JP2009043940A - Semiconductor manufacturing method - Google Patents

Semiconductor manufacturing method Download PDF

Info

Publication number
JP2009043940A
JP2009043940A JP2007207382A JP2007207382A JP2009043940A JP 2009043940 A JP2009043940 A JP 2009043940A JP 2007207382 A JP2007207382 A JP 2007207382A JP 2007207382 A JP2007207382 A JP 2007207382A JP 2009043940 A JP2009043940 A JP 2009043940A
Authority
JP
Japan
Prior art keywords
furnace
adhesive
curing
package
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007207382A
Other languages
Japanese (ja)
Inventor
Osamu Hattori
修 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morioka Seiko Instruments Inc
Original Assignee
Morioka Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morioka Seiko Instruments Inc filed Critical Morioka Seiko Instruments Inc
Priority to JP2007207382A priority Critical patent/JP2009043940A/en
Publication of JP2009043940A publication Critical patent/JP2009043940A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor manufacturing method such that no outgas sticks on a package surface. <P>SOLUTION: The semiconductor manufacturing method includes a process (201) of holding the inside of a furnace at ordinary pressure using dry nitrogen, a process (203) of producing a vacuum in the furnace, a process (205) of curing an adhesive between a semiconductor and a package by raising the temperature in the furnace to 150°C and fixing the semiconductor to the package, a process (207) of lowering the temperature in the furnace down to 70°C, and a process (208) of holding the inside of the furnace at the ordinary pressure using dry nitrogen. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明の属する技術分野は有機性の接着剤を用いてパッケージの中に素子を固定する半導体製造の製造工程に関する技術分野に属する。   The technical field to which the present invention belongs is a technical field related to a manufacturing process of semiconductor manufacturing in which an element is fixed in a package using an organic adhesive.

半導体素子を製造する場合にはパッケージ内部に素子を固定し、配線し、封止して製造するのが一般的である。素子をパッケージに固定する場合は接着剤を用いるが、素子の裏面が導電性を持つものはその接着剤に銀ペーストの様な導電性のある接着剤を用いることが多い。反面、素子の裏面が絶縁性の場合は有機系の接着剤を用いて素子を固定する場合が多い。有機系接着剤の多くは熱硬化型であり、接着剤を加熱することで固まり、素子を固定する硬化がある。   In the case of manufacturing a semiconductor element, the element is generally fixed, wired and sealed in the package. An adhesive is used to fix the element to the package, but a conductive adhesive such as silver paste is often used for the adhesive when the back surface of the element is conductive. On the other hand, when the back surface of the element is insulative, the element is often fixed using an organic adhesive. Many of the organic adhesives are thermosetting and harden by heating the adhesive to cure the element.

有機系の接着剤はその溶剤に有機溶剤を使って粘度を保っている場合が多く、有機溶剤は接着剤硬化の工程に於いて、多くはアウトガスとなって出て行ってしまう場合が多い。接着剤が含む有機溶剤は揮発性の高い物、つまり、分子構造の低いものから揮発性の低い物、つまり、分子構造の高いもの、まで多種多様である。揮発性の高い有機溶剤は放出された後に拡散し易い為、パッケージや素子に付着することが少ないが、高分子の有機溶剤では拡散性が低く、滞留してパッケージや素子の表面に付着する現象が起こる。この状態で温度を上げて硬化処理を行うと表面に付着したアウトガス自体が凝固し、付着した表面に有機物の薄膜を形成する現象が起こる。   In many cases, organic adhesives maintain viscosity by using an organic solvent as the solvent, and organic solvents are often outgassed in the process of curing the adhesive. The organic solvents contained in the adhesive vary widely, from those having high volatility, that is, those having a low molecular structure to those having low volatility, that is, those having a high molecular structure. Highly volatile organic solvents tend to diffuse after being released, so they are less likely to adhere to the package or element, but polymer organic solvents have low diffusivity and stay on the surface of the package or element. Happens. When the temperature is raised in this state and the curing process is performed, a phenomenon occurs in which the outgas itself attached to the surface is solidified and an organic thin film is formed on the attached surface.

有機系接着剤は硬化温度が低いため簡便な恒温層でも硬化は可能である。接着剤硬化には一般的には連続炉が用いられている。これは流れ作業の観点からすると有利だからである。連続炉は不活性ガスや還元ガスを常に流す構造になっているので炉の内部を常に同じ状態に保つ事には優れている。   Since the organic adhesive has a low curing temperature, it can be cured even with a simple thermostatic layer. A continuous furnace is generally used for curing the adhesive. This is advantageous from a flow work point of view. The continuous furnace is structured to always flow an inert gas and a reducing gas, so it is excellent to keep the inside of the furnace always in the same state.

接着剤としては、熱硬化性樹脂組成物と有機樹脂粒子とを含む絶縁性半導体用樹脂ペーストが使用され、このペーストに温度を与えて硬化させる(特許文献1参照)。
特開2003−347322号公報
As the adhesive, an insulating semiconductor resin paste containing a thermosetting resin composition and organic resin particles is used, and this paste is cured by applying a temperature (see Patent Document 1).
JP 2003-347322 A

接着剤を硬化させた場合、アウトガスが低分子で揮発性が高ければアウトガスに因るパッケージ表面の汚染は問題が無いが、アウトガスが高分子でパッケージ表面に滞留する場合はアウトガスがパッケージ表面に付着しない様にする必要がある。   When the adhesive is cured, if the outgas is low molecular and highly volatile, there is no problem with contamination of the package surface due to outgas, but if the outgas is polymer and stays on the package surface, the outgas will adhere to the package surface. It is necessary not to do it.

本発明が最終的に解決しようとする課題は、ワイヤーボンドの歩留まりを上げて、最終的な製品歩留まりを向上させることであるが、先ずはアウトガスがパッケージ表面に付着することを防ぐ事が課題となる。   The problem to be finally solved by the present invention is to increase the yield of wire bonds and improve the final product yield, but firstly, it is a problem to prevent the outgas from adhering to the package surface. Become.

本発明の半導体製造方法は、ドライ窒素を用いて炉内を常圧にする工程と、前記炉を真空の状態にする工程と、前記炉の内部温度を一定温度にして半導体とパッケージ間の接着剤を硬化させて、前記半導体を前記パッケージに固定させる工程と、前記炉の内部温度を前記一定温度よりも低い温度になるまで、前記炉の内部温度を下降させる工程と、前記ドライ窒素を用いて前記炉内を前記常圧にする工程と、を有する。   The semiconductor manufacturing method of the present invention includes a step of bringing the inside of a furnace to normal pressure using dry nitrogen, a step of putting the furnace in a vacuum state, and bonding between a semiconductor and a package with the inside temperature of the furnace kept constant. Curing the agent to fix the semiconductor to the package, lowering the furnace internal temperature until the furnace internal temperature is lower than the constant temperature, and using the dry nitrogen And bringing the inside of the furnace to the normal pressure.

前記接着剤が硬化した後、前記半導体の表面をプラズマ洗浄により洗浄する肯定を有する。
前記プラズマ洗浄は、アルゴンと酸素の比が4対1であってもよい。前記炉は、真空対応型のバッチ炉であってもよい。そして、前記パッケージは、4層の配線を持つアルミナ・セラミック製としてもよい。
After the adhesive is cured, the semiconductor surface is positively cleaned by plasma cleaning.
The plasma cleaning may have a ratio of argon to oxygen of 4: 1. The furnace may be a vacuum-compatible batch furnace. The package may be made of alumina ceramic having four layers of wiring.

本発明が期待する効果は最終的には組立歩留まりの向上であるが、アウトガスの吸着の結果発生するパッケージ上の配線上に形成される絶縁薄膜の影響により、ワイヤーボンド歩留まりの低下を阻止することである。ワイヤー付着強度を高め、電気特性検査での不良を低減させる効果を有する。   Although the effect expected by the present invention is ultimately an improvement in assembly yield, it prevents the decrease in wire bond yield due to the influence of the insulating thin film formed on the wiring on the package generated as a result of outgas adsorption. It is. It has the effect of increasing wire adhesion strength and reducing defects in electrical property inspection.

接着剤から出たアウトガスをパッケージに付着させないと事には2つの意味がある。先ずは発生したアウトガスをパッケージ表面から引き離す。もう一つは既にパッケージの表面に付着してしまったアウトガスをパッケージ表面から引き剥がすことである。その為にはパッケージが置かれている気圧を下げる事である。気圧を下げると気体の運動量が増し、アウトガスの分子がパッケージ表面に衝突しても、運動量の高さから吸着せず、パッケージ表面から離れてしまう。同様に、気圧を下げる事は真空引きをする事であり、アウトガスは真空ポンプに引かれて硬化炉の外に排出されるので炉の中に残らない事になる。   The fact that the outgas from the adhesive does not adhere to the package has two meanings. First, the generated outgas is pulled away from the package surface. The other is to peel out the outgas that has already adhered to the surface of the package from the surface of the package. To do this, lower the pressure at which the package is placed. When the atmospheric pressure is lowered, the momentum of the gas increases, and even if outgas molecules collide with the package surface, they are not adsorbed from the height of the momentum and are separated from the package surface. Similarly, reducing the atmospheric pressure means evacuation, and the outgas is drawn out of the curing furnace by the vacuum pump, so it does not remain in the furnace.

接着剤硬化を硬化させる工程を一般的にキュア工程と呼ぶが、キュア工程に用いられるキュア炉に付いてはバッチ炉又は連続炉があるが、連続炉では炉の入り口と出口が常に空いている為、炉内を真空引きしても真空度を上げることは不可能である。従って、本発明では真空引きのできるバッチ炉を用いることとした。   The process of curing the adhesive curing is generally called a curing process, but there are batch furnaces or continuous furnaces for the curing furnace used in the curing process, but in the continuous furnace, the inlet and outlet of the furnace are always open. Therefore, it is impossible to raise the degree of vacuum even if the inside of the furnace is evacuated. Therefore, in the present invention, a batch furnace that can be evacuated is used.

本発明を実施する為にはダイアッタチ工程から電気特性検査に至る迄の半導体後工程が必要となるが、本発明に関する設備としてはキュア炉に限る為、キュア炉を中心に最良な形態を説明する。   In order to carry out the present invention, a semiconductor post-process from the die attach process to the electrical property inspection is required. However, since the equipment related to the present invention is limited to the curing furnace, the best mode will be described focusing on the curing furnace. .

本発明で用いたキュア炉はバッチ炉を用いた。図1は本発明で用いたバッチ炉の模式図である。バッチ炉10は最高温度が摂氏200度迄上昇し、ディヒュージョン・ポンプ20を用いた真空対応型のバッチ炉である。真空度は0.1トール(Torr)迄到達するものを用いた。真空引き後、常圧に戻す為に用いるガスはドライ窒素30を用いた。ドライ窒素30は常温で保管し、使用前にドライフィルターを用いて濾過する方法で供給する。ドライ窒素30は、リークバルブ40を開くとバッチ炉10内に供給され、リークバルブ40を閉じて、ディフュ−ジョン・ポンプ20を作動させると真空を引くことができる。   The curing furnace used in the present invention was a batch furnace. FIG. 1 is a schematic view of a batch furnace used in the present invention. The batch furnace 10 is a vacuum-compatible batch furnace having a maximum temperature increased to 200 degrees Celsius and using a diffusion pump 20. The degree of vacuum used reached 0.1 Torr. After evacuation, dry nitrogen 30 was used as the gas used to return to normal pressure. Dry nitrogen 30 is stored at room temperature and supplied by a method of filtering using a dry filter before use. The dry nitrogen 30 is supplied into the batch furnace 10 when the leak valve 40 is opened, and a vacuum can be drawn by closing the leak valve 40 and operating the diffusion pump 20.

硬化処理を行う対象は、個片のパッケージに有機系接着剤を用いて、6部品を実装したものを使用した。個片パッケージは、4層の配線を持つアルミナ・セラミック製のものを用いた。このパッケージを金属製で40個入りのキャリアテープに入れ、このキャリアテープ10枚をストッカーに入れたものを1ロットとした。   The object to be subjected to the curing process was one in which six parts were mounted on an individual package using an organic adhesive. The individual package was made of alumina ceramic having four layers of wiring. This package was put in a carrier tape of 40 pieces made of metal, and 10 lots of this carrier tape were put in a stocker to make one lot.

本発明で使用した接着剤は、メーカ指定の条件によると硬化推奨温度摂氏150度、硬化に必要な時間は約10分と言う仕様のものを用いた。しかし、実際にこの接着剤を用いてみると、メーカ指定の条件では十分な硬化状態が得られず。本発明の実施例では硬化温度摂氏150度、硬化時間1時間で用いた。   The adhesive used in the present invention had a specification that the recommended curing temperature was 150 degrees Celsius and the time required for curing was about 10 minutes according to the conditions specified by the manufacturer. However, when this adhesive is actually used, a sufficient cured state cannot be obtained under the conditions specified by the manufacturer. In the examples of the present invention, the curing temperature was 150 degrees Celsius and the curing time was 1 hour.

実装工程としては接着剤硬化後に、表面の洗浄を行う為にプラズマ洗浄を行った後に、ワイヤーボンダーで配線を行う。プラズマ洗浄はアルゴンと酸素の比を4対1とし、90秒間線上を行う。配線はアニリングされたアルミ線を用い、超音波振動を加えて素子に配線する形式のワイヤーボンダーを用いた。   As a mounting process, after the adhesive is cured, plasma cleaning is performed to clean the surface, and then wiring is performed using a wire bonder. Plasma cleaning is performed on a line for 90 seconds with an argon to oxygen ratio of 4: 1. For the wiring, an annealed aluminum wire was used, and a wire bonder of a type in which ultrasonic vibration was applied to the element was used.

本実施例では換気を一切行わないで接着剤硬化処理を行った結果から、最終的な条件に行き当たる迄の経過に付いて説明する。   In this embodiment, the process from the result of performing the adhesive curing process without any ventilation to the final condition will be described.

先ずは上記、発明を実施する為の最良の形態で示す1ロット分の製品を図1で示すキュア炉10に入れて接着剤硬化処理を行う。硬化条件は硬化温度を摂氏150度、硬化時間は1時間とした。硬化処理中は排気をする事無く、硬化処理を続けた。硬化処理が終わった後に上記条件でプラズマ洗浄を行った。更に、ワイヤーボンドで配線した後に、20倍の顕微鏡を用いてワイヤーの付着具合を検査した。付着強度がある程度弱いものも弾く為に、ドライ窒素30をワイヤーに吹き付けながら検査を行った。検査は全てのワイヤーが付着しているものを良品とし、ワイヤーが一本でも浮いているものを不良品とした。   First, the product for one lot shown in the best mode for carrying out the invention is placed in the curing furnace 10 shown in FIG. The curing conditions were a curing temperature of 150 degrees Celsius and a curing time of 1 hour. During the curing process, the curing process was continued without exhausting. After the curing process was completed, plasma cleaning was performed under the above conditions. Furthermore, after wiring with a wire bond, the adhesion state of the wire was inspected using a 20 × microscope. In order to play even those with a somewhat weak adhesion strength, an inspection was performed while blowing dry nitrogen 30 onto the wire. In the inspection, a product with all wires attached was regarded as a non-defective product, and a product with even one wire floating was regarded as a defective product.

図2と図3は、接着剤硬化方法を変えながらワイヤーの剥がれ率、つまり不良品率を示した図である。1回目から4回目がバッチ炉のなかの空気を排気する事無く、連続で接着剤硬化工程を行った時のワイヤー付着に関する不良率である。不良率は、初回17.5%から第4回に至ると50%迄増加している。真空炉に於いては、真空ポンプで排気しない限り、バッチ炉内の空気を入れ換えることができないので、接着剤から出るアウトガスが高温で変化して素子のパターン上に有機薄膜を形成したと推測されている。どの様な膜が付着したかは、元素分析を行っていないので定かではない。初回の不良率17.5%でも量産方法としては採用出来ないほどの不良率であるにも係わらず、回を重ねる毎に不良率が上昇し、第4回目には50%に到達してしまった。これは接着剤のアウトガスがバッチ炉内部の壁等に吸着した後に、新しく接着剤硬化を行う際に素子上に再付着したものと推定される。   2 and 3 are diagrams showing the peeling rate of the wire, that is, the defective product rate while changing the adhesive curing method. The first to fourth times are defective rates related to wire adhesion when the adhesive curing process is continuously performed without exhausting the air in the batch furnace. The defect rate increases from 17.5% for the first time to 50% for the fourth time. In a vacuum furnace, the air in the batch furnace cannot be replaced unless it is evacuated with a vacuum pump, so it is assumed that the outgas emitted from the adhesive changed at high temperatures to form an organic thin film on the device pattern. ing. It is not clear what kind of film was deposited because elemental analysis was not performed. Although the initial failure rate is 17.5%, the failure rate is too high to be adopted as a mass production method. However, the failure rate increases with each iteration and reaches 50% in the fourth round. It was. This is presumed that after the adhesive outgas was adsorbed on the wall or the like inside the batch furnace, it was reattached on the element when the adhesive was newly cured.

ワイヤー歩留まりを向上させる為には、バッチ炉10内に吸着したアウトガスを接着剤硬化の作業前に取り除いて良いわけで、先ずはワークをバッチ炉10に入れてから真空引きを行い、最高真空度に到達してから10分引き続け、その後にドライ窒素30をバッチ炉10内に常圧になるまでパージし、その後に接着剤硬化作業を行った。接着剤硬化の条件は硬化温度摂氏150度で硬化時間を1時間とした。その結果が図2と図3の第5回目と第6回目である。第5回目で不良率は下がり始め、第6回目で12%にまで下がったが、引き続き10%を於ける高い値を示した。原因は硬化中の接着剤から放出されるアウトガスに起因する。   In order to improve the wire yield, the outgas adsorbed in the batch furnace 10 may be removed before the work of curing the adhesive. First, the workpiece is put in the batch furnace 10 and then the vacuum is drawn to obtain the maximum degree of vacuum. 10 minutes after reaching the temperature, after that, the dry nitrogen 30 was purged into the batch furnace 10 until the normal pressure was reached, and then the adhesive curing operation was performed. The conditions for curing the adhesive were a curing temperature of 150 degrees Celsius and a curing time of 1 hour. The results are the fifth and sixth times in FIGS. The defect rate started to decrease at the fifth time and decreased to 12% at the sixth time, but continued to show a high value at 10%. The cause is due to the outgas released from the curing adhesive.

第5回目と第6回目の結果から、接着剤のアウトガスがパッケージ表面に付着する前にパッケージ表面から遠ざける方法を本実施例で説明する。   From the fifth and sixth results, a method of moving away from the package surface before the adhesive outgas adheres to the package surface will be described in this embodiment.

接着剤から出た質量の重いアウトガスを瞬時に拡散させる為には、バッチ炉10内を真空にすることが必要である。また、真空ポンプで引くことで、一定方向に空気の流れができる為、派生したアウトガスを真空ポンプの方向に取り去ることができる。   In order to instantly diffuse the heavy outgas from the adhesive, it is necessary to evacuate the batch furnace 10. Moreover, since the air can flow in a certain direction by drawing with a vacuum pump, the derived outgas can be removed in the direction of the vacuum pump.

本実施の形態では接着剤硬化の工程中、絶えず真空引きを継続する方法をとった。つまり、バッチ炉10にドライ窒素30をパージして炉内を常圧にした後(工程201)、ワークをバッチ炉10内に入れる(工程202)。真空引きを開始し、最高到達真空度まで真空を引く(工程203)。最高真空度に到達した後、10分間温度を上げずに真空引きを継続する(工程204)。その後、硬化温度、例えば摂氏150度まで温度を上昇させる(工程205)。炉内温度が150度まで到達してから硬化時間、例えば1時間待つ(工程206)。その後、自然温度降下で炉内温度が摂氏70度まで下がるまで待つ(工程207)。炉内にドライ窒素30をパージし、炉内を常圧に戻す(工程208)。最後に、手袋を用いてワークをバッチ炉10から出す(工程209)。   In the present embodiment, a method of continuously evacuating during the adhesive curing process is employed. That is, after the dry nitrogen 30 is purged into the batch furnace 10 to bring the inside of the furnace to normal pressure (step 201), the work is put into the batch furnace 10 (step 202). Vacuum drawing is started and vacuum is drawn up to the maximum degree of vacuum (step 203). After reaching the maximum degree of vacuum, evacuation is continued without raising the temperature for 10 minutes (step 204). Thereafter, the temperature is increased to a curing temperature, for example, 150 degrees Celsius (step 205). After the furnace temperature reaches 150 degrees, a curing time, for example, 1 hour is waited (step 206). Thereafter, the process waits until the furnace temperature drops to 70 degrees Celsius due to a natural temperature drop (Step 207). The inside of the furnace is purged with dry nitrogen 30, and the inside of the furnace is returned to normal pressure (step 208). Finally, the workpiece is removed from the batch furnace 10 using gloves (step 209).

この方法を用いて接着剤硬化を行ったワークのワイヤー不良率を、図2の第7回目、第8回目及び第9回目に示す。若干の不良率の差はあるものの、全て10%を切り、最高では6.6%の不良率まで下がった。この値は、この方法を繰り返して行った場合には殆ど共通した値となり、接着剤のアウトガス以外が原因する不良と判断される。   The wire defect rate of the workpiece that has been cured with the adhesive using this method is shown in the seventh, eighth and ninth times in FIG. Although there was a slight difference in the defect rate, all fell below 10% and dropped to the highest defect rate of 6.6%. This value becomes almost a common value when this method is repeated, and it is determined that the defect is caused by other than the adhesive outgas.

本発明はアウトガスの質量が空気より重い有機接着剤を用いてダイアッタチする工程と、金又はアルミワイヤーのワイヤーボンド方式で結線する方式を持つ半導体の実装・組立工程に於いて、製造歩留まりを向上させるのに利用される。   The present invention improves the manufacturing yield in a semiconductor mounting / assembling process having a process of detaching using an organic adhesive whose mass of outgas is heavier than air and a system of wire bonding using gold or aluminum wire. Used for

真空引き型バッチ式キュア炉の外観図External view of vacuum type batch type curing furnace ワイヤー剥がれ率の推移Transition of wire peeling rate ワイヤー剥がれ率グラフWire peeling rate graph 接着剤硬化方式を示すフローチャートFlow chart showing adhesive curing method

符号の説明Explanation of symbols

10 バッチ炉
20 ディフュ−ジョン・ポンプ
30 ドライ窒素
40 リークバルブ
10 Batch furnace 20 Diffusion pump 30 Dry nitrogen 40 Leak valve

Claims (5)

ドライ窒素を用いて炉内を常圧にする工程と、
前記炉を真空の状態にする工程と、
前記炉の内部温度を一定温度にして半導体とパッケージ間の接着剤を硬化させて、前記半導体を前記パッケージに固定させる工程と、
前記炉の内部温度を前記一定温度よりも低い温度になるまで、前記炉の内部温度を下降させる工程と、
前記ドライ窒素を用いて前記炉内を前記常圧にする工程と、
を有する半導体製造方法。
A step of bringing the inside of the furnace to normal pressure using dry nitrogen;
Placing the furnace in a vacuum state;
Curing the adhesive between the semiconductor and the package at a constant temperature inside the furnace, and fixing the semiconductor to the package;
Lowering the internal temperature of the furnace until the internal temperature of the furnace is lower than the constant temperature;
Using the dry nitrogen to bring the inside of the furnace to the normal pressure;
A semiconductor manufacturing method comprising:
前記接着剤が硬化した後、前記半導体の表面をプラズマ洗浄により洗浄する工程を有する請求項1記載の半導体製造方法。 The semiconductor manufacturing method according to claim 1, further comprising: cleaning the surface of the semiconductor by plasma cleaning after the adhesive is cured. 前記プラズマ洗浄は、アルゴンと酸素の比が4対1である請求項2記載の半導体製造方法。 The semiconductor manufacturing method according to claim 2, wherein the plasma cleaning has a ratio of argon to oxygen of 4: 1. 前記炉は、真空対応型のバッチ炉である請求項1乃至3のいずれかに記載の半導体製造方法。 The semiconductor manufacturing method according to claim 1, wherein the furnace is a vacuum-compatible batch furnace. 前記パッケージは、4層の配線を持つアルミナ・セラミック製である請求項1乃至4のいずれかに記載の半導体製造方法。 5. The semiconductor manufacturing method according to claim 1, wherein the package is made of alumina ceramic having four layers of wiring.
JP2007207382A 2007-08-09 2007-08-09 Semiconductor manufacturing method Withdrawn JP2009043940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007207382A JP2009043940A (en) 2007-08-09 2007-08-09 Semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007207382A JP2009043940A (en) 2007-08-09 2007-08-09 Semiconductor manufacturing method

Publications (1)

Publication Number Publication Date
JP2009043940A true JP2009043940A (en) 2009-02-26

Family

ID=40444356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007207382A Withdrawn JP2009043940A (en) 2007-08-09 2007-08-09 Semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP2009043940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425341A (en) * 2013-08-28 2015-03-18 中国科学院上海微系统与信息技术研究所 Method for preparing semiconductor material on insulator by low-dose injection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219113A (en) * 1996-02-08 1997-08-19 Asahi Chem Ind Co Ltd Paste for heat conduction
JP2000306928A (en) * 1999-04-21 2000-11-02 Rohm Co Ltd Manufacture of semiconductor device
JP2001068486A (en) * 1999-08-24 2001-03-16 Rohm Co Ltd Semiconductor device and manufacture thereof
JP2004119737A (en) * 2002-09-26 2004-04-15 Kyocera Corp Junction and its manufacturing method
JP2004186577A (en) * 2002-12-05 2004-07-02 Shimadzu Corp Slit coater system
JP2006303531A (en) * 2006-06-23 2006-11-02 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219113A (en) * 1996-02-08 1997-08-19 Asahi Chem Ind Co Ltd Paste for heat conduction
JP2000306928A (en) * 1999-04-21 2000-11-02 Rohm Co Ltd Manufacture of semiconductor device
JP2001068486A (en) * 1999-08-24 2001-03-16 Rohm Co Ltd Semiconductor device and manufacture thereof
JP2004119737A (en) * 2002-09-26 2004-04-15 Kyocera Corp Junction and its manufacturing method
JP2004186577A (en) * 2002-12-05 2004-07-02 Shimadzu Corp Slit coater system
JP2006303531A (en) * 2006-06-23 2006-11-02 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425341A (en) * 2013-08-28 2015-03-18 中国科学院上海微系统与信息技术研究所 Method for preparing semiconductor material on insulator by low-dose injection

Similar Documents

Publication Publication Date Title
US9604249B2 (en) Innovative top-coat approach for advanced device on-wafer particle performance
JP5704783B2 (en) Process and apparatus for bonding wafers
JP2008207221A (en) Room temperature joining method
KR20200084923A (en) Integrated processing of porous dielectric, polymer-coated substrates and epoxy within a multi-chamber vacuum system confirmation
US20070238262A1 (en) Wafer bonding material with embedded rigid particles
US20150243534A1 (en) Copper Wire Bonding Apparatus Using A Purge Gas to Enhance Ball Bond Reliability
JP4671900B2 (en) Joining method and joining apparatus
TW201736027A (en) Bonding system and associated apparatus and method
JP6290222B2 (en) Method for coating substrates and method for bonding substrates
CN101220461A (en) Method for cleaning reaction chamber of semiconductor manufacturing device
JP2009043940A (en) Semiconductor manufacturing method
TWI427715B (en) Manufacturing method of semiconductor device using a heat-resistant adhesive sheet
WO2018190226A1 (en) Sealing structure and sealing method of through hole, and transfer substrate for sealing through hole
Wang et al. The next generation advanced MEMS& sensor packaging
JP2002334816A (en) Method of manufacturing compound semiconductor device and wafer-bonding unit
CN109075127B (en) Sealing structure and sealing method for through hole, and transfer substrate for sealing through hole
JP2006179914A (en) Plasma technique for removing excess molding material from substrate
JPH06244316A (en) Semiconductor device, manufacturing method and manufacturing apparatus
TWI765030B (en) Adhesive layer forming apparatus, semiconductor chip production line, and method for manufacturing laminate
TWI604536B (en) Device and method for bonding of substrates
KR101368967B1 (en) Adhesive composition with nano-particle for semiconductor devices and high heat resistance adhesive sheet using the same
JP2021521627A (en) A method for manufacturing at least partially packaged semiconductor wafers
JP2001044192A (en) Manufacture of semiconductor device and apparatus for manufacturing semiconductor
CN105529244B (en) A kind of method that compound semiconductor substrate is bonded with silicon chip
JPS63173331A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20091105

Free format text: JAPANESE INTERMEDIATE CODE: A7421

RD01 Notification of change of attorney

Effective date: 20091113

Free format text: JAPANESE INTERMEDIATE CODE: A7421

RD01 Notification of change of attorney

Effective date: 20091118

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A621 Written request for application examination

Effective date: 20100608

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20111207

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120127