JP2009039687A - Composition for forming photocatalyst layer - Google Patents

Composition for forming photocatalyst layer Download PDF

Info

Publication number
JP2009039687A
JP2009039687A JP2007209827A JP2007209827A JP2009039687A JP 2009039687 A JP2009039687 A JP 2009039687A JP 2007209827 A JP2007209827 A JP 2007209827A JP 2007209827 A JP2007209827 A JP 2007209827A JP 2009039687 A JP2009039687 A JP 2009039687A
Authority
JP
Japan
Prior art keywords
photocatalyst
resin
photocatalyst layer
colloidal silica
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007209827A
Other languages
Japanese (ja)
Other versions
JP4879839B2 (en
Inventor
Shuntaro Kinoshita
俊太郎 木下
Kazunori Saito
一徳 齋藤
Masakazu Okada
将一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2007209827A priority Critical patent/JP4879839B2/en
Publication of JP2009039687A publication Critical patent/JP2009039687A/en
Application granted granted Critical
Publication of JP4879839B2 publication Critical patent/JP4879839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical for forming a photocatalyst layer not requiring the process of heating at a high temperature and capable of being applied at a site. <P>SOLUTION: A composition for forming a photocatalyst layer contains photocatalyst particles and/or a photocatalyst sol, a silica sol in which colloidal silica particles are dispersed, an aluminum compound and zirconium acetate. Preferably, 0.1-6 wt.% of the photocatalyst particles and/or sol, 0.1-5 wt.% of the silica sol in which colloidal silica is dispersed, 0.1-5 wt.% of zirconium acetate and 0.1-9 wt.% of the aluminum compound are contained in terms of oxide against the whole composition for forming the photocatalyst layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、浄水、脱臭、防汚、殺菌、排水処理、藻の成育抑制、及び各種化学反応等に用いられる光触媒層形成用組成物、特に、室温で硬化可能な光触媒層形成用組成物に関する。   The present invention relates to a composition for forming a photocatalyst layer used for water purification, deodorization, antifouling, sterilization, wastewater treatment, growth control of algae, various chemical reactions, and the like, in particular, a composition for photocatalyst layer formation that can be cured at room temperature. .

従来から、光触媒の作用により抗菌、防黴性や有害物質の分解を意図して、光触媒を担体上に担持させてなる光触媒担持構造体が知られている。
光触媒層は、光触媒層形成用塗布液を担体あるいは接着層表面に印刷法、シート成形法、スプレー吹き付け法、ディップコーティング法、スピンコーティング法等でコートし、乾燥・硬化させることにより形成することができる。乾燥・硬化時の好ましい温度は、担体材質及び接着層中の樹脂材質によっても異なるが、通常50℃〜300℃程度であった。
しかしながら、これまでは、乾燥硬化のために高温での加熱を要するため、工場での製造はできるものの、現場で塗工後手軽に乾燥、硬化させることができなかった。
そこで、常温で硬化することのできる光触媒担持構造体が開発され、例えば、バインダーを使用することにより常温硬化を可能としている。例えば、特許文献1及び2では、バインダーとして、メチル基を含むオルガノモノシラン及びメチル基を含むオルガノシランオリゴマーからなる群から選択された少なくとも1種、並びに、硬化触媒として、酸、アルカリ、亜鉛化合物、チタン化合物及びジルコニウム化合物からなる群から選択された少なくとも1種を含む組成物と光触媒用酸化チタンを含有する塗料を作製して基材上に塗布し、常温で乾燥硬化させることが記載されている。
また、特許文献3には、バインダーとして、コロイダルシリカ、ポリシロキサン、シリカ、チタン、アルミニウムなどの各種金属アルコキシド、アクリル樹脂、アクリル変性樹脂、ウレタン樹脂、塩化ビニール樹脂、アクリルシリコン樹脂、フッ素系樹脂、水ガラス、燐酸アルミニウム等を使用することにより、常温硬化させることが記載されている。
しかしながら、これらのバインダーを使用するだけでは、光触媒層として十分とは言えず、さらなる開発が望まれていた。
Conventionally, a photocatalyst carrying structure in which a photocatalyst is carried on a carrier for the purpose of antibacterial, antifungal and decomposition of harmful substances by the action of the photocatalyst is known.
The photocatalyst layer can be formed by coating the photocatalyst layer forming coating solution on the surface of the carrier or adhesive layer by a printing method, a sheet forming method, a spray spraying method, a dip coating method, a spin coating method, and the like, followed by drying and curing. it can. Although the preferable temperature at the time of drying and curing varies depending on the carrier material and the resin material in the adhesive layer, it is usually about 50 ° C to 300 ° C.
However, until now, since heating at a high temperature is required for drying and curing, although it can be manufactured in a factory, it cannot be easily dried and cured after coating on site.
Accordingly, a photocatalyst-supporting structure that can be cured at room temperature has been developed. For example, room temperature curing is possible by using a binder. For example, in Patent Documents 1 and 2, as a binder, at least one selected from the group consisting of an organomonosilane containing a methyl group and an organosilane oligomer containing a methyl group, and as a curing catalyst, an acid, an alkali, a zinc compound, It describes that a paint containing a composition containing at least one selected from the group consisting of a titanium compound and a zirconium compound and titanium oxide for photocatalyst is prepared, applied onto a substrate, and dried and cured at room temperature. .
Further, in Patent Document 3, various binders such as colloidal silica, polysiloxane, silica, titanium, and aluminum, acrylic resin, acrylic modified resin, urethane resin, vinyl chloride resin, acrylic silicon resin, fluorine resin, It describes that it is cured at room temperature by using water glass, aluminum phosphate or the like.
However, using these binders alone is not sufficient as a photocatalyst layer, and further development has been desired.

特開平11−209691号公報JP 11-209691 A 特開2000−63704号公報JP 2000-63704 A 特開2002−136869号公報JP 2002-136869 A

高温での加熱の必要のない、現場塗工が可能な光触媒層形成用薬剤を提供することである。   It is an object of the present invention to provide a photocatalyst layer-forming agent that can be applied in the field without requiring heating at a high temperature.

本発明者らは、ジルコニウム化合物として酢酸ジルコニウムを使用することにより、室温での塗工が可能となるために現場塗工が可能となることを見出し、本発明を完成した。
即ち、本発明は、
(1)光触媒粒子及び/またはゾル、コロイダルシリカ粒子が分散したシリカゾル、アルミニウム化合物及び酢酸ジルコニウムを含有することを特徴とする光触媒層形成用組成物、
(2)室温で成膜可能な(1)に記載の光触媒層形成用組成物、
(3)前記アルミニウム化合物が、アルミニウムの酸化物、酸化水酸化物、水酸化物、オキシ硝酸塩、オキシ炭酸塩、炭素数1〜4のアルコキシド、及び該アルコキシドの加水分解物からなる群から選ばれる1種または2種以上の混合物であることを特徴とする(1)又は(2)に記載の光触媒層形成用組成物、
(4)光触媒層形成用組成物全体に対して、固形分として酸化物換算で、光触媒粒子及び/またはゾルを0.1〜6重量%、コロイダルシリカ粒子が分散したシリカゾルシリカゾルを0.1〜5重量%、酢酸ジルコニウムを0.1〜5重量%及びアルミニウム化合物を0.1〜9重量%含有してなることを特徴とする前記(1)から(3)のいずれかに記載の光触媒層形成用組成物、
に関する。
The present inventors have found that by using zirconium acetate as a zirconium compound, coating at room temperature is possible, so that on-site coating is possible, and the present invention has been completed.
That is, the present invention
(1) A photocatalyst layer and / or sol, a silica sol in which colloidal silica particles are dispersed, an aluminum compound and zirconium acetate,
(2) The composition for forming a photocatalyst layer according to (1), which can be formed at room temperature,
(3) The aluminum compound is selected from the group consisting of aluminum oxide, oxide hydroxide, hydroxide, oxynitrate, oxycarbonate, alkoxide having 1 to 4 carbon atoms, and hydrolyzate of the alkoxide. The composition for forming a photocatalyst layer according to (1) or (2), which is one type or a mixture of two or more types,
(4) 0.1 to 6% by weight of photocatalyst particles and / or sol in terms of oxide as a solid content and 0.1 to 10% of silica sol silica sol in which colloidal silica particles are dispersed with respect to the entire composition for forming a photocatalyst layer The photocatalyst layer according to any one of (1) to (3) above, comprising 5% by weight, 0.1 to 5% by weight of zirconium acetate, and 0.1 to 9% by weight of an aluminum compound Forming composition,
About.

酢酸ジルコニウムを使用することにより、常温における成膜でも十分な膜強度を有し、光触媒活性が高く透明性に優れているため、現場での塗工が可能となった。
また、本発明の光触媒担持構造体は、次のような特徴を有する。
1)可視光を透過する透明なものが得られるので、汎用樹脂や天然繊維などの幅広い担体の装飾性を損なうことがない。
2)光触媒が担体に強固に接着されており、光触媒活性が高く、しかも光触媒作用により担体が劣化したり、光触媒が脱離することがない。
3)光照射下でも長時間使用でき、耐アルカリ性試験の評価も良好で、サンシャインカーボンアークウェザーメーターによる促進耐候性試験後においても高い付着性を保っていることから、高温多湿の環境下や屋外の環境下で使用することができる。
By using zirconium acetate, it has sufficient film strength even at film formation at room temperature, and has high photocatalytic activity and excellent transparency, so that it can be applied on site.
Moreover, the photocatalyst carrying structure of the present invention has the following characteristics.
1) Since a transparent material that transmits visible light can be obtained, the decorative properties of a wide range of carriers such as general-purpose resins and natural fibers are not impaired.
2) The photocatalyst is firmly adhered to the carrier, has high photocatalytic activity, and the carrier is not deteriorated by photocatalytic action or the photocatalyst is not detached.
3) Can be used under light irradiation for a long time, has good evaluation in alkali resistance test, and maintains high adhesion even after accelerated weathering test with sunshine carbon arc weather meter. It can be used in the environment of

I 光触媒層形成用組成物
本発明の光触媒層形成用組成物は光触媒層を形成するための塗工用の液であり、光触媒粒子及び/またはゾル、コロイダルシリカ粒子が分散したシリカゾル、及び酢酸ジルコニウムを含有する。好ましくは、さらにアルミニウム化合物を含有する。
ジルコニウム化合物、アルミニウム化合物及び光触媒はゾルの形で用いるのが好ましい。ゾルを使用する場合には、安定化のために光触媒塗布液中へ酸やアルカリの解膠剤を添加することもできる。またゾル懸濁液中に、接着性や操作性を良くする目的で、光触媒に対して5重量%以下の界面活性剤等を添加することもできる。
光触媒層形成用組成物に含まれる各成分の量は、組成物全体に対して、固形分として酸化物換算で、コロイダルシリカ粒子が分散したシリカゾルが0.1〜5重量%、光触媒粒子及び/またはゾルが0.1〜6重量%、ジルコニウ化合物が0.1〜5重量%、アルミニウム化合物が0.1〜9重量%であるのが好ましい。
I. Photocatalyst layer forming composition The photocatalyst layer forming composition of the present invention is a coating liquid for forming a photocatalyst layer, and includes photocatalyst particles and / or sol, silica sol in which colloidal silica particles are dispersed, and zirconium acetate. Containing. Preferably, an aluminum compound is further contained.
The zirconium compound, aluminum compound and photocatalyst are preferably used in the form of a sol. When a sol is used, an acid or alkali peptizer can be added to the photocatalyst coating solution for stabilization. In addition, in order to improve adhesion and operability, 5% by weight or less of a surfactant or the like can be added to the sol suspension with respect to the photocatalyst.
The amount of each component contained in the composition for forming a photocatalyst layer is 0.1 to 5% by weight of silica sol in which colloidal silica particles are dispersed in terms of oxide as a solid content with respect to the whole composition, Alternatively, the sol is preferably 0.1 to 6% by weight, the zirconium compound is 0.1 to 5% by weight, and the aluminum compound is preferably 0.1 to 9% by weight.

(光触媒)
光触媒としては、具体的にはTiO、ZnO、SrTiO、CdS、GaP、InP、GaAs、BaTiO、KNbO、Fe、Ta、WO、SnO、Bi、NiO、CuO、SiC、SiO、MoS、InPb、RuO、CeO等を例示することができ、さらにこれらの光触媒にPt、Rh、RuO、Nb、Cu、Sn、Ni、Fe等の金属もしくは金属酸化物を添加したものを使用することができる。これらの内、耐久性、コスト、光触媒活性を考慮すると酸化チタン(TiO)を主成分とするものが好ましく、アナターゼ型酸化チタンが特に好ましい。また、太陽光のような紫外線を多く含む光で触媒活性を示す酸化チタンのみならず、貴金属をドープ等して紫外線の少ない室内光においても触媒活性示す酸化チタンを用いることができる。
(photocatalyst)
Specific examples of the photocatalyst include TiO 2 , ZnO, SrTiO 3 , CdS, GaP, InP, GaAs, BaTiO 3 , KNbO 3 , Fe 2 O 3 , Ta 2 O 5 , WO 3 , SnO 2 , Bi 2 O 3. , NiO, Cu 2 O, SiC, SiO 2 , MoS 2 , InPb, RuO 2 , CeO 2, and the like, and these photocatalysts include Pt, Rh, RuO 2 , Nb, Cu, Sn, Ni, What added metals or metal oxides, such as Fe, can be used. Among these, in view of durability, cost, and photocatalytic activity, those containing titanium oxide (TiO 2 ) as a main component are preferable, and anatase type titanium oxide is particularly preferable. Further, not only titanium oxide that exhibits catalytic activity with light containing a large amount of ultraviolet rays such as sunlight, but also titanium oxide that exhibits catalytic activity in indoor light with little ultraviolet rays by doping a noble metal or the like can be used.

(コロイダルシリカ)
本発明に用いられるコロイダルシリカ粒子は、特に限定されないが、球状コロイダルシリカ粒子が細長い形状に結合したコロイダルシリカ粒子であることが好ましい。その形状の具体例として、球状コロイダルシリカ粒子をパールネックレスのパールにみたてるとパールネックレスの一部のような形状を例示することができる。すなわち、球状シリカ粒子を3個以上、好ましくは5個以上、更に好ましくは7個以上連結したものを例示することができる。また、球状コロイダル粒子一つ一つの形状が明確である必要はなく、部分的には筒状に連続して細長い形状をしているものでもよく、さらに、球状コロイダル粒子が結合している必要はなく、粒子全体として細長い形状であるのが好ましい。
細長い形状において、その長さは、50〜400nmの範囲が好ましく、その太さを10〜50nmの範囲のものが好ましく、全体にわたって太さが均一なものが好ましい。さらに、細長い形状は、ある球状コロイダルシリカ粒子を起点に2次元方向に伸長しているのが好ましい。また、全体として細長い形状であれば、多少分岐構造を有するものでも構わない。
球状コロイダルシリカ粒子が先に述べたようにネックレス状に結合している場合に、その球状コロイダルシリカ粒子の平均粒径は、10〜50nmの範囲であるのが好ましい。
以上のような特性を有するコロイダルシリカ粒子として、具体的には、動的光散乱法による測定粒子径(D1nm)と窒素ガス吸着法による測定粒子径(D2nm)の比D1/D2が5以上であって、このD1は40〜300nmであり、そして電子顕微鏡観察による5〜20nmの範囲内の一様な太さで一平面内のみの伸長を有する細長い形状の非晶質コロイダルシリカ粒子を例示することができる。このようなコロイダルシリカ粒子が分散したゾルの製造方法として、特開平1−317115号公報、特開平7−118008号公報に記載されている方法を例示することができる。
(Colloidal silica)
Although the colloidal silica particle used for this invention is not specifically limited, It is preferable that the spherical colloidal silica particle is the colloidal silica particle couple | bonded in the elongate shape. As a specific example of the shape, when the spherical colloidal silica particles are seen in the pearl of the pearl necklace, a shape like a part of the pearl necklace can be exemplified. That is, a particle in which 3 or more, preferably 5 or more, more preferably 7 or more spherical silica particles are connected can be exemplified. In addition, the shape of each spherical colloidal particle need not be clear, and it may be partially elongated in a cylindrical shape, and the spherical colloidal particles need to be bonded. Rather, it is preferable that the whole particle has an elongated shape.
In the elongated shape, the length is preferably in the range of 50 to 400 nm, the thickness is preferably in the range of 10 to 50 nm, and the thickness is preferably uniform throughout. Furthermore, the elongated shape preferably extends in a two-dimensional direction starting from a certain spherical colloidal silica particle. Moreover, as long as it has an elongated shape as a whole, it may have a somewhat branched structure.
When the spherical colloidal silica particles are bonded in a necklace shape as described above, the average particle diameter of the spherical colloidal silica particles is preferably in the range of 10 to 50 nm.
Specifically, as the colloidal silica particles having the above-described characteristics, the ratio D1 / D2 of the measured particle diameter (D1 nm) by the dynamic light scattering method and the measured particle diameter (D2 nm) by the nitrogen gas adsorption method is 5 or more. The D1 is 40 to 300 nm, and exemplifies elongated amorphous colloidal silica particles having a uniform thickness in the range of 5 to 20 nm by electron microscopy and having an extension in only one plane. be able to. Examples of a method for producing such a sol in which colloidal silica particles are dispersed include the methods described in JP-A-1-317115 and JP-A-7-118008.

(酢酸ジルコニウム及びアルミニウム化合物)
酢酸ジルコニウムは、ZrO(Cなどで表される化合物であり、例えば、ジルコゾールZA(第一稀元素化学工業社製、登録商標)などとして市販されている。
アルミニウム化合物としては、アルミニウムの酸化物、酸化水酸化物、水酸化物、硝酸塩、オキシ硝酸塩、炭酸塩、オキシ炭酸塩、蓚酸塩、オキシ蓚酸塩、酢酸塩、オキシ酢酸塩、炭素数1〜6のアルコキシド、及び該アルコキシドの加水分解生成物からなる群から選ばれた1種又は2種以上の混合物が好ましい。
アルミニウムの化合物の好ましい具体例として、酸化アルミニウム、酸化水酸化アルミニウム、水酸化アルミニウム、水和酸化アルミニウム、ベーマイト、硝酸アルミニウム、オキシ硝酸アルミニウム、炭酸アルミニウム、オキシ炭酸アルミニウム、蓚酸アルミニウム、オキシ蓚酸アルミニウム、酢酸アルミニウム、オキシ酢酸アルミニウム、アルミニウムトリイソプロポキシド、アルミニウムトリブトキシド、アルミニウムブトキシドアセチルアセトナート、アルミニウムブトキシドラクテート、アルミニウムブトキシドの加水分解生成物、アルミニウムイソプロポキシドの加水分解生成物等を挙げることができる。
酢酸ジルコニウムまたはアルミニウム化合物は、平均粒子径が2nm〜50nm、好ましくは2nm〜20nmのゾルを使用するのが好ましい。このような粒子径のものを使用する場合には、光触媒層の透明性が向上し、平行光線透過率が高くなるため、特に透明性を要求されるガラス基板やプラスチック成形体に塗布する場合に好ましい。また、下地の担体に色や模様が印刷されたものの場合に、こうした透明な光触媒層を塗布すると下地の色や柄を損なうことがない。
(Zirconium acetate and aluminum compounds)
Zirconium acetate is a compound represented by ZrO (C 2 H 3 O 2 ) 2 or the like, and is commercially available as, for example, zircosol ZA (manufactured by Daiichi Rare Element Chemical Industries, Ltd., registered trademark).
Examples of the aluminum compound include aluminum oxide, oxide hydroxide, hydroxide, nitrate, oxynitrate, carbonate, oxycarbonate, oxalate, oxysuccinate, acetate, oxyacetate, and 1 to 6 carbon atoms. 1 type, or 2 or more types of mixtures chosen from the group which consists of a alkoxide of this, and the hydrolysis product of this alkoxide is preferable.
Preferred specific examples of aluminum compounds include aluminum oxide, aluminum oxide hydroxide, aluminum hydroxide, hydrated aluminum oxide, boehmite, aluminum nitrate, aluminum oxynitrate, aluminum carbonate, aluminum oxycarbonate, aluminum oxalate, aluminum oxyoxalate, and acetic acid. Examples thereof include aluminum, aluminum oxyacetate, aluminum triisopropoxide, aluminum tributoxide, aluminum butoxide acetylacetonate, aluminum butoxide lactate, a hydrolysis product of aluminum butoxide, a hydrolysis product of aluminum isopropoxide, and the like.
As the zirconium acetate or aluminum compound, a sol having an average particle diameter of 2 nm to 50 nm, preferably 2 nm to 20 nm is preferably used. When using a particle having such a particle size, the transparency of the photocatalyst layer is improved and the parallel light transmittance is increased. Therefore, particularly when applied to a glass substrate or a plastic molded body that requires transparency. preferable. Further, in the case where a color or pattern is printed on the base carrier, such a transparent photocatalyst layer does not impair the base color or pattern.

(その他成分)
光触媒複合体にシリコン化合物を含有させる場合には、光触媒層形成用組成物全体に対して、固形分として酸化物換算で、シリコン化合物を0.001〜5重量%含有させるのが好ましい。シリコン化合物としては例えば炭素数1〜5のアルコキシ基を有するシリコンアルコキシドの加水分解物あるいは該加水分解物生成物が好ましい。シリコンアルコキシドのアルコキシ基の炭素数が6を超えると、加水分解速度が非常に遅くなる。また、部分的に塩素を含んだシリコンアルコキシドを加水分解したポリシロキサンを使用することもできるが、塩素を多量に含有したポリシロキサンを使用する場合には、不純物の塩素イオンにより、担体が腐食されたり、接着性が低下するおそれがある。
(Other ingredients)
When the silicon compound is contained in the photocatalyst complex, it is preferable to contain 0.001 to 5% by weight of the silicon compound in terms of oxide as a solid content with respect to the entire composition for forming the photocatalyst layer. As the silicon compound, for example, a hydrolyzate of silicon alkoxide having an alkoxy group having 1 to 5 carbon atoms or the hydrolyzate product is preferable. When the number of carbon atoms of the alkoxy group of the silicon alkoxide exceeds 6, the hydrolysis rate becomes very slow. Polysiloxane obtained by hydrolyzing silicon alkoxide partially containing chlorine can also be used. However, when polysiloxane containing a large amount of chlorine is used, the carrier is corroded by chlorine ions as impurities. Or the adhesiveness may decrease.

II 光触媒層形成用組成物の調製方法
光触媒層形成用組成物の調製方法としては、通常、酢酸ジルコニウム、アルミニウム化合物、光触媒、コロイダルシリカゾル等を混合すればよい。用いられる溶媒としては、例えば、水、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブタノール、t−ブタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類、ジエチルエーテル、メチルセルソルブ、テトラヒドロフラン等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ジクロロメタン、クロロホルム等のハロゲン化炭化水素、サクサンエチル、酢酸プロピル、酢酸ブチル等のエステル類、ペンタン、ヘキサン、シクロヘキサン等の飽和炭化水素等を挙げることができる。また、これらの2種以上を混合して用いることもできる。これらの内、水−アルコール系溶媒が特に好ましい。
II. Preparation Method of Photocatalyst Layer Forming Composition As a preparation method of the photocatalyst layer forming composition, zirconium acetate, an aluminum compound, a photocatalyst, colloidal silica sol and the like may be usually mixed. Examples of the solvent used include alcohols such as water, methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol and t-butanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone and cyclohexanone, diethyl ether, methyl Cellsolve, ethers such as tetrahydrofuran, aromatic hydrocarbons such as benzene, toluene, xylene, halogenated hydrocarbons such as dichloromethane and chloroform, esters such as saxane ethyl, propyl acetate, butyl acetate, pentane, hexane, cyclohexane, etc. Of saturated hydrocarbons. Moreover, these 2 types or more can also be mixed and used. Of these, water-alcohol solvents are particularly preferred.

III 塗工及び光触媒層
光触媒層は、前記光触媒層形成用組成物を接着層表面に印刷法、シート成形法、スプレー吹き付け法、ディップコーティング法、スピンコーティング法等でコートし、乾燥・硬化させることにより形成することができる。乾燥・硬化は、これまでの温度は約50℃〜約300℃であったが、本発明の光触媒層形成用組成物は、担体材質及び接着層中の樹脂材質によっても異なるが、低温下で乾燥、硬化が可能であり、40℃以下はもちろん、室温以下でも乾燥、硬化ができる。
基材上に塗布後の光触媒層は、光触媒成分、コロイダルシリカ粒子、酢酸ジルコニア及び必要に応じてアルミニウム化合物を含有する。
乾燥後の光触媒層中の各成分の含有量は、光触媒層全体に対して、酸化物に換算して光触媒成分5重量%〜60重量%、コロイダルシリカ10〜80重量%、ジルコニウム成分5〜40重量%、アルミニウム成分10〜80となるようにするのが好ましい。
III Coating and photocatalyst layer The photocatalyst layer is formed by coating the photocatalyst layer forming composition on the surface of the adhesive layer by a printing method, a sheet molding method, a spray spraying method, a dip coating method, a spin coating method, etc., and drying and curing. Can be formed. The drying and curing have been performed at a temperature of about 50 ° C. to about 300 ° C., but the photocatalyst layer forming composition of the present invention varies depending on the carrier material and the resin material in the adhesive layer, but at low temperatures. It can be dried and cured, and can be dried and cured at room temperature or below as well as 40 ° C. or below.
The photocatalyst layer after coating on the substrate contains a photocatalyst component, colloidal silica particles, zirconia acetate and, if necessary, an aluminum compound.
The content of each component in the photocatalyst layer after drying is 5% to 60% by weight of the photocatalyst component, 10 to 80% by weight of colloidal silica, and 5 to 40% of the zirconium component in terms of oxide with respect to the entire photocatalyst layer. It is preferable that the aluminum content is 10 to 80% by weight.

IV 光触媒を担持した構造体
本発明に係る光触媒を担持した構造体は、光触媒層と担体の間に接着層を設けた構造を有する。光触媒層と担体との間に設けた接着層は、下地の担体を光触媒作用による劣化から保護する作用と光触媒層を担体に強固に接着させる作用を有しており、また接着層自身が光触媒作用による劣化を受けにくいという特徴をもつ。
IV. Structure carrying a photocatalyst A structure carrying a photocatalyst according to the present invention has a structure in which an adhesive layer is provided between a photocatalyst layer and a carrier. The adhesive layer provided between the photocatalyst layer and the carrier has the effect of protecting the underlying carrier from deterioration due to photocatalysis and the effect of firmly adhering the photocatalyst layer to the carrier, and the adhesive layer itself is photocatalytic. It is characterized by being less susceptible to deterioration due to.

前記担体は、接着剤層を介して光触媒を担持可能なものであれば特に限定されない。例えば、セラミックス、無機質材料、担体材質が熱をかけられない有機高分子体や熱や水等により酸化腐食し易い金属であっても、この接着層と光触媒層を設けた構造体を得ることができる。また、担体形状としては、フィルム状、シート状、板状、管状、繊維状、網状等どのような複雑な形状のものも使用可能である。担体の厚さとしては10μm以上のものであれば強固に担持することができるので好ましい。さらに、担体と接着層との密着性を良くするために、表面を放電処理やプライマー処理等の易接着処理を施した担体を用いることができる。   The carrier is not particularly limited as long as it can carry a photocatalyst through an adhesive layer. For example, it is possible to obtain a structure provided with the adhesive layer and the photocatalyst layer even if the ceramic, inorganic material, carrier material is an organic polymer that cannot be heated, or a metal that is easily oxidized and corroded by heat or water. it can. Further, as the carrier shape, any complicated shape such as a film shape, a sheet shape, a plate shape, a tubular shape, a fiber shape, and a net shape can be used. The thickness of the carrier is preferably 10 μm or more because it can be firmly supported. Furthermore, in order to improve the adhesion between the carrier and the adhesive layer, a carrier whose surface has been subjected to easy adhesion treatment such as discharge treatment or primer treatment can be used.

接着層の材質としては、担体を光触媒作用による劣化から保護し、さらに光触媒層を強固に固定できるものであれば特に制限されないが、具体的には(1)シリコン含有量が酸化物に換算して2〜10重量%の(アクリルシリコン樹脂、エポキシシリコン樹脂、ポリエステルシリコン樹脂)等のシリコン変性樹脂、(2)ポリシロキサンを酸化物に換算して3〜90重量%含有する樹脂、又は(3)コロイダルシリカを酸化物に換算して5〜90重量%含有した樹脂を使用することができる。これらの樹脂は光触媒を強固に接着し、担体を光触媒から保護するのに適当である。
シリコン含有量が酸化物に換算して2重量%未満のアクリルシリコン樹脂等のシリコン変性樹脂やポリシロキサン含有量が酸化物に換算して3重量%未満の樹脂、コロイダルシリカ含有量が酸化物に換算して5重量%未満の樹脂では、光触媒層との接着が悪くなる。また、接着層が光触媒により劣化し、光触媒層が剥離し易くなる。シリコン含有量が酸化物に換算して10重量%を超えるアクリル−シリコン樹脂等のシリコン変性樹脂やポリシロキサン含有量が酸化物に換算して90重量%を超える樹脂、コロイダルシリカ含有量が酸化物に換算して90重量%を超える樹脂では、担体との密着性が低下する。
またシリコンを導入する樹脂としては、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂等を例示することができる。これらの内、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂が、成膜性、強靭性、担体との密着性の点で特に好ましい。これらの樹脂は、溶液状であってもエマルジョンタイプであってもどちらでも使用できる。また、架橋剤等の添加物が含まれていてもよい。
前記接着層の樹脂に含まれるポリシロキサンが炭素数1〜5のアルコキシ基を有するシリコンアルコキシドの加水分解物あるいは該加水分解物生成物である場合には、接着性及び耐久性がより向上した担持構造体を得ることができる。シリコンアルコキシドのアルコキシ基の炭素数が6を超えると、加水分解速度が非常に遅いので、樹脂中で硬化させるのが困難になり、接着性や耐久性が悪くなる。また、部分的に塩素を含んだシリコンアルコキシドを加水分解したポリシロキサンを使用することもできるが、塩素を多量に含有したポリシロキサンを使用する場合には、不純物の塩素イオンにより、担体が腐食されたり、接着性が低下するおそれがある。
The material of the adhesive layer is not particularly limited as long as it can protect the carrier from deterioration due to photocatalysis and can firmly fix the photocatalyst layer. Specifically, (1) the silicon content is converted into oxide. 2 to 10% by weight of a silicon-modified resin such as (acrylic silicone resin, epoxy silicone resin, polyester silicone resin), (2) a resin containing 3 to 90% by weight of polysiloxane in terms of oxide, or (3 ) A resin containing 5 to 90% by weight of colloidal silica in terms of oxide can be used. These resins are suitable for firmly bonding the photocatalyst and protecting the carrier from the photocatalyst.
Silicon-modified resins such as acrylic silicon resins with a silicon content of less than 2% by weight in terms of oxides, resins with a polysiloxane content of less than 3% by weight in terms of oxides, and colloidal silica content in oxides If converted to less than 5% by weight of resin, adhesion to the photocatalyst layer becomes poor. Further, the adhesive layer is deteriorated by the photocatalyst, and the photocatalyst layer is easily peeled off. Silicon-modified resin such as acrylic-silicone resin whose silicon content is more than 10% by weight in terms of oxide, resin whose polysiloxane content is more than 90% by weight in terms of oxide, colloidal silica content is oxide If the resin exceeds 90% by weight, the adhesion to the carrier is lowered.
Examples of the resin into which silicon is introduced include acrylic resin, epoxy resin, polyester resin, alkyd resin, and urethane resin. Among these, acrylic resins, epoxy resins, and polyester resins are particularly preferable in terms of film formability, toughness, and adhesion to the carrier. These resins can be used in either a solution form or an emulsion type. Moreover, additives, such as a crosslinking agent, may be contained.
When the polysiloxane contained in the resin of the adhesive layer is a hydrolyzate of silicon alkoxide having an alkoxy group having 1 to 5 carbon atoms or the hydrolyzate product, the support having improved adhesion and durability A structure can be obtained. When the number of carbon atoms of the alkoxy group of the silicon alkoxide exceeds 6, the hydrolysis rate is very slow, making it difficult to cure in the resin, resulting in poor adhesion and durability. Polysiloxane obtained by hydrolyzing silicon alkoxide partially containing chlorine can also be used. However, when polysiloxane containing a large amount of chlorine is used, the carrier is corroded by chlorine ions as impurities. Or the adhesiveness may decrease.

かかるシリコンアルコキシドとしては、例えば、次式で表される化合物が好ましく使用できる。
SiCln(OH)n(OR)n
ここで、Rはメチル、エチル、プロピル、イソプロピル、ブチル、s−ブチル、t−ブチル、ヘキシル、オクチル、アミノメチル、アミノエチル、カルボキシメチル、カルボキシエチル、クロロメチル、クロロエチル、クロロプロピル基等の(アミノ基、カルボキシル基又は塩素原子で置換されていてもよい)炭素数1〜8のアルキル基を表す。
は、メチル、エチル、プロピル、イソプロピル、ブチル、s−ブチル、t−ブチル、ヘキシル基等の炭素数1〜8のアルキル基、又はメトキシメチル、エトキシメチル、プロポキシメチル、イソプロポキシメチル、ブトキシメチル、メトキシエチル、エトキシメチル、プロポキシエチル、メトキシプロピル、メトキシブチル基等のアルコキシ基で置換された炭素数1〜8のアルキル基を表す。またn、n及びnは0、1又は2を表し、nは2から4の整数を表し、かつn+n+n+n=4である。
前記式で表されるシリコンアルコキシドの好ましい具体例としては、Si(OCH、Si(OC、Si(OC、Si(OC、Si(OC11、Si(OC13、SiCH(OCH、SiCH(OC、SiCH(OC、SiCH(OC、SiCH(OC、SiCl(OCH、SiCl(OC、SiCl(OC、SiCl(OC、SiCl(OC13、SiCl(OH)(OCH、SiCl(OH)(OC、SiCl(OH)(OC、SiCl(OH)(OC、SiCl(OCH、SiCl(OC等を挙げることができる。
As such a silicon alkoxide, for example, a compound represented by the following formula can be preferably used.
SiCln 1 (OH) n 2 R 1 n 3 (OR 2) n 4
Here, R 1 is methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl, octyl, aminomethyl, aminoethyl, carboxymethyl, carboxyethyl, chloromethyl, chloroethyl, chloropropyl group, etc. An alkyl group having 1 to 8 carbon atoms (which may be substituted with an amino group, a carboxyl group or a chlorine atom).
R 2 is an alkyl group having 1 to 8 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl group, or methoxymethyl, ethoxymethyl, propoxymethyl, isopropoxymethyl, butoxy An alkyl group having 1 to 8 carbon atoms substituted with an alkoxy group such as methyl, methoxyethyl, ethoxymethyl, propoxyethyl, methoxypropyl, or methoxybutyl group. N 1 , n 2 and n 3 represent 0, 1 or 2, n 4 represents an integer of 2 to 4, and n 1 + n 2 + n 3 + n 4 = 4.
Preferable specific examples of the silicon alkoxide represented by the above formula include Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si (OC 3 H 7 ) 4 , Si (OC 4 H 9 ) 4 , Si (OC 5 H 11 ) 4 , Si (OC 6 H 13 ) 4 , SiCH 3 (OCH 3 ) 3 , SiCH 3 (OC 2 H 5 ) 3 , SiCH 3 (OC 3 H 7 ) 3 , SiCH 3 (OC 3) H 7 ) 3 , SiCH 3 (OC 4 H 9 ) 3 , SiCl (OCH 3 ) 3 , SiCl (OC 2 H 5 ) 3 , SiCl (OC 3 H 7 ) 3 , SiCl (OC 4 H 9 ) 3 , SiCl (OC 6 H 13 ) 3 , SiCl (OH) (OCH 3 ) 2 , SiCl (OH) (OC 2 H 5 ) 2 , SiCl (OH) (OC 3 H 7 ) 2 , SiCl (OH) (OC 4 H 9) 2, SiCl 2 ( OCH 3) 2, SiCl 2 (OC 2 H 5) may be mentioned 2.

これらシリコン変性樹脂のシリコンを導入する方法としは、エステル交換反応、シリコンマクロマーや反応性シリコンモノマーを用いたグラフト反応、ヒドロシリル化反応、ブロック共重合法等種々あるが、どのような方法で得られたものも使用できる。
例えば、ポリシロキサンの樹脂への導入方法としては、(1)シリコンアルコキシドをモノマーの状態で樹脂溶液と混合し、接着層形成時に空気中の水分で加水分解させる方法、(2)予めシリコンアルコキシドの部分加水分解物を樹脂と混合し、更に、接着剤層形成時に空気中の水分で加水分解する方法等種々あるが、樹脂と均一に混合できる方法ならどのような方法でも良い。
また、シリコンアルコキシドの加水分解速度を調整するために、酸や塩基触媒を少量添加してもよい。ポリシロキサンの樹脂への添加量は、担体に光触媒層を強固に接着させるためには酸化物に換算して3〜90重量%が好ましい。
ポリシロキサンを導入させる樹脂としては、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂、アルキド樹脂等どのような樹脂も使用できる。これらのうち、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂又はこれらの混合樹脂は、シリコン変性樹脂とした場合、耐久性や耐アルカリ性の点で好ましい。
There are various methods for introducing silicon of these silicon-modified resins, such as transesterification, grafting reaction using silicon macromers and reactive silicon monomers, hydrosilylation reaction, block copolymerization method, etc. Can also be used.
For example, as a method for introducing polysiloxane into a resin, (1) a method in which silicon alkoxide is mixed with a resin solution in a monomer state and hydrolyzed with moisture in the air when forming an adhesive layer; There are various methods such as mixing the partially hydrolyzed product with the resin and further hydrolyzing with moisture in the air when forming the adhesive layer. Any method can be used as long as it can be mixed with the resin uniformly.
Further, in order to adjust the hydrolysis rate of silicon alkoxide, a small amount of acid or base catalyst may be added. The amount of polysiloxane added to the resin is preferably 3 to 90% by weight in terms of oxide in order to firmly adhere the photocatalyst layer to the carrier.
Any resin such as an acrylic resin, an epoxy resin, a polyester resin, a urethane resin, or an alkyd resin can be used as the resin into which polysiloxane is introduced. Among these, an acrylic resin, an epoxy resin, a polyester resin, or a mixed resin thereof is preferable in terms of durability and alkali resistance when a silicon-modified resin is used.

接着層がコロイダルシリカを含有する場合、コロイダルシリカの粒子径は10nm以下であるのが好ましい。粒子径が10nm以上になると、接着層中の樹脂は光触媒により劣化し易くなるばかりか、光触媒層と接着層との接着も悪くなる。
コロイダルシリカを樹脂に導入する方法としては、樹脂溶液とコロイダルシリカ溶液を混合後、塗布−乾燥して保護膜を形成する方法が最も簡便である。その他、コロイダルシリカを分散した状態で樹脂を重合させたものを使用することもできる。
When the adhesive layer contains colloidal silica, the particle diameter of the colloidal silica is preferably 10 nm or less. When the particle diameter is 10 nm or more, the resin in the adhesive layer is not only easily deteriorated by the photocatalyst but also the adhesion between the photocatalyst layer and the adhesive layer is deteriorated.
The simplest method for introducing colloidal silica into the resin is to form a protective film by mixing a resin solution and a colloidal silica solution, followed by coating and drying. In addition, a polymer obtained by polymerizing a resin in a state where colloidal silica is dispersed can also be used.

また、コロイダルシリカと樹脂との接着性および分散性を良くするために、シランカップリング剤で処理されたコロイダルシリカを用いることもできる。
コロイダルシリカの樹脂への添加量は、担体に光触媒層を強固に接着させるためには酸化物に換算して5〜90重量%が好ましい。
コロイダルシリカを導入する樹脂としては、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂、アルキド樹脂等どのような物でも使用可能である。これらの樹脂の中で、アクリル樹脂、エポキシ樹脂及びポリエステル樹脂が、シリコン変性樹脂とした場合に耐久性や耐アルカリ性に優れたものを得ることができるため特に好ましい。
またコロイダルシリカは、珪酸ナトリウム水溶液を陽イオン交換することにより得られるシリカゾルであっても、シリコンアルコキシドを加水分解して得られるシリカゾルであっても、どのようなものでも使用することができる。
さらに本発明においては、ポリシロキサン及びコロイダルシリカの両方を含有する樹脂を接着層として使用することができる。その場合、接着層中のポリシロキサンおよびコロイダルシリカの含有量の合計が酸化物に換算して前記耐アルカリ性向上を示す含有量の範囲内であれば、同様に優れた耐アルカリ性を示すものとすることができる
Moreover, in order to improve the adhesiveness and dispersibility of colloidal silica and resin, colloidal silica treated with a silane coupling agent can also be used.
The amount of colloidal silica added to the resin is preferably 5 to 90% by weight in terms of oxide in order to firmly adhere the photocatalytic layer to the support.
Any resin such as an acrylic resin, an epoxy resin, a urethane resin, a polyester resin, or an alkyd resin can be used as a resin for introducing colloidal silica. Among these resins, acrylic resins, epoxy resins, and polyester resins are particularly preferable because when they are silicon-modified resins, those having excellent durability and alkali resistance can be obtained.
Colloidal silica may be any silica sol obtained by cation exchange of an aqueous sodium silicate solution or silica sol obtained by hydrolyzing silicon alkoxide.
Furthermore, in the present invention, a resin containing both polysiloxane and colloidal silica can be used as the adhesive layer. In that case, if the total content of the polysiloxane and colloidal silica in the adhesive layer is within the range of the content showing the improvement in alkali resistance in terms of oxide, the same excellent alkali resistance will be exhibited. be able to

接着層に使用する樹脂がコロイダルシリカを含有する樹脂若しくはポリシロキサンを含有する樹脂の場合、そのコロイダルシリカやポリシロキサンの粒子径は10nm以下が望ましい。コロイダルシリカやポリシロキサンの粒子径が10nmを越えるものであると、分散性が悪くなり、接着層の透光性が低下するため接着層と光触媒層の合計の波長550nmの全光線透過率は70%以下となる場合がある。   When the resin used for the adhesive layer is a resin containing colloidal silica or a resin containing polysiloxane, the particle diameter of the colloidal silica or polysiloxane is preferably 10 nm or less. If the particle diameter of colloidal silica or polysiloxane exceeds 10 nm, the dispersibility deteriorates and the translucency of the adhesive layer decreases, so the total light transmittance at a total wavelength of 550 nm of the adhesive layer and the photocatalyst layer is 70. % Or less.

なお接着層樹脂には光触媒作用による劣化を抑える目的で、光安定化剤及び/又は紫外線吸収剤をさらに添加することができる。使用することができる光安定化剤としてはヒンダードアミン系が好ましいが、その他の物でも使用可能である。紫外線吸収剤としてはトリアゾール系等が使用できる。これらの添加量は、樹脂に対して、0.005重量%〜10重量%、好ましくは0.01重量%〜5重量%である。また、接着層上をシラン系もしくはチタン系カップリング剤で処理することにより、光触媒層との接着性を高めることも好ましい。
接着層の厚さは、光触媒層との良好な接着を得るためには0.1μm〜20μm程度が望ましい。接着層の厚みが0.1μm以下であると、光触媒層を強固に接着させる働きが弱くなる。一方、厚みが20μm以上の場合は特に問題はないものの、実際の塗布加工を考慮すると20μm以上にするメリットは少ない。
In addition, a light stabilizer and / or an ultraviolet absorber can be further added to the adhesive layer resin for the purpose of suppressing deterioration due to photocatalytic action. As the light stabilizer that can be used, a hindered amine system is preferable, but other substances can also be used. As the ultraviolet absorber, triazole or the like can be used. These addition amounts are 0.005 weight%-10 weight% with respect to resin, Preferably they are 0.01 weight%-5 weight%. It is also preferable to improve the adhesion with the photocatalyst layer by treating the adhesive layer with a silane or titanium coupling agent.
The thickness of the adhesive layer is preferably about 0.1 μm to 20 μm in order to obtain good adhesion with the photocatalyst layer. When the thickness of the adhesive layer is 0.1 μm or less, the function of firmly bonding the photocatalytic layer is weakened. On the other hand, there is no particular problem when the thickness is 20 μm or more, but there are few merits to make it 20 μm or more in consideration of actual coating.

本発明の光触媒を担持した構造体は、建築用塗料、壁紙、窓ガラス、ブラインド、カーテン、カーペット、照明器具、照明灯、道路灯、トンネル照明灯、高速道や新幹線の遮音壁、ブラックライト、船底・漁網防汚塗料、水処理用充填剤、農ビフィルム、防草シート、包装資材等に使用できる。特に高温多湿の環境下や屋外の環境下で使用される場合に、その優れた耐久性や透明性などの特性を発揮する。   The structure carrying the photocatalyst of the present invention includes architectural paint, wallpaper, window glass, blinds, curtains, carpets, lighting fixtures, lighting lights, road lights, tunnel lighting lights, highway and Shinkansen sound insulation walls, black lights, ship bottoms. -Can be used for fishing net antifouling paints, water treatment fillers, agricultural bi-films, grass protection sheets, packaging materials, etc. In particular, when used in a hot and humid environment or an outdoor environment, it exhibits excellent durability and transparency.

次に、実施例により本発明をさらに詳細に説明するが、本発明は、実施例に限定されるものでない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to an Example.

1)光触媒担持構造体の製造
下記のようにして、第1表に示すような構成を有する実施例1〜6、及び比較例1〜4の光触媒担持体構造体を製造した。
1) Production of photocatalyst carrying structure Photocatalyst carrying structures of Examples 1 to 6 and Comparative Examples 1 to 4 having configurations as shown in Table 1 were produced as follows.

(1)担体
(TA−1)ソーダライムガラス板
(TA−2)アクリル塗装板
(1) Carrier (TA-1) Soda lime glass plate (TA-2) Acrylic paint plate

(2)接着層
シリコン変性樹脂等(PS−1)と樹脂溶液(J−1)を混合、濃度を調整した接着層形成用溶液を得た。この液をディッピング法でソーダライムガラス担体(TA−1)又はアクリル塗装板(TA−2)上に塗工形成した。常温で60分乾燥して厚み1μmで接着層を形成した。
(PS−1)ポリエトキシシロキサン(コルコート製エチルシリケート40)
(J−1)シリコン含有量3重量%のアクリルシリコン樹脂キシレン溶液
(2) Adhesive layer A solution for forming an adhesive layer in which the silicon-modified resin or the like (PS-1) and the resin solution (J-1) were mixed and the concentration was adjusted was obtained. This solution was applied and formed on a soda lime glass carrier (TA-1) or an acrylic coating plate (TA-2) by a dipping method. It was dried at room temperature for 60 minutes to form an adhesive layer with a thickness of 1 μm.
(PS-1) Polyethoxysiloxane (Colcoat ethyl silicate 40)
(J-1) Acrylic silicon resin xylene solution having a silicon content of 3% by weight

(3)光触媒層
光触媒は次のものを使用した。
(T−1)硝酸酸性酸化チタンゾル(結晶粒子径8nm)
シリカゾルは次のものを使用した。
(S−1)スノーテックスST−UP(日産化学(株)製、登録商標)
アルミニウム化合物は次のものを使用した。
アルミナゾル−520(日産化学(株)製)(A−1)
ジルコニウム化合物は次のものを使用した。
(Z−1)ジルコゾールZA30(第一稀元素化学(株)製酢酸ジルコニウム、登録商標)
(Z−2)ジルコゾールZN(第一稀元素化学(株)製硝酸ジルコニウム、登録商標)
(Z−3)ナノユース ZR−30AL(日産化学(株)製酸性ジルコニアゾル、登録商標)
(3) Photocatalyst layer The following were used for the photocatalyst.
(T-1) Nitric acid acidic titanium oxide sol (crystal particle diameter: 8 nm)
The following silica sol was used.
(S-1) Snowtex ST-UP (manufactured by Nissan Chemical Co., Ltd., registered trademark)
The following aluminum compounds were used.
Alumina sol-520 (Nissan Chemical Co., Ltd.) (A-1)
The following zirconium compounds were used.
(Z-1) Zircozol ZA30 (Zircon Acetate, registered trademark) manufactured by Daiichi Rare Elemental Chemical Co., Ltd.
(Z-2) Zircozole ZN (Zirconic nitrate manufactured by Daiichi Rare Elemental Chemicals, registered trademark)
(Z-3) Nano Use ZR-30AL (Nissan Chemical Co., Ltd. acid zirconia sol, registered trademark)

上記光触媒、シリカゾル、アルミニウム化合物及びジルコニウム化合物を、pH1.5〜9の適当な範囲に調製して混合し、所定量の界面活性剤を加えて光触媒複合体溶液(光触媒層形成用組成物)を得た。
得られた光触媒複合体溶液をディッピング法で、上記接着層上に塗工形成した。光触媒層は接着層を乾燥するのと同じ温度で乾燥して、厚み0.5μmで形成した。
The photocatalyst, silica sol, aluminum compound and zirconium compound are prepared in an appropriate range of pH 1.5 to 9, mixed, a predetermined amount of a surfactant is added, and a photocatalyst complex solution (photocatalyst layer forming composition) is prepared. Obtained.
The obtained photocatalyst complex solution was applied and formed on the adhesive layer by dipping. The photocatalyst layer was dried at the same temperature as the adhesive layer and was formed to a thickness of 0.5 μm.

Figure 2009039687
Figure 2009039687

2)光触媒担持構造体の性能試験
上記で得られた光触媒担持構造体を用いて以下の性能試験を行った。
(1)触媒活性の評価試験
上記で得た光触媒担持構造体を、大きさ70mm×70mmに切り出し、容量4リットルのパイレックス(登録商標)製ガラス容器中に設置した。この容器中に空気とアルデヒドの混合ガスをアルデヒド濃度が200ppmとなるように加えた。次いで、該試料に紫外線強度2mW/cmのブラックライト(FL15BLB、東芝ライテック(株)製)の光を3時間照射後、容器内部のアルデヒドガス濃度をガスクロマトグラフィーにより測定し、その減少量により光触媒活性評価をした。
その結果、実施例1〜6及び比較例1〜4の光触媒担持構造体は、アルデヒドガスの減少量は100ppm以上であり、優れた光触媒活性を示した。
2) Performance test of photocatalyst carrying structure The following performance test was conducted using the photocatalyst carrying structure obtained above.
(1) Evaluation Test of Catalytic Activity The photocatalyst carrying structure obtained above was cut into a size of 70 mm × 70 mm and placed in a 4 liter Pyrex (registered trademark) glass container. A mixed gas of air and aldehyde was added to the container so that the aldehyde concentration was 200 ppm. Next, after irradiating the sample with light of a black light (FL15BLB, manufactured by Toshiba Lighting & Technology Co., Ltd.) with an ultraviolet intensity of 2 mW / cm 2 for 3 hours, the aldehyde gas concentration inside the container was measured by gas chromatography, Photocatalytic activity was evaluated.
As a result, the photocatalyst carrying structures of Examples 1 to 6 and Comparative Examples 1 to 4 showed an excellent photocatalytic activity with a reduction amount of aldehyde gas of 100 ppm or more.

(2)ヘイズ率の測定
接着層及び光触媒層を担持する前の担体をリファレンスとして、各試料の波長550nmの全光線透過率、及びヘイズ率を自記分光光度計(日立製作所(株)製U−4000型)で測定した。なお、ヘイズ率(%)とは「(全光線透過率−直線透過率)×100/全光線透過率」の数式より算出される。
測定結果を下記第2表に示す。TA−1に形成した実施例1〜4、比較例1、3の光触媒担持体構造体は全てヘイズ率が3%以下で優れた透明性を示した。
(2) Measurement of haze ratio Using the carrier before supporting the adhesive layer and the photocatalyst layer as a reference, the total light transmittance at a wavelength of 550 nm and the haze ratio of each sample were recorded by a self-recording spectrophotometer (U-manufactured by Hitachi, Ltd.). 4000 type). The haze ratio (%) is calculated from the formula “(total light transmittance−linear transmittance) × 100 / total light transmittance”.
The measurement results are shown in Table 2 below. The photocatalyst carrier structures of Examples 1 to 4 and Comparative Examples 1 and 3 formed on TA-1 all showed excellent transparency with a haze ratio of 3% or less.

(3)テープ剥離試験
各試料表面に、切り傷によって2mmの間隔で25個のマス目を形成し、JIS K5400に規定する碁盤目テープ法試験により付着性の評価を行った。剥離しなかったものを○、剥離したものを×として評価した。評価結果を第2表に示す。
(3) Tape peeling test On the surface of each sample, 25 squares were formed at intervals of 2 mm by cuts, and adhesion was evaluated by a cross-cut tape method test defined in JIS K5400. Evaluations were made as ○ for those that did not peel, and × for those that did not peel. The evaluation results are shown in Table 2.

(4)指摩擦試験
試料表面を指で摩擦し、剥離しなかったものを○、傷が付いたものを△、剥離したものを×として評価した。評価結果を下記第2表に示す。
(4) Finger Friction Test The sample surface was rubbed with a finger and evaluated as “◯” for those that did not peel, “Δ” for those that had scratches, and “x” for those that had peeled. The evaluation results are shown in Table 2 below.

(5)煮沸試験
沸騰させたイオン交換水に光触媒担持構造体を1時間浸漬させた後にテープ剥離試験及び指摩擦試験を行い耐久性の評価とした。結果を下記第2表に示す。
(5) Boiling test After dipping the photocatalyst carrying structure in boiling ion exchange water for 1 hour, a tape peeling test and a finger friction test were conducted to evaluate durability. The results are shown in Table 2 below.

Figure 2009039687
Figure 2009039687

第2表より、ジルコニア化合物(Z−1)が含まれている実施例1〜6の光触媒担持構造体は、煮沸試験後においてもテープ剥離及び指摩擦試験で剥離や傷がなく優れた耐久性を有していた。それに比して、ジルコニア化合物(Z−2)及び(Z−3)が含まれている比較例1〜4の構造体は、テープ剥離試験では良好だったが指摩擦試験において剥離や傷が発生し耐久性において劣る結果であった。
From Table 2, the photocatalyst-supported structures of Examples 1 to 6 containing the zirconia compound (Z-1) have excellent durability without peeling or scratching in the tape peeling and finger friction tests even after the boiling test. Had. In comparison, the structures of Comparative Examples 1 to 4 containing the zirconia compounds (Z-2) and (Z-3) were good in the tape peeling test, but peeling and scratching occurred in the finger friction test. The result was inferior in durability.

Claims (4)

光触媒粒子及び/またはゾル、コロイダルシリカ粒子が分散したシリカゾル、アルミニウム化合物及び酢酸ジルコニウムを含有することを特徴とする光触媒層形成用組成物。 A composition for forming a photocatalyst layer, comprising: photocatalyst particles and / or sol; silica sol in which colloidal silica particles are dispersed; an aluminum compound; and zirconium acetate. 室温で成膜可能な請求項1に記載の光触媒層形成用組成物。 The composition for forming a photocatalyst layer according to claim 1, which can be formed at room temperature. 前記アルミニウム化合物が、アルミニウムの酸化物、酸化水酸化物、水酸化物、オキシ硝酸塩、オキシ炭酸塩、炭素数1〜4のアルコキシド、及び該アルコキシドの加水分解物からなる群から選ばれる1種または2種以上の混合物であることを特徴とする請求項1又は2に記載の光触媒層形成用組成物。 The aluminum compound is selected from the group consisting of an oxide of aluminum, an oxide hydroxide, a hydroxide, an oxynitrate, an oxycarbonate, an alkoxide having 1 to 4 carbon atoms, and a hydrolyzate of the alkoxide, or The composition for forming a photocatalyst layer according to claim 1 or 2, wherein the composition is a mixture of two or more kinds. 光触媒層形成用組成物全体に対して、固形分として酸化物換算で、光触媒粒子及び/またはゾルを0.1〜6重量%、コロイダルシリカ粒子が分散したシリカゾルシリカゾルを0.1〜5重量%、酢酸ジルコニウムを0.1〜5重量%及びアルミニウム化合物を0.1〜9重量%含有してなることを特徴とする請求項1から3のいずれかに記載の光触媒層形成用組成物。 0.1 to 6% by weight of photocatalyst particles and / or sol and 0.1 to 5% by weight of silica sol silica sol in which colloidal silica particles are dispersed in terms of oxide as a solid content with respect to the entire composition for forming a photocatalyst layer The composition for forming a photocatalyst layer according to any one of claims 1 to 3, comprising 0.1 to 5% by weight of zirconium acetate and 0.1 to 9% by weight of an aluminum compound.
JP2007209827A 2007-08-10 2007-08-10 Photocatalyst layer forming composition Active JP4879839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209827A JP4879839B2 (en) 2007-08-10 2007-08-10 Photocatalyst layer forming composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007209827A JP4879839B2 (en) 2007-08-10 2007-08-10 Photocatalyst layer forming composition

Publications (2)

Publication Number Publication Date
JP2009039687A true JP2009039687A (en) 2009-02-26
JP4879839B2 JP4879839B2 (en) 2012-02-22

Family

ID=40441027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209827A Active JP4879839B2 (en) 2007-08-10 2007-08-10 Photocatalyst layer forming composition

Country Status (1)

Country Link
JP (1) JP4879839B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011031130A (en) * 2009-07-30 2011-02-17 Toto Ltd Photocatalyst-coated body and photocatalyst coating liquid
WO2011118780A1 (en) 2010-03-25 2011-09-29 Toto株式会社 Photocatalyst-coated body and photocatalyst coating liquid
JP2012001635A (en) * 2010-06-17 2012-01-05 Isamu Paint Co Ltd Visible light-responsive photocatalyst coating composition and coating film including the same
WO2012014877A1 (en) 2010-07-29 2012-02-02 Toto株式会社 Photocatalyst coated body and photocatalyst coating liquid
JP2013139104A (en) * 2011-12-29 2013-07-18 Toto Ltd Composite material and coating composition
WO2017146015A1 (en) * 2016-02-26 2017-08-31 日本曹達株式会社 Photocatalyst structure and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028393A1 (en) * 1997-12-02 1999-06-10 Showa Denko Kabushiki Kaisha Photocatalytic oxide composition, thin film, and composite
JP2000128664A (en) * 1998-10-26 2000-05-09 Showa Denko Kk Outer wall material having photocatalytic function
WO2003033144A1 (en) * 2001-10-12 2003-04-24 Nippon Soda Co.,Ltd. Photocatalyst composite material, application liquid for forming photocatalyst layer, and structure carrying photocatalyst
JP2005194309A (en) * 2003-12-26 2005-07-21 Nippon Soda Co Ltd Composition for forming adhesive layer and photocatalyst-carrying structure
JP2007055207A (en) * 2005-08-26 2007-03-08 Nippon Soda Co Ltd Structure carrying photocatalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028393A1 (en) * 1997-12-02 1999-06-10 Showa Denko Kabushiki Kaisha Photocatalytic oxide composition, thin film, and composite
JP2000128664A (en) * 1998-10-26 2000-05-09 Showa Denko Kk Outer wall material having photocatalytic function
WO2003033144A1 (en) * 2001-10-12 2003-04-24 Nippon Soda Co.,Ltd. Photocatalyst composite material, application liquid for forming photocatalyst layer, and structure carrying photocatalyst
JP2005194309A (en) * 2003-12-26 2005-07-21 Nippon Soda Co Ltd Composition for forming adhesive layer and photocatalyst-carrying structure
JP2007055207A (en) * 2005-08-26 2007-03-08 Nippon Soda Co Ltd Structure carrying photocatalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011031130A (en) * 2009-07-30 2011-02-17 Toto Ltd Photocatalyst-coated body and photocatalyst coating liquid
WO2011118780A1 (en) 2010-03-25 2011-09-29 Toto株式会社 Photocatalyst-coated body and photocatalyst coating liquid
JP2012001635A (en) * 2010-06-17 2012-01-05 Isamu Paint Co Ltd Visible light-responsive photocatalyst coating composition and coating film including the same
WO2012014877A1 (en) 2010-07-29 2012-02-02 Toto株式会社 Photocatalyst coated body and photocatalyst coating liquid
US9079155B2 (en) 2010-07-29 2015-07-14 Toto Ltd. Photocatalyst coated body and photocatalyst coating liquid
JP2013139104A (en) * 2011-12-29 2013-07-18 Toto Ltd Composite material and coating composition
WO2017146015A1 (en) * 2016-02-26 2017-08-31 日本曹達株式会社 Photocatalyst structure and method for manufacturing same
JPWO2017146015A1 (en) * 2016-02-26 2018-12-06 日本曹達株式会社 Photocatalyst structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP4879839B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
EP0866101B1 (en) Photocatalytic coating composition and photocatalyst-bearing structure
JP4971608B2 (en) Photocatalyst carrying structure
JP4092714B1 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
KR100554451B1 (en) Photocatalytic oxide composition, thin film, and composite
MXPA06013795A (en) Multi-layer coatings and related methods.
JP5761346B2 (en) Inorganic hydrophilic coating liquid, hydrophilic coating obtained therefrom and member using the same
JP4879839B2 (en) Photocatalyst layer forming composition
EP2202000A1 (en) Photocatalytic film, method for production of photocatalytic film, article, and hydrophilization method
JP3797037B2 (en) Photocatalytic hydrophilic coating composition
JP4738736B2 (en) Photocatalyst composite, coating solution for forming photocatalyst layer, and photocatalyst carrying structure
JP2013032474A (en) Photocatalyst coating liquid, and photocatalyst thin film obtained therefrom
JP2009136869A (en) Photocatalyst-coated body and photocatalytic coating liquid therefor
JP4884646B2 (en) Adhesive layer forming composition and photocatalyst carrying structure
JP2006131917A (en) Photocatalytic hydrophilic coating composition
JP4693949B2 (en) Photocatalyst layer forming coating solution, photocatalyst complex, and photocatalyst structure
KR100784137B1 (en) Titanium Dioxide Photocatalyst and Its Coating Method
JP4869578B2 (en) Film forming coating composition for snow sliding, snow coating film and snow sliding member
JP2009119462A (en) Photocatalytic coated body and photocatalytic coating liquid for the same
JP4482338B2 (en) Photocatalyst carrying structure
JP4169558B2 (en) Photocatalyst carrying structure
JP4597292B2 (en) Photocatalyst carrying structure
JP2002079109A (en) Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member
JP3291560B2 (en) Photocatalytic film formation method and paint used for it
JP2012025163A (en) Photocatalyst supporting structure
JP2010005608A (en) Coating comprising photocatalyst and photocatalyst coating liquid for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4879839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350