JP2009042054A - State monitoring method of adhesive insulating rail, and state monitoring device of adhesive insulating rail - Google Patents

State monitoring method of adhesive insulating rail, and state monitoring device of adhesive insulating rail Download PDF

Info

Publication number
JP2009042054A
JP2009042054A JP2007206933A JP2007206933A JP2009042054A JP 2009042054 A JP2009042054 A JP 2009042054A JP 2007206933 A JP2007206933 A JP 2007206933A JP 2007206933 A JP2007206933 A JP 2007206933A JP 2009042054 A JP2009042054 A JP 2009042054A
Authority
JP
Japan
Prior art keywords
rail
acceleration
adhesive
joint plate
axle box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007206933A
Other languages
Japanese (ja)
Other versions
JP5128870B2 (en
Inventor
Masahiro Miwa
昌弘 三輪
Masaki Nakagawa
正樹 中川
Yasuto Watanabe
康人 渡邊
Shuichi Adachi
修一 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Japan Railway Co
Original Assignee
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Co filed Critical Central Japan Railway Co
Priority to JP2007206933A priority Critical patent/JP5128870B2/en
Publication of JP2009042054A publication Critical patent/JP2009042054A/en
Application granted granted Critical
Publication of JP5128870B2 publication Critical patent/JP5128870B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a state monitoring method or the like of an adhesive insulating rail capable of estimating a stress applied to a joint plate of the adhesive insulating rail based on an axle-box acceleration and irregularity in height of the rail. <P>SOLUTION: A stress applied to a joint plate is estimated from the axle-box acceleration at a connection part of the adhesive insulating rail measured by an acceleration measuring procedure and the irregularity in height at the connection part of the adhesive insulating rail measured by an irregularity-in-height measuring procedure, based on an estimated joint plate stress management chart showing a correlation between the axle-box acceleration and the irregularity in height at the connection part of the adhesive insulating rail, and a stress applied to the joint plate of the adhesive insulating rail. State monitoring of the adhesive insulating rail is performed based on the estimated joint plate stress. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉄道の軌道を構成する接着絶縁レールの継目板の折損を予防するための状態監視方法等に関する。   The present invention relates to a state monitoring method and the like for preventing breakage of a joint plate of an adhesive insulating rail constituting a railroad track.

近年、軌道のロングレール区間では、ATC(Automatic Train Control)の高機能化に伴って軌道回路の絶縁を確保するための接着絶縁レールの敷設数が大幅に増加している。接着絶縁レールの敷設数が増える一方で、接着絶縁レールの継目板の折損事象が発生しており、再発防止が重要課題となっている。   In recent years, in the long rail section of the track, the number of laid adhesive insulating rails for ensuring the insulation of the track circuit has been greatly increased along with the enhancement of the function of ATC (Automatic Train Control). While the number of laid adhesive insulated rails has increased, breakage events have occurred in the joint plates of adhesive insulated rails, and prevention of recurrence has become an important issue.

折損した継目板を分析した結果、折損に至るメカニズムは、継目板の中央部底面の接着層が剥離し、これによる継目板の腐食ピットが破壊の起点となり、列車荷重に伴う繰返し応力により亀裂が進展して破断に至るものであることが判明した。このような破壊現象を防止するためには、継目板の腐食防止処理、超音波探傷による検査、強度の高い接着絶縁レールの開発等の対策が挙げられるが、同時に、継目板にかかる応力が過度に大きくならないような保守管理が重要である。   As a result of analyzing the broken seam plate, the mechanism leading to the breakage is that the adhesive layer on the bottom bottom of the center of the seam plate peels off, and the corrosion pits on the seam plate become the starting point of the fracture. It was found that it progressed and led to breakage. In order to prevent such a phenomenon of destruction, measures such as corrosion prevention treatment of the seam plate, inspection by ultrasonic flaw detection, development of a high-strength adhesive insulating rail, etc. can be mentioned, but at the same time, stress on the seam plate is excessive. Maintenance management is important so that it does not become too large.

そこで、継目板にかかる応力を一定以下に維持することで、超音波探傷の検査周期未満での折損を防ぐという考え方を基に、軌道検測車等で得られる計測値を用いて継目板にかかる応力を監視する方法について検討してきた。そして従来では、継目板の折損が生じた実例について、当該箇所では過去の軸箱加速度の計測値に異変が生じていたという経験を参考に、接着絶縁レールの継目部分で計測される軸箱加速度に閾値を設定し、これを暫定的な管理基準として状態監視を行っていた。具体的な運用としては、例えば、接着絶縁レールの継目部分で計測された軸箱加速度が閾値以上である場合、接着絶縁レールに異常が生じている可能性が高いものとして現場検査を行い、調査の結果必要があれば補修を行う。   Therefore, by maintaining the stress applied to the seam plate below a certain level, based on the idea of preventing breakage below the inspection cycle of ultrasonic flaw detection, the measurement value obtained by the track inspection vehicle etc. is used for the seam plate. Methods for monitoring such stress have been investigated. In the past, with respect to the actual example where the breakage of the joint plate occurred, referring to the experience that the measurement value of the past axle box acceleration had changed in that place, the axle box acceleration measured at the joint part of the adhesive insulation rail A threshold value is set for this, and this is used as a provisional management standard to monitor the status. As a specific operation, for example, if the axle box acceleration measured at the joint part of the adhesive insulation rail is equal to or greater than the threshold value, an on-site inspection is conducted on the assumption that there is a high possibility that the adhesion insulation rail is abnormal. If necessary, repair is performed.

なお、車両にかかる加速度を計測し、これを解析することでレールの状態監視を行う方法として、例えば特許文献1に記載のような技術が知られている。
特開2007−22220号公報
As a method for monitoring the state of the rail by measuring the acceleration applied to the vehicle and analyzing the acceleration, a technique as described in Patent Document 1, for example, is known.
JP 2007-22220 A

しかしながら、接着絶縁レールの継目部分で計測された軸箱加速度と、継目板にかかる応力とに一定の相関性があることは経験上明らかになっているものの、軸箱加速度以外の他の計測事象と継目板にかかる応力との相関性については、これまで明らかになっていなかった。したがって、接着絶縁レールの継目部分で計測された軸箱加速度のみを指標とし、他の計測事象について考慮していないで継目板にかかる応力を推定する従来の状態監視方法では、精度が十分に高いものであるとは言えなかった。よって、より精度の高い状態監視方法の開発が望まれていた。   However, although it has been empirically found that there is a certain correlation between the axle box acceleration measured at the joint of the adhesive insulated rail and the stress applied to the joint plate, other measurement events other than the axle box acceleration The correlation between the stress and the stress applied to the joint plate has not been clarified so far. Therefore, the conventional state monitoring method for estimating the stress applied to the joint plate without considering other measurement events using only the axle box acceleration measured at the joint portion of the adhesive insulated rail as an index is sufficiently high in accuracy. I couldn't say it was. Therefore, development of a more accurate state monitoring method has been desired.

本発明は、上記課題を解決するためになされたものであり、軸箱加速度を含む複数の計測事象に基づいて接着絶縁レールの継目板にかかる応力を推定できる接着絶縁レールの状態監視方法等を提供することを目的とする。また、これを応用して、軸箱加速度を含む複数の計測事象に基づいて他のレールの状態を監視できる状態監視方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and provides a state monitoring method for an adhesive insulating rail that can estimate stress applied to the joint plate of the adhesive insulating rail based on a plurality of measurement events including axle box acceleration. The purpose is to provide. Moreover, it aims at providing the state monitoring method which can monitor the state of another rail based on the some measurement event containing an axle box acceleration by applying this.

上記目的を達成するためになされた請求項1に記載の状態監視方法は、接着絶縁レールの接続部における軸箱加速度及び高低狂いと、接着絶縁レールを構成する継目板にかかる応力との間の相関関係を示す既成のデータに基づき、加速度計測手順により計測した接着絶縁レールの接続部における軸箱加速度と、高低狂い計測手順により計測した接着絶縁レールの接続部における高低狂いとから、継目板にかかる応力を推定する応力推定手順とを有することを特徴とする。   The state monitoring method according to claim 1, which has been made to achieve the above object, includes a relationship between a shaft box acceleration and height fluctuation at a connection portion of the adhesive insulating rail and a stress applied to a joint plate constituting the adhesive insulating rail. Based on the existing data indicating the correlation, the joint box is used to determine the acceleration of the axle box at the junction of the adhesive insulation rail measured by the acceleration measurement procedure and the height deviation at the junction of the adhesion insulation rail measured by the elevation measurement procedure. A stress estimation procedure for estimating the stress.

発明者らは、営業線の軌道と同一仕様の実験線に接着絶縁レールを敷設し、試験用車両で衝撃成分を含む動的荷重を載荷する方法により、軸箱加速度、高低狂い及び継目板にかかる応力を計測する試験を行った。試験用車両には旅客用の営業車両の台車を改造して構成した起振装置が搭載され、営業線上の車両と軌道との相互作用を再現した状態での試験が可能である。   The inventors laid the adhesive insulation rail on the experimental line with the same specifications as the track of the business line, and loaded the dynamic load including the impact component on the test vehicle, to the axle box acceleration, height fluctuation and joint plate A test for measuring the stress was conducted. The test vehicle is equipped with a vibration exciter configured by modifying a carriage of a passenger business vehicle, and the test can be performed in a state where the interaction between the vehicle on the business line and the track is reproduced.

試験の結果、接着絶縁レールの接続部における軸箱加速度及び高低狂いと継目板にかかる応力(継目板応力)との間には、それぞれ一定の相関関係があることが判明した。そして、その相関関係を解析した結果、図3のグラフに示すような、軸箱加速度及び高低狂いを指標として継目板応力を推定可能な管理図(以下、推定継目板応力管理図とも称する)を得ることができた。   As a result of the test, it has been found that there is a certain correlation between the acceleration of the axle box and the height difference at the connection portion of the adhesive insulating rail and the stress applied to the joint plate (seam plate stress). Then, as a result of analyzing the correlation, as shown in the graph of FIG. 3, a control chart (hereinafter also referred to as an estimated joint board stress management chart) capable of estimating the joint plate stress using the axial box acceleration and the height deviation as indexes. I was able to get it.

本発明は、このようにして得られた推定継目板応力管理図で示される軸箱加速度及び高低狂いと継目板応力との相関関係に基づき、車両の走行中に計測した軸箱加速度及び高低狂いから接着絶縁レールの継目板応力を推定するものである。このような複数の指標の組み合わせにより、従来のような軸箱加速度のみを指標として継目板応力を推定する状態監視方法よりも、更に精度よく継目板応力を推定することができ、以って状態監視の精度を向上させることができる。状態監視の精度が向上することで、従来は不確かな監視結果に基づいて現場検査を行ってきたものを、安全性を向上しながらも現場検査の頻度を低減することができる。   The present invention is based on the correlation between the axle box acceleration and height deviation shown in the estimated joint plate stress control chart obtained in this way and the joint plate stress, and the axle box acceleration and elevation deviation measured during the running of the vehicle. From this, the joint plate stress of the adhesive insulating rail is estimated. By combining a plurality of such indices, it is possible to estimate the joint plate stress with higher accuracy than the conventional state monitoring method that estimates the joint plate stress using only the axle box acceleration as an index. Monitoring accuracy can be improved. By improving the accuracy of state monitoring, it is possible to reduce the frequency of on-site inspection while improving the safety of what has conventionally been on-site inspection based on uncertain monitoring results.

ところで、発明者らが行った上述の試験において軸箱加速度に対する継目板応力の周波数応答を取得したところ、軸箱加速度の周波数に対する継目板応力の周波数応答倍率が高い周波数帯域と低い周波数帯域とがあることが判明した。より具体的には、図6のグラフに示すように、軸箱加速度の周波数が100Hz程度より低い帯域においては継目板応力の周波数応答倍率が高く、100Hz程度より高い帯域においては継目板応力の周波数応答倍率が低いことが分かった。そこで、継目板応力を精度よく推定するためには、継目板応力の周波数応答に寄与しない周波数帯域をフィルタリングすることで、継目板応力の周波数応答倍率が高い特定の周波数成分のみを継目板応力の推定に用いればよい。   By the way, when the frequency response of the joint plate stress with respect to the axle box acceleration is obtained in the above-described test conducted by the inventors, there are a frequency band in which the frequency response magnification of the joint plate stress with respect to the frequency of the axle box acceleration is high and a low frequency band. It turned out to be. More specifically, as shown in the graph of FIG. 6, the frequency response magnification of the joint plate stress is high in a band where the frequency of the axle box acceleration is lower than about 100 Hz, and the frequency of the joint plate stress in a band higher than about 100 Hz. It was found that the response magnification was low. Therefore, in order to accurately estimate the joint plate stress, by filtering the frequency band that does not contribute to the frequency response of the joint plate stress, only a specific frequency component having a high frequency response magnification of the joint plate stress is obtained. What is necessary is just to use for estimation.

請求項2に記載の接着絶縁レールの状態監視方法は、上述のような知見に基づいて得られたものであり、加速度計測手順により計測した接着絶縁レールの接続部における軸箱加速度からの特定の周波数帯域の周波数成分を抽出し、これを継目板にかかる応力の推定に用いることを特徴とする。さらに具体的には、請求項3に記載のように、軸箱加速度から100Hz以下の成分を抽出し、これを継目板にかかる応力の推定に用いるようにすればよい。このように構成された接着絶縁レールの状態監視方法によれば、計測された軸箱加速度を基に継目板応力を精度よく推定することができる。   The state monitoring method of the adhesive insulation rail according to claim 2 is obtained based on the knowledge as described above, and is specified from the axle box acceleration at the connection portion of the adhesive insulation rail measured by the acceleration measurement procedure. The frequency component of the frequency band is extracted and used for estimating the stress applied to the joint plate. More specifically, as described in claim 3, a component of 100 Hz or less is extracted from the axle box acceleration and used for estimation of stress applied to the joint plate. According to the state monitoring method of the adhesive insulating rail configured as described above, the joint plate stress can be accurately estimated based on the measured axle box acceleration.

ところで、軸箱加速度の値は、同一の軌道不整等に対してであっても、これを計測するときの車両の速度によって変化することが知られている。したがって、軌道の状態監視に軸箱加速度の情報を利用する場合、車両の速度の影響を補正することが肝要である。   By the way, it is known that the value of the axle box acceleration changes depending on the speed of the vehicle at the time of measuring the same even if it is for the same trajectory irregularity or the like. Therefore, it is important to correct the influence of the speed of the vehicle when using the information on the acceleration of the axle box for monitoring the state of the track.

そこで、請求項4に記載の接着絶縁レールの状態監視方法のように、加速度計測手順により計測した接着絶縁レールの接続部における軸箱加速度を、これを計測したときの車両の速度に応じた係数により補正して継目板にかかる応力の推定に用いるようにするとよい。なお、車両の速度に対してしてどのような値で軸箱加速度を補正するかは、車両の速度を変化させ、そのときに発生する軸箱加速度を解析することで求めることができる。なお、発明者らが行った試験によれば、車両の速度と軸箱加速度との間には図7のグラフに示すような相関性がみられた。これによれば軸箱加速度が車両の速度の2乗に比例するものとして補正するのが可能であると考えられる。   Therefore, as in the method for monitoring the state of the adhesive insulated rail according to claim 4, the axle box acceleration at the connection portion of the adhesive insulated rail measured by the acceleration measuring procedure is a coefficient corresponding to the speed of the vehicle when this is measured. It is good to use it for estimation of the stress concerning a seam board after correcting by. It should be noted that what value the axle box acceleration is corrected with respect to the vehicle speed can be obtained by changing the vehicle speed and analyzing the axle box acceleration generated at that time. According to the tests conducted by the inventors, a correlation as shown in the graph of FIG. 7 was observed between the vehicle speed and the axle box acceleration. According to this, it can be considered that the axle box acceleration can be corrected as being proportional to the square of the vehicle speed.

このように構成された接着絶縁レールの状態監視方法によれば、計測を行う車両の速度に関わらず、計測された軸箱加速度を基に継目板応力を精度よく推定することができる。
つぎに、請求項5〜8に記載の接着絶縁レールの状態監視装置によれば、請求項1〜4に記載の接着絶縁レールの状態監視方法を実現することができ、これにより前述した効果を得ることができる。
According to the state monitoring method of the adhesive insulated rail configured as described above, the joint plate stress can be accurately estimated based on the measured axle box acceleration regardless of the speed of the vehicle performing the measurement.
Next, according to the adhesive insulation rail state monitoring device according to any one of claims 5 to 8, the adhesive insulation rail state monitoring method according to any one of claims 1 to 4 can be realized. Obtainable.

なお、請求項5〜8に記載の接着絶縁レールの状態監視装置は、例えば電気軌道総合試験車等の軌道検測車に装備されて運用されることが考えられる。しかしながら、軌道検測車による計測は、計測機器を専用の車両に装備する必要があるためコスト高であった。また、軌道検測車の運行が旅客や貨物を運搬する営業運行に供される営業車両の運転ダイヤや、軌道の保守を行う保守用車の運行スケジュール等の制約を受けることで、検査の機会が制限されることも考えられる。   Note that it is conceivable that the adhesive insulated rail state monitoring device according to claims 5 to 8 is installed and operated in a track inspection vehicle such as an electric track general test vehicle. However, the measurement by the track inspection vehicle is expensive because it is necessary to equip a dedicated vehicle with a measuring device. In addition, the operation of the track inspection vehicle is subject to restrictions such as the operation schedule of business vehicles used for business operations that carry passengers and cargo, and the operation schedule of maintenance vehicles that perform track maintenance. May be limited.

そこで、請求項9に記載のように、請求項5〜8に記載の接着絶縁レールの状態監視装置を、旅客車、貨物車、機関車又は保守用車に装備して運用することが考えられる。なお、接着絶縁レールの状態監視装置を構成する各手段のうち、加速度計測手段又は高低狂い計測手段の少なくとも何れか一方がこれらの車両に装備されていればよい。そして、応力推定手段を含む他の手段については、加速度計測手段又は高低狂い計測手段の少なくとも何れか一方が装備されている同じ車両に搭載されていてもよいが、例えば外部の管理センタに設置されたコンピュータシステムでこれを構成し、加速度計測手段又は高低狂い計測手段の少なくとも何れか一方を搭載した車両で記録又は転送されたデータを管理センタで処理するような構成であってもよい。   Therefore, as described in claim 9, it is conceivable to use the adhesive insulated rail state monitoring device according to claims 5 to 8 in a passenger car, a freight car, a locomotive, or a maintenance car. . In addition, it is only necessary that at least one of the acceleration measuring means and the elevation measuring means among the respective means constituting the adhesive insulated rail state monitoring device is mounted on these vehicles. The other means including the stress estimating means may be mounted on the same vehicle equipped with at least one of the acceleration measuring means and the elevation measuring means. For example, it is installed in an external management center. This may be configured by a computer system, and data recorded or transferred by a vehicle equipped with at least one of acceleration measuring means and high / low deviation measuring means may be processed by the management center.

このようにすることで、旅客車や貨物車等の営業車両や機関車、保守用車等の運行中に接着絶縁レールの状態監視を随時行うことができ、検査の機会が増えることで信頼性が向上する。また、営業車両や機関車、保守用車等を利用することで、専用の軌道検測車でなくとも接着絶縁レールの状態監視を行うことができ、検査にかかるコストを抑制できる。   In this way, it is possible to monitor the state of the adhesive insulated rail at any time during the operation of commercial vehicles such as passenger cars and freight cars, locomotives, maintenance vehicles, etc., and reliability increases as the number of inspection opportunities increases. Will improve. In addition, by using a business vehicle, a locomotive, a maintenance vehicle, etc., it is possible to monitor the state of the adhesive insulated rail without using a dedicated track inspection vehicle, thereby suppressing the cost of inspection.

ところで、上述のような軸箱加速度及び軌道の高低狂いといった複数の指標に基づく状態監視は、接着絶縁レールの状態監視以外に分岐器や、レール継目板のボルト、レール締結装置、枕木等の軌道を構成する種々の部材に対する状態監視にも応用可能であり、例えば軸箱加速度のみを指標とするものより精度のよい状態監視方法を実現可能であると考えられる。すなわち、請求項10に記載のように、加速度計測手順により計測した軸箱加速度と、高低狂い計測手順により計測した高低狂いとを用いて状態監視の対象である事象に関する解析を行う解析手順により、軌道に対する様々な状態監視が可能である。   By the way, the state monitoring based on a plurality of indicators such as the axle box acceleration and the trajectory deviation as described above is not limited to the state monitoring of the adhesive insulation rail, but the track of the branching device, rail joint plate bolt, rail fastening device, sleeper, etc. For example, it is considered that a more accurate state monitoring method than that using only the axle box acceleration as an index can be realized. That is, as described in claim 10, by an analysis procedure for analyzing an event that is a target of state monitoring using an axial box acceleration measured by an acceleration measurement procedure and a height deviation measured by a height deviation measurement procedure, Various state monitoring for the orbit is possible.

以下、本発明の一実施形態を図面に基づいて説明する。
[1.接着絶縁レールの状態監視装置の構成]
図1は、実施形態の接着絶縁レールの状態監視装置の概略構成を示すブロック図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[1. Structure of adhesive insulation rail condition monitoring device]
FIG. 1 is a block diagram illustrating a schematic configuration of a state monitoring device for an adhesive insulated rail according to an embodiment.

接着絶縁レールの状態監視装置は、図1に示すように、軌道上を走行する旅客用の営業車両に搭載される測定装置1と、測定装置1が搭載されるのと同じ営業車両に搭載されるか、あるいは外部の管理センタ等に設置される管理用コンピュータ2とを備える。   As shown in FIG. 1, the adhesive insulated rail state monitoring device is mounted on the same business vehicle on which the measurement device 1 mounted on a passenger business vehicle traveling on a track and the measurement device 1 is mounted. Or a management computer 2 installed in an external management center or the like.

このうち、測定装置1は、軸箱加速度取得部11と、フィルタ処理部12と、積分演算処理部13と、高低狂い取得部14と、地点・キロ程情報取得部15と、データ記録/転送部16とを備える。   Among these, the measuring apparatus 1 includes an axial box acceleration acquisition unit 11, a filter processing unit 12, an integration calculation processing unit 13, a high / low deviation acquisition unit 14, a point / km information acquisition unit 15, and a data recording / transferring. Part 16.

軸箱加速度取得部11は、車両の台車の軸箱に設置された加速度センサであり、車両の走行中に軸箱にかかる上下方向の加速度を検出する。軸箱加速度取得部11によって検出された軸箱加速度のデータは、フィルタ処理部12及びデータ記録/転送部16へ供給される。   The axle box acceleration acquisition unit 11 is an acceleration sensor installed in the axle box of the vehicle carriage, and detects the vertical acceleration applied to the axle box while the vehicle is traveling. The axial box acceleration data detected by the axial box acceleration acquisition unit 11 is supplied to the filter processing unit 12 and the data recording / transfer unit 16.

フィルタ処理部12は、軸箱加速度取得部11によって入力された軸箱加速度のデータをフィルタリングすることで、ノイズを除去し、レールの高低狂いを算出するために必要となる周波数成分を抽出する。フィルタ処理部12によってフィルタリングされた軸箱加速度のデータは、積分演算処理部13へ供給される。   The filter processing unit 12 filters the axle box acceleration data input by the axle box acceleration acquisition unit 11 to remove noise and extract a frequency component necessary for calculating the level difference of the rail. The axial box acceleration data filtered by the filter processing unit 12 is supplied to the integration calculation processing unit 13.

積分演算処理部13は、フィルタ処理部12によってフィルタリングされた軸箱加速度のデータに対して2回積分を行う。高低狂い取得部14は、積分演算処理部13による2回積分の結果からレールの高低狂いに相当する変位波形を取得し、これを高低狂いのデータとしてデータ記録/転送部16へ供給する。   The integration calculation processing unit 13 performs integration twice on the data of the axle box acceleration filtered by the filter processing unit 12. The elevation deviation acquisition unit 14 acquires a displacement waveform corresponding to the elevation deviation of the rail from the result of the double integration by the integration calculation processing unit 13 and supplies this to the data recording / transfer unit 16 as elevation deviation data.

地点・キロ程情報取得部15は、車両の走行位置を特定するための地点情報や起点からの距離を示すキロ程情報を取得し、これをデータ記録/転送部16へ供給する。
データ記録/転送部16は、軸箱加速度取得部11、高低狂い取得部14、及び地点・キロ程情報取得部15から入力される各データを、所定間隔の時系列で記憶媒体に記憶あるいは外部装置へ転送するための装置である。
The point / km information acquisition unit 15 acquires point information for specifying the travel position of the vehicle and km information indicating the distance from the starting point, and supplies this to the data recording / transfer unit 16.
The data recording / transfer unit 16 stores each data input from the axle box acceleration acquisition unit 11, the height fluctuation acquisition unit 14, and the point / km information acquisition unit 15 in a storage medium in a time series of a predetermined interval or externally A device for transferring to a device.

管理用コンピュータ2は、適宜な処理能力を有する通常のコンピュータシステム(例えば、パーソナルコンピュータ等)で構成され、情報処理部21と出力部22とを備える。
情報処理部21は、図示しない記憶装置に格納された接着絶縁レールの状態監視用プログラムに従って情報処理を行う。具体的には、測定装置1のデータ記録/転送部16に記憶されている、あるいはそこから転送されてくる軸箱加速度、高低狂い及び地点・キロ程の各データを取得し、これらを解析することで、接着絶縁レールの継目板応力を推定する。そして、推定した継目板応力に対する良否を判定し、その判定結果を出力部22へ出力する。なお、この一連の処理(以下、「レール状態監視処理」(図2参照)と称する)についての詳細な説明は後述する。
The management computer 2 is configured by a normal computer system (for example, a personal computer) having an appropriate processing capability, and includes an information processing unit 21 and an output unit 22.
The information processing unit 21 performs information processing according to a program for monitoring the state of the adhesive insulating rail stored in a storage device (not shown). Specifically, each data of the axle box acceleration, the height fluctuation, and the point / km stored in or transferred from the data recording / transfer unit 16 of the measuring apparatus 1 is acquired and analyzed. Thus, the joint plate stress of the adhesive insulating rail is estimated. Then, the quality of the estimated joint plate stress is determined, and the determination result is output to the output unit 22. A detailed description of this series of processes (hereinafter referred to as “rail state monitoring process” (see FIG. 2)) will be described later.

出力部22は、ディスプレイやプリンタ、音声出力装置等によって構成されており、情報処理部21から出力された情報を表示、印刷、音声出力等の方法によりユーザに対して提示する。   The output unit 22 includes a display, a printer, a voice output device, and the like, and presents information output from the information processing unit 21 to the user by a method such as display, printing, and voice output.

[2.継目板応力推定の原理の説明]
管理用コンピュータ2の情報処理部21が実行する上述の「レール状態監視処理」においては、接着絶縁レールの継目板応力を推定するために、図3の推定継目板応力管理図に示すような軸箱加速度及びレールの高低狂いと継目板応力との間の相関関係のデータを用いる。以下、この推定継目板応力管理図に示すような軸箱加速度及びレールの高低狂いと継目板応力との間の相関関係が得られた経緯について説明する。
[2. Explanation of the principle of joint plate stress estimation]
In the above-described “rail state monitoring process” executed by the information processing unit 21 of the management computer 2, in order to estimate the joint plate stress of the adhesive insulating rail, an axis as shown in the estimated joint plate stress management diagram of FIG. Correlation data between box acceleration and rail height and joint plate stress are used. Hereinafter, a description will be given of how the correlation between the axle box acceleration and the rail deviation and the joint plate stress as shown in the estimated joint plate stress management chart is obtained.

発明者らは、営業線の軌道と同一仕様の実験線に接着絶縁レールを敷設し、試験用車両で衝撃成分を含む動的荷重を載荷する方法により、接着絶縁レールの接続部における軸箱加速度、高低狂い及び継目板にかかる応力を計測する試験を行った。試験用車両には旅客用の営業車両の台車を改造して構成した起振装置が搭載され、営業線上の車両と軌道との相互作用を再現した状態での試験が可能である。   The inventors have laid an adhesive insulated rail on an experimental line having the same specifications as the track of the business line, and loaded a dynamic load including an impact component on the test vehicle, thereby accelerating the axle box acceleration at the joint of the adhesive insulated rail. A test was conducted to measure the stress applied to the height difference and the joint plate. The test vehicle is equipped with a vibration exciter configured by modifying a carriage of a passenger business vehicle, and the test can be performed in a state where the interaction between the vehicle on the business line and the track is reproduced.

起振入力は、営業線の接着絶縁レール区間前後を実車が走行した際の上下方向の軸箱加速度を積分して高低狂いに相当する変位波形を求め、これを変位制御で与えた。入力変位波形には、通常の軌道検測車では得られない短波長成分の軌道狂いを含ませる必要があるという理由から、軸箱加速度の積分データを用いた。入力波形の種類として、比較的大きな軸箱加速度が発生していた6箇所の接着絶縁レールの軌道狂い波形(IJ波形1〜6)を採用した。試験においては、軸箱加速度の値を変化させる方法として、各々の入力変位波形の振幅倍率を調整する方法を実施した。   The vibration input was obtained by integrating the vertical acceleration of the box when the actual vehicle traveled around the adhesive insulated rail section of the business line to obtain the displacement waveform corresponding to the high and low deviation, which was given by the displacement control. Because the input displacement waveform needs to include a short-wave component trajectory error that cannot be obtained by a normal trajectory inspection vehicle, integral data of the axle box acceleration was used. As the types of the input waveforms, the trajectory deviation waveforms (IJ waveforms 1 to 6) of the six adhesive insulating rails where relatively large axle box acceleration occurred were adopted. In the test, as a method of changing the value of the axle box acceleration, a method of adjusting the amplitude magnification of each input displacement waveform was performed.

上述の試験において、図4(a)に示すように、入力波形として与えた接着絶縁レールの軌道狂い波形(IJ波形1〜6)の違いにほとんど影響されずに、継目板応力と軸箱加速度との間には、非常に相関性の高い1次回帰の関係が成り立つことが分かった。ただし、このような関係が成立するのは、接着絶縁レールに対する静止輪重による軌道沈下量(すなわち、高低狂い)が一定の場合のみであり、軌道沈下量の影響を別途考慮する必要があることが分かった。ちなみに、図4(a)のグラフは、試験結果の一例として、静止輪重を載荷したときの軌道沈下量が3.7mmであった状態で計測を行った結果を示している。   In the above test, as shown in FIG. 4A, the seam plate stress and the axial box acceleration are hardly affected by the difference in the trajectory deviation waveform (IJ waveforms 1 to 6) of the adhesive insulating rail given as the input waveform. It was found that a linear regression relationship with a very high correlation is established. However, this relationship is established only when the amount of trajectory settlement due to stationary wheel load (ie, high / low deviation) with respect to the adhesive insulated rail is constant, and the effect of trajectory settlement must be considered separately. I understood. Incidentally, the graph of FIG. 4A shows a result of measurement in a state where the trajectory settlement amount is 3.7 mm when a stationary wheel load is loaded as an example of the test result.

接着絶縁レールの継目板応力に影響を与える要因として、軸箱加速度の他に、浮き枕木等による軌道沈下量(高低狂い)を考慮する必要がある。そこで、接着絶縁レールに対して静止輪重を載荷した際の、軌道沈下量と継目板応力との関係を計測した。その計測結果を図4(b)のグラフに示す。   As factors affecting the joint plate stress of the adhesive insulating rail, it is necessary to consider the amount of trajectory settlement (high / low deviation) due to floating sleepers in addition to the acceleration of the axle box. Therefore, the relationship between the track settlement and the joint plate stress when a stationary wheel load was loaded on the adhesive insulated rail was measured. The measurement result is shown in the graph of FIG.

図4(b)のグラフに示す計測結果では、興味深い現象として、軌道沈下量が1mm程度以下の範囲で継目板応力の不感帯が認められる。この原因は、接着絶縁レールと継目板とに介在する絶縁層のヤング率が鋼のそれに比べてはるかに小さいため、絶縁層への荷重が弾性域にあるときには継目板に応力がほとんど発生せず、絶縁層への荷重が塑性域に入ったときから継目板に応力が伝達されるためであると推察される。   In the measurement result shown in the graph of FIG. 4B, as an interesting phenomenon, a dead zone of the joint plate stress is recognized in a range where the orbital settlement is about 1 mm or less. This is because the Young's modulus of the insulating layer interposed between the adhesive insulating rail and the joint plate is much smaller than that of steel, so there is almost no stress on the joint plate when the load on the insulating layer is in the elastic range. It is presumed that the stress is transmitted to the joint plate from when the load to the insulating layer enters the plastic region.

図4(a)のグラフでは、軸箱加速度と継目板応力との間に良好な1次回帰の関係が成立しているが、図4(b)のグラフから、静止輪重つまり軸箱加速度が0の時の軌道沈下量によって、その切片の値が変化することが分かる。言い換えれば、接着絶縁レールの継目板応力の推定は、軸箱加速度と高低狂いの2つの指標を組み合わせて行うことが必要である。   In the graph of FIG. 4A, a good linear regression relationship is established between the axle box acceleration and the joint plate stress. From the graph of FIG. It can be seen that the value of the intercept changes depending on the amount of orbital settlement when is zero. In other words, it is necessary to estimate the joint plate stress of the adhesive insulating rail by combining two indexes of the axle box acceleration and the height deviation.

そこで、図4(a)に示す軸箱加速度と継目板応力との1次回帰の関係に対して、図4(b)に示す高低狂いに対する継目板応力を切片に用いることで、図5に示すような、軸箱加速度及び高低狂いから得られる継目板応力の推定線を示すグラフを得ることができた。このグラフ上に、軌道検測車で実際に計測した軸箱加速度及び高低狂いと、この軌道検測車が通過した際に地上側で実測した継目板応力との関係をプロット(図5中の◇,●)したところ、継目板応力の推定線との高い一致性がみられた。したがって、このグラフで示される軸箱加速度及び高低狂いと、継目板応力との相関性を用いて継目板応力を推定する状態監視方法が妥当であることが検証できた。   Therefore, in relation to the linear regression relationship between the axial box acceleration and the joint plate stress shown in FIG. 4A, the joint plate stress for the height deviation shown in FIG. As shown, a graph showing an estimated line of the joint plate stress obtained from the axle box acceleration and the height deviation was obtained. On this graph, the relationship between the axial box acceleration and elevation deviation actually measured by the track inspection vehicle and the joint plate stress actually measured on the ground side when the track inspection vehicle passes is plotted (in FIG. 5). ◇, ●) showed a high agreement with the estimated line of the seam plate stress. Therefore, it was verified that the state monitoring method for estimating the joint plate stress using the correlation between the axle box acceleration and the height deviation shown in this graph and the joint plate stress was valid.

そして、図5のグラフを実用上使い易いものとするために、グラフの縦軸に軸箱加速度、横軸に高低狂いをとったものが、図3に示す推定継目板応力管理図である。この推定継目板応力管理図のデータを管理用コンピュータ2のメモリ(図示なし)等に格納し、これを状態監視に用いることで、車両の走行中に測定装置1で計測した接着絶縁レールの接続部における軸箱加速度及び高低狂いのデータから、継目板応力を高い精度で推定可能である。   Then, in order to make the graph of FIG. 5 practically easy to use, the estimated joint plate stress management chart shown in FIG. 3 is obtained by taking the axis box acceleration on the vertical axis and the height deviation on the horizontal axis. The data of the estimated joint plate stress management chart is stored in a memory (not shown) of the management computer 2 and used for condition monitoring, so that the connection of the adhesive insulating rail measured by the measuring device 1 while the vehicle is running is performed. It is possible to estimate the joint plate stress with high accuracy from the data of the axial box acceleration and the height deviation in the section.

[3.「レール状態監視処理」の説明]
つぎに、管理用コンピュータ2の情報処理部21が実行する上述の「レール状態監視処理」の詳細な内容について説明する。図2は、情報処理部21が実行する「レール状態監視処理」の手順を示すフローチャートである。
[3. Explanation of “Rail condition monitoring process”
Next, detailed contents of the above-described “rail state monitoring process” executed by the information processing unit 21 of the management computer 2 will be described. FIG. 2 is a flowchart showing the procedure of the “rail state monitoring process” executed by the information processing unit 21.

情報処理部21は、処理を開始すると、まず測定装置1のデータ記録/転送部16から出力された軸箱加速度、高低狂い、地点・キロ程の各データに基づき、接着絶縁レールの接続部に該当する箇所の軸箱加速度のデータと高低狂いのデータとを取得する(S101,S102)。つぎに、S101で取得した軸箱加速度のデータに対してローパスフィルタ処理を行い、軸箱加速度の100Hz以下の周波数成分を抽出する(S103)。このローパスフィルタ処理は、発明者らが行った試験において得られた以下のような知見に基づき行うものである。   When the information processing unit 21 starts processing, first, the information processing unit 21 uses the data of the axle box acceleration, the height difference, and the point / km information output from the data recording / transfer unit 16 of the measuring device 1 to connect to the connection portion of the adhesive insulating rail. The data on the acceleration of the axle box and the data of the ups and downs of the relevant part are acquired (S101, S102). Next, low-pass filter processing is performed on the data of the axle box acceleration acquired in S101, and a frequency component of 100 Hz or less of the axle box acceleration is extracted (S103). This low-pass filter processing is performed based on the following knowledge obtained in the test conducted by the inventors.

試験により軸箱加速度に対する継目板応力の周波数応答を取得したところ、図6のグラフに示すように、軸箱加速度の周波数が100Hz程度より低い帯域においては継目板応力の周波数応答倍率が高く、100Hz程度より高い帯域においては継目板応力の周波数応答倍率が低いことが分かった。これは、車両からの荷重が継目板へ伝播する過程において、100Hz程度より高い周波数成分の減衰が比較的大きいためであると推察される。   When the frequency response of the joint plate stress to the axle box acceleration was obtained by the test, as shown in the graph of FIG. 6, the frequency response magnification of the joint plate stress is high in the band where the frequency of the axle box acceleration is lower than about 100 Hz. It was found that the frequency response magnification of the seam plate stress was low in the higher band. This is presumably because the attenuation of the frequency component higher than about 100 Hz is relatively large in the process in which the load from the vehicle propagates to the joint plate.

軸箱加速度は、一般に100Hzを大きく上回る周波数成分を含み、むしろ100Hz以上の周波数帯域が卓越することが珍しくない。そこで、継目板応力の周波数応答にあまり寄与しない100Hz以上の周波数帯域をフィルタリングにより除去することで、継目板応力の周波数応答倍率が高い周波数成分のみを継目板応力の推定に用いることができる。   Axle box acceleration generally includes a frequency component that greatly exceeds 100 Hz, and it is not uncommon for a frequency band of 100 Hz or more to be dominant. Therefore, by removing the frequency band of 100 Hz or higher that does not contribute much to the frequency response of the joint plate stress by filtering, only the frequency component having a high frequency response magnification of the joint plate stress can be used for estimation of the joint plate stress.

つぎに、S103でローパスフィルタ処理にかけられた軸箱加速度のデータに対し、基準速度と当該軸箱加速度を計測した営業車両の速度との比の2乗をかけて速度補正を行う(S104)。ここで、基準速度とは、継目板応力を推定しようとする接着絶縁レール上を走行する営業車両の運転最高速度、あるいは運転速度の最頻値を用いる。また、営業車両の速度については、地点・キロ程のデータを用いて算出したものであってもよいし、当該営業車両の速度データを別途取得してもよい。なお、S104の速度補正は、発明者らが行った試験において得られた以下のような知見に基づき行うものである。   Next, speed correction is performed by multiplying the square box acceleration data subjected to the low-pass filter processing in S103 by the square of the ratio between the reference speed and the speed of the business vehicle that measured the axle box acceleration (S104). Here, the reference speed uses the maximum operating speed of the business vehicle that travels on the adhesive insulated rail for which the joint plate stress is to be estimated, or the mode value of the operating speed. Further, the speed of the business vehicle may be calculated using the data of the point / km or the speed data of the business vehicle may be acquired separately. The speed correction in S104 is performed based on the following knowledge obtained in the test conducted by the inventors.

軸箱加速度は、同一の軌道不整等に対してであっても、これを計測するときの車両の速度によって変化することが知られている。したがって、軌道の状態監視に軸箱加速度の情報を活用する場合、車両速度の違いによる影響をいかに補正するかが重要な課題である。   It is known that the axle box acceleration changes depending on the speed of the vehicle when measuring the same, even for the same trajectory irregularity or the like. Therefore, how to correct the influence of the difference in vehicle speed is an important issue when using information on the axle box acceleration for monitoring the track state.

そこで、軸箱加速度に対する車両速度の影響を考察するために行った試験の結果を図7に示す。この試験では、接着絶縁レールの軌道狂い波形を模した試験装置の入力波(IJ1〜6)の時間軸を変化させて印加することで見かけの車両速度を変化させつつ、発生した軸箱加速度をプロットした。図7に示す試験結果によれば、軸箱加速度が車両の速度の2乗に比例するものとして補正するのが可能であると考えられる。そこで、軸箱加速度のデータに対して、推定継目板応力管理図を作成するためのデータ収集を行ったときの基準速度と営業列車の速度との比の2乗で補正し、この補正した軸箱加速度を継目板応力の推定に用いる。   Therefore, FIG. 7 shows the result of a test conducted to consider the influence of the vehicle speed on the axle box acceleration. In this test, the generated axle box acceleration was measured while changing the apparent vehicle speed by changing the time axis of the input waves (IJ1 to 6) of the test apparatus imitating the trajectory error of the adhesive insulating rail. Plotted. According to the test results shown in FIG. 7, it can be considered that the axle box acceleration can be corrected as being proportional to the square of the vehicle speed. Therefore, the shaft box acceleration data is corrected by the square of the ratio of the reference speed and the speed of the business train when the data collection for creating the estimated joint plate stress management chart is performed, and the corrected axis Box acceleration is used to estimate joint plate stress.

つぎに、S105で速度補正された軸箱加速度のデータと、S102で取得した高低狂いのデータとを、管理用コンピュータ2のメモリ等に格納されている推定継目板応力管理図(図3)に照合し、当該接着絶縁レールの接続部における継目板応力を推定する(S105)。そして、この推定した継目板応力に対する良否判定を行う(S106)。具体的には、例えば、現場検査や補修を要する継目板応力の管理値を予め設定しておき、推定した継目板応力が管理値未満であれば「良」判定とし、管理値以上であれば「不良」判定する。   Next, the shaft box acceleration data corrected in step S105 and the height fluctuation data acquired in step S102 are stored in the estimated joint plate stress management chart (FIG. 3) stored in the memory of the management computer 2 or the like. Collation is performed, and the joint plate stress at the connection portion of the adhesive insulating rail is estimated (S105). And the quality determination with respect to this estimated joint board stress is performed (S106). Specifically, for example, a management value of the joint plate stress that requires on-site inspection and repair is set in advance, and if the estimated joint plate stress is less than the management value, it is determined as “good”, and if it is equal to or greater than the management value Judged as “bad”.

そして、情報処理部21は、S106における良否判定の結果を出力部22へ出力する(S107)。これに対して、出力部22は、情報処理部21から出力された判定結果をディスプレイに表示する、紙等の記録媒体に印刷する、音声により出力するといった方法でユーザに対して提示する。   Then, the information processing unit 21 outputs the quality determination result in S106 to the output unit 22 (S107). On the other hand, the output unit 22 presents the determination result output from the information processing unit 21 to the user by a method of displaying on a display, printing on a recording medium such as paper, or outputting by voice.

[4.効果]
実施形態の接着絶縁レールの状態監視装置によれば、以下のような効果を奏する。
推定継目板応力管理図(図3参照)を用いて軸箱加速度及び高低狂いから継目板応力を推定する方法を確立したことで、従来のような軸箱加速度のみを指標として継目板応力を推定する状態監視方法よりも、更に精度よく継目板応力を推定することができ、以って状態監視の精度を向上させることができる。
[4. effect]
According to the state monitoring apparatus for the adhesive insulated rail of the embodiment, the following effects are obtained.
Establishing a method to estimate the joint plate stress from the axial box acceleration and the height deviation using the estimated joint plate stress control chart (see Fig. 3), and estimating the joint plate stress using only the conventional axial box acceleration as an index The seam plate stress can be estimated with higher accuracy than the state monitoring method to be performed, thereby improving the state monitoring accuracy.

例えば、接着絶縁レールの継目板応力を仮に100MPa以下にすることを管理目標とする場合、従来の状態監視方法においては、接着絶縁レールにおける軸箱加速度について例えば80m/s2以上を現地検査を要する管理値として状態監視を行っていた。この場合、計測された軸箱加速度が90m/s2であれば、現地検査が実施されることになる。しかし、図3の推定継目板応力管理図を参照してみると、軸箱加速度が90m/s2であっても、接着絶縁レールの高低狂いが1mmであったとしたら、継目板応力は100MPa未満である。したがって、この場合、従来の状態監視方法では結果的に無駄な現地検査を実施したことになる。これに対し、推定継目板応力管理図による状態監視によれば、この場合における現場検査は必要なしと判定されるため、無駄な現場検査を行う必要がない。 For example, when the management target is to set the joint plate stress of the adhesive insulating rail to 100 MPa or less, the conventional state monitoring method requires on-site inspection of, for example, 80 m / s 2 or more for the axle box acceleration in the adhesive insulating rail. Status monitoring was performed as a management value. In this case, if the measured axle box acceleration is 90 m / s 2 , a field inspection is performed. However, referring to the estimated joint plate stress management chart of FIG. 3, if the height difference of the adhesive insulating rail is 1 mm even if the axle box acceleration is 90 m / s 2 , the joint plate stress is less than 100 MPa. It is. Therefore, in this case, the conventional state monitoring method results in a wasteful field inspection. On the other hand, according to the state monitoring based on the estimated joint plate stress management chart, it is determined that the on-site inspection is not necessary in this case, and therefore it is not necessary to perform a useless on-site inspection.

反対に、計測された軸箱加速度が50m/s2であれば、従来の状態監視方法によれば、現地検査は行われないことになる。しかし、図3の推定継目板応力管理図を参照してみると、軸箱加速度が50m/s2であっても、接着絶縁レールの高低狂いが4mmであるならば、継目板応力は100MPaを超えており、従来の状態監視方法では要検査の状態を見逃すおそれがある。これに対し、推定継目板応力管理図による状態監視によれば、この場合における現場検査が必要ありと判定されるため、要検査の状態を見逃すことがない。 On the other hand, if the measured axle box acceleration is 50 m / s 2 , the field inspection is not performed according to the conventional state monitoring method. However, referring to the estimated joint plate stress management chart of FIG. 3, even if the axle box acceleration is 50 m / s 2 , the joint plate stress is 100 MPa if the height difference of the adhesive insulating rail is 4 mm. There is a risk that the conventional state monitoring method may overlook the state of inspection required. On the other hand, according to the state monitoring based on the estimated joint plate stress management chart, it is determined that an on-site inspection is necessary in this case, so that the state of the inspection requiring is not missed.

このように、軸箱加速度及び高低狂いから継目板応力を推定する方法によれば、従来の状態監視方法に比べて精度の大幅な向上が見込める。そして、従来は不確かな監視結果に基づいて現場検査を行ってきたものを、より適切な時期に実施することができるようになる。   As described above, according to the method of estimating the joint plate stress from the axle box acceleration and the height deviation, a significant improvement in accuracy can be expected as compared with the conventional state monitoring method. And what has been conducted on-site inspection based on uncertain monitoring results can be carried out at a more appropriate time.

[5.別実施形態]
以上、本発明の実施形態について説明したが、本発明は上記の実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り様々な態様にて実施することが可能である。
[5. Another embodiment]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be implemented in various modes as long as they belong to the technical scope of the present invention.

例えば、上記実施形態では、測定装置1を旅客用の営業車両に搭載して各種データの計測を行う構成について説明した。これに対し、従来の状態監視でも行われていたように、電気軌道総合試験車等の軌道検測車でデータの計測を行うような構成であってもよい。あるいは、貨物車や、機関車、保守用車等に測定装置1を搭載して各種データの計測を行うように構成してもよい。   For example, in the above-described embodiment, the configuration in which the measurement apparatus 1 is mounted on a passenger business vehicle to measure various data has been described. On the other hand, the configuration may be such that data is measured by a track inspection vehicle such as an electric track comprehensive test vehicle, as was also done in conventional state monitoring. Or you may comprise so that the measurement apparatus 1 may be mounted in a freight car, a locomotive, a maintenance vehicle, etc., and various data may be measured.

また、上記実施形態のような軸箱加速度及び軌道の高低狂いといった指標に基づく状態監視方法は、接着絶縁レールの状態監視以外に軌道を構成する種々の部材に対する状態監視にも応用可能である。すなわち、監視の対象となる軌道上における軸箱加速度と高低狂いとを用いて、状態監視対象の事象に関する解析を行うことで、例えば分岐器等の特殊な機構を有するレールや、レール継目板のボルト、レール締結装置、枕木等に対する状態監視が可能である。   Further, the state monitoring method based on the indexes such as the axle box acceleration and the trajectory deviation as in the above embodiment can be applied to the state monitoring for various members constituting the track in addition to the state monitoring of the adhesive insulating rail. That is, by using the axle box acceleration and the height deviation on the track to be monitored, by analyzing the event of the condition monitoring target, for example, a rail having a special mechanism such as a branching device, a rail joint plate Status monitoring for bolts, rail fastening devices, sleepers, etc. is possible.

実施形態の接着絶縁レールの状態監視装置の概略構成を示すブロック図である。It is a block diagram showing a schematic structure of a state monitoring device of an adhesion insulation rail of an embodiment. 「レール状態監視処理」の手順を示すフローチャートである。It is a flowchart which shows the procedure of a "rail state monitoring process." 推定継目板応力管理図のグラフである。It is a graph of an estimated joint board stress management chart. (a)は、軸箱加速度と継目板応力との関係を示すグラフであり、(b)は、軌道沈下量(高低狂い)と継目板応力との関係を示すグラフである。(A) is a graph which shows the relationship between an axial box acceleration and a joint plate stress, (b) is a graph which shows the relationship between an orbital settlement amount (high and low deviation) and a joint plate stress. 軸箱加速度及び高低狂いから得られる継目板応力の推定線のグラフである。It is a graph of the estimated line of the joint board stress obtained from a shaft box acceleration and a high / low deviation. 軸箱加速度に対する継目板応力の周波数応答を示すグラフである。It is a graph which shows the frequency response of the joint board stress with respect to an axial box acceleration. 車両速度と軸箱加速度との関係を示すグラフである。It is a graph which shows the relationship between vehicle speed and axle box acceleration.

符号の説明Explanation of symbols

1…測定装置、11…軸箱加速度取得部、12…フィルタ処理部、13…積分演算処理部、14…高低狂い取得部、15…地点・キロ程情報取得部、16…データ記録/転送部
2…管理用コンピュータ、21…情報処理部、22…出力部
DESCRIPTION OF SYMBOLS 1 ... Measuring apparatus, 11 ... Shaft box acceleration acquisition part, 12 ... Filter processing part, 13 ... Integration calculation processing part, 14 ... High / low deviation acquisition part, 15 ... Spot / km information acquisition part, 16 ... Data recording / transfer part 2 ... management computer, 21 ... information processing unit, 22 ... output unit

Claims (10)

接着絶縁レールの接続部の状態を監視する状態監視方法であって、
レール上を走行する車両の軸箱にかかる加速度(以下、軸箱加速度)を計測する加速度計測手順と、
車両の走行地点におけるレールの高低狂いを計測する高低狂い計測手順と、
前記接着絶縁レールの接続部における軸箱加速度及び高低狂いと、前記接着絶縁レールを構成する継目板にかかる応力との間の相関関係を示す既成のデータに基づき、前記加速度計測手順により計測した前記接着絶縁レールの接続部における軸箱加速度と、前記高低狂い計測手順により計測した前記接着絶縁レールの接続部における高低狂いとから、前記継目板にかかる応力を推定する応力推定手順とを有すること
を特徴とする接着絶縁レールの状態監視方法。
A state monitoring method for monitoring a state of a connection portion of an adhesive insulating rail,
An acceleration measurement procedure for measuring acceleration applied to the axle box of the vehicle traveling on the rail (hereinafter referred to as axle box acceleration);
A high / low deviation measurement procedure for measuring the high / low deviation of the rail at the vehicle travel point,
Based on the existing data showing the correlation between the axial box acceleration and the height fluctuation at the connection portion of the adhesive insulating rail and the stress applied to the joint plate constituting the adhesive insulating rail, the measurement was performed by the acceleration measurement procedure. A stress estimation procedure for estimating a stress applied to the joint plate from the acceleration of the axle box at the connection portion of the adhesive insulation rail and the height deviation at the connection portion of the adhesion insulation rail measured by the height deviation measurement procedure. A method for monitoring the state of a bonded insulated rail.
請求項1に記載の接着絶縁レールの状態監視方法において、
前記応力推定手順では、前記加速度計測手順により計測した前記接着絶縁レールの接続部における軸箱加速度から特定の周波数帯域の成分を抽出し、これを前記継目板にかかる応力の推定に用いること
を特徴とする接着絶縁レールの状態監視方法。
In the method for monitoring the state of the adhesive insulated rail according to claim 1,
In the stress estimation procedure, a component of a specific frequency band is extracted from a shaft box acceleration at a connection portion of the adhesive insulating rail measured by the acceleration measurement procedure, and this is used for estimation of stress applied to the joint plate. The method of monitoring the state of the adhesive insulated rail.
請求項2に記載の接着絶縁レールの状態監視方法において、
前記応力推定手順では、前記加速度計測手順により計測した前記接着絶縁レールの接続部における軸箱加速度から100Hz以下の成分を抽出し、これを前記継目板にかかる応力の推定に用いること
を特徴とする接着絶縁レールの状態監視方法。
In the method for monitoring the state of the adhesive insulated rail according to claim 2,
In the stress estimation procedure, a component of 100 Hz or less is extracted from a shaft box acceleration at the connection portion of the adhesive insulating rail measured by the acceleration measurement procedure, and this is used for estimation of stress applied to the joint plate. How to monitor the condition of adhesive insulated rails.
請求項1ないし請求項3の何れか1項に記載の接着絶縁レールの状態監視方法において、
前記応力推定手順では、前記加速度計測手順により計測した前記接着絶縁レールの接続部における軸箱加速度を、これを計測したときの車両の速度に応じた係数により補正して前記継目板にかかる応力の推定に用いること
を特徴とする接着絶縁レールの状態監視方法。
In the monitoring method of the state of the adhesion insulation rail according to any one of claims 1 to 3,
In the stress estimation procedure, the axle box acceleration at the connection portion of the adhesive insulating rail measured by the acceleration measurement procedure is corrected by a coefficient corresponding to the speed of the vehicle at the time of measuring the stress applied to the joint plate. A method for monitoring the state of an adhesive insulated rail, characterized by being used for estimation.
接着絶縁レールの接続部の状態を監視する状態監視装置であって、
レール上を走行する車両の軸箱加速度を計測する加速度計測手段と、
レールの高低狂いを計測する高低狂い計測手段と、
前記接着絶縁レールの接続部における軸箱加速度及び高低狂いと、前記接着絶縁レールを構成する継目板にかかる応力との間の相関関係を示す既成のデータに基づき、前記加速度計測手段により計測した前記接着絶縁レールの接続部における軸箱加速度と、前記高低狂い計測手段により計測した前記接着絶縁レールの接続部における高低狂いとから、前記継目板にかかる応力を推定する応力推定手段とを備えること
を特徴とする接着絶縁レールの状態監視装置。
A state monitoring device for monitoring the state of the connecting portion of the adhesive insulated rail,
Acceleration measuring means for measuring the axle box acceleration of the vehicle traveling on the rail;
High and low deviation measuring means to measure the rail's high and low deviation,
Based on the existing data indicating the correlation between the axial box acceleration and the height fluctuation in the connection portion of the adhesive insulating rail and the stress applied to the joint plate constituting the adhesive insulating rail, the acceleration measurement means measured the Stress estimation means for estimating the stress applied to the joint plate from the acceleration of the axle box at the connection portion of the adhesive insulation rail and the height deviation at the connection portion of the adhesion insulation rail measured by the height deviation measurement means. A condition monitoring device for the bonded insulated rail.
請求項5に記載の接着絶縁レールの状態監視装置において、
前記応力推定手段は、前記加速度計測手段により計測した前記接着絶縁レールの接続部における軸箱加速度から特定の周波数帯域の成分を抽出し、これを前記継目板にかかる応力の推定に用いること
を特徴とする接着絶縁レールの状態監視装置。
In the state monitoring device of the adhesion insulation rail according to claim 5,
The stress estimating means extracts a component of a specific frequency band from a shaft box acceleration at a connection portion of the adhesive insulating rail measured by the acceleration measuring means, and uses this to estimate a stress applied to the joint plate. Adhesive insulation rail condition monitoring device.
請求項6に記載の接着絶縁レールの状態監視装置において、
前記軸箱加速度の特定の周波数帯域は、100Hz以下であること
を特徴とする接着絶縁レールの状態監視装置。
In the state monitoring device of the adhesion insulation rail according to claim 6,
The specific frequency band of the axle box acceleration is 100 Hz or less.
請求項5ないし請求項7の何れか1項に記載の接着絶縁レールの状態監視装置において、
前記応力推定手段は、前記加速度計測手段により計測した前記接着絶縁レールの接続部における軸箱加速度を、前記車両の速度に応じた係数により補正して前記継目板にかかる応力の推定に用いること
を特徴とする接着絶縁レールの状態監視装置。
In the state monitoring device of the adhesion insulation rail according to any one of claims 5 to 7,
The stress estimation means corrects the axle box acceleration at the connection portion of the adhesive insulating rail measured by the acceleration measurement means with a coefficient corresponding to the speed of the vehicle, and uses it to estimate the stress applied to the joint plate. A condition monitoring device for the bonded insulated rail.
請求項5ないし請求項8の何れか1項に記載の接着絶縁レールの状態監視装置において、
当該接着絶縁レールの状態監視装置を構成する各手段のうち、前記加速度計測手段又は前記高低狂い計測手段の少なくとも何れか一方が、旅客車、貨物車、機関車又は保守用車に装備されること
を特徴とする接着絶縁レールの状態監視装置。
In the state monitoring device of the adhesion insulation rail according to any one of claims 5 to 8,
At least one of the acceleration measuring means and the height fluctuation measuring means among the means constituting the adhesive insulated rail state monitoring device is installed in a passenger car, a freight car, a locomotive, or a maintenance car. A state monitoring device for an adhesive insulated rail characterized by the above.
軌道の状態を監視する状態監視方法であって、
軌道を構成するレール上を走行する車両の軸箱にかかる軸箱加速度を計測する加速度計測手順と、
車両の走行地点におけるレールの高低狂いを計測する高低狂い計測手順と、
前記加速度計測手順により計測した軸箱加速度と、前記高低狂い計測手順により計測した高低狂いとを用いて状態監視の対象である事象に関する解析を行う解析手順とを有すること
を特徴とする軌道状態監視方法。
A state monitoring method for monitoring the state of an orbit,
An acceleration measurement procedure for measuring the axle box acceleration applied to the axle box of the vehicle traveling on the rail constituting the track;
A high / low deviation measurement procedure for measuring the high / low deviation of the rail at the vehicle travel point,
An orbital state monitoring comprising: an analysis procedure for performing an analysis on an event that is a target of state monitoring using the axle box acceleration measured by the acceleration measurement procedure and the height deviation measured by the height deviation measurement procedure Method.
JP2007206933A 2007-08-08 2007-08-08 Adhesive insulation rail condition monitoring method and adhesion insulation rail condition monitoring apparatus Expired - Fee Related JP5128870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007206933A JP5128870B2 (en) 2007-08-08 2007-08-08 Adhesive insulation rail condition monitoring method and adhesion insulation rail condition monitoring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007206933A JP5128870B2 (en) 2007-08-08 2007-08-08 Adhesive insulation rail condition monitoring method and adhesion insulation rail condition monitoring apparatus

Publications (2)

Publication Number Publication Date
JP2009042054A true JP2009042054A (en) 2009-02-26
JP5128870B2 JP5128870B2 (en) 2013-01-23

Family

ID=40442945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007206933A Expired - Fee Related JP5128870B2 (en) 2007-08-08 2007-08-08 Adhesive insulation rail condition monitoring method and adhesion insulation rail condition monitoring apparatus

Country Status (1)

Country Link
JP (1) JP5128870B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086578A (en) * 2013-10-30 2015-05-07 東海旅客鉄道株式会社 Large wheel load generation position identifying device and method to detect such positions
JP7477489B2 (en) 2021-11-19 2024-05-01 公益財団法人鉄道総合技術研究所 Rail soundness evaluation method and rail soundness evaluation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213903A (en) * 1982-06-04 1983-12-13 財団法人 鉄道総合技術研究所 Apparatus for detecting rail axis strength
JPH06116903A (en) * 1991-12-02 1994-04-26 Nippon Kikai Hosen Kk Method for confirming track state
JP2006348633A (en) * 2005-06-17 2006-12-28 Railway Technical Res Inst Joint structure and manufacturing method for glued insulated joint rail
JP2007022220A (en) * 2005-07-13 2007-02-01 Univ Nihon Track condition analyzing method, track condition analyzing device, and track condition analyzing program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213903A (en) * 1982-06-04 1983-12-13 財団法人 鉄道総合技術研究所 Apparatus for detecting rail axis strength
JPH06116903A (en) * 1991-12-02 1994-04-26 Nippon Kikai Hosen Kk Method for confirming track state
JP2006348633A (en) * 2005-06-17 2006-12-28 Railway Technical Res Inst Joint structure and manufacturing method for glued insulated joint rail
JP2007022220A (en) * 2005-07-13 2007-02-01 Univ Nihon Track condition analyzing method, track condition analyzing device, and track condition analyzing program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086578A (en) * 2013-10-30 2015-05-07 東海旅客鉄道株式会社 Large wheel load generation position identifying device and method to detect such positions
JP7477489B2 (en) 2021-11-19 2024-05-01 公益財団法人鉄道総合技術研究所 Rail soundness evaluation method and rail soundness evaluation system

Also Published As

Publication number Publication date
JP5128870B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
Mori et al. Condition monitoring of railway track using in-service vehicle
JP5382991B2 (en) Abnormality diagnosis method and abnormality diagnosis system for track system
CN102548828B (en) Method and instrumentation for detection of rail defects, in particular rail top defects
Molodova et al. Health condition monitoring of insulated joints based on axle box acceleration measurements
EP2750955B1 (en) Method for detection of a flaw or flaws in a railway track, and a rail vehicle to be used in such a method
Tsunashima et al. Japanese railway condition monitoring of tracks using in-service vehicle
Mori et al. Development of compact size onboard device for condition monitoring of railway tracks
Anastasopoulos et al. Acoustic emission on-line inspection of rail wheels
WO2024067481A1 (en) Railway vehicle pantograph-catenary wear anomaly detection method and apparatus, and storage medium
Lingamanaik et al. Using instrumented revenue vehicles to inspect track integrity and rolling stock performance in a passenger network during peak times
JP5128870B2 (en) Adhesive insulation rail condition monitoring method and adhesion insulation rail condition monitoring apparatus
Diana et al. Full-scale derailment tests on freight wagons
Lu et al. Intelligent Transportation systems approach to railroad infrastructure performance evaluation: track surface abnormality identification with smartphone-based App
Molodova et al. Axle box acceleration for health monitoring of insulated joints: A case study in the Netherlands
JP4935469B2 (en) Railway vehicle running abnormality detection method and apparatus
Tsunashima et al. Condition monitoring of railway track and driver using in-service vehicle
WO2013162398A1 (en) Method for surveying rail-wheel contact
Li et al. Development and implementation of a continuous vertical track-support testing technique
Chong et al. Defining rail track input conditions using an instrumented revenue vehicle
Rakoczy et al. Vehicle–track–bridge interaction modeling and validation for short span railway bridges
KR100651187B1 (en) Vibration testing system and the method of urban transit vehicles running
JP2001071904A (en) Method and device for detecting state of wheel tread
Tsubokawa et al. Development of a dynamic track measuring device for gauge and twist to reduce derailment accidents
JP2005114637A (en) System for detecting abnormality of vehicle and method therefor
RU2601467C2 (en) Method of determining fitness of cargo railway cars by size of gaps in side bearings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Ref document number: 5128870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees