JP2009040625A - Hydrogen generating apparatus, fuel cell apparatus and hydrogen generating method - Google Patents

Hydrogen generating apparatus, fuel cell apparatus and hydrogen generating method Download PDF

Info

Publication number
JP2009040625A
JP2009040625A JP2007205826A JP2007205826A JP2009040625A JP 2009040625 A JP2009040625 A JP 2009040625A JP 2007205826 A JP2007205826 A JP 2007205826A JP 2007205826 A JP2007205826 A JP 2007205826A JP 2009040625 A JP2009040625 A JP 2009040625A
Authority
JP
Japan
Prior art keywords
hydrogen
control unit
reaction
aqueous solution
reaction residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007205826A
Other languages
Japanese (ja)
Other versions
JP5135627B2 (en
Inventor
Kazutaka Yuzurihara
一貴 譲原
Fumiharu Iwasaki
文晴 岩崎
Tsuneaki Tamachi
恒昭 玉地
Takashi Sarada
孝史 皿田
Toru Ozaki
徹 尾崎
Takamasa Yanase
考応 柳瀬
Noboru Ishizone
昇 石曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007205826A priority Critical patent/JP5135627B2/en
Publication of JP2009040625A publication Critical patent/JP2009040625A/en
Application granted granted Critical
Publication of JP5135627B2 publication Critical patent/JP5135627B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen generating apparatus capable of supplying hydrogen while reliably suppressing outflow of reaction residues obtained by bringing a reactant into contact with an aqueous solution in a small space. <P>SOLUTION: A measurement section 7 detects the surface height of reaction residues 10, and when a control unit 9 judges that the increment of the reaction residues 10 exceeds a predetermined amount, a solution feeding means 4 is controlled so as to stop circulation of the aqueous solution, whereby hydrogen generation reaction is stopped and outflow of the reaction residues 10 is reliably suppressed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、化学反応により発生した水素を、燃料電池、水素エンジンといった水素を必要とする装置や水素貯蔵容器に供給するための水素発生装置及び水素発生方法に関し、反応残留物の影響を抑制するようにしたものである。   The present invention relates to a hydrogen generation apparatus and a hydrogen generation method for supplying hydrogen generated by a chemical reaction to a device that requires hydrogen, such as a fuel cell or a hydrogen engine, or a hydrogen storage container, and suppresses the influence of reaction residues. It is what I did.

また、本発明は、反応残留物の影響を抑制した状態で水素を供給することができる水素発生装置を備えた燃料電池設備に関する。   The present invention also relates to a fuel cell facility equipped with a hydrogen generator capable of supplying hydrogen while suppressing the influence of reaction residues.

近年のエネルギー問題や環境問題の高まりから、化石燃料以外で、排出物がクリーンな燃料として、水素への期待が高まっている。しかし水素には製造、貯蔵、運搬、利用技術などあらゆる点で課題があり、取扱い技術の開発が急務である。   Due to the recent increase in energy problems and environmental problems, there is an increasing expectation for hydrogen as a clean fuel other than fossil fuels. However, hydrogen has problems in all aspects such as production, storage, transportation, and utilization technology, and development of handling technology is urgent.

水素を利用した発電装置としては、燃料電池や内燃機関(以下、水素エンジン)が挙げられる。これらの発電装置は、地域分散電源、ビル、家庭、自動車、携帯機器などあらゆる業種を対象としている。いずれの場合も所定量の水素を速やかに供給する必要があり、また、特に自動車や携帯機器においては発電装置を設置するスペースの関係上、また電力を消費する装置に発電した電力を効率よく送るために、水素供給器及び水素発生材料を高水素貯蔵密度にし、低エネルギーで水素を発生させることが求められている。   Examples of the power generation device using hydrogen include a fuel cell and an internal combustion engine (hereinafter, hydrogen engine). These power generators cover all types of industries such as regional distributed power sources, buildings, homes, automobiles, and portable devices. In either case, it is necessary to supply a predetermined amount of hydrogen promptly. In particular, in automobiles and portable devices, the generated power is efficiently sent to a device that consumes power because of the space for installing the power generation device. Therefore, it is required that the hydrogen supplier and the hydrogen generating material have a high hydrogen storage density and generate hydrogen with low energy.

従来、水素を低エネルギーで得る方法として、ケミカルハイドライドと呼ばれる錯体水素化物を加水分解する方法が知られている。例えば錯体水素化物の一種である水素化ホウ素リチウムや水素化ホウ素ナトリウム、水素化アルミニウムリチウム、水素化アルミニウムナトリウムをアルカリ水溶液に溶解し、その水溶液を貴金属触媒に供給して接触させ、水素発生反応を起こす方法、水やアルコールを錯体水素化物に供給して、水素発生反応を起こす方法などが知られている(例えば特許文献1参照)。   Conventionally, as a method of obtaining hydrogen with low energy, a method of hydrolyzing a complex hydride called chemical hydride is known. For example, lithium borohydride, sodium borohydride, lithium aluminum hydride, and sodium aluminum hydride, which are a kind of complex hydrides, are dissolved in an alkaline aqueous solution, and the aqueous solution is supplied to and contacted with a noble metal catalyst to perform a hydrogen generation reaction. There are known a method for causing a hydrogen generation reaction by supplying water or alcohol to a complex hydride (for example, see Patent Document 1).

この場合、水素発生反応の反応物は、錯体水素化物と水であり、触媒は水素発生反応を促進する促進剤の効果がある。水素発生反応を起こして水素を得る場合、反応で生成される金属含有物や泡等の生成物が存在し、流路に流通抵抗が存在する等、水素発生装置に少なからず影響を与えてしまう。   In this case, the reactants of the hydrogen generation reaction are a complex hydride and water, and the catalyst has an effect of a promoter that promotes the hydrogen generation reaction. When hydrogen is generated by causing a hydrogen generation reaction, products such as metal-containing materials and bubbles generated by the reaction are present, and flow resistance is present in the flow path. .

このため、得られた水素を泡等の生成物と共に分離手段の部屋に投入し、分離手段の部屋で水素と生成物(反応残留物)を分離し、生成物が分離された水素を燃料電池等の消費部に供給する技術が知られている(例えば、特許文献2、特許文献3参照)。分離手段の部屋を備えることにより、反応残留物を分離することができるので、反応残留物の外部への流出をなくし、反応効率を低下させることなく生成物を分離して水素を消費部に供給することができる。   For this reason, the obtained hydrogen is put into a separation means room together with a product such as bubbles, hydrogen and the product (reaction residue) are separated in the separation means room, and the hydrogen from which the product is separated is used as a fuel cell. The technique of supplying to consumption parts, such as these, is known (for example, refer patent document 2, patent document 3). Since the reaction residue can be separated by providing the separation means room, the reaction residue is prevented from flowing out, and the product is separated and hydrogen is supplied to the consumption unit without reducing the reaction efficiency. can do.

しかしながら、従来の技術では、反応残留物を分離することができ反応残留物の外部への流出の影響を抑制することができるが、分離手段の部屋を別途備える技術であるので、ある程度のスペースが必要であり小型化が阻害されてしまう。また、反応残留物として未反応の錯体水素化物(燃料)が含まれることもあり、未反応の燃料が反応残留物として残ると水素発生を停止した後にも反応残留物の体積の増加を引き起こすことが考えられ、分離手段の部屋の容積を十分に確保する必要があり、この点でも小型化が阻害されてしまう。更に、小型機器のように極僅かなスペースで使用するためには反応容器等の他の機器のスペースを犠牲にしなければならず、機能を低下させなければならないのが現状であった。   However, in the conventional technique, the reaction residue can be separated and the influence of the reaction residue flowing to the outside can be suppressed. However, since the technique is provided with a separate separation chamber, a certain amount of space is required. This is necessary and hinders downsizing. In addition, unreacted complex hydride (fuel) may be included as a reaction residue. If unreacted fuel remains as a reaction residue, it will cause an increase in the volume of the reaction residue even after hydrogen generation is stopped. Therefore, it is necessary to secure a sufficient volume of the separation unit, which also hinders downsizing. Furthermore, in order to use it in a very small space such as a small device, the space of other devices such as a reaction vessel has to be sacrificed, and the function must be lowered.

特開2003−206101号公報JP 2003-206101 A 特開2002−154803号公報JP 2002-154803 A 特開2005−225709号公報JP 2005-225709 A

本発明は上記状況に鑑みてなされたもので、少ないスペースで反応物と水溶液を接触させて得られた反応残留物の流出を確実に抑えた状態で水素を供給することができる水素発生装置及び水素発生方法を提供することを目的とする。   The present invention has been made in view of the above situation, and a hydrogen generator capable of supplying hydrogen in a state where the outflow of the reaction residue obtained by bringing the reactant into contact with the aqueous solution in a small space is reliably suppressed, and An object is to provide a hydrogen generation method.

また、本発明は上記状況に鑑みてなされたもので、少ないスペースで反応物と水溶液を接触させて得られた反応残留物の流出を確実に抑えた状態で水素を供給することができる水素発生装置を備えた燃料電池設備を提供することを目的とする。   In addition, the present invention has been made in view of the above situation, and hydrogen generation that can supply hydrogen in a state where the outflow of the reaction residue obtained by bringing the reactant into contact with the aqueous solution in a small space is reliably suppressed. It aims at providing the fuel cell equipment provided with the apparatus.

上記目的を達成するための請求項1に係る本発明の水素発生装置は、反応物が収容されるとともに、前記反応物と水溶液とを反応させて水素を生成する反応容器と、前記水溶液を前記反応容器に供給する水溶液供給部と、前記水溶液供給部の前記水溶液の流通を制御する送液制御部と、前記反応容器内で発生した水素を排出する排出部と、前記反応容器の内部の反応残留物の量を検出する反応残留物量検出部と、前記反応残留物量検出部により検出された前記反応残留物の量が所定量を超えた際に、前記送液制御部の前記水溶液の流通を停止状態にする停止制御部とを備えたことを特徴とする。   In order to achieve the above object, a hydrogen generator of the present invention according to claim 1 comprises a reaction vessel that contains a reaction product, reacts the reaction product with an aqueous solution to produce hydrogen, and the aqueous solution contains the reaction solution. An aqueous solution supply unit that supplies the reaction vessel, a liquid feeding control unit that controls the flow of the aqueous solution in the aqueous solution supply unit, a discharge unit that discharges hydrogen generated in the reaction vessel, and a reaction inside the reaction vessel A reaction residue amount detection unit for detecting the amount of the residue, and when the amount of the reaction residue detected by the reaction residue amount detection unit exceeds a predetermined amount, And a stop control unit for making the stop state.

請求項1に係る本発明では、反応残留物が所定量を超えた際に水溶液の流通を停止して水素発生反応を停止させることができる。このため、少ないスペースで反応物と水溶液を接触させて得られた反応残留物の流出を確実に抑えた状態で水素を供給することが可能になる。   In the present invention according to claim 1, when the reaction residue exceeds a predetermined amount, the flow of the aqueous solution can be stopped to stop the hydrogen generation reaction. For this reason, it becomes possible to supply hydrogen in a state where the outflow of the reaction residue obtained by bringing the reactant into contact with the aqueous solution in a small space is reliably suppressed.

また、請求項2に係る本発明の水素発生装置は、請求項1に記載の水素発生装置において、前記反応残留物量検出部は、前記反応残留物に浮かぶと共に前記反応残留物が前記所定量となった際に前記排出部を塞ぐ封止フロートを有することを特徴とする。   The hydrogen generator of the present invention according to claim 2 is the hydrogen generator according to claim 1, wherein the reaction residue amount detection unit floats on the reaction residue and the reaction residue has the predetermined amount. It has a sealing float which closes the discharge part when it becomes.

請求項2に係る本発明では、反応残留物が所定量となった際に封止フロートが排出部を塞いで水素の排出を停止するので、簡単な構造により反応残留物の増加を検出することができる。   In the present invention according to claim 2, since the sealing float blocks the discharge part and stops the discharge of hydrogen when the reaction residue reaches a predetermined amount, an increase in the reaction residue can be detected with a simple structure. Can do.

また、請求項3に係る本発明の水素発生装置は、請求項2に記載の水素発生装置において、前記停止制御部は、前記封止フロートにより前記排出部が塞がれた状態の前記反応容器の内圧に基づいて前記送液制御部の前記水溶液の流通を停止状態にすることを特徴とする。   Moreover, the hydrogen generator of the present invention according to claim 3 is the hydrogen generator according to claim 2, wherein the stop control part is the reaction vessel in a state where the discharge part is blocked by the sealing float. The flow of the aqueous solution in the liquid feeding control unit is stopped based on the internal pressure.

請求項3に係る本発明では、封止フロートにより排出部が塞がれることによる反応容器の内圧の上昇に応じて、水溶液の流通が停止状態になる状態に送液制御部が動作し、反応残留物が増加した際の内圧の上昇に基づいて運転を停止させる。   In the present invention according to claim 3, in response to an increase in the internal pressure of the reaction vessel caused by the discharge portion being blocked by the sealing float, the liquid feeding control unit operates in a state where the flow of the aqueous solution is stopped, and the reaction The operation is stopped based on the increase in internal pressure when the residue increases.

また、請求項4に係る本発明の水素発生装置は、請求項3に記載の水素発生装置において、前記送液制御部は、停止信号により前記水溶液の流通を停止させる送液制御部であり、前記停止制御部は、前記反応容器の内圧を検出する内圧検知部と、前記内圧検知部の信号に基づいて前記送液制御部に前記停止信号を出力する出力部とを備えたことを特徴とする。   Moreover, the hydrogen generator of the present invention according to claim 4 is the hydrogen generator according to claim 3, wherein the liquid supply control unit is a liquid supply control unit that stops the flow of the aqueous solution by a stop signal, The stop control unit includes an internal pressure detection unit that detects an internal pressure of the reaction vessel, and an output unit that outputs the stop signal to the liquid feeding control unit based on a signal from the internal pressure detection unit. To do.

請求項4に係る本発明では、内圧検知部の信号に基づいて送液制御部に停止信号が出力されて水溶液の流通が停止状態になり、反応残留物が増加した際の内圧の上昇に基づいて運転を確実に停止させる。   In the present invention according to claim 4, a stop signal is output to the liquid feeding control unit based on the signal of the internal pressure detection unit, the flow of the aqueous solution is stopped, and based on the increase in internal pressure when the reaction residue increases. To stop operation reliably.

また、請求項5に係る本発明の水素発生装置は、請求項1に記載の水素発生装置において、前記送液制御部は、停止信号により前記水溶液の流通を停止させる送液制御部であり、前記停止制御部は、前記反応残留物量検出部により検出された前記反応残留物の量が所定量を超えた際に前記停止信号を出力することを特徴とする。   The hydrogen generator of the present invention according to claim 5 is the hydrogen generator according to claim 1, wherein the liquid supply control unit is a liquid supply control unit that stops the flow of the aqueous solution by a stop signal, The stop control unit outputs the stop signal when the amount of the reaction residue detected by the reaction residue amount detection unit exceeds a predetermined amount.

請求項5に係る本発明では、反応残留物量検出部により反応残留物の量が所定量を超えた際に送液制御部に停止信号が出力されて水溶液の流通が停止状態になり、反応残留物の増加に基づいて運転を確実に停止させる。   In the present invention according to claim 5, when the amount of the reaction residue exceeds a predetermined amount by the reaction residue amount detection unit, a stop signal is output to the liquid feed control unit, the flow of the aqueous solution is stopped, and the reaction residue Stop operation reliably based on the increase in objects.

また、請求項6に係る本発明の水素発生装置は、請求項3に記載の水素発生装置において、前記送液制御部は、所定の圧力が作用することにより前記水溶液の流通が停止する送液制御部であり、前記停止制御部は、前記反応容器の内圧を前記送液制御部に作用させる作用部を備えたことを特徴とする。   According to a sixth aspect of the present invention, there is provided the hydrogen generating apparatus according to the third aspect, wherein the liquid supply control unit is configured to stop the flow of the aqueous solution when a predetermined pressure is applied. It is a control part, The said stop control part was provided with the action part which makes the internal pressure of the said reaction container act on the said liquid feeding control part, It is characterized by the above-mentioned.

請求項6に係る本発明では、封止フロートにより排出部が塞がれることによる反応容器の内圧の上昇に基づく圧力が送液制御部に作用し、水溶液の流通が停止状態になり、反応残留物が増加した際の内圧の上昇に連動して運転を停止させる。   In the present invention according to claim 6, the pressure based on the increase in the internal pressure of the reaction vessel due to the discharge part being blocked by the sealing float acts on the liquid feeding control part, the flow of the aqueous solution is stopped, and the reaction residue The operation is stopped in conjunction with the increase in internal pressure when things increase.

また、請求項7に係る本発明の水素発生装置は、請求項1に記載の水素発生装置において、前記停止制御部は、前記反応残留物量検出部の検出値に基づいて、前記反応残留物の量の増加速度を算出するとともに、前記増加速度が所定増加速度を超えた際に前記送液制御部の前記水溶液の流通を停止状態にすることを特徴とする。   The hydrogen generator of the present invention according to claim 7 is the hydrogen generator according to claim 1, wherein the stop control unit is configured to control the reaction residue based on a detection value of the reaction residue amount detection unit. An amount increase rate is calculated, and when the increase rate exceeds a predetermined increase rate, the flow of the aqueous solution in the liquid feeding control unit is stopped.

請求項7に係る本発明では、反応残留物の増加速度が所定加速度を超えた際に水溶液の流通を停止して水素発生反応を停止させるので、反応残留物の増加速度に基づいて反応残留物の流出を確実になくすことができる。   In the present invention according to claim 7, since the hydrogen generation reaction is stopped by stopping the flow of the aqueous solution when the increase rate of the reaction residue exceeds a predetermined acceleration, the reaction residue is determined based on the increase rate of the reaction residue. Can be surely eliminated.

また、請求項8に係る本発明の水素発生装置は、請求項1に記載の水素発生装置において、前記停止制御部は、前記反応残留物量検出部の検出値に基づいて、前記反応残留物の量の増加速度を算出するとともに、前記増加速度に応じた前記所定量を設定することを特徴とする。   The hydrogen generator of the present invention according to claim 8 is the hydrogen generator according to claim 1, wherein the stop control unit is configured to control the reaction residue based on the detection value of the reaction residue amount detection unit. The amount increase rate is calculated, and the predetermined amount corresponding to the increase rate is set.

請求項8に係る本発明では、反応残留物の増加速度に応じた所定量を超えた際に水溶液の流通を停止して水素発生反応を停止させるので、反応残留物の増加量に基づいて反応残留物の流出を確実になくすことができる。   In the present invention according to claim 8, since the flow of the aqueous solution is stopped and the hydrogen generation reaction is stopped when a predetermined amount corresponding to the increasing rate of the reaction residue is exceeded, the reaction based on the increasing amount of the reaction residue is performed. The outflow of the residue can be surely eliminated.

また、請求項9に係る本発明の水素発生装置は、請求項7もしくは請求項8に記載の水素発生装置において、前記反応残留物量検出部は、前記反応残留物の表面の高さを検出する非接触式のセンサであることを特徴とする。   The hydrogen generator of the present invention according to claim 9 is the hydrogen generator according to claim 7 or claim 8, wherein the reaction residue amount detection unit detects the height of the surface of the reaction residue. It is a non-contact type sensor.

請求項9に係る本発明では、非接触式のセンサにより反応残留物の表面の高さを検出し、反応残留物の増加速度が所定増加速度を超えた際に送液制御部の水溶液の流通を停止して運転を停止させる。   In the present invention according to claim 9, the height of the surface of the reaction residue is detected by a non-contact sensor, and when the increase rate of the reaction residue exceeds a predetermined increase rate, the aqueous solution in the liquid feeding control unit is circulated. To stop the operation.

また、請求項10に係る本発明の水素発生装置は、請求項7もしくは請求項8に記載の水素発生装置において、前記反応残留物量検出部は、前記反応残留物に浮かぶフロートと、前記フロートの位置を検出する変位センサとからなることを特徴とする。   A hydrogen generation apparatus according to a tenth aspect of the present invention is the hydrogen generation apparatus according to the seventh or eighth aspect, wherein the reaction residue amount detection unit includes a float floating on the reaction residue, a float of the float It comprises a displacement sensor for detecting the position.

請求項10に係る本発明では、変位センサで検出されるフロートの変位に基づいて反応残留物の増加量を求め、反応残留物が所定量を超えたことが検出された際に、送液制御部の水溶液の流通が停止して運転を停止させる。   In the present invention according to claim 10, the increase amount of the reaction residue is obtained based on the displacement of the float detected by the displacement sensor, and the liquid feeding control is performed when it is detected that the reaction residue exceeds the predetermined amount. The circulation of the aqueous solution in the section is stopped and the operation is stopped.

また、請求項11に係る本発明の水素発生装置は、請求項9もしくは請求項10に記載の水素発生装置において、前記送液制御部は、停止信号により前記水溶液の流通を停止させる送液制御部であり、前記停止制御部は、算出した前記増加速度が所定増加速度を超えた際に前記送液制御部に前記停止信号を出力することを特徴とする。   The hydrogen generator of the present invention according to claim 11 is the hydrogen generator according to claim 9 or claim 10, wherein the liquid supply controller stops the flow of the aqueous solution by a stop signal. The stop control unit outputs the stop signal to the liquid feeding control unit when the calculated increase speed exceeds a predetermined increase speed.

請求項11に係る本発明では、所定の増加速度を超えたことが検出された際に、送液制御部に停止信号が出力されて水溶液の流通が停止して運転を停止させる。   In the present invention according to claim 11, when it is detected that the predetermined increase speed is exceeded, a stop signal is output to the liquid feeding control unit, the flow of the aqueous solution is stopped, and the operation is stopped.

また、請求項12に係る本発明の水素発生装置は、請求項9もしくは請求項10に記載の水素発生装置において、前記送液制御部は、所定の圧力が作用することにより前記水溶液の流通が停止する送液制御部であり、前記停止制御部は、算出した前記増加速度が前記所定増加速度を超えた際に前記水素の流通を停止させる開閉部と、前記開閉部により前記水素の流通が停止された後に前記反応容器の内圧を前記所定の内圧として前記送液制御部に作用させる作用部を備えたことを特徴とする。   The hydrogen generator of the present invention according to claim 12 is the hydrogen generator according to claim 9 or claim 10, wherein the liquid feeding control unit allows the aqueous solution to flow when a predetermined pressure is applied. A liquid supply control unit that stops, the stop control unit configured to stop the hydrogen flow when the calculated increase rate exceeds the predetermined increase rate, and the hydrogen flow by the open / close unit. It is characterized by comprising an action part that causes the liquid feeding control part to act on the internal pressure of the reaction vessel as the predetermined internal pressure after being stopped.

請求項12に係る本発明では、反応残留物の増加速度が所定増加速度を超えた際に開閉部により水素の流通が停止し、水素の停止による反応容器の内圧の上昇に基づく圧力が送液制御部に作用し、水溶液の流通が停止状態になり、反応残留物が増加した際の内圧の上昇に連動して運転を停止させる。   In the present invention according to claim 12, when the increase rate of the reaction residue exceeds a predetermined increase rate, the flow of hydrogen is stopped by the opening / closing part, and the pressure based on the increase in the internal pressure of the reaction vessel due to the stop of the hydrogen is supplied. Acting on the control unit, the flow of the aqueous solution is stopped, and the operation is stopped in conjunction with the increase of the internal pressure when the reaction residue increases.

また、請求項13に係る本発明の水素発生装置は、請求項1に記載の水素発生装置において、前記送液制御部は、所定の圧力が作用することにより、前記水溶液の流通が停止する送液制御部であり、前記停止制御部は、前記反応残留物量検出部により検出された前記反応残留物の量が所定量を超えた際に前記水素の流通を停止させる開閉部と、前記開閉部により前記水素の流通が停止された後に前記反応容器の内圧を前記所定の内圧として前記送液制御部に作用させる作用部を備えたことを特徴とする。   The hydrogen generator of the present invention according to claim 13 is the hydrogen generator according to claim 1, wherein the liquid feed control unit is configured to feed the aqueous solution stopped when a predetermined pressure is applied. An opening / closing unit that stops the flow of hydrogen when the amount of the reaction residue detected by the reaction residue amount detection unit exceeds a predetermined amount; After the hydrogen flow is stopped by the above, an action part is provided that causes the liquid feeding control part to act on the internal pressure of the reaction vessel as the predetermined internal pressure.

請求項13に係る本発明では、反応残留物の量が所定量を超えた際に開閉部により水素の流通が停止し、水素の停止による反応容器の内圧の上昇に基づく圧力が送液制御部に作用し、水溶液の流通が停止状態になり、反応残留物が増加した際の内圧の上昇に連動して運転を停止させる。   In the present invention according to claim 13, when the amount of the reaction residue exceeds a predetermined amount, the flow of hydrogen is stopped by the opening / closing portion, and the pressure based on the increase in the internal pressure of the reaction vessel due to the stop of hydrogen is controlled by the liquid feeding control portion The flow of the aqueous solution is stopped, and the operation is stopped in conjunction with the increase of the internal pressure when the reaction residue increases.

また、請求項14に係る本発明の水素発生装置は、請求項9もしくは請求項10に記載の水素発生装置において、前記送液制御部は、停止信号により前記水溶液の流通を停止させる送液制御部であり、前記停止制御部は、算出した前記増加速度が前記所定増加速度を超えた際に前記水素の流通を停止させる開閉部と、前記開閉部により前記水素の流通が停止された後に、前記送液制御部に前記停止信号を出力する出力部とを備えたことを特徴とする。   The hydrogen generator of the present invention according to claim 14 is the hydrogen generator according to claim 9 or claim 10, wherein the liquid supply controller stops the flow of the aqueous solution by a stop signal. The stop control unit is configured to stop the hydrogen flow when the calculated increase speed exceeds the predetermined increase speed, and after the hydrogen flow is stopped by the open / close unit, The liquid feeding control unit includes an output unit that outputs the stop signal.

請求項14に係る本発明では、反応残留物の増加速度が所定増加速度を越えたことが検出された際に、開閉部により水素の流通が停止し、水素の流通が停止された後に、送液制御部に停止信号が出力されて水溶液の流通が停止し、運転を停止させる。   In the present invention according to claim 14, when it is detected that the increase rate of the reaction residue exceeds the predetermined increase rate, the flow of hydrogen is stopped by the opening / closing part, and the flow of hydrogen is stopped after the flow of hydrogen is stopped. A stop signal is output to the liquid control unit, the flow of the aqueous solution is stopped, and the operation is stopped.

また、請求項15に係る本発明の水素発生装置は、請求項1に記載の水素発生装置において、前記送液制御部は、停止信号により前記水溶液の流通を停止させる送液制御部であり、前記停止制御部は、前記反応残留物量検出部により検出された前記反応残留物の量が所定量を超えた際に前記水素の流通を停止させる開閉部と、前記開閉部により前記水素の流通が停止された後に、前記送液制御部に前記停止信号を出力する出力部とを備えたことを特徴とする。   Moreover, the hydrogen generator of the present invention according to claim 15 is the hydrogen generator according to claim 1, wherein the liquid supply controller is a liquid supply controller that stops the flow of the aqueous solution by a stop signal, The stop control unit includes an open / close unit that stops the hydrogen flow when the amount of the reaction residue detected by the reaction residue amount detection unit exceeds a predetermined amount, and the hydrogen flow by the open / close unit. An output unit that outputs the stop signal to the liquid feeding control unit after being stopped is provided.

請求項15に係る本発明では、反応残留物の量が所定量を越えたことが検出された際に、開閉部により水素の流通が停止し、水素の流通が停止された後に、送液制御部に停止信号が出力されて水溶液の流通が停止し、運転を停止させる。   In the present invention according to claim 15, when it is detected that the amount of the reaction residue has exceeded a predetermined amount, the flow of hydrogen is stopped by the opening / closing part, and the flow of hydrogen is stopped after the flow of hydrogen is stopped. A stop signal is output to the section, the flow of the aqueous solution is stopped, and the operation is stopped.

また、請求項16に係る本発明の水素発生装置は、請求項1に記載の水素発生装置において、前記水溶液の流通を停止状態にする前記反応残留物の所定量は、前記反応残留物の許容最大量から、前記水溶液の流通が停止された後の前記反応残留物が増加すると予測される量を減じた値の量に設定されていることを特徴とする。   The hydrogen generator of the present invention according to claim 16 is the hydrogen generator according to claim 1, wherein the predetermined amount of the reaction residue for stopping the flow of the aqueous solution is an allowable amount of the reaction residue. The maximum amount is set to a value obtained by subtracting the amount expected to increase the reaction residue after the flow of the aqueous solution is stopped.

請求項16に係る本発明では、水溶液の流通が停止された際に反応残留物が増加すると予測される量を加味した状態で反応残留物の所定量を設定しているので、反応残留物の反応容器外への流出や水素発生反応の阻害を確実に無くすことができる。   In the present invention according to claim 16, since the predetermined amount of the reaction residue is set in consideration of the amount that the reaction residue is expected to increase when the circulation of the aqueous solution is stopped, The outflow to the outside of the reaction vessel and the inhibition of the hydrogen generation reaction can be reliably eliminated.

また、上記目的を達成するための請求項17に係る本発明の燃料電池設備は、請求項1〜請求項16のいずれか一項に記載の水素発生装置の排出路が燃料電池の燃料極室に接続され、発生した水素が負極に供給されることを特徴とする。   In order to achieve the above object, a fuel cell facility of the present invention according to claim 17 is characterized in that the discharge path of the hydrogen generator according to any one of claims 1 to 16 is an anode chamber of the fuel cell. The generated hydrogen is supplied to the negative electrode.

請求項17に係る本発明では、少ないスペースで反応物と水溶液を接触させて得られた反応残留物の流出を確実に抑えた状態で水素を供給することができる水素発生装置を備えた燃料電池設備とすることができる。   In the present invention according to claim 17, a fuel cell comprising a hydrogen generator capable of supplying hydrogen in a state where the outflow of the reaction residue obtained by bringing the reactant into contact with the aqueous solution in a small space is reliably suppressed. It can be equipment.

また、上記目的を達成するための請求項18に係る水素発生方法は、容器内の水素発生反応の反応物に水溶液を接触させて水素を発生させるに際し、反応残留物の増加に伴って生じる容器内の圧力変化に基づいて水溶液の供給を停止させることを特徴とする。   In addition, a hydrogen generation method according to claim 18 for achieving the above object is a container generated with an increase in a reaction residue when hydrogen is generated by bringing an aqueous solution into contact with a reaction product of a hydrogen generation reaction in the container. The supply of the aqueous solution is stopped based on the pressure change in the inside.

請求項18に係る本発明では、少ないスペースで反応物と水溶液を接触させて得られた反応残留物の流出を確実に抑えた状態で水素を供給することが可能になる。   In the present invention according to claim 18, hydrogen can be supplied in a state where the outflow of the reaction residue obtained by bringing the reactant into contact with the aqueous solution in a small space is reliably suppressed.

本発明の水素発生装置及び水素発生方法は、少ないスペースで反応物と水溶液を接触させて得られた反応残留物の流出を確実に抑えた状態で水素を供給することが水素発生装置及び水素発生方法となる。   The hydrogen generator and the hydrogen generation method of the present invention can supply hydrogen in a state where the outflow of the reaction residue obtained by bringing the reactant and the aqueous solution into contact with each other in a small space is reliably suppressed. Become a method.

また、本発明の燃料電池設備は、少ないスペースで反応物と水溶液を接触させて得られた反応残留物の流出を確実に抑えた状態で水素を供給することができる水素発生装置を備えた燃料電池設備となる。   Further, the fuel cell equipment of the present invention is a fuel equipped with a hydrogen generator capable of supplying hydrogen in a state where the outflow of the reaction residue obtained by bringing the reactant and the aqueous solution into contact with each other in a small space is reliably suppressed. Battery equipment.

図1〜図3に基づいて第1実施形態例を説明する。   A first embodiment will be described with reference to FIGS.

図1には本発明の第1実施形態例に係る水素発生装置の概略構成、図2には停止動作処理の流れ、図3には反応残留物の体積の経時変化を示してある。   FIG. 1 shows a schematic configuration of a hydrogen generator according to the first embodiment of the present invention, FIG. 2 shows a flow of a stop operation process, and FIG. 3 shows a change with time of the volume of a reaction residue.

水素発生装置1は、反応容器としての反応容器2を備え、反応容器2内には水素発生反応の反応物としてのワーク6(例えば、水素化ホウ素ナトリウム:SBH)が反応ユニット5を介して収容されている。ワーク6としては、水素化アルミニウム塩、水素化ホウ素塩、水素化ホウ素リチウム、水素化アルミニウムリチウム等の金属水素化物を用いることができる。   The hydrogen generator 1 includes a reaction vessel 2 as a reaction vessel, and a work 6 (for example, sodium borohydride: SBH) as a reaction product of a hydrogen generation reaction is accommodated in the reaction vessel 2 via a reaction unit 5. Has been. As the work 6, a metal hydride such as aluminum hydride salt, borohydride salt, lithium borohydride, lithium aluminum hydride, or the like can be used.

反応容器2に隣接して図示しない溶液貯蔵用の容器が備えられ、容器には水素発生の促進剤の水溶液(例えば、リンゴ酸水溶液)が貯蔵されている。促進剤としては、クエン酸等の有機酸、塩酸や硫酸等の無機酸等を用いることが可能である。また、反応物を溶液とする場合、金属水素化物に水酸化物塩(水酸化ナトリウム、水酸化カリウム等)を加えアルカリ水溶液とした溶液を用いることが可能である。その他、金属と塩基性あるいは酸性水溶液の組み合わせを適用することも可能である。   A solution storage container (not shown) is provided adjacent to the reaction container 2, and an aqueous solution (for example, malic acid aqueous solution) of a hydrogen generation accelerator is stored in the container. As the accelerator, organic acids such as citric acid, inorganic acids such as hydrochloric acid and sulfuric acid, and the like can be used. Moreover, when making a reaction material into a solution, it is possible to use the solution which added hydroxide salt (sodium hydroxide, potassium hydroxide, etc.) to metal hydride, and was made into alkaline aqueous solution. In addition, a combination of a metal and a basic or acidic aqueous solution can be applied.

反応容器2には溶液導入路3(水溶液供給部)が接続され、溶液導入路3から水溶液が反応ユニット5に送られる。水溶液が溶液導入路3から反応ユニット5を介してワーク6に供給されることにより、水溶液がワーク6に接触して反応し水素が生成される。反応容器2で生成された水素は水素導出流路8(排出部)から水素消費部に供給される。   A solution introduction path 3 (aqueous solution supply unit) is connected to the reaction vessel 2, and an aqueous solution is sent from the solution introduction path 3 to the reaction unit 5. When the aqueous solution is supplied from the solution introduction path 3 to the workpiece 6 through the reaction unit 5, the aqueous solution comes into contact with the workpiece 6 and reacts to generate hydrogen. The hydrogen produced in the reaction vessel 2 is supplied from the hydrogen outlet channel 8 (discharge unit) to the hydrogen consumption unit.

溶液導入路3には溶液送液手段4(送液制御部)が設けられ、溶液送液手段4により水溶液の反応ユニット5への供給が制御される。即ち、水素発生装置の運転が制御される。溶液送液手段4は水溶液の溶液導入路3の流通を制御するものであれば、構成は限定されない。例えば、ポンプ等の圧送機構を適用した送液手段を用いることができ、水素消費部の水素の消費量(燃料電池の場合は消費電力等)により送液量が制御されるものが適用される。また、反応容器2内の内圧を利用して開閉される弁を使用した送液手段を用いることができ、反応容器2の内圧が低くなった時に送液を行なって水素を発生させるものが適用される。   The solution introduction path 3 is provided with a solution feeding means 4 (liquid feeding control unit), and the solution feeding means 4 controls the supply of the aqueous solution to the reaction unit 5. That is, the operation of the hydrogen generator is controlled. The configuration of the solution feeding means 4 is not limited as long as it controls the flow of the aqueous solution introduction path 3. For example, a liquid feeding means to which a pumping mechanism such as a pump is applied can be used, and a liquid whose amount is controlled by the amount of hydrogen consumed by the hydrogen consumption unit (power consumption in the case of a fuel cell) is applied. . In addition, a liquid feeding means using a valve that is opened and closed using the internal pressure in the reaction vessel 2 can be used, and a device that generates hydrogen by feeding the liquid when the internal pressure of the reaction vessel 2 becomes low is applied. Is done.

反応容器2には容器内空間11の反応残留物10の状況(量)を検出する測定部7(反応物残量検出部)が備えられ、測定部7の測定情報は制御ユニット9に送られる(停止制御部)。測定部7は非接触で光学的に物体の検出を行なう光学センサを用いることができ、例えば、レーザ、LED、超音波等を用いた非接触式側長センサが適用される。   The reaction vessel 2 is provided with a measuring unit 7 (reactant remaining amount detecting unit) for detecting the state (amount) of the reaction residue 10 in the inner space 11, and the measurement information of the measuring unit 7 is sent to the control unit 9. (Stop control unit). The measurement unit 7 can use an optical sensor that optically detects an object in a non-contact manner. For example, a non-contact side length sensor using a laser, an LED, an ultrasonic wave, or the like is applied.

測定部7により反応残留物10の表面高さが検出されて検出情報が制御ユニット9に入力される。制御ユニット9では、反応残留物10の表面高さの変化により増加速度が演算され、所定の増加速度を超えて反応残留物10が所定量を超えた場合に溶液送液手段4の水溶液の流通を停止状態にする。即ち、反応残留物10の体積が増加して増加速度が速くなると、反応残留物10が水素導出流路8等に流出する虞が生じるため、水素発生装置1の運転を停止する。   The surface height of the reaction residue 10 is detected by the measurement unit 7 and the detection information is input to the control unit 9. In the control unit 9, the increase rate is calculated by the change in the surface height of the reaction residue 10, and when the reaction residue 10 exceeds a predetermined amount exceeding the predetermined increase rate, the aqueous solution in the solution feeding means 4 is circulated. To stop. That is, when the volume of the reaction residue 10 is increased and the increase rate is increased, the reaction residue 10 may flow out to the hydrogen outlet channel 8 and the like, so the operation of the hydrogen generator 1 is stopped.

水溶液の流通を停止状態にする反応残留物10の所定量は、水溶液の停止を実行する時の量のしきい値(詳細は後述する)、反応残留物10の反応容器2外への流出や水素発生反応の阻害(水素発生装置の機能の低下)を起こさない反応残留物10の量、または、反応容器2の空スペースにおいて反応残留物10が空スペースに対して、例えば、3分の2以上満たされる量等が挙げられる。   The predetermined amount of the reaction residue 10 for stopping the flow of the aqueous solution is a threshold value of the amount when the aqueous solution is stopped (details will be described later), the outflow of the reaction residue 10 to the outside of the reaction vessel 2 and the like. The amount of the reaction residue 10 that does not hinder the hydrogen generation reaction (deterioration of the function of the hydrogen generator) or the reaction residue 10 in the empty space of the reaction vessel 2 with respect to the empty space, for example, Examples of the amount are as described above.

尚、反応残留物10の増加速度が所定の増加速度を超えた際に反応残留物10の量に拘わらず溶液送液手段4の水溶液の流通を停止状態にすることも可能である。   It is also possible to stop the flow of the aqueous solution in the solution feeding means 4 regardless of the amount of the reaction residue 10 when the increase rate of the reaction residue 10 exceeds a predetermined increase rate.

上述した水素発生装置1は、水溶液が反応容器2のワーク6に供給されることにより水素が生成され、反応容器2で生成された水素は水素導出流路8から燃料電池等の水素消費部に供給される。反応が継続すると反応残留物10の体積が増加する。反応残留物10の増加速度が速くなって反応残留物10が所定量を超えると、反応残留物10が水素導出流路8等に流出する虞が生じるため、反応残留物10の量(表面高さ)が測定部7で測定されている。測定部7の検出情報が制御ユニット9に入力され、制御ユニット9で反応残留物10が所定の増加速度を超えたことが判断された場合、溶液送液手段4の水溶液の流通を停止状態にする指令が出力される。   In the hydrogen generator 1 described above, hydrogen is generated by supplying an aqueous solution to the workpiece 6 of the reaction vessel 2, and the hydrogen generated in the reaction vessel 2 is supplied from a hydrogen outlet channel 8 to a hydrogen consuming unit such as a fuel cell. Supplied. As the reaction continues, the volume of the reaction residue 10 increases. If the increase rate of the reaction residue 10 is increased and the reaction residue 10 exceeds a predetermined amount, the reaction residue 10 may flow out to the hydrogen outlet channel 8 and the like. Is measured by the measuring unit 7. When the detection information of the measuring unit 7 is input to the control unit 9 and the control unit 9 determines that the reaction residue 10 has exceeded a predetermined increase rate, the flow of the aqueous solution in the solution feeding means 4 is stopped. Command is output.

制御ユニット9での処理の具体的な流れの一例を説明する。   An example of a specific flow of processing in the control unit 9 will be described.

図2に示すように、ステップP1で反応容器2の内部の反応残留物10の量Sが測定され、ステップP2で反応残留物10の増加速度Δtが算出される。増加速度Δtが算出された後、ステップP3で反応残留物10の増加速度Δtにおける停止後の増加量vが算出される。   As shown in FIG. 2, the amount S of the reaction residue 10 inside the reaction vessel 2 is measured in Step P1, and the increase rate Δt of the reaction residue 10 is calculated in Step P2. After the increase rate Δt is calculated, an increase amount v after stopping at the increase rate Δt of the reaction residue 10 is calculated in step P3.

水素発生装置1の稼働時間(横軸)に対する反応残留物10の体積(縦軸)の関係を表す図3に示すように、増加速度Δtと停止後の増加量v(未反応の反応物が増加すると予測される量)が予め把握され、増加速度Δtの時の増加量vが算出される。例えば、増加速度Δt1、Δt2、Δt3に応じて停止後の増加量v1、v2、v3がそれぞれ算出される。尚、図3には増加速度Δtを3種類例示して説明してあるが、算出された増加速度Δtに対して停止後の増加量vが逐次算出される。   As shown in FIG. 3 showing the relationship of the volume (vertical axis) of the reaction residue 10 with respect to the operating time (horizontal axis) of the hydrogen generator 1, the increase rate Δt and the increase amount v after stopping (the amount of unreacted reactants) The amount predicted to increase) is grasped in advance, and the increase amount v at the increase speed Δt is calculated. For example, the increased amounts v1, v2, and v3 after the stop are calculated according to the increasing speeds Δt1, Δt2, and Δt3, respectively. Although three types of increase speed Δt are illustrated in FIG. 3 as an example, an increase amount v after stopping is sequentially calculated with respect to the calculated increase speed Δt.

停止後の増加量vは、反応残留物の許容最大量(最大量)Smax{反応残留物が反応容器2の外に流出したり水素発生反応の阻害(水素発生装置1の機能の低下)を生じさせる量}に基づいて算出される。そして、図2のステップP4では、反応残留物の最大量Smaxから増加速度Δt毎の増加量vを減じた値がしきい値Stとして算出される。
即ち、
しきい値St=最大量Smax−増加量v(+α)
で算出される。
The increase amount v after the stop is an allowable maximum amount (maximum amount) of the reaction residue Smax {the reaction residue flows out of the reaction vessel 2 or inhibits the hydrogen generation reaction (reduction of the function of the hydrogen generator 1). It is calculated based on the amount to be generated}. In step P4 of FIG. 2, a value obtained by subtracting the increase amount v for each increase rate Δt from the maximum amount Smax of the reaction residue is calculated as the threshold value St.
That is,
Threshold value St = maximum amount Smax−increase amount v (+ α)
Is calculated by

反応残留物の最大量Smaxから増加速度Δt毎の増加量vを減じた値がしきい値Stとしているので、停止後に未反応の反応物が増加しても反応残留物の反応容器外への流出や水素発生反応の阻害を確実に無くすことができる。   Since the value obtained by subtracting the increase amount v at each increase rate Δt from the maximum amount Smax of the reaction residue is the threshold value St, even if the amount of unreacted reactants increases after the stop, the reaction residue is discharged to the outside of the reaction vessel. Inhibition of outflow and hydrogen generation reaction can be reliably eliminated.

尚、しきい値Stは余裕αを持たせて最大量Smaxから増加速度Δt毎の増加量v+αを減じた値とすることが望ましい。   The threshold value St is preferably a value obtained by subtracting the increase amount v + α for each increase speed Δt from the maximum amount Smax with a margin α.

図3に示した増加速度Δt1、Δt2、Δt3の場合、反応残留物の最大量Smaxから増加速度Δt1、Δt2及びΔt3毎の増加量v1+α、v2+α、v3+αを減じた値が増加速度Δt1、Δt2及びΔt3毎のしきい値St1、St2、St3とされる。即ち、
しきい値St1=最大量Smax−増加量(v1+α)
しきい値St2=最大量Smax−増加量(v2+α)
しきい値St3=最大量Smax−増加量(v3+α)
とされる。
In the case of the increase rates Δt1, Δt2, and Δt3 shown in FIG. 3, the values obtained by subtracting the increase amounts v1 + α, v2 + α, and v3 + α for each increase rate Δt1, Δt2, and Δt3 from the maximum amount Smax of the reaction residue are the increase rates Δt1, Δt2, and The threshold values St1, St2, and St3 are set for each Δt3. That is,
Threshold value St1 = maximum amount Smax−increase amount (v1 + α)
Threshold value St2 = maximum amount Smax−increase amount (v2 + α)
Threshold value St3 = maximum amount Smax−increase amount (v3 + α)
It is said.

ステップP4でしきい値Stを算出した後、反応残留物10の量Sがしきい値Stを超えているか否かがステップP5で判断される。ステップP5で反応残留物10の量Sがしきい値Stを超えていないと判断された場合、ステップP1に移行して反応残留物10の量の測定を続行する。ステップP5で反応残留物10の量Sがしきい値Stを超えていると判断された場合、ステップP6で水溶液の送液を停止して水素発生反応を停止する。   After calculating the threshold value St in step P4, it is determined in step P5 whether or not the amount S of the reaction residue 10 exceeds the threshold value St. When it is determined in step P5 that the amount S of the reaction residue 10 does not exceed the threshold value St, the process proceeds to step P1 and measurement of the amount of the reaction residue 10 is continued. If it is determined in step P5 that the amount S of the reaction residue 10 exceeds the threshold value St, the solution generation is stopped in step P6 to stop the hydrogen generation reaction.

従って、反応残留物10の量が増加速度Δtに応じたしきい値Stを超えた際に水溶液を停止して水素発生反応を停止させることができる。このため、少ないスペースでワーク6と水溶液を接触させて得られた反応残留物10の流出を確実に抑えた状態で水素を供給することが可能になる。また、反応容器2が反応残留物10で満たされるまでを反応容器2の使用限界とすると、反応容器2の使用限界(寿命)を的確に把握することができる。   Accordingly, the hydrogen generation reaction can be stopped by stopping the aqueous solution when the amount of the reaction residue 10 exceeds the threshold value St corresponding to the increase rate Δt. For this reason, it becomes possible to supply hydrogen in the state which suppressed outflow of the reaction residue 10 obtained by making the workpiece | work 6 and aqueous solution contact in a small space reliably. Further, when the reaction container 2 is filled with the reaction residue 10 as the use limit of the reaction container 2, the use limit (life) of the reaction container 2 can be accurately grasped.

図4、図5に基づいて制御ユニット9での処理の具体的な流れの他の例を説明する。図4には他の具体的な例における停止動作処理の流れ、図5には他の具体的な例における反応残留物の体積の経時変化を示してある。本例は、図3に示した反応残留物の増加速度Δt2の領域を境にして増加速度が遅いΔt-L領域と、増加速度が速いΔt-H領域に増加速度の領域を分けた例である。   Another example of the specific flow of processing in the control unit 9 will be described based on FIGS. 4 and 5. FIG. 4 shows the flow of stop operation processing in another specific example, and FIG. 5 shows the change over time in the volume of the reaction residue in another specific example. This example is an example in which the increase rate region is divided into a Δt-L region where the increase rate is slow and a Δt-H region where the increase rate is fast, with the region of increase rate Δt2 of the reaction residue shown in FIG. is there.

図4に示すように、ステップP11で反応容器2の内部の反応残留物10の量Sが測定され、ステップP12で反応残留物10の増加速度Δtが算出される。増加速度Δtが算出された後、ステップP13で増加速度がΔt-L領域かΔt-H領域かが判断される。増加速度がΔt-L領域である場合、図5に示したしきい値St2(反応残留物の増加速度Δt2の領域のしきい値)が適用され、増加速度がΔt-H領域である場合、図5に示したしきい値St3が適用される。   As shown in FIG. 4, the amount S of the reaction residue 10 inside the reaction vessel 2 is measured in Step P11, and the increase rate Δt of the reaction residue 10 is calculated in Step P12. After the increase speed Δt is calculated, it is determined in step P13 whether the increase speed is in the Δt-L region or the Δt-H region. When the increase rate is in the Δt-L region, the threshold value St2 shown in FIG. 5 (the threshold value in the region of the reaction residue increase rate Δt2) is applied, and when the increase rate is in the Δt-H region, The threshold value St3 shown in FIG. 5 is applied.

ステップP13で増加速度がΔt-L領域であると判断された場合、ステップP14で反応残留物10の量Sがしきい値St2を超えているか否かが判断される。ステップP14で反応残留物10の量Sがしきい値St2を超えていないと判断された場合、ステップP11に移行して反応残留物10の量の測定を続行する。ステップP14で反応残留物10の量Sがしきい値St2を超えていると判断された場合、ステップP15で水溶液の送液を停止して水素発生反応を停止する。   If it is determined in step P13 that the increase rate is in the Δt−L region, it is determined in step P14 whether or not the amount S of the reaction residue 10 exceeds the threshold value St2. If it is determined in step P14 that the amount S of the reaction residue 10 does not exceed the threshold value St2, the process proceeds to step P11 and measurement of the amount of the reaction residue 10 is continued. If it is determined in step P14 that the amount S of the reaction residue 10 exceeds the threshold value St2, the solution generation is stopped in step P15 to stop the hydrogen generation reaction.

ステップP13で増加速度がΔt-H領域であると判断された場合、ステップP16で反応残留物10の量Sがしきい値St3を超えているか否かが判断される。ステップP16で反応残留物10の量Sがしきい値St3を超えていないと判断された場合、ステップP11に移行して反応残留物10の量の測定を続行する。ステップP16で反応残留物10の量Sがしきい値St3を超えていると判断された場合、ステップP15で水溶液の送液を停止して水素発生反応を停止する。   If it is determined in step P13 that the increase rate is in the Δt-H region, it is determined in step P16 whether or not the amount S of the reaction residue 10 exceeds the threshold value St3. When it is determined in step P16 that the amount S of the reaction residue 10 does not exceed the threshold value St3, the process proceeds to step P11 and measurement of the amount of the reaction residue 10 is continued. If it is determined in step P16 that the amount S of the reaction residue 10 exceeds the threshold value St3, the solution generation is stopped in step P15 to stop the hydrogen generation reaction.

従って、増加速度に応じた領域で反応残留物10の量がしきい値を超えた際に水溶液を的確に停止して水素発生反応を停止させることができる。このため、少ないスペースでワーク6と水溶液を接触させて得られた反応残留物10の流出を確実に抑えた状態で水素を的確に供給することが可能になる。   Therefore, when the amount of the reaction residue 10 exceeds the threshold value in the region corresponding to the increasing rate, the aqueous solution can be stopped accurately to stop the hydrogen generation reaction. For this reason, it becomes possible to supply hydrogen accurately in a state where the outflow of the reaction residue 10 obtained by bringing the workpiece 6 and the aqueous solution into contact with each other in a small space is reliably suppressed.

尚、図1に示した構成において、溶液送液手段4として反応容器2の内圧が低くなった時に送液を行う構成のものを使用した場合、反応容器2の内圧を直接作用させる圧力伝達経路を設けることも可能である。   In the configuration shown in FIG. 1, when the solution feeding means 4 is configured to feed liquid when the internal pressure of the reaction vessel 2 becomes low, a pressure transmission path for directly acting the internal pressure of the reaction vessel 2 It is also possible to provide.

図6、図7に基づいて第2実施形態例、第3実施形態例を説明する。   A second embodiment example and a third embodiment example will be described with reference to FIGS.

図6には本発明の第2実施形態例に係る水素発生装置の概略構成を示してある。また、図7には本発明の第3実施形態例に係る水素発生装置の概略構成を示してある。尚、図1に示した第1実施形態例と同一部材には同一符号を付して重複する説明は省略してある。   FIG. 6 shows a schematic configuration of a hydrogen generator according to the second embodiment of the present invention. FIG. 7 shows a schematic configuration of the hydrogen generator according to the third embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same member as the 1st Embodiment shown in FIG. 1, and the overlapping description is abbreviate | omitted.

第2実施形態例を説明する。   A second embodiment will be described.

図6に示した水素発生装置31は、水素導出流路8には開閉弁12(開閉部)が備えられ、制御ユニット9からの指令により開閉弁12が閉じられるようになっている。つまり、測定部7の検出情報により制御ユニット9で反応残留物10の増加速度が速くなって反応残留物10が所定量を超えたことが判断された場合、開閉弁12を閉じる指令が出力される。   In the hydrogen generator 31 shown in FIG. 6, the hydrogen outlet flow path 8 is provided with an opening / closing valve 12 (opening / closing part), and the opening / closing valve 12 is closed by a command from the control unit 9. That is, when it is determined by the control unit 9 that the increase rate of the reaction residue 10 is increased by the detection information of the measurement unit 7 and the reaction residue 10 exceeds the predetermined amount, a command to close the on-off valve 12 is output. The

溶液送液手段4は反応容器2内の内圧を利用して開閉される弁を使用した送液手段が用いられている。反応残留物10が所定量を超えて開閉弁12が閉じられると、反応容器2内の圧力が増加し、圧力伝達経路13(作用部)により反応容器2内の圧力が溶液送液手段4に作用する。高い圧力が溶液送液手段4に作用すると、圧力の低下により水溶液の流通される溶液送液手段4が送液を停止する状態にされる。これにより、水溶液の送液が停止して水素発生装置31が停止される。   As the solution feeding means 4, a solution feeding means using a valve that is opened and closed using the internal pressure in the reaction vessel 2 is used. When the reaction residue 10 exceeds a predetermined amount and the on-off valve 12 is closed, the pressure in the reaction vessel 2 increases, and the pressure in the reaction vessel 2 is transferred to the solution feeding means 4 by the pressure transmission path 13 (action part). Works. When a high pressure acts on the solution feeding means 4, the solution feeding means 4 through which the aqueous solution is circulated is brought into a state where the solution feeding is stopped due to the pressure drop. Thereby, liquid feeding of aqueous solution stops and the hydrogen generator 31 is stopped.

このため、反応残留物10が所定量を超えた際に、開閉弁12により水素の流通が停止し、水素の停止による反応容器2の内圧の上昇に基づく圧力が溶液送液手段4に作用し、水溶液の流通が停止状態になり、反応残留物10が増加した際の内圧の上昇に連動して運転を停止させることができる。   For this reason, when the reaction residue 10 exceeds a predetermined amount, the flow of hydrogen is stopped by the on-off valve 12, and the pressure based on the increase in the internal pressure of the reaction vessel 2 due to the stop of hydrogen acts on the solution feeding means 4. Then, the flow of the aqueous solution is stopped, and the operation can be stopped in conjunction with the increase of the internal pressure when the reaction residue 10 increases.

尚、反応残留物10の増加速度が速くなった状態で反応残留物10の量に拘わらず開閉弁12を閉じて反応容器2内の圧力を高めるようにすることも可能である。   It is also possible to increase the pressure in the reaction vessel 2 by closing the on-off valve 12 regardless of the amount of the reaction residue 10 while the increase rate of the reaction residue 10 is increased.

第3実施形態例を説明する。   A third embodiment will be described.

図7に示した水素発生装置32は、図6の水素発生装置31に対して反応容器2の内部の圧力(内圧)を検出する圧力検知部17(内圧検知部)が備えられている。反応残留物10が所定量を超えて開閉弁12が閉じられると、反応容器2内の圧力が増加し、圧力検知部17により圧力の上昇が検知される。圧力検知部17の圧力信号が溶液送液手段4に送られ(出力部)、溶液送液手段4が水溶液の流通を停止させる状態にされる。これにより、水溶液の送液が停止して水素発生装置32が停止される。   The hydrogen generator 32 shown in FIG. 7 is provided with a pressure detector 17 (internal pressure detector) that detects the internal pressure (internal pressure) of the reaction vessel 2 with respect to the hydrogen generator 31 of FIG. When the reaction residue 10 exceeds a predetermined amount and the on-off valve 12 is closed, the pressure in the reaction vessel 2 increases and the pressure detector 17 detects an increase in pressure. The pressure signal of the pressure detection unit 17 is sent to the solution feeding unit 4 (output unit), and the solution feeding unit 4 is brought into a state of stopping the flow of the aqueous solution. Thereby, liquid feeding of aqueous solution stops and the hydrogen generator 32 is stopped.

このため、反応残留物10が所定量を超えた際に、開閉弁12により水素の流通が停止し、水素の停止による反応容器2の内圧の上昇が圧力検知部17により検知され、溶液送液手段4に停止信号が出力されて水溶液の流通が停止し、運転を停止させることができる。   For this reason, when the reaction residue 10 exceeds a predetermined amount, the flow of hydrogen is stopped by the on-off valve 12, and an increase in the internal pressure of the reaction vessel 2 due to the stoppage of hydrogen is detected by the pressure detection unit 17, and the solution feed A stop signal is output to the means 4, the flow of the aqueous solution is stopped, and the operation can be stopped.

図8、図9に基づいて第4実施形態例、第5実施形態例を説明する。   A fourth embodiment and a fifth embodiment will be described with reference to FIGS.

図8には本発明の第4実施形態例に係る水素発生装置の概略構成を示してある。また、図9には本発明の第5実施形態例に係る水素発生装置の概略構成を示してある。尚、図1に示した第1実施形態例と同一部材には同一符号を付して重複する説明は省略してある。   FIG. 8 shows a schematic configuration of a hydrogen generator according to the fourth embodiment of the present invention. FIG. 9 shows a schematic configuration of the hydrogen generator according to the fifth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same member as the 1st Embodiment shown in FIG. 1, and the overlapping description is abbreviate | omitted.

第4実施形態例を説明する。   A fourth embodiment will be described.

図8に示した水素発生装置33は、反応残留物10に浮かぶフロート14が備えられ、測定部7(変位センサ)によりフロート14の位置が検出される。フロート14はガイドにより測定部7の直下で案内される。フロート14の位置の検出情報が制御ユニット9に送られ、反応残留物10の増加速度が速くなって反応残留物10が所定量を超えているか否かが判断される。制御ユニット9で反応残留物10が所定量を超えたことが判断された場合、溶液送液手段4に停止信号が出力されて水溶液の流通が停止し、水素発生装置33が停止される。   The hydrogen generator 33 shown in FIG. 8 includes a float 14 that floats on the reaction residue 10, and the position of the float 14 is detected by the measurement unit 7 (displacement sensor). The float 14 is guided directly under the measuring unit 7 by a guide. The detection information of the position of the float 14 is sent to the control unit 9, and it is determined whether or not the reaction residue 10 exceeds a predetermined amount by increasing the rate of increase of the reaction residue 10. When it is determined by the control unit 9 that the reaction residue 10 has exceeded a predetermined amount, a stop signal is output to the solution feeding means 4, the flow of the aqueous solution is stopped, and the hydrogen generator 33 is stopped.

このため、フロート14の位置が検出されることで、反応残留物10の表面の測定を正確に実施することができ、水溶液の流通を確実に停止し、運転を停止させることができる。   For this reason, when the position of the float 14 is detected, the surface of the reaction residue 10 can be accurately measured, the flow of the aqueous solution can be reliably stopped, and the operation can be stopped.

第5実施形態例を説明する。   A fifth embodiment will be described.

図9に示した水素発生装置34は、反応残留物10に浮かぶフロート51が備えられ、フロート51には可変抵抗部52が接続されている。フロート51の位置が変位すると、可変抵抗部52の抵抗値がそれに応じて変化し、変化する抵抗値の情報が制御ユニット9に送られる。制御ユニット9では、抵抗値の変化により(フロート51の変位により)反応残留物10の増加速度が速くなって反応残留物10が所定量を超えているか否かが判断される。制御ユニット9で反応残留物10が所定量を超えたことが判断された場合、溶液送液手段4に停止信号が出力されて水溶液の流通が停止し、水素発生装置33が停止される。   The hydrogen generator 34 shown in FIG. 9 includes a float 51 floating on the reaction residue 10, and a variable resistance unit 52 is connected to the float 51. When the position of the float 51 is displaced, the resistance value of the variable resistance portion 52 changes accordingly, and information on the changing resistance value is sent to the control unit 9. In the control unit 9, it is determined whether or not the reaction residue 10 exceeds a predetermined amount due to the increase in the reaction residue 10 due to the change in resistance value (due to the displacement of the float 51). When it is determined by the control unit 9 that the reaction residue 10 has exceeded a predetermined amount, a stop signal is output to the solution feeding means 4, the flow of the aqueous solution is stopped, and the hydrogen generator 33 is stopped.

このため、フロート51の変位に応じた抵抗値の変化が検出されることで、反応残留物10の表面の測定を正確に実施することができ、水溶液の流通を確実に停止し、運転を停止させることができる。   For this reason, the change of the resistance value corresponding to the displacement of the float 51 is detected, so that the surface of the reaction residue 10 can be accurately measured, the flow of the aqueous solution is stopped reliably, and the operation is stopped. Can be made.

上述した実施形態例では、増加速度Δtと停止後の増加量vに基づいてしきい値Stを設定した例を挙げて説明したが、反応残留物10の表面位置(反応残留物10の量)を検出し、反応容器2の空間の容積を求めて容積のしきい値により運転を停止(水溶液を停止)することも可能である。   In the above-described embodiment, the example in which the threshold value St is set based on the increase speed Δt and the increase amount v after stopping has been described, but the surface position of the reaction residue 10 (the amount of the reaction residue 10). The volume of the space in the reaction vessel 2 is detected, and the operation can be stopped (the aqueous solution is stopped) by the threshold value of the volume.

即ち、図10に示すように、ステップP21で反応容器2内の反応残留物10の量を測定し、ステップP22で反応容器2の空間容積を演算する。ステップP23で空間容積が充分であるか否かが判断され、充分であると判断された場合、運転(反応)を継続してステップP21に移行し、充分ではない(例えば、全体の容積に対して反応残留物10が3分の2以上になったとき等)と判断された場合、ステップP24で水素の発生反応を停止(水溶液の供給停止)する。   That is, as shown in FIG. 10, the amount of the reaction residue 10 in the reaction vessel 2 is measured at step P21, and the space volume of the reaction vessel 2 is calculated at step P22. In step P23, it is determined whether or not the space volume is sufficient. If it is determined that the space volume is sufficient, the operation (reaction) is continued, and the process proceeds to step P21. When the reaction residue 10 becomes 2/3 or more, etc.), the hydrogen generation reaction is stopped (supply of the aqueous solution is stopped) in Step P24.

これにより、簡単な制御で水素発生装置の運転を停止させ、反応残留物10の流出を確実に抑えた状態で水素を供給することが可能になる。   Thereby, it becomes possible to supply the hydrogen in a state where the operation of the hydrogen generator is stopped by simple control and the outflow of the reaction residue 10 is reliably suppressed.

図11、図12に基づいて第6実施形態例、第7実施形態例を説明する。   A sixth embodiment and a seventh embodiment will be described with reference to FIGS. 11 and 12.

図11には本発明の第6実施形態例に係る水素発生装置の概略構成を示してある。また、図12には本発明の第7実施形態例に係る水素発生装置の概略構成を示してある。尚、図1、図6、図7に示した実施形態例と同一部材には同一符号を付して重複する説明は省略してある。   FIG. 11 shows a schematic configuration of a hydrogen generator according to the sixth embodiment of the present invention. FIG. 12 shows a schematic configuration of the hydrogen generator according to the seventh embodiment of the present invention. The same members as those in the embodiment shown in FIG. 1, FIG. 6, and FIG.

第6実施形態例を説明する。   A sixth embodiment will be described.

図11に示した水素発生装置35は、反応残留物10に浮かぶ封止フロート61が備えられ、反応残留物10が増加して封止フロート61の位置が上昇すると、即ち、反応残留物10が所定量を超えると、水素導出流路8の水素導出口16が封止フロート61で塞がれ水素の流通が停止されるようになっている。封止フロート61はガイドにより水素導出口16の直下で案内される。また、反応容器2の内部の圧力(内圧)を検出する圧力検知部17(内圧検知部)が備えられている。   The hydrogen generator 35 shown in FIG. 11 is provided with a sealing float 61 floating on the reaction residue 10, and when the reaction residue 10 increases and the position of the sealing float 61 rises, that is, the reaction residue 10 When the amount exceeds a predetermined amount, the hydrogen outlet 16 of the hydrogen outlet channel 8 is blocked by the sealing float 61 so that the hydrogen flow is stopped. The sealing float 61 is guided directly under the hydrogen outlet 16 by a guide. Moreover, the pressure detection part 17 (internal pressure detection part) which detects the pressure (internal pressure) inside the reaction container 2 is provided.

反応残留物10が所定の量を超えて、水素導出流路8の水素導出口16が封止フロート61で塞がれると、反応容器2内の圧力が増加し、圧力検知部17により圧力の上昇が検知される。圧力検知部17の圧力信号が溶液送液手段4に送られ(出力部)、溶液送液手段4が水溶液の流通を停止させる状態にされる。これにより、水溶液の送液が停止して水素発生装置35が停止される。   When the reaction residue 10 exceeds a predetermined amount and the hydrogen outlet 16 of the hydrogen outlet channel 8 is blocked by the sealing float 61, the pressure in the reaction vessel 2 increases, and the pressure detector 17 reduces the pressure. A rise is detected. The pressure signal of the pressure detection unit 17 is sent to the solution feeding unit 4 (output unit), and the solution feeding unit 4 is brought into a state of stopping the flow of the aqueous solution. As a result, the feeding of the aqueous solution is stopped and the hydrogen generator 35 is stopped.

第6実施形態例では、封止フロート61が反応残留物10の量を検出する反応残留物量検出部とされる。また、封止フロート61が水素の流通を停止させることで、圧力の増加により水溶液の流通が停止する状態にされることにより、封止フロート61が反応を停止させる停止制御部とされている。   In the sixth embodiment, the sealing float 61 is a reaction residue amount detection unit that detects the amount of the reaction residue 10. Moreover, the sealing float 61 is a stop control unit that stops the reaction by stopping the flow of the aqueous solution due to the increase in pressure by stopping the flow of hydrogen and thereby stopping the flow of the aqueous solution.

このため、反応残留物10の量が所定量を超えた際に、封止フロート61により水素の流通が停止し、水素の停止による反応容器2の内圧の上昇が圧力検知部17により検知され、溶液送液手段4に停止信号が出力されて水溶液の流通が停止し、運転を停止させることができる。この結果、高価なセンサ等の検出手段を用いることなく、反応残留物10が増加した際に水素発生装置35を確実に停止させることができる。   For this reason, when the amount of the reaction residue 10 exceeds a predetermined amount, the flow of hydrogen is stopped by the sealing float 61, and the increase in the internal pressure of the reaction vessel 2 due to the stop of hydrogen is detected by the pressure detection unit 17. A stop signal is output to the solution feeding means 4, the flow of the aqueous solution is stopped, and the operation can be stopped. As a result, the hydrogen generator 35 can be reliably stopped when the reaction residue 10 increases without using an expensive sensor or the like.

第7実施形態例を説明する。   A seventh embodiment will be described.

図12に示した水素発生装置36は、反応残留物10に浮かぶ封止フロート61が備えられ、反応残留物10が増加して封止フロート61の位置が上昇すると、即ち、反応残留物10が所定量を超えると、水素導出流路8の水素導出口16が封止フロート61で塞がれ水素の流通が停止されるようになっている。封止フロート61はガイドにより水素導出口16の直下で案内される。   The hydrogen generator 36 shown in FIG. 12 is provided with a sealing float 61 that floats on the reaction residue 10. When the reaction residue 10 increases and the position of the sealing float 61 rises, that is, the reaction residue 10 When the amount exceeds a predetermined amount, the hydrogen outlet 16 of the hydrogen outlet channel 8 is blocked by the sealing float 61 so that the hydrogen flow is stopped. The sealing float 61 is guided directly under the hydrogen outlet 16 by a guide.

溶液送液手段4は反応容器2内の内圧を利用して開閉される弁を使用した送液手段が用いられている。反応残留物10が所定の量を超えて水素導出口16が封止フロート61で塞がれると、反応容器2内の圧力が増加し、圧力伝達経路13(作用部)により反応容器2内の圧力が溶液送液手段4に作用する。高い圧力が溶液送液手段4に作用すると、水溶液の流通する溶液送液手段4が送液を停止する状態にされる。これにより、水溶液の送液が停止して水素発生装置36が停止される。   As the solution feeding means 4, a solution feeding means using a valve that is opened and closed using the internal pressure in the reaction vessel 2 is used. When the reaction residue 10 exceeds a predetermined amount and the hydrogen outlet 16 is blocked by the sealing float 61, the pressure in the reaction vessel 2 increases, and the pressure in the reaction vessel 2 is increased by the pressure transmission path 13 (action part). The pressure acts on the solution feeding means 4. When a high pressure acts on the solution feeding means 4, the solution feeding means 4 through which the aqueous solution flows is brought into a state where the liquid feeding is stopped. Thereby, liquid feeding of aqueous solution stops and the hydrogen generator 36 is stopped.

このため、反応残留物10の量が所定量を超えた際に、封止フロート61により水素の流通が停止し、水素の停止による反応容器2の内圧の上昇に基づく圧力が溶液送液手段4に作用し、水溶液の流通が停止状態になり、反応残留物10が増加した際の内圧の上昇に連動して水素発生装置36の運転を確実に停止させることができる。   For this reason, when the amount of the reaction residue 10 exceeds a predetermined amount, the flow of hydrogen is stopped by the sealing float 61, and the pressure based on the increase in the internal pressure of the reaction vessel 2 due to the stop of hydrogen is set to the solution feeding means 4. As a result, the flow of the aqueous solution is stopped, and the operation of the hydrogen generator 36 can be reliably stopped in conjunction with the increase in the internal pressure when the reaction residue 10 increases.

第7実施形態例では、封止フロート61が反応残留物10の量を検出する反応残留物量検出部とされる。また、封止フロート61が水素の流通を停止させることで、圧力の増加により水溶液の流通が停止する状態にされることにより、封止フロート61が反応を停止させる停止制御部とされている。   In the seventh embodiment, the sealing float 61 is a reaction residue amount detection unit that detects the amount of the reaction residue 10. Moreover, the sealing float 61 is a stop control unit that stops the reaction by stopping the flow of the aqueous solution due to the increase in pressure by stopping the flow of hydrogen and thereby stopping the flow of the aqueous solution.

尚、反応残留物10にフロートを浮かべ、反応残留物10の量が所定量を超えた時にフロートにより押されるスイッチ等を設け、スイッチの信号により水溶液の流通を停止させる構成にすることも可能である。   It is also possible to float the reaction residue 10 and provide a switch that is pushed by the float when the amount of the reaction residue 10 exceeds a predetermined amount, and stop the flow of the aqueous solution by the switch signal. is there.

図13に基づいて燃料電池設備を説明する。   The fuel cell facility will be described based on FIG.

図13には本発明の一実施形態例に係る燃料電池設備の概略構成を示してある。図示の実施形態例は、図1に示した水素発生装置1を適用したものであるので、図1に示した部材と同一部材には同一符号を付して重複する説明は省略してある。   FIG. 13 shows a schematic configuration of a fuel cell facility according to an embodiment of the present invention. In the illustrated embodiment, the hydrogen generator 1 shown in FIG. 1 is applied. Therefore, the same members as those shown in FIG.

図13に示した燃料電池設備は、図1に示した水素発生装置1を燃料電池18に接続した設備である。即ち、燃料電池18には燃料極室24が備えられ、燃料極室24は燃料電池セル21の負極に接する空間を構成している。燃料極室24には水素発生装置1の水素導出流路8が接続されている。   The fuel cell facility shown in FIG. 13 is a facility in which the hydrogen generator 1 shown in FIG. That is, the fuel cell 18 includes a fuel electrode chamber 24, and the fuel electrode chamber 24 forms a space in contact with the negative electrode of the fuel cell 21. A hydrogen outlet flow path 8 of the hydrogen generator 1 is connected to the fuel electrode chamber 24.

また、水素発生装置1の溶液導入路3は溶液容器25に接続され、溶液容器25内の水溶液26が溶液送液手段4によって反応ユニット5に送られる。   The solution introduction path 3 of the hydrogen generator 1 is connected to the solution container 25, and the aqueous solution 26 in the solution container 25 is sent to the reaction unit 5 by the solution feeding means 4.

水素発生装置1で発生した水素は水素導出流路8から燃料極室24に供給され、負極での燃料電池反応で消費される。燃料極室24の負極での水素の消費量は燃料電池18の出力に応じて決定される。   Hydrogen generated in the hydrogen generator 1 is supplied from the hydrogen outlet flow path 8 to the fuel electrode chamber 24 and consumed by the fuel cell reaction at the negative electrode. The amount of hydrogen consumed at the negative electrode of the fuel electrode chamber 24 is determined according to the output of the fuel cell 18.

尚、水素発生装置として、図6、図7、図8、図9、図11、図12に示したものを適用することも可能である。   In addition, as a hydrogen generator, what was shown in FIG.6, FIG.7, FIG.8, FIG.9, FIG.11 and FIG.12 is also applicable.

上述した燃料電池設備は、少ないスペースで反応物と水溶液を接触させて得られた反応残留物の流出を確実に抑えた状態で水素を供給することができる水素発生装置を備えた燃料電池設備となる。   The fuel cell facility described above includes a fuel cell facility equipped with a hydrogen generator that can supply hydrogen in a state where the outflow of the reaction residue obtained by bringing the reactant and the aqueous solution into contact with each other in a small space is reliably suppressed; Become.

本発明は、化学反応により発生した水素を、燃料電池、水素エンジンといった水素を必要とする装置や水素貯蔵容器に供給するための水素発生装置及び水素発生方法の産業分野で利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in the industrial field of a hydrogen generator and a hydrogen generation method for supplying hydrogen generated by a chemical reaction to a device that requires hydrogen, such as a fuel cell or a hydrogen engine, or a hydrogen storage container.

また、本発明は、反応残留物の影響を抑制した状態で水素を供給することができる水素発生装置を備えた燃料電池設備の産業分野で利用することができる。   In addition, the present invention can be used in the industrial field of fuel cell equipment equipped with a hydrogen generator that can supply hydrogen while suppressing the influence of reaction residues.

本発明の第1実施形態例に係る水素発生装置の概略構成図である。1 is a schematic configuration diagram of a hydrogen generator according to a first embodiment of the present invention. 停止動作処理の一例を表すフローチャートである。It is a flowchart showing an example of a stop operation process. 反応残留物の体積の経時変化の一例を表すグラフである。It is a graph showing an example of the time-dependent change of the volume of a reaction residue. 停止動作処理の他の例表すフローチャートである。It is a flowchart showing other examples of stop operation processing. 反応残留物の体積の経時変化の他の例を表すグラフである。It is a graph showing the other example of the time-dependent change of the volume of a reaction residue. 本発明の第2実施形態例に係る水素発生装置の概略構成図である。It is a schematic block diagram of the hydrogen generator which concerns on the 2nd Example of this invention. 本発明の第3実施形態例に係る水素発生装置の概略構成図である。It is a schematic block diagram of the hydrogen generator which concerns on the example of 3rd Embodiment of this invention. 本発明の第4実施形態例に係る水素発生装置の概略構成図である。It is a schematic block diagram of the hydrogen generator which concerns on the example of 4th Embodiment of this invention. 本発明の第5実施形態例に係る水素発生装置の概略構成図である。It is a schematic block diagram of the hydrogen generator which concerns on the example of 5th Embodiment of this invention. 停止動作処理のフローチャートである。It is a flowchart of a stop operation process. 本発明の第6実施形態例に係る水素発生装置の概略構成図である。It is a schematic block diagram of the hydrogen generator which concerns on the 6th Example of this invention. 本発明の第7実施形態例に係る水素発生装置の概略構成図である。It is a schematic block diagram of the hydrogen generator which concerns on the example of 7th Embodiment of this invention. 本発明の一実施形態例に係る燃料電池設備の概略構成図である。1 is a schematic configuration diagram of a fuel cell facility according to an embodiment of the present invention.

符号の説明Explanation of symbols

1、31、32、33、34、35、36 水素発生装置
2 反応容器
3 溶液導入路
4 溶液送液手段
5 反応ユニット
6 ワーク
7 測定部
8 水素導出流路
9 制御ユニット
10 反応残留物
11 空間
12 開閉弁
13 圧力伝達経路
14、51 フロート
16 水素導出口
18 燃料電池
21 燃料電池セル
24 燃料極
25 溶液容器
26 水溶液
52 可変抵抗部
61 封止フロート
DESCRIPTION OF SYMBOLS 1, 31, 32, 33, 34, 35, 36 Hydrogen generator 2 Reaction container 3 Solution introduction path 4 Solution feeding means 5 Reaction unit 6 Work 7 Measuring part 8 Hydrogen outlet flow path 9 Control unit 10 Reaction residue 11 Space DESCRIPTION OF SYMBOLS 12 On-off valve 13 Pressure transmission path 14, 51 Float 16 Hydrogen outlet 18 Fuel cell 21 Fuel cell 24 Fuel electrode 25 Solution container 26 Aqueous solution 52 Variable resistance part 61 Sealing float

Claims (18)

反応物が収容されるとともに、前記反応物と水溶液とを反応させて水素を生成する反応容器と、
前記水溶液を前記反応容器に供給する水溶液供給部と、
前記水溶液供給部の前記水溶液の流通を制御する送液制御部と、
前記反応容器内で発生した水素を排出する排出部と、
前記反応容器の内部の反応残留物の量を検出する反応残留物量検出部と、
前記反応残留物量検出部により検出された前記反応残留物の量が所定量を超えた際に、前記送液制御部の前記水溶液の流通を停止状態にする停止制御部と
を備えたことを特徴とする水素発生装置。
A reaction vessel containing a reactant and reacting the reactant with an aqueous solution to generate hydrogen;
An aqueous solution supply unit for supplying the aqueous solution to the reaction vessel;
A liquid feed control unit for controlling the flow of the aqueous solution in the aqueous solution supply unit;
A discharge part for discharging hydrogen generated in the reaction vessel;
A reaction residue amount detection unit for detecting the amount of reaction residue inside the reaction vessel;
A stop control unit that stops the flow of the aqueous solution in the liquid feeding control unit when the amount of the reaction residue detected by the reaction residue amount detection unit exceeds a predetermined amount. A hydrogen generator.
請求項1に記載の水素発生装置において、
前記反応残留物量検出部は、前記反応残留物に浮かぶと共に前記反応残留物が前記所定量となった際に前記排出部を塞ぐ封止フロートを有する
ことを特徴とする水素発生装置。
The hydrogen generator according to claim 1,
The reaction residue amount detection unit has a sealing float that floats on the reaction residue and closes the discharge unit when the reaction residue reaches the predetermined amount.
請求項2に記載の水素発生装置において、
前記停止制御部は、前記封止フロートにより前記排出部が塞がれた状態の前記反応容器の内圧に基づいて前記送液制御部の前記水溶液の流通を停止状態にする
ことを特徴とする水素発生装置。
The hydrogen generator according to claim 2,
The stop control unit stops the flow of the aqueous solution in the liquid supply control unit based on the internal pressure of the reaction vessel in a state where the discharge unit is blocked by the sealing float. Generator.
請求項3に記載の水素発生装置において、
前記送液制御部は、停止信号により前記水溶液の流通を停止させる送液制御部であり、
前記停止制御部は、
前記反応容器の内圧を検出する内圧検知部と、
前記内圧検知部の信号に基づいて前記送液制御部に前記停止信号を出力する出力部と
を備えたことを特徴とする水素発生装置。
The hydrogen generator according to claim 3,
The liquid feeding control unit is a liquid feeding control unit that stops the flow of the aqueous solution by a stop signal,
The stop control unit
An internal pressure detector for detecting the internal pressure of the reaction vessel;
An hydrogen generation apparatus comprising: an output unit that outputs the stop signal to the liquid feeding control unit based on a signal from the internal pressure detection unit.
請求項1に記載の水素発生装置において、
前記送液制御部は、停止信号により前記水溶液の流通を停止させる送液制御部であり、
前記停止制御部は、前記反応残留物量検出部により検出された前記反応残留物の量が所定量を超えた際に前記停止信号を出力する
ことを特徴とする水素発生装置。
The hydrogen generator according to claim 1,
The liquid feeding control unit is a liquid feeding control unit that stops the flow of the aqueous solution by a stop signal,
The stop control unit outputs the stop signal when the amount of the reaction residue detected by the reaction residue amount detection unit exceeds a predetermined amount.
請求項3に記載の水素発生装置において、
前記送液制御部は、所定の圧力が作用することにより前記水溶液の流通が停止する送液制御部であり、
前記停止制御部は、前記反応容器の内圧を前記送液制御部に作用させる作用部を備えた
ことを特徴とする水素発生装置。
The hydrogen generator according to claim 3,
The liquid feeding control unit is a liquid feeding control unit that stops the circulation of the aqueous solution when a predetermined pressure acts,
The hydrogen generator according to claim 1, wherein the stop controller includes an action unit that causes the internal pressure of the reaction vessel to act on the liquid feed controller.
請求項1に記載の水素発生装置において、
前記停止制御部は、前記反応残留物量検出部の検出値に基づいて、前記反応残留物の量の増加速度を算出するとともに、前記増加速度が所定増加速度を超えた際に前記送液制御部の前記水溶液の流通を停止状態にする
ことを特徴とする水素発生装置。
The hydrogen generator according to claim 1,
The stop control unit calculates an increase rate of the amount of the reaction residue based on a detection value of the reaction residue amount detection unit, and the liquid feeding control unit when the increase rate exceeds a predetermined increase rate A hydrogen generator characterized by stopping the flow of the aqueous solution.
請求項1に記載の水素発生装置において、
前記停止制御部は、前記反応残留物量検出部の検出値に基づいて、前記反応残留物の量の増加速度を算出するとともに、前記増加速度に応じた前記所定量を設定する
ことを特徴とする水素発生装置。
The hydrogen generator according to claim 1,
The stop control unit calculates an increase rate of the amount of the reaction residue based on a detection value of the reaction residue amount detection unit, and sets the predetermined amount according to the increase rate. Hydrogen generator.
請求項7もしくは請求項8に記載の水素発生装置において、
前記反応残留物量検出部は、前記反応残留物の表面の高さを検出する非接触式のセンサである
ことを特徴とする水素発生装置。
In the hydrogen generator according to claim 7 or claim 8,
The reaction residue amount detection unit is a non-contact sensor that detects the height of the surface of the reaction residue.
請求項7もしくは請求項8に記載の水素発生装置において、
前記反応残留物量検出部は、前記反応残留物に浮かぶフロートと、前記フロートの位置を検出する変位センサとからなる
ことを特徴とする水素発生装置。
In the hydrogen generator according to claim 7 or claim 8,
The reaction residue amount detection unit includes a float floating on the reaction residue and a displacement sensor that detects a position of the float.
請求項9もしくは請求項10に記載の水素発生装置において、
前記送液制御部は、停止信号により前記水溶液の流通を停止させる送液制御部であり、
前記停止制御部は、算出した前記増加速度が所定増加速度を超えた際に前記送液制御部に前記停止信号を出力する
ことを特徴とする水素発生装置。
In the hydrogen generator according to claim 9 or 10,
The liquid feeding control unit is a liquid feeding control unit that stops the flow of the aqueous solution by a stop signal,
The stop control unit outputs the stop signal to the liquid feeding control unit when the calculated increase rate exceeds a predetermined increase rate.
請求項9もしくは請求項10に記載の水素発生装置において、
前記送液制御部は、所定の圧力が作用することにより前記水溶液の流通が停止する送液制御部であり、
前記停止制御部は、
算出した前記増加速度が前記所定増加速度を超えた際に前記水素の流通を停止させる開閉部と、
前記開閉部により前記水素の流通が停止された後に前記反応容器の内圧を前記所定の内圧として前記送液制御部に作用させる作用部を備えた
ことを特徴とする水素発生装置。
In the hydrogen generator according to claim 9 or 10,
The liquid feeding control unit is a liquid feeding control unit that stops the circulation of the aqueous solution when a predetermined pressure acts,
The stop control unit
An opening / closing part for stopping the flow of the hydrogen when the calculated increase rate exceeds the predetermined increase rate;
A hydrogen generating apparatus, comprising: an action part that causes the liquid feeding control part to act on the internal pressure of the reaction vessel as the predetermined internal pressure after the hydrogen flow is stopped by the opening / closing part.
請求項1に記載の水素発生装置において、
前記送液制御部は、所定の圧力が作用することにより、前記水溶液の流通が停止する送液制御部であり、
前記停止制御部は、
前記反応残留物量検出部により検出された前記反応残留物の量が所定量を超えた際に前記水素の流通を停止させる開閉部と、
前記開閉部により前記水素の流通が停止された後に前記反応容器の内圧を前記所定の内圧として前記送液制御部に作用させる作用部を備えた
ことを特徴とする水素発生装置。
The hydrogen generator according to claim 1,
The liquid feeding control unit is a liquid feeding control unit that stops the circulation of the aqueous solution when a predetermined pressure is applied.
The stop control unit
An open / close unit that stops the flow of hydrogen when the amount of the reaction residue detected by the reaction residue amount detection unit exceeds a predetermined amount;
A hydrogen generating apparatus comprising: an action part that causes the liquid supply control part to act on the internal pressure of the reaction vessel as the predetermined internal pressure after the hydrogen flow is stopped by the opening / closing part.
請求項9もしくは請求項10に記載の水素発生装置において、
前記送液制御部は、停止信号により前記水溶液の流通を停止させる送液制御部であり、
前記停止制御部は、
算出した前記増加速度が前記所定増加速度を超えた際に前記水素の流通を停止させる開閉部と、
前記開閉部により前記水素の流通が停止された後に、前記送液制御部に前記停止信号を出力する出力部と
を備えたことを特徴とする水素発生装置。
In the hydrogen generator according to claim 9 or 10,
The liquid feeding control unit is a liquid feeding control unit that stops the flow of the aqueous solution by a stop signal,
The stop control unit
An opening / closing part for stopping the flow of the hydrogen when the calculated increase rate exceeds the predetermined increase rate;
An hydrogen generating apparatus comprising: an output unit that outputs the stop signal to the liquid feeding control unit after the hydrogen flow is stopped by the opening / closing unit.
請求項1に記載の水素発生装置において、
前記送液制御部は、停止信号により前記水溶液の流通を停止させる送液制御部であり、
前記停止制御部は、
前記反応残留物量検出部により検出された前記反応残留物の量が所定量を超えた際に前記水素の流通を停止させる開閉部と、
前記開閉部により前記水素の流通が停止された後に、前記送液制御部に前記停止信号を出力する出力部と
を備えたことを特徴とする水素発生装置。
The hydrogen generator according to claim 1,
The liquid feeding control unit is a liquid feeding control unit that stops the flow of the aqueous solution by a stop signal,
The stop control unit
An open / close unit that stops the flow of hydrogen when the amount of the reaction residue detected by the reaction residue amount detection unit exceeds a predetermined amount;
An hydrogen generating apparatus comprising: an output unit that outputs the stop signal to the liquid feeding control unit after the hydrogen flow is stopped by the opening / closing unit.
請求項1に記載の水素発生装置において、
前記水溶液の流通を停止状態にする前記反応残留物の所定量は、前記反応残留物の許容最大量から、前記水溶液の流通が停止された後の前記反応残留物が増加すると予測される量を減じた値の量に設定されている
ことを特徴とする水素発生装置。
The hydrogen generator according to claim 1,
The predetermined amount of the reaction residue that stops the flow of the aqueous solution is an amount that is expected to increase the reaction residue after the flow of the aqueous solution is stopped from the allowable maximum amount of the reaction residue. A hydrogen generator characterized by being set to the amount of reduced value.
請求項1〜請求項16のいずれか一項に記載の水素発生装置の排出路が燃料電池の燃料極室に接続され、発生した水素が負極に供給されることを特徴とする燃料電池設備。   A fuel cell facility, wherein the discharge path of the hydrogen generator according to any one of claims 1 to 16 is connected to a fuel electrode chamber of a fuel cell, and the generated hydrogen is supplied to a negative electrode. 容器内の水素発生反応の反応物に水溶液を接触させて水素を発生させるに際し、反応残留物の増加に伴って生じる容器内の圧力変化に基づいて水溶液の供給を停止させることを特徴とする水素発生方法。   Hydrogen, characterized in that, when hydrogen is generated by bringing an aqueous solution into contact with the reaction product of the hydrogen generation reaction in the vessel, the supply of the aqueous solution is stopped based on a change in pressure in the vessel caused by an increase in the reaction residue. Occurrence method.
JP2007205826A 2007-08-07 2007-08-07 Hydrogen generator and fuel cell equipment Expired - Fee Related JP5135627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007205826A JP5135627B2 (en) 2007-08-07 2007-08-07 Hydrogen generator and fuel cell equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007205826A JP5135627B2 (en) 2007-08-07 2007-08-07 Hydrogen generator and fuel cell equipment

Publications (2)

Publication Number Publication Date
JP2009040625A true JP2009040625A (en) 2009-02-26
JP5135627B2 JP5135627B2 (en) 2013-02-06

Family

ID=40441777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007205826A Expired - Fee Related JP5135627B2 (en) 2007-08-07 2007-08-07 Hydrogen generator and fuel cell equipment

Country Status (1)

Country Link
JP (1) JP5135627B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076992A (en) * 2010-09-30 2012-04-19 Young Green Energy Co Apparatus for producing hydrogen, apparatus for adding hydrogen, and hydrogen-added product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002137903A (en) * 2000-10-30 2002-05-14 Toyota Motor Corp Hydrogen gas generating apparatus
JP2003262304A (en) * 2002-03-06 2003-09-19 Matsushita Refrig Co Ltd Superheated steam system and waste treatment system
JP2003292301A (en) * 2002-03-29 2003-10-15 Honda Motor Co Ltd Hydrogen supply system, method for supplying hydrogen to the system and method for filling liquid fuel
JP2004155599A (en) * 2002-11-05 2004-06-03 Kazunari Ikuta Method for manufacturing hydrogen, method for manufacturing hydrogen-oxygen and manufacturing apparatus therefor
WO2006101214A1 (en) * 2005-03-25 2006-09-28 Seiko Instruments Inc. Method of hydrogen generation, hydrogen generator, and fuel cell apparatus
JP2007176713A (en) * 2005-12-27 2007-07-12 Seiko Instruments Inc Hydrogen generation apparatus and fuel cell system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002137903A (en) * 2000-10-30 2002-05-14 Toyota Motor Corp Hydrogen gas generating apparatus
JP2003262304A (en) * 2002-03-06 2003-09-19 Matsushita Refrig Co Ltd Superheated steam system and waste treatment system
JP2003292301A (en) * 2002-03-29 2003-10-15 Honda Motor Co Ltd Hydrogen supply system, method for supplying hydrogen to the system and method for filling liquid fuel
JP2004155599A (en) * 2002-11-05 2004-06-03 Kazunari Ikuta Method for manufacturing hydrogen, method for manufacturing hydrogen-oxygen and manufacturing apparatus therefor
WO2006101214A1 (en) * 2005-03-25 2006-09-28 Seiko Instruments Inc. Method of hydrogen generation, hydrogen generator, and fuel cell apparatus
JP2007176713A (en) * 2005-12-27 2007-07-12 Seiko Instruments Inc Hydrogen generation apparatus and fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076992A (en) * 2010-09-30 2012-04-19 Young Green Energy Co Apparatus for producing hydrogen, apparatus for adding hydrogen, and hydrogen-added product

Also Published As

Publication number Publication date
JP5135627B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP4840781B2 (en) Hydrogen generating method, hydrogen generating apparatus and fuel cell equipment
JP2005190824A (en) Fuel cell system
JP4918716B2 (en) Hydrogen generation facility and fuel cell system
JP4868352B2 (en) Hydrogen generation facility and fuel cell system
JP5135627B2 (en) Hydrogen generator and fuel cell equipment
KR101008427B1 (en) Fuel Cell System
US8530102B2 (en) Hydrogen generator
JP2008159466A (en) Liquid supply device, its operation method, fuel cell device, and its operating method
JP6382038B2 (en) Hydrogen generation control system
JP4929515B2 (en) Hydrogen generator and fuel cell equipment
JP2014159344A (en) Hydrogen generator and fuel cell system including the same, and method for generating hydrogen
JP4995435B2 (en) Fuel cell system
JP5224233B2 (en) Hydrogen generator and fuel cell system
JP2008034204A (en) Fuel cell device
JP2007294334A (en) Fuel cell and fuel concentration measuring method
KR102614408B1 (en) Hydrogen generate apparatus for submarine
JP5135581B2 (en) Hydrogen generator and fuel cell system
JP2009143791A (en) Apparatus for generating hydrogen and fuel battery system
US20230261217A1 (en) Anode recovery system of fuel cell
JP5137111B2 (en) Hydrogen generator and fuel cell system
CN220732415U (en) Offshore shore triggering type preset emergency power supply device
JP2014232702A (en) Fuel cell system
CN212503984U (en) Hydrogen production device and electric energy control system
JP5117827B2 (en) Hydrogen generator and fuel cell system
JP5064118B2 (en) Liquid level detection device, fuel cell, liquid level detection method, and liquid level detection program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees