JP2009042684A - Method for correcting defect in multi-gradation photomask and multi-gradation photomask having defect corrected - Google Patents
Method for correcting defect in multi-gradation photomask and multi-gradation photomask having defect corrected Download PDFInfo
- Publication number
- JP2009042684A JP2009042684A JP2007210347A JP2007210347A JP2009042684A JP 2009042684 A JP2009042684 A JP 2009042684A JP 2007210347 A JP2007210347 A JP 2007210347A JP 2007210347 A JP2007210347 A JP 2007210347A JP 2009042684 A JP2009042684 A JP 2009042684A
- Authority
- JP
- Japan
- Prior art keywords
- film
- semi
- defect
- transmittance
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 230000007547 defect Effects 0.000 title claims description 66
- 238000002834 transmittance Methods 0.000 claims abstract description 72
- 230000003595 spectral effect Effects 0.000 claims abstract description 29
- 238000000151 deposition Methods 0.000 claims abstract description 16
- 239000012528 membrane Substances 0.000 claims description 39
- 238000012937 correction Methods 0.000 claims description 29
- 239000000758 substrate Substances 0.000 claims description 11
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 10
- 229910052753 mercury Inorganic materials 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 claims description 5
- 238000007740 vapor deposition Methods 0.000 claims description 5
- 238000012935 Averaging Methods 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 19
- 230000008021 deposition Effects 0.000 abstract description 8
- 230000003287 optical effect Effects 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000035699 permeability Effects 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Images
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、半透過膜を含むハーフトーン型の多階調フォトマスク(以下、単に「多階調フォトマスク」という。)の欠陥修正方法及びこの方法を適用した多階調フォトマスクに関するものである。 The present invention relates to a defect correction method for a halftone type multi-tone photomask (hereinafter simply referred to as “multi-tone photomask”) including a semi-transmissive film and a multi-tone photomask to which this method is applied. is there.
多階調露光用のハーフトーンマスクは、透明基板の上に遮光膜と半透過膜が形成され、透明基板が露出した透光部と、遮光部によって光が全く透過しない遮光部と、半透過膜の透過率に応じた量の光が透過するハーフトーン部とで構成される。このようなマスクを用いて露光すると、半透過膜の透過率によって露光量を制限することができるため、1回の露光で複数のパターニングが可能となり、マスク露光工程を削減することができる。 The halftone mask for multi-tone exposure has a light-shielding film and a semi-transmissive film formed on a transparent substrate, a light-transmitting portion where the transparent substrate is exposed, a light-shielding portion where no light is transmitted by the light-shielding portion, and a semi-transmissive And a halftone portion through which an amount of light corresponding to the transmittance of the film is transmitted. When exposure is performed using such a mask, the amount of exposure can be limited by the transmittance of the semi-transmissive film, so that a plurality of patterns can be formed by one exposure, and the mask exposure process can be reduced.
多階調露光用ではないが、ハーフトーン型位相シフトマスクのハーフトーン部に発生した白欠陥を修正する方法として、集束イオンビーム(FIB)を用いて「半透過膜とほぼ同透過率の」半透過膜を修正膜として堆積する方法が知られている。 Although not intended for multi-tone exposure, as a method of correcting white defects that occur in the halftone part of a halftone phase shift mask, it uses a focused ion beam (FIB) to “substantially have the same transmittance as a semitransparent film” A method of depositing a semipermeable membrane as a correction membrane is known.
なお、本明細書では、ハーフトーンマスクに当初から形成されていた半透過膜を「未修正半透過膜」、修正膜として形成された半透過膜を「修正半透過膜」とよび区別する。同様に、ハーフトーンマスクに当初から形成されていた遮光膜を「未修正遮光膜」、修正膜として形成された遮光膜を「修正遮光膜」とよび区別する。 In the present specification, the semi-transmissive film formed on the halftone mask from the beginning is referred to as “unmodified semi-permeable film”, and the semi-permeable film formed as a modified film is referred to as “modified semi-permeable film”. Similarly, a light shielding film that has been formed on the halftone mask from the beginning is referred to as an “uncorrected light shielding film”, and a light shielding film that is formed as a correction film is referred to as a “modified light shielding film”.
ハーフトーン型位相シフトマスクは極めて微細な露光を前提とするためF2レーザー(157nm)やArFレーザー(193nm)などの短波長かつ単一波長のレーザー光が用いられ、使用されるレーザーの波長に対して位相シフト量等を計算してその配置や大きさ等が設計される。換言すれば、複数の波長を持つ露光光源は想定されていない。 Since the halftone phase shift mask is premised on extremely fine exposure, short-wavelength and single-wavelength laser light such as F2 laser (157 nm) and ArF laser (193 nm) is used. Thus, the phase shift amount and the like are calculated to design the arrangement and size. In other words, an exposure light source having a plurality of wavelengths is not assumed.
これに対して、多階調露光用のフォトマスクを用いてパターンを転写する際には、例えば水銀ランプのi線(365nm)、h線(405nm)、g線(436nm)など、複数の露光波長を含む露光光源を用いることが一般的である。 On the other hand, when a pattern is transferred using a photomask for multi-tone exposure, for example, a plurality of exposures such as i-line (365 nm), h-line (405 nm), and g-line (436 nm) of a mercury lamp. It is common to use an exposure light source that includes a wavelength.
ところで、修正半透過膜と未修正半透過膜とを比較すると、両者は成膜方法の相違に起因して膜の組成が大きく異なり、ゆえに光学的性質も大きく異なっている。そのため、膜厚を制御するなどの方法により、「ある特定の波長」における透過率を等しくできたとしても、他の波長においては等しくならない。すなわち、露光条件によっては無視できない「波長依存性」の問題が存在する。 By the way, when the modified semipermeable membrane and the unmodified semipermeable membrane are compared, the composition of the membrane is greatly different due to the difference in the film forming method, and therefore the optical properties are also greatly different. Therefore, even if the transmittance at “a specific wavelength” can be made equal by a method such as controlling the film thickness, it is not equal at other wavelengths. That is, there is a “wavelength dependency” problem that cannot be ignored depending on the exposure conditions.
図5は、未修正半透過膜の透過率と、従来の修正半透過膜の透過率とを、異なる波長ごとに測定した結果を示す図である。一般に、修正半透過膜を堆積するとき、その透過率を周囲の未修正半透過膜と透過率を等しくする必要があることは知られていたが、従来は波長依存性の問題を考慮せず、単に特定の波長(例えばg線のみ)で透過率がほぼ一致するように修正することが一般的であった。図5は、g線(436nm)において透過率が周囲とほぼ等しく設定されていることを示している。 FIG. 5 is a diagram showing the results of measuring the transmittance of the unmodified semipermeable membrane and the transmittance of the conventional modified semipermeable membrane for each different wavelength. In general, when depositing a modified semi-transmissive film, it has been known that the transmittance should be the same as that of the surrounding unmodified semi-transmissive film. However, conventionally, the wavelength-dependent problem is not considered. In general, correction is made so that the transmittances are almost the same at a specific wavelength (for example, only g-line). FIG. 5 shows that the transmittance is set to be approximately equal to the surroundings at the g-line (436 nm).
しかし、この修正半透過膜の透過率は、g線以外の他の波長、例えばi線(365nm)やh線(405nm)においては、透過率が未修正半透過膜よりも小さな値となっていることが分かる。従来は波長依存性を考慮していなかったので露光光源の波長ごとに透過率を複数回測定するということは行われていなかったため、図5のようなデータは現実のプロセス上の問題として殆ど認識されていなかった。 However, the transmittance of this modified semipermeable membrane is smaller than that of the unmodified semipermeable membrane at wavelengths other than the g-line, such as i-line (365 nm) and h-line (405 nm). I understand that. Conventionally, since wavelength dependence was not taken into account, it was not possible to measure the transmittance several times for each wavelength of the exposure light source, so the data as shown in FIG. 5 is almost recognized as a problem in the actual process. Was not.
このように、修正半透過膜の透過率の波長依存性を考慮せずに修正半透過膜を堆積した場合には、使用する露光光源によって正しく修正できないという問題が生じうる。特に、単一波長のレーザー光のような露光光源ではなく、水銀ランプ等のように複数の波長の混合光が用いられる場合等に、この問題が顕著に生じる。 As described above, when the modified semi-transmissive film is deposited without considering the wavelength dependency of the transmittance of the modified semi-transmissive film, there may be a problem that the correction cannot be performed correctly depending on the exposure light source used. In particular, this problem occurs remarkably when a mixed light having a plurality of wavelengths is used, such as a mercury lamp, instead of an exposure light source such as a single wavelength laser beam.
本発明は、上記に鑑みてなされたものであり、修正半透過膜の波長依存性を考慮した最適な透過率を設定する具体的な方法を提供することを主たる技術的課題とする。また、その前提となる新規な修正膜の形成方法を提供することも含まれる。 The present invention has been made in view of the above, and has as its main technical problem to provide a specific method for setting the optimum transmittance in consideration of the wavelength dependency of the modified semi-transmissive film. It also includes providing a method for forming a novel correction film which is the prerequisite.
本発明に係る多階調フォトマスクの欠陥修正方法は、透明基板の上に少なくとも遮光膜のパターンと半透過膜のパターンとが形成された多階調フォトマスクの欠陥修正方法であって、前記半透過膜のパターンに含まれる欠陥に対し、気相堆積法により修正半透過膜を堆積することを特徴とする。 The multi-tone photomask defect correcting method according to the present invention is a multi-tone photomask defect correcting method in which at least a light-shielding film pattern and a semi-transmissive film pattern are formed on a transparent substrate. A correction semi-permeable film is deposited by a vapor deposition method for defects included in the pattern of the semi-permeable film.
この場合、前記多階調フォトマスクに使用される複数の露光波長を含む露光光源に対し、未修正半透過膜と修正半透過膜のそれぞれについて各波長のスペクトル強度比で加重平均した透過率の値がほぼ等しくなるように、前記修正半透過膜の膜厚を制御することが好ましい。「ほぼ等しく」とは、一定の許容範囲を包含する意図である。この場合、露光光源が水銀ランプである場合には、前記透過率は、その混合波長に含まれるスペクトルのうちのg線、h線およびi線の3波長のスペクトル強度比で加重平均することが好ましい。 In this case, with respect to an exposure light source including a plurality of exposure wavelengths used for the multi-tone photomask, the transmittance averaged by the weighted average of the spectral intensity ratio of each wavelength for each of the unmodified semi-transmissive film and the modified semi-transmissive film. It is preferable to control the thickness of the modified semipermeable membrane so that the values are substantially equal. “Approximately equal” is intended to encompass certain tolerances. In this case, when the exposure light source is a mercury lamp, the transmittance may be weighted and averaged using a spectral intensity ratio of three wavelengths of g-line, h-line, and i-line in the spectrum included in the mixed wavelength. preferable.
さらに、前記遮光膜のパターンに含まれる欠陥に対する修正遮光膜の形成と、前記半透過膜のパターンに含まれる欠陥に対する修正半透過膜の形成とを、同一装置内において連続的に行うように構成してもよい。 Further, the configuration is such that the formation of the corrected light-shielding film for the defect included in the pattern of the light-shielding film and the formation of the corrected semi-transmissive film for the defect included in the pattern of the semi-transmissive film are continuously performed in the same apparatus. May be.
本発明に係る多階調フォトマスクの欠陥修正方法によると、修正半透過膜の透過率の目標値が実際に使用される露光光源に含まれる各波長域でのスペクトル強度の比率で加重平均したものとほぼ一致するため、混合波長を含む露光光源で露光した場合でも、波長依存性の影響が軽減される。また、本発明に係る多階調フォトマスクによると、全体としての完成度を要するフォトマスクの利用効率が改善し、欠陥修正を施さなければ不良品として使用不可能として廃棄されていたフォトマスクが修正によって良品になり、製造コスト並びに生産歩留まりが大幅に向上する。 According to the defect correction method of the multi-tone photomask according to the present invention, the target value of the transmittance of the corrected transflective film is weighted and averaged by the ratio of the spectral intensity in each wavelength region included in the exposure light source actually used. Since it almost coincides with the above, the influence of wavelength dependency is reduced even when exposure is performed with an exposure light source including a mixed wavelength. Further, according to the multi-tone photomask of the present invention, the utilization efficiency of the photomask that requires completeness as a whole is improved, and a photomask that has been discarded as a defective product cannot be used unless defect correction is performed. The correction results in a non-defective product, and the manufacturing cost and production yield are greatly improved.
本件発明者たちは、上記に鑑み、修正膜を堆積する新規な成膜方法として気相堆積法に着目した。気相堆積法には、物理気相堆積法(PVD)及び化学気相堆積法(CVD)法が含まれる。特に、膜厚を制御しながら局所的に堆積できる気相堆積法を用いることが好ましい。実験では、化学気相堆積法のうち、特に、「光CVD法(化学気相堆積法)」に着目した。光CVD法とは、レーザー光を照射し、そのレーザー光の照射部に局所的に成膜する技術である。 In view of the above, the present inventors have focused on the vapor deposition method as a novel film forming method for depositing a correction film. Vapor deposition includes physical vapor deposition (PVD) and chemical vapor deposition (CVD). In particular, it is preferable to use a vapor deposition method capable of local deposition while controlling the film thickness. In the experiment, the “photo CVD method (chemical vapor deposition method)” was particularly focused on among the chemical vapor deposition methods. The photo-CVD method is a technique for irradiating a laser beam and forming a film locally on the irradiated portion of the laser beam.
欠陥(本明細書において、単に「欠陥」というときは、「白欠陥」と「黒欠陥」の両方を含むものとする。)の形状及び大きさは種々のものが考えられるので、先ず欠陥の周囲を除去し(これによって透明基板の一部が露出する)、しかる後に上述した光CVD法による成膜を行う。光CVD法の特徴は、ガスの濃度とレーザー出力を設定することにより一回の光照射で数nm程度ずつ堆積させることができ、繰り返しスキャンすることで所望の透過率に対応する膜厚を極めて高精度に達成できる点にある。さらに、遮光膜の堆積とほぼ同じガスソースを用いることができるため、同一装置内で成膜条件を変えるだけで連続的に修正膜を堆積することができる。なお、欠陥の周囲の除去は必要な場合のみ実施すればよい。 There are various shapes and sizes of defects (in the present specification, the term “defects” includes both “white defects” and “black defects”). After removing (a part of the transparent substrate is exposed by this), film formation is performed by the above-described photo-CVD method. The characteristic of the photo-CVD method is that it can be deposited several nanometers at a time by light irradiation by setting the gas concentration and laser output, and the film thickness corresponding to the desired transmittance can be greatly increased by repeated scanning. It can be achieved with high accuracy. Furthermore, since the same gas source as that for the deposition of the light shielding film can be used, it is possible to deposit the correction film continuously only by changing the film forming conditions in the same apparatus. The removal of the periphery of the defect may be performed only when necessary.
その際、パターンを転写する際の露光波長を考慮して予め露光光源のスペクトルから各波長のスペクトル強度比を推定し、次に周囲の半透過膜(未修正半透過膜)と修正半透過膜のそれぞれについて各波長のスペクトル強度比(推定値)で加重平均した透過率の値が等しくなるように、修正半透過膜の透過率の値を決定する。 At that time, the spectral intensity ratio of each wavelength is estimated in advance from the spectrum of the exposure light source in consideration of the exposure wavelength when transferring the pattern, and then the surrounding semi-transmissive film (unmodified semi-transmissive film) and modified semi-transmissive film The transmittance value of the modified semi-transmissive film is determined so that the transmittance values obtained by weighted averaging with the spectral intensity ratios (estimated values) of the respective wavelengths are equal.
例えば、露光光源がi線とh線とg線との3波長の混合光である場合には、予め露光光源のスペクトルから各光線のスペクトル強度比J1:J2:J3を推定する。次に、半透過膜に対して実際にこの混合波長の光を照射し、各光線に対応する透過率α1,α2,α3を測定する。次に、得られた測定値の加重平均値Aを求める。 For example, when the exposure light source is a mixed light of three wavelengths of i-line, h-line, and g-line, the spectral intensity ratio J 1 : J 2 : J 3 of each light is estimated in advance from the spectrum of the exposure light source. Next, the semi-transmissive film is actually irradiated with light of this mixed wavelength, and the transmittances α 1 , α 2 , and α 3 corresponding to the respective light beams are measured. Next, a weighted average value A of the obtained measurement values is obtained.
この加重平均値Aは以下の計算式で求められる。
A=α1×J1/(J1+J2+J3)+α2×J2/(J1+J2+J3)+α3×J3/(J1+J2+J3) ・・・・(1)
The weighted average value A is obtained by the following calculation formula.
A = α 1 × J 1 / (J 1 + J 2 + J 3 ) + α 2 × J 2 / (J 1 + J 2 + J 3 ) + α 3 × J 3 / (J 1 + J 2 + J 3 ) (1) )
一方、修正半透過膜を光CVD法で堆積する。その後、上述と同様の混合波長の光を照射し、各光線に対応する透過率β1,β2,β3を測定する。次に、得られた測定値の加重平均Bを求める。 On the other hand, a modified semi-transmissive film is deposited by a photo-CVD method. Then, the light of the mixed wavelength similar to the above is irradiated, and the transmittances β 1 , β 2 , and β 3 corresponding to each light beam are measured. Next, a weighted average B of the obtained measurement values is obtained.
この加重平均値Bは以下の計算式で求められる。
B=β1×J1/(J1+J2+J3)+β2×J2/(J1+J2+J3)+β3×J3/(J1+J2+J3) ・・・・(2)
This weighted average value B is obtained by the following calculation formula.
B = β 1 × J 1 / (J 1 + J 2 + J 3 ) + β 2 × J 2 / (J 1 + J 2 + J 3 ) + β 3 × J 3 / (J 1 + J 2 + J 3 ) (2 )
修正半透過膜の透過率の加重平均値Bが、先に求めた加重平均値Aよりも大きいときは、修正半透過膜をさらに形成し、再び加重平均値Bの値を計算する。この作業を繰り返し、半透過膜の透過率の加重平均値Aの値が修正半透過膜の透過率の加重平均値Bの値と等しくなった時点で、膜厚が最適化されたと判断し、終了する。 When the weighted average value B of the transmittance of the modified semipermeable membrane is larger than the previously obtained weighted average value A, a modified semipermeable membrane is further formed, and the value of the weighted average value B is calculated again. By repeating this work, when the value of the weighted average value A of the transmittance of the semipermeable membrane becomes equal to the value of the weighted average value B of the transmittance of the modified semipermeable membrane, it is determined that the film thickness has been optimized. finish.
なお、この方法を数学的帰納法により一般化すれば、加重平均値A及びBの計算式は、以下ように記述される。
A=Σαk×Jk/ΣJk ・・・・(1’)
B=Σβk×Jk/ΣJk ・・・・(2’)
If this method is generalized by mathematical induction, the calculation formulas for the weighted average values A and B are described as follows.
A = Σα k × J k / ΣJ k (1 ′)
B = Σβ k × J k / ΣJ k (2 ′)
そして、先ずAの値を求め、次にBの値がAとほぼ一致するまで修正半透過膜の形成と透過率の加重平均値Bの測定を繰り返すのである。 Then, the value of A is first obtained, and then the formation of the modified semipermeable membrane and the measurement of the weighted average value B of the transmittance are repeated until the value of B substantially coincides with A.
なお、発生した欠陥が半透過部だけでなく遮光部にも達する場合には、従来の黒欠陥の修正方法を組み合わせることで修正が可能となる。以下、本発明の実施形態について具体的に説明する。 When the generated defect reaches not only the semi-transmissive portion but also the light shielding portion, it can be corrected by combining conventional black defect correction methods. Hereinafter, embodiments of the present invention will be specifically described.
(第1の実施形態)
本発明に係る多階調フォトマスクの欠陥修正方法は、大きく分けて、ステップS0からステップS7から構成される。最初のステップであるステップS0では、露光光源に含まれる各光線のスペクトル強度比の推定を行う。これは、事前準備にあたるもので、最初に一度だけ実施すれば次回からは不要である。
(First embodiment)
The multi-tone photomask defect correcting method according to the present invention is roughly composed of steps S0 to S7. In step S0, which is the first step, the spectral intensity ratio of each light beam included in the exposure light source is estimated. This is a preliminary preparation, and if it is performed only once, it is unnecessary from the next time.
図1(a)は、超高圧水銀ランプの分光分布を示す図である。横軸は波長を示し、縦軸はスペクトル強度を示している。この図に示すように、水銀ランプには、i線(365nm)、h線(405nm)、g線(436nm)などの複数の波長が含まれているが、各光線のスペクトル強度は異なっていることが分かる。そこで、以下に示す方法により、各光線のスペクトル強度比を推定する。 Fig.1 (a) is a figure which shows the spectral distribution of an ultrahigh pressure mercury lamp. The horizontal axis indicates the wavelength, and the vertical axis indicates the spectral intensity. As shown in this figure, the mercury lamp includes a plurality of wavelengths such as i-line (365 nm), h-line (405 nm), and g-line (436 nm), but the spectral intensity of each light beam is different. I understand that. Therefore, the spectral intensity ratio of each light beam is estimated by the following method.
例えば、i線を350nm〜380nmまでと規定し、その区間の図1(a)のグラフの面積J1を求める。同様に、h線を390nm〜420nmと規定し、同様にその区間のグラフの面積J2を求める。同様に、g線を420nm〜450nmと規定し、同様にその区間のグラフの面積J3を求める。 For example, the i-line is defined as up to 350Nm~380nm, determine the area J 1 of the graph of Figure 1 of the section (a). Similarly, h-line is defined as 390 nm to 420 nm, similarly obtains the area J 2 graphs of the section. Similarly, the g-line is defined as 420Nm~450nm, likewise obtains the area J 3 graphs of the section.
図1(b)は、各光線に対応づけた面積比からそのスペクトル強度比を求めた結果を示している。すなわち、このようにして求められた面積J1〜J3が各光線(i線、h線、g線に対応する)のスペクトル強度比にほかならない。なお、図1(a)の縦軸のスペクトル強度は任意単位で図示しているが、相対的なスペクトル強度比を求めるので絶対値は必要ない。 FIG. 1B shows the result of obtaining the spectral intensity ratio from the area ratio associated with each light beam. That is, the areas J 1 to J 3 obtained in this way are none other than the spectral intensity ratio of each light ray (corresponding to i-line, h-line, and g-line). Although the spectral intensity on the vertical axis in FIG. 1A is shown in arbitrary units, an absolute value is not necessary because a relative spectral intensity ratio is obtained.
このようにして、露光光源として図1(a)に示すような分光分布を持つ水銀ランプを用いる場合、露光光源に含まれる各光線のスペクトル強度比が求められる。なお、上述の例では、350nm〜380nmまでの波長域をi線と対応付けたが、スペクトル強度比は、どの程度の波長幅で露光波長に対応付けるかによって、異なってくる。 Thus, when a mercury lamp having a spectral distribution as shown in FIG. 1A is used as the exposure light source, the spectral intensity ratio of each light beam included in the exposure light source is obtained. In the above example, the wavelength range from 350 nm to 380 nm is associated with the i-line, but the spectral intensity ratio varies depending on the wavelength width associated with the exposure wavelength.
次のステップS1では、欠陥修正の対象となるハーフトーンマスクの半透過部の透過率を測定する。この透過率は波長依存性を持つので、各光線(i線、h線、g線)ごとに透過率αkを求める。 In the next step S1, the transmissivity of the semi-transmissive portion of the halftone mask that is the object of defect correction is measured. Since this transmittance has wavelength dependency, the transmittance α k is obtained for each light ray (i-line, h-line, g-line).
露光光源には複数の波長の光線が含まれており、各光線の相対強度は異なっている一方で、露光光源が照射されるハーフトーンマスクの半透過膜の透過率は、波長依存性を持っている。従って、各光線の相対強度比を考慮して、加重平均値Aを求めることにより、全ての光線波長において平均的に未修正半透過膜に近い値の透過率が得られることになる。 The exposure light source contains light beams of multiple wavelengths, and the relative intensities of the light beams are different. On the other hand, the transmittance of the semi-transmissive film of the halftone mask irradiated with the exposure light source has wavelength dependency. ing. Therefore, by obtaining the weighted average value A in consideration of the relative intensity ratio of each light beam, a transmittance having a value close to that of the unmodified semi-transmissive film on average is obtained at all light wavelengths.
次のステップS2では、各光線のスペクトル強度比J1〜J3と、測定した半透過膜の透過率α1〜α3とから、この加重平均値Aを計算する。 In the next step S2, the weighted average value A is calculated from the spectral intensity ratios J 1 to J 3 of the respective rays and the measured transmittances α 1 to α 3 of the semi-transmissive film.
次のステップS3では、修正半透過膜を堆積するために、先ず欠陥部周囲の半透過膜を除去する。なお、欠陥の周囲の除去は必要な場合のみ実施すればよい。次に、ステップS4では、光CVD法により実際に修正半透過膜を堆積する。 In the next step S3, in order to deposit a corrected semipermeable membrane, first, the semipermeable membrane around the defect is removed. The removal of the periphery of the defect may be performed only when necessary. Next, in step S4, a modified semi-transmissive film is actually deposited by the photo-CVD method.
次のステップS5では、修正半透過膜の透過率を測定する。このステップは、ステップS1に対応するものであり、修正半透過膜の透過率を測定するステップである。透過率は「波長依存性」を持つので、各光線(i線、h線、g線)ごとに透過率βkを求めることが重要である。 In the next step S5, the transmittance of the modified semipermeable membrane is measured. This step corresponds to step S1 and is a step for measuring the transmittance of the modified semipermeable membrane. Since the transmittance has “wavelength dependency”, it is important to obtain the transmittance β k for each light beam (i-line, h-line, g-line).
次のステップS6では、各光線のスペクトル強度比J1〜J3と、測定した修正半透過膜の透過率β1〜β3とから、加重平均値Bを計算する。修正半透過膜を堆積する前は、ステップS3において欠陥部は透明基板が露出しているので透過率は全ての波長において100%となる。ゆえに加重平均値Bも初期値は100%となる。しかし、ステップS4において修正半透過膜を堆積するにつれて、加重平均値Bは100%から低下していく。 In the next step S6, a weighted average value B is calculated from the spectral intensity ratios J 1 to J 3 of the respective rays and the measured transmittances β 1 to β 3 of the modified semipermeable membrane. Before depositing the modified transflective film, the transparent portion is exposed at the defect portion in step S3, so that the transmittance is 100% at all wavelengths. Therefore, the initial value of the weighted average value B is 100%. However, as the modified semipermeable membrane is deposited in step S4, the weighted average value B decreases from 100%.
次のステップS7では、加重平均値Bの大きさと未修正半透過膜の加重平均値Aの値とを比較し、両者の大きさがほぼ一致するまでステップS4〜S6を繰り返す。Bの値がAとほぼ一致した時点で、修正半透過膜の堆積を終了する。 In the next step S7, the size of the weighted average value B is compared with the value of the weighted average value A of the unmodified semipermeable membrane, and steps S4 to S6 are repeated until the sizes of both are substantially the same. When the value of B substantially coincides with A, the deposition of the modified semipermeable membrane is finished.
図2は、上述の水銀ランプを露光光源として用いることを前提として、ステップS0〜ステップS7を実行することにより得られた修正半透過膜の透過率とを、異なる波長ごとに測定した結果を示す図である。なお、従来のg線(436nm)のみで透過率を等しく合わせ込んだ結果(図5)を比較例として破線で示している。 FIG. 2 shows the result of measuring the transmittance of the modified transflective film obtained by executing Steps S0 to S7 for each different wavelength on the premise that the above-described mercury lamp is used as an exposure light source. FIG. In addition, the result (FIG. 5) which matched the transmittance | permeability equally only with the conventional g line | wire (436 nm) is shown with the broken line as a comparative example.
このように、各露光波長に対応する各光線のスペクトル強度比から未修正半透過膜の透過率について加重平均値を算出し、この透過率に対応する膜厚を前記修正半透過膜の最終膜厚として設定することにより、修正半透過膜の透過率が、周囲の未修正半透過膜の透過率と全ての光線波長において平均的に未修正半透過膜に近い値の透過率が得られるという効果が得られる。これは、特定の波長のみで透過率がほぼ一致していても他の波長域において大きく相違する従来の修正半透過膜と対照的な結果である。 Thus, the weighted average value is calculated for the transmittance of the unmodified semi-transmissive film from the spectral intensity ratio of each light beam corresponding to each exposure wavelength, and the film thickness corresponding to this transmittance is determined as the final film of the modified semi-transmissive film. By setting the thickness, the transmittance of the modified semi-permeable membrane is such that the transmittance of the surrounding unmodified semi-permeable membrane and the transmittance of an average value close to that of the unmodified semi-permeable membrane are obtained at all light wavelengths. An effect is obtained. This is in contrast to the conventional modified semi-transmissive film, which has substantially the same transmittance only at a specific wavelength but is greatly different in other wavelength regions.
(第2の実施形態)
次に、上述した欠陥修正方法を実際のプロセスに適用した例について説明する。
図3(a)〜(c)及び図4(d)〜(e)は、ハーフトーンマスクのマスクパターンを拡大した図であり、本発明に係る欠陥修正方法を適用した具体例を説明するための工程図を示している。
(Second Embodiment)
Next, an example in which the above-described defect correction method is applied to an actual process will be described.
FIGS. 3A to 3C and FIGS. 4D to 4E are enlarged views of the mask pattern of the halftone mask, for explaining a specific example to which the defect correction method according to the present invention is applied. The process drawing of is shown.
図3(a)は、マスクパターンの一部に白欠陥が発生したことを示している。このマスクパターンの構造は、透明基板10の表面に遮光膜のパターン11が形成され、その上に未修正半透過膜のパターン12が形成されている。このマスクパターンは本来図中に示した一点鎖線X−Xに対して対称的な形状及び構造をしているべきものであるが、本来あるべき部位に所定の膜が存在しない欠陥(すなわち白欠陥)P,Qが存在している。すなわち、図3(a)における白欠陥Pには、本来遮光膜のパターン11が形成されていなければならず、白欠陥Qには本来、未修正半透過膜のパターン12が形成されていなければならないが、それらが両方とも欠損している。
FIG. 3A shows that a white defect has occurred in a part of the mask pattern. In this mask pattern structure, a light
このような白欠陥を修正するために、本件発明者たちは、光CVD法を利用することを検討したところ、光CVD法は、成膜条件を僅かに変化させるだけで、遮光膜と半透過膜の両方を極めて高い位置精度と膜厚精度で堆積することが可能であることを見いだした。 In order to correct such a white defect, the present inventors examined using a photo-CVD method, and the photo-CVD method only slightly changes the film-forming conditions and makes a semi-transparent film with a light-shielding film. We have found that it is possible to deposit both films with extremely high positional accuracy and film thickness accuracy.
図3(b)は、光CVD法を適用する前に、一旦未修正半透過膜のパターン12を除去した様子を示している。この方法は特に限定されるものではないが、例えばレーザーザッピングとよばれる手法を用いることができる。レーザーザッピングとは、レーザービームを照射した部分の金属がレーザービームを吸収した際に発生する熱により蒸散する現象を用いて金属膜を除去する方法の一つであり、「レーザー蒸散法」という場合もある。
FIG. 3B shows a state in which the
この工程により半透過膜が局所的に除去され、この部分では透明基板が露出する。なお、欠陥の周囲の除去は必要な場合のみ実施すればよい。 By this step, the semipermeable membrane is locally removed, and the transparent substrate is exposed at this portion. The removal of the periphery of the defect may be performed only when necessary.
図3(c)は、遮光パターンの白欠陥Pが存在する部位に、光CVD法を用いて修正遮光膜21を形成した様子を示している。この工程により、遮光膜のパターン11が設計通りの形状に修復される。なお、修正遮光膜21は、例えばクロム膜等の遮光性材料により構成される。光CVD法により堆積する場合、透過率が0になる条件で堆積すればよいため、レーザー出力も十分に大きく一括照射し、原料ソースも所定の濃度以上となるように流量及び膜厚を制御する。但し、その制御はそれほど困難なものではない。
FIG. 3C shows a state in which the modified light-shielding
図4(d)は、半透過膜パターンの白欠陥Qを含む前記半透過膜を除去した部位に、光CVD法を用いて修正半透過膜22を堆積している様子を示している。この工程により、半透過膜のパターン12が設計通りの形状に修復される。なお、修正半透過膜22は酸化クロム膜や窒化クロムなどのクロム系材料により構成される。光CVD法により堆積する場合、透過率が「所定の設定値」となるように膜厚を制御しながら堆積する必要があるため、クロム系原料ソースを酸素或いは窒素で希釈すると共にレーザー出力を小さくし、かつレーザー照射部20を繰り返しスキャンして膜厚を徐々に増大させ、透過率を100%から徐々に下げていくようにする。レーザー照射のスキャンは所定の透過率が得られるまで繰り返される。効率よく目標の透過率に達するため、最初のうちは大きく透過率が下がる条件で堆積し、目標の透過率に近づくにつれて微調整してもよい。
FIG. 4D shows a state in which the modified
このように、修正遮光膜の堆積と修正半透過膜の堆積は、使用するガスの濃度とレーザーの照射方式及びレーザー出力を異ならせるだけでよいため、同一の光CVD装置を用いて連続的に行うことが可能である。 As described above, the deposition of the modified light-shielding film and the modified semi-transmissive film need only be performed by using different gas concentrations, different laser irradiation methods, and different laser outputs. Is possible.
実験では、修正遮光膜の堆積はレーザーを一括照射したのに対し、修正半透過膜の堆積は予めレーザーザッピングにより半透過膜を矩形状に除去した後、除去した部位にレーザーをスキャンしながら繰り返し照射した。なお、図示は省略するがパターンによってはスキャンの端部(初端と終端)は光強度が不足し、形成される修正半透過膜の膜厚が薄くなり易いので両端部の膜厚が不均一な部分をレーザーザッピングによって除去する工程を追加してもよい。 In the experiment, the modified light-shielding film was deposited by laser irradiation, whereas the modified semi-transmissive film was previously deposited by removing the semi-transmissive film in a rectangular shape by laser zapping and then scanning the laser at the removed site. Irradiated. Although not shown, depending on the pattern, the scanning end portion (initial end and end) has insufficient light intensity, and the thickness of the formed modified semi-transmissive film tends to be thin, so the film thickness at both ends is not uniform. A step of removing such a portion by laser zapping may be added.
図4(e)は、修正半透過膜22の堆積が終了した状態を示している。この時点で、修正半透過膜22の膜厚を測定する。図中の点Rは、修正半透過膜22の透過率測定部位を示している。透過率を測定する場合は、実際の露光光源と同じ条件で測定する。露光光源が複数の波長を含む場合には、各光線のスペクトル強度比を予め求め、加重平均値Aを求めておく。そして、透過率測定点Rにおいても各光線の波長ごとに透過率を求め、その値から加重平均値Bの値を算出する。これらの加重平均値の計算方法は、第1の実施形態において説明した方法を適用することができる。
FIG. 4E shows a state where the deposition of the modified
透過率測定点Rにおける各波長ごとの実測値から計算される透過率の加重平均値Bの値がAよりも大きいときは膜厚が不足しているので、修正半透過膜22の堆積を継続する。そして、BがAとほぼ一致した時点で修正半透過膜の堆積を終了する。
When the weighted average value B of the transmittance calculated from the actual measurement value for each wavelength at the transmittance measurement point R is larger than A, the film thickness is insufficient, so the deposition of the modified
なお、第2の実施形態では、遮光膜と半透過膜の両方について白欠陥が発生した場合にその修正方法について説明したが、別々に発生する場合もあることは当然である。また、白欠陥に限らず、黒欠陥でも構わない。黒欠陥が半透過膜上にある場合、レーザーザッピング等によって一旦半透過膜を除去するのでその際に黒欠陥が除去されるからである。結局、半透過膜に対しては、白欠陥と黒欠陥の区別なく、「欠陥」を修正することができる。一方、白欠陥が遮光膜上にある場合、レーザーザッピング等によって遮光膜を除去する必要はなく、直接白欠陥の上から光CVD法或いはその他の方法例えば集束イオンビーム法によって修正できる。また、黒欠陥が遮光膜上にあっても修正の必要はない。 In the second embodiment, the correction method has been described in the case where a white defect occurs in both the light shielding film and the semi-transmissive film, but it is a matter of course that it may occur separately. Moreover, not only a white defect but a black defect may be sufficient. This is because when the black defect is on the semi-transmissive film, the semi-transmissive film is once removed by laser zapping or the like, and the black defect is removed at that time. Eventually, the “defect” can be corrected for the semi-transmissive film without distinguishing between the white defect and the black defect. On the other hand, when the white defect is on the light shielding film, it is not necessary to remove the light shielding film by laser zapping or the like, and it can be corrected directly from above the white defect by the photo-CVD method or other methods such as a focused ion beam method. Even if the black defect is on the light shielding film, no correction is required.
従って、本発明に係る欠陥修正方法によると、遮光膜及び半透過膜上に形成されたあらゆる白欠陥及び黒欠陥を除去できる。そして、修正半透過膜の透過率については露光光源に含まれる各光線のスペクトル強度比を考慮して設定値を決定するため、全ての光線波長において平均的に未修正半透過膜に近い値の透過率が得られる。 Therefore, according to the defect correcting method of the present invention, all white defects and black defects formed on the light shielding film and the semi-transmissive film can be removed. The transmittance of the modified semi-transmissive film is determined in consideration of the spectral intensity ratio of each light beam included in the exposure light source, so that the average value is close to that of the unmodified semi-transmissive film at all light wavelengths. Transmittance is obtained.
なお、水銀ランプを例にとり、i線(365nm)、h線(405nm)、g線(436nm)のスペクトル強度比で加重平均をとる例を示したが、本発明の技術的思想は、露光光源が複数の露光波長を持つ場合に、各露光波長ごとの透過率に対してそのスペクトル強度比で未修正半透過膜の透過率の加重平均求め、これを修正半透過膜の透過率の設定値とする点にある。また、透明基板・遮光膜・半透過膜の順に形成された膜構成について例示したが、これ以外の膜構成、例えば、透明基板・半透過膜・遮光膜の順に堆積したものであってもよい。また、半透明基板が2層以上形成された4階調以上の多階調フォトマスクであっても当然に適用可能である。 An example of taking a weighted average with the spectral intensity ratio of i-line (365 nm), h-line (405 nm), and g-line (436 nm) is shown by taking a mercury lamp as an example. The technical idea of the present invention is an exposure light source Is a plurality of exposure wavelengths, the weighted average of the transmittance of the unmodified semi-transmissive film is obtained by the spectral intensity ratio for the transmittance for each exposure wavelength, and this is the setting value of the transmittance of the modified semi-transmissive film It is in the point to. In addition, although the film configuration formed in the order of the transparent substrate, the light shielding film, and the semi-transmissive film is illustrated, other film configurations, for example, the transparent substrate, the semi-transmissive film, and the light shielding film may be deposited in this order. . Of course, the present invention can also be applied to a multi-tone photomask having four or more gradations in which two or more semi-transparent substrates are formed.
本発明は、ハーフトーンマスクの欠陥を露光光源の特性を考慮して透過率の波長依存性が抑えられる効果的な欠陥修正方法であり、その産業上の利用可能性は極めて大きい。 The present invention is an effective defect correction method capable of suppressing the wavelength dependency of the transmittance in consideration of the characteristics of the exposure light source for the defect of the halftone mask, and its industrial applicability is extremely large.
10 透明基板
11 未修正遮光膜
12 未修正半透過膜
20 レーザー照射部
21 修正遮光膜
22 修正半透過膜
P 遮光パターンの白欠陥
Q 半透過膜の白欠陥
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007210347A JP5037262B2 (en) | 2007-08-10 | 2007-08-10 | Defect correction method for multi-tone photomask and multi-tone photomask with defect corrected |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007210347A JP5037262B2 (en) | 2007-08-10 | 2007-08-10 | Defect correction method for multi-tone photomask and multi-tone photomask with defect corrected |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009042684A true JP2009042684A (en) | 2009-02-26 |
JP5037262B2 JP5037262B2 (en) | 2012-09-26 |
Family
ID=40443443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007210347A Active JP5037262B2 (en) | 2007-08-10 | 2007-08-10 | Defect correction method for multi-tone photomask and multi-tone photomask with defect corrected |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5037262B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011013283A (en) * | 2009-06-30 | 2011-01-20 | Ulvac Seimaku Kk | Method for producing phase shift mask, method for manufacturing flat panel display, and phase shift mask |
JP2011227209A (en) * | 2010-04-16 | 2011-11-10 | Cowin Dst Co Ltd | Repair method and repair system for half tone mask |
CN111665680A (en) * | 2019-03-07 | 2020-09-15 | Hoya株式会社 | Method for correcting photomask, method for manufacturing photomask, and method for manufacturing display device |
JP2021139993A (en) * | 2020-03-04 | 2021-09-16 | 株式会社エスケーエレクトロニクス | Defect correction method for halftone mask, method for manufacturing halftone mask, and halftone mask |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0729816A (en) * | 1993-07-14 | 1995-01-31 | Canon Inc | Projection aligner and fabrication of semiconductor element employing it |
JP3556591B2 (en) * | 2000-09-29 | 2004-08-18 | Hoya株式会社 | Defect repair method of gray tone part in gray tone mask |
JP2004335949A (en) * | 2002-11-29 | 2004-11-25 | Nikon Corp | Aligner and exposure method |
-
2007
- 2007-08-10 JP JP2007210347A patent/JP5037262B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0729816A (en) * | 1993-07-14 | 1995-01-31 | Canon Inc | Projection aligner and fabrication of semiconductor element employing it |
JP3556591B2 (en) * | 2000-09-29 | 2004-08-18 | Hoya株式会社 | Defect repair method of gray tone part in gray tone mask |
JP2004335949A (en) * | 2002-11-29 | 2004-11-25 | Nikon Corp | Aligner and exposure method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011013283A (en) * | 2009-06-30 | 2011-01-20 | Ulvac Seimaku Kk | Method for producing phase shift mask, method for manufacturing flat panel display, and phase shift mask |
JP2011227209A (en) * | 2010-04-16 | 2011-11-10 | Cowin Dst Co Ltd | Repair method and repair system for half tone mask |
CN111665680A (en) * | 2019-03-07 | 2020-09-15 | Hoya株式会社 | Method for correcting photomask, method for manufacturing photomask, and method for manufacturing display device |
CN111665680B (en) * | 2019-03-07 | 2023-11-28 | Hoya株式会社 | Photomask correction method, photomask manufacturing method, and photomask |
JP2021139993A (en) * | 2020-03-04 | 2021-09-16 | 株式会社エスケーエレクトロニクス | Defect correction method for halftone mask, method for manufacturing halftone mask, and halftone mask |
Also Published As
Publication number | Publication date |
---|---|
JP5037262B2 (en) | 2012-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6823703B2 (en) | Photomask blank and its manufacturing method, photomask manufacturing method, and display device manufacturing method | |
US7351505B2 (en) | Phase shift mask blank, phase shift mask, and pattern transfer method | |
TWI541589B (en) | A mask blank and its manufacturing method, manufacturing method of a mask, and manufacturing method of a semiconductor device | |
TWI514067B (en) | Mask blank, transfer mask, methods of manufacturing the same and method of manufacturing a semiconductor device | |
JP2016105158A (en) | Photomask blank and method for manufacturing photomask using the same, and method for manufacturing display device | |
KR20190008110A (en) | Photomask blank and method of manufacturing photomask blank, method of manufacturing photomask, and method of manufacturing display deⅵce | |
JP5037262B2 (en) | Defect correction method for multi-tone photomask and multi-tone photomask with defect corrected | |
TWI396934B (en) | Multi-tone photomask, pattern transfer method and method of producing a display device using the multi-tone photomask | |
KR20120050954A (en) | Multi-gray scale photomask and manufacturing method thereof, and pattern transfer method | |
KR20150083879A (en) | Process for producing mask blank and process for producing transfer mask | |
JP2020020868A (en) | Phase shift mask blank, phase shift mask and method for manufacturing phase shift mask | |
JP2007171651A (en) | Method for correcting defect in photomask having gradation, and photomask having gradation | |
JP2008203373A (en) | Halftone blank and method for manufacturing halftone blank | |
TWI663469B (en) | Defect correction method of phase shift mask | |
KR20200013601A (en) | Method for correcting photomask, method for manufacturing photomask, photomask, and method for manufacturing display device | |
JP5037231B2 (en) | Defect correcting method for halftone mask and halftone mask with defect corrected | |
TWI394201B (en) | Reticles, and methods of treating reticles, configuring reticles and using reticles | |
JP7113724B2 (en) | Method for manufacturing photomask blank and photomask, and method for manufacturing display device | |
JP7335400B2 (en) | Photomask blank, photomask manufacturing method, and display device manufacturing method | |
TWI699612B (en) | Half tone mask and half tone mask blank | |
JP3645888B2 (en) | Halftone phase shift mask | |
TWI524156B (en) | Exposure method with multi-wavelength using halftone phase shift mask | |
JP5233802B2 (en) | Gradation mask and gradation mask manufacturing method | |
US7901849B2 (en) | Photomask and method of fabricating the same | |
JP5630592B1 (en) | Photomask manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120612 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120704 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150713 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5037262 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |