analysis of surgical guides used in implant dentistry
Abutaleb et al. The accuracy of implant positioning using bone supported versus mucosa supported surgical guide templates for implant assisted lower complete overdenture
Blum et al. A quick and simple method to obtain a radiographic evaluation of remaining alveolar bone height before implant placement
Karthik Rajan Evaluation of placement accuracy and angulation of dental implant using indigenous stent and intraoral radiographic positioning device: An In Vivo and Vitro study
Eigenwillig et al. Safe and Precise TAD Placement in the Anterior Palate with Simple and Inexpensive TAD Guides
GUIDE Precise miniscrew implant insertion technique 17 between the roots of maxillary second premolar and first molar (Kim’s stent)
Moslehifard Computer aided techniques developed for diagnosis and treatment planning in implantology
Salechi Accuracy of Dynamic Guidance System in Endodontic Access of Anterior Teeth-ex vivo Analysis