JP2009038553A - Digital transmission system - Google Patents

Digital transmission system Download PDF

Info

Publication number
JP2009038553A
JP2009038553A JP2007200532A JP2007200532A JP2009038553A JP 2009038553 A JP2009038553 A JP 2009038553A JP 2007200532 A JP2007200532 A JP 2007200532A JP 2007200532 A JP2007200532 A JP 2007200532A JP 2009038553 A JP2009038553 A JP 2009038553A
Authority
JP
Japan
Prior art keywords
signal
axis component
amplitude
sub
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007200532A
Other languages
Japanese (ja)
Other versions
JP4842224B2 (en
Inventor
Hirokazu Kubota
寛和 久保田
Yoshiaki Kisaka
由明 木坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007200532A priority Critical patent/JP4842224B2/en
Publication of JP2009038553A publication Critical patent/JP2009038553A/en
Application granted granted Critical
Publication of JP4842224B2 publication Critical patent/JP4842224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To transmit a sub-signal such as a monitoring signal without deteriorating transmission characteristics of a main signal and without reducing transmission efficiency. <P>SOLUTION: The main signal is transmitted while switching a plurality of modulation modes with almost equal transmission characteristics, and the modulation modes are switched according to the sub-signal. For example, QAM modulation is used for modulation, a code whose amplification ratio between an i axis component and a q axis component of the QAM modulation is 1:√3 is used, amplitude of the i axis component and the q axis component are replaced by the sub-signal to transmit the sub-signal by amplitude components of the i axis component and the q axis component. Or, QAM modulation using the code whose amplification ratio between the i axis component and the q axis component is 1:√3, and QPSK modulation in which amplitude of the i axis component and the q axis component are equal to each other and having amplitude of √2 when it is standardized by the amplitude of the code are used for modulation, the two modulation modes are switched by the sub-signal to transmit the sub-signal by the amplitude components of the i axis component and the q axis component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、QAM符号やQPSK符号などによる多値伝送方式に利用する。特に、主信号と共に監視等に使用する副信号を伝送する方法に関する。以下の背景技術および実施形態では光ディジタル伝送システムの例を説明するが、これにより本発明の適用範囲を光通信に限定するものではない。   The present invention is used for a multi-value transmission system using a QAM code or a QPSK code. In particular, the present invention relates to a method for transmitting a sub signal used for monitoring or the like together with a main signal. In the following background art and embodiments, an example of an optical digital transmission system will be described. However, the scope of the present invention is not limited to optical communication.

近年の光ディジタル伝送システムの高速大容量化のために光多値伝送方式が採用され始めている。一方で監視信号等の副信号の伝送に関しては従来同様の技術が使用されており、主信号の帯域や伝送特性を犠牲にせずに副信号を伝送する方法の検討は進んでいない。   In order to increase the speed and capacity of optical digital transmission systems in recent years, optical multilevel transmission systems have begun to be adopted. On the other hand, techniques similar to those in the past have been used for transmission of sub-signals such as monitoring signals, and studies on methods for transmitting sub-signals without sacrificing the bandwidth and transmission characteristics of the main signal have not progressed.

従来、主信号に低周波で僅かな振幅変調または位相変調などを行い、その低周波成分に監視信号を乗せることが行われるが、変調が混在するため伝送特性の劣化を生じる。また、監視用の副信号を別波長で伝送することもできるが、副信号伝送のために新たな帯域を使用することになり効率が悪い。   Conventionally, a main signal is subjected to slight amplitude modulation or phase modulation at a low frequency, and a monitor signal is put on the low frequency component. However, since modulation is mixed, transmission characteristics are deteriorated. Further, although the monitoring sub-signal can be transmitted at a different wavelength, a new band is used for sub-signal transmission, which is inefficient.

特開2000−201137号公報JP 2000-2011137 A 特開平6−97885号公報JP-A-6-97885 オーム社、「光増幅器とその応用」、石尾秀樹 監修、1992年Ohmsha, "Optical amplifier and its application", supervised by Hideki Ishio, 1992 科学技術出版、「ディジタルコミュニケーション」、Proakis著、1999年Science and Technology Publishing, "Digital Communication", Proakis, 1999

例えば、副信号の伝送を振幅変調で行った場合には、副信号の変調強度の分だけ主信号の強度揺らぎが生じることと等価であり、例えば、1dBの変調を行った場合は1dBの強度マージンを副信号伝送のために使用することになる。   For example, when transmission of the sub signal is performed by amplitude modulation, it is equivalent to the intensity fluctuation of the main signal corresponding to the modulation intensity of the sub signal. For example, when modulation of 1 dB is performed, the intensity of 1 dB The margin will be used for sub-signal transmission.

本発明は、このような課題を解決するために行われたものであって、主信号の伝送特性を劣化させず、また、伝送効率を低下させることなく監視信号等の副信号の伝送を行うことができるディジタル伝送システムを提供することを目的とする。   The present invention has been made to solve such a problem, and transmits a sub-signal such as a monitoring signal without degrading the transmission characteristics of the main signal and without reducing the transmission efficiency. It is an object of the present invention to provide a digital transmission system that can perform the above-described process.

本発明は、主信号伝送に伝送特性のほぼ等しい複数の変調形態を用い、その切替えにより監視信号等の副信号を伝送することで主信号の伝送特性の劣化の無い副信号伝送を行うことを特徴とする。   The present invention uses a plurality of modulation forms having substantially the same transmission characteristics for main signal transmission, and transmits a sub-signal such as a monitoring signal by switching the sub-signal transmission without deterioration of the main signal transmission characteristics. Features.

すなわち、本発明は、ディジタルデータを多値符号化し、キャリア信号を変調して送信する送信装置と、前記多値符号に対応した複数の識別値を用いて受信信号を識別する受信装置とを備えたディジタル伝送システムである。   That is, the present invention includes a transmission apparatus that multi-values digital data, modulates and transmits a carrier signal, and a reception apparatus that identifies a received signal using a plurality of identification values corresponding to the multi-level code. Digital transmission system.

ここで、本発明の特徴とするところは、伝送特性のほぼ等しい複数の変調形態を切替えながら主信号を伝送する手段を備え、この伝送する手段は、副信号に応じて変調形態を切り替えるところにある。   Here, a feature of the present invention is that it includes means for transmitting a main signal while switching a plurality of modulation forms having substantially the same transmission characteristics, and this means for transmitting switches the modulation form in accordance with a sub-signal. is there.

例えば、前記変調には4値直交振幅変調(QAM)を用い、そのi軸成分とq軸成分との振幅比が1:√3である符号を用い、副信号によりそのi軸成分とq軸成分との振幅の入れ替えを行うことでi軸成分およびq軸成分の振幅成分で副信号を伝送する。   For example, the modulation uses quaternary quadrature amplitude modulation (QAM), a code whose amplitude ratio between the i-axis component and the q-axis component is 1: √3, and the i-axis component and the q-axis by the sub signal. By substituting the amplitude with the component, the sub-signal is transmitted with the amplitude component of the i-axis component and the q-axis component.

あるいは、前記変調には、i軸成分とq軸成分との振幅比が1:√3である符号を用いるQAM変調と、i軸成分とq軸成分との振幅が等しく前記符号の振幅で規格化した場合に√2の振幅を持つQPSK変調とを用い、副信号によりこれら2つの変調形態の切替えを行うことでi軸成分およびq軸成分の振幅成分で副信号を伝送する。   Alternatively, for the modulation, QAM modulation using a code in which the amplitude ratio of the i-axis component and the q-axis component is 1: √3, and the amplitude of the i-axis component and the q-axis component are equal, and the amplitude of the code is specified. In this case, the QPSK modulation having an amplitude of √2 is used, and the two modulation modes are switched by the sub signal to transmit the sub signal with the amplitude component of the i-axis component and the q-axis component.

また、本発明を副信号の伝送方法としての観点から観ることもできる。すなわち、本発明は、ディジタル伝送システムに備えられ、ディジタルデータを多値符号化し、キャリア信号を変調して送信する副信号の伝送方法であって、送信装置が、伝送特性のほぼ等しい複数の変調形態を切替えながら主信号を伝送し、この切替えの際には、副信号に応じて変調形態を切り替え、受信装置が、前記変調形態の切り替えパターンを抽出することにより副信号を復調することを特徴とする。   The present invention can also be viewed from the viewpoint of a sub-signal transmission method. That is, the present invention is a sub-signal transmission method provided in a digital transmission system, wherein digital data is multi-level encoded, a carrier signal is modulated and transmitted, and the transmission apparatus includes a plurality of modulations having substantially the same transmission characteristics. The main signal is transmitted while switching the form, and at the time of switching, the modulation form is switched according to the sub signal, and the receiving apparatus demodulates the sub signal by extracting the switching pattern of the modulation form. And

また、本発明を送信装置としての観点から観ることもできる。すなわち、本発明は、ディジタル伝送システムに備えられ、ディジタルデータを多値符号化し、キャリア信号を変調して送信する送信装置であって、キャリア信号を4相位相変調してi軸成分およびq軸成分の振幅がほぼ等しくなる符号点配置の信号を生成する手段と、前記信号におけるi軸成分とq軸成分との振幅比を副信号に応じて変化させる手段とを備えたことを特徴とする。   The present invention can also be viewed from the viewpoint of a transmission apparatus. That is, the present invention is a transmission apparatus that is provided in a digital transmission system and multi-level encodes digital data, modulates and transmits a carrier signal, and performs four-phase phase modulation on the carrier signal to generate an i-axis component and a q-axis. And means for generating a code point arrangement signal with substantially equal component amplitudes, and means for changing the amplitude ratio between the i-axis component and the q-axis component of the signal in accordance with the sub-signal. .

あるいは、本発明の送信装置は、キャリア信号を2分岐し、一方をi軸成分、他方をq軸成分とするため、q軸成分の位相を90度ずらした後に合波する手段と、分岐されたi軸成分の振幅とq軸成分の振幅との振幅比を副信号に応じて変化させる手段とを備えたことを特徴とする。   Alternatively, the transmitting apparatus of the present invention branches the carrier signal into two branches, one of which is an i-axis component and the other is a q-axis component, so that the phase of the q-axis component is shifted by 90 degrees and then multiplexed. And means for changing the amplitude ratio between the amplitude of the i-axis component and the amplitude of the q-axis component in accordance with the sub-signal.

また、本発明を受信装置としての観点から観ることもできる。すなわち、本発明は、ディジタル伝送システムに備えられ、多値符号に対応した複数の識別値を用いて受信信号を識別する受信装置であって、本発明の送信装置の送信信号を受信信号とし、復調されたi軸成分およびq軸成分のそれぞれの信号の出力レベルにより副信号を復調する手段を備えたことを特徴とする。   The present invention can also be viewed from the viewpoint of a receiving device. That is, the present invention is a receiving device that is provided in a digital transmission system and identifies a received signal using a plurality of identification values corresponding to a multilevel code, and the transmission signal of the transmitting device of the present invention is a received signal, Means is provided for demodulating the sub-signal based on the output levels of the demodulated i-axis component signal and q-axis component signal.

さらに、識別の感度の向上を図るために、i軸成分の出力とq軸成分の出力とを差動で識別する手段を備えることもできる。   Further, in order to improve the identification sensitivity, a means for differentially identifying the output of the i-axis component and the output of the q-axis component may be provided.

本発明によれば、主信号の伝送特性を劣化させず、また、伝送効率を低下させることなく監視信号等の副信号の伝送を行うことができる。   According to the present invention, it is possible to transmit a sub signal such as a monitoring signal without degrading the transmission characteristics of the main signal and without degrading the transmission efficiency.

(第一実施形態)
本発明の第一実施形態の送信装置を図1から図5を参照して説明する。図1、図2、図3に4値QAM符号(以下、QAM符号)の位相空間での信号点配置例を示す。図3はQPSK符号と等価であり、ある送信電力において符号間距離を最大にできることがわかっている。
(First embodiment)
A transmission apparatus according to a first embodiment of the present invention will be described with reference to FIGS. 1, 2 and 3 show signal point arrangement examples in the phase space of a four-value QAM code (hereinafter referred to as QAM code). FIG. 3 is equivalent to a QPSK code, and it has been found that the distance between codes can be maximized at a certain transmission power.

図1および図2は図3の振幅を√2としたとき、i軸成分とq軸成分との振幅比を1:√3とすることにより図3と同じ送信電力の場合に図3と同じ符号間距離となる。故に、これらの伝送特性はほぼ等しいことが知られている。なお、図1および図2において送信電力を一定に保ったままi軸成分とq軸成分の振幅比を1:√3からずらした場合に、符号間距離は狭くなり特性が劣化する(例えば、非特許文献2参照)。   1 and FIG. 2 are the same as FIG. 3 in the case of the same transmission power as FIG. 3 by setting the amplitude ratio of the i-axis component and the q-axis component to 1: √3 when the amplitude of FIG. This is the distance between codes. Therefore, it is known that these transmission characteristics are almost equal. 1 and 2, when the amplitude ratio of the i-axis component and the q-axis component is shifted from 1: √3 while the transmission power is kept constant, the intersymbol distance becomes narrow and the characteristics deteriorate (for example, Non-patent document 2).

図1もしくは図2のようにQAM符号でi軸成分とq軸成分の振幅を入れ替えても等価であることは明らかである。従来のQAM符号では図1もしくは図2のどちらかのみの信号点配置を使用している。信号の振幅を主信号に比べて十分な低周波で変調し、副信号を伝送する方式は、例えば特許文献1に記載されているが、振幅の変動分の送信出力を変動させなくてはならず、伝送のためのマージンが必要となる。すなわち伝送特性を劣化させることになる。   It is clear that even if the amplitudes of the i-axis component and the q-axis component are switched in the QAM code as shown in FIG. 1 or FIG. In the conventional QAM code, only the signal point arrangement of either FIG. 1 or FIG. 2 is used. A method for modulating the amplitude of a signal at a sufficiently low frequency compared to the main signal and transmitting the sub-signal is described in, for example, Patent Document 1, but the transmission output corresponding to the fluctuation of the amplitude must be changed. However, a margin for transmission is required. That is, transmission characteristics are deteriorated.

これに対し、本発明ではQAM符号の2種類の信号点配置を副信号によって切替える。この2通りの信号点配置の伝送特性は等価であるため、主信号の伝送特性を劣化させることが無い。この2つの信号点配置の振幅は振幅が小さい軸の成分の振幅をA(Aは正の実数)とすると、Aと√3Aであり、比はおよそ4.8dBである。すなわち、従来の方法で同じ振幅比を持つ副信号伝送を行う場合に比較し、4.8dBの特性劣化を防ぐことができる。   On the other hand, in the present invention, two kinds of signal point arrangement of the QAM code are switched by the sub signal. Since the transmission characteristics of the two signal point arrangements are equivalent, the transmission characteristics of the main signal are not deteriorated. The amplitude of these two signal point arrangements is A and √3A, where the amplitude of the component of the axis with a small amplitude is A (A is a positive real number), and the ratio is about 4.8 dB. That is, 4.8 dB characteristic deterioration can be prevented as compared with the case where sub-signal transmission having the same amplitude ratio is performed by the conventional method.

図4に送信装置の模式構成を示す。本発明の伝送符号は、図4に示すように、4相位相変調器2と振幅変調器3とを直列に配置し、4相位相変調と振幅変調とを直列に行う、もしくは、図5に示すように、i軸成分およびq軸成分のそれぞれに振幅変調器6および7により振幅変調を行い、i軸成分またはq軸成分の位相を90度移相器8を用いて90度移相し、それらをベクトル合成することにより生成することができる。   FIG. 4 shows a schematic configuration of the transmission apparatus. As shown in FIG. 4, the transmission code of the present invention has a four-phase phase modulator 2 and an amplitude modulator 3 arranged in series, and performs four-phase phase modulation and amplitude modulation in series, or FIG. As shown, amplitude modulation is performed on the i-axis component and the q-axis component by the amplitude modulators 6 and 7, respectively, and the phase of the i-axis component or the q-axis component is shifted by 90 degrees using the 90-degree phase shifter 8. These can be generated by vector synthesis.

図4の構成によって、図1の符号配置を発生させるには、まず、レーザ1からの光を4相位相変調器2によって変調することで図3のような符号点配置の信号を作り出し、符号点がi軸上にくる場合には振幅1、q軸上にくる場合には振幅√3となるように振幅変調器3で振幅変調を行う。   In order to generate the code arrangement shown in FIG. 1 with the configuration shown in FIG. 4, first, the signal from the laser 1 is modulated by the four-phase modulator 2 to generate a signal having the code point arrangement shown in FIG. Amplitude modulation is performed by the amplitude modulator 3 so that the amplitude is 1 when the point is on the i-axis and the amplitude is √3 when the point is on the q-axis.

振幅の設定は振幅変調器3内で行い、その切替えをエンコーダ4−1からの信号で行う。すなわち、エンコーダ4−1から該当する振幅に対応する副信号に相応するアナログ信号を出力してそれで振幅変調器3を駆動する。   The amplitude is set in the amplitude modulator 3, and the switching is performed by a signal from the encoder 4-1. That is, an analog signal corresponding to the sub signal corresponding to the corresponding amplitude is output from the encoder 4-1, and the amplitude modulator 3 is driven by the analog signal.

図4の構成によって図2の符号配置を発生させるには、振幅変調器3の動作を、符号点がi軸上にくる場合には振幅√3A、q軸上にくる場合には振幅Aとなるように変更すればよい。本発明では図1と図2の符号配置を副信号によって切替えるが、この切替えはエンコーダ4−1で行う。   In order to generate the code arrangement of FIG. 2 with the configuration of FIG. 4, the operation of the amplitude modulator 3 is as follows: amplitude √3A when the code point is on the i axis, amplitude A when the code point is on the q axis. It may be changed so as to become. In the present invention, the code arrangement of FIGS. 1 and 2 is switched by the sub-signal, and this switching is performed by the encoder 4-1.

また、図5の構成の送信装置によって図1の符号配置を発生させるには、レーザ1からの光を分岐部5により2分岐し、一方をi軸成分、他方をq軸成分とするため、q軸成分の光位相を90度位相器8でずらした後に合波部9により合波する。エンコーダ4−2により主信号の符号点にしたがって、i軸成分もしくはq軸成分の信号光が透過するように振幅変調器6もしくは7を駆動する。図2および図3の符号点配置を発生させる場合も同様である。その切替えは副信号によってエンコーダ4−2の動作を切替えて行う。   In addition, in order to generate the code arrangement of FIG. 1 by the transmission apparatus having the configuration of FIG. 5, the light from the laser 1 is branched into two by the branching unit 5, and one is an i-axis component and the other is a q-axis component. The optical phase of the q-axis component is shifted by 90 degrees phase shifter 8 and then multiplexed by multiplexing unit 9. The encoder 4-2 drives the amplitude modulator 6 or 7 so that the i-axis component signal or the q-axis component signal light is transmitted according to the code point of the main signal. The same applies when the code point arrangements of FIGS. 2 and 3 are generated. The switching is performed by switching the operation of the encoder 4-2 according to the sub signal.

図6に本発明の副信号を復調するためのQAMの受信回路の模式構成例を示す。図7に従来のQAMの受信回路の模式構成例を示す。本発明の副信号を復調するには次のようにする。   FIG. 6 shows a schematic configuration example of a QAM receiving circuit for demodulating a sub-signal according to the present invention. FIG. 7 shows a schematic configuration example of a conventional QAM receiving circuit. In order to demodulate the sub-signal of the present invention, it is as follows.

受信信号は自動レベル調整部10により雑音等によるパワー変動を抑圧する。キャリア再生部11は、受信した信号からキャリア信号を再生して局発光を生成する。局発光の位相を位相調整部12により調整し、干渉計13−1および13−2によってi軸成分およびq軸成分の信号を復調する。干渉計13−1および13−2は45度移相器14−1および14−2を有する。それぞれの信号は受光部15−1および15−2により光信号から電気信号へと変換された後、同期部16−1および16−2によりクロック成分と同期をとり、マルチレベル識別部17−1および17−2によりマルチレベル識別を行う。副信号は、レベル識別部19を用いてマルチレベル識別部17−1の出力レベルにより復調することができる。   The received signal suppresses power fluctuation due to noise or the like by the automatic level adjustment unit 10. The carrier reproducing unit 11 reproduces a carrier signal from the received signal and generates local light. The phase of the local light is adjusted by the phase adjustment unit 12, and the signals of the i-axis component and the q-axis component are demodulated by the interferometers 13-1 and 13-2. Interferometers 13-1 and 13-2 have 45 degree phase shifters 14-1 and 14-2. Each signal is converted from an optical signal to an electric signal by the light receiving units 15-1 and 15-2, and then synchronized with the clock component by the synchronizing units 16-1 and 16-2, and the multilevel discriminating unit 17-1. And 17-2 to perform multi-level identification. The sub-signal can be demodulated by the output level of the multi-level discriminating unit 17-1 using the level discriminating unit 19.

また、受光部15−1および15−2のようなバランス型受光部を用いることにより、副信号の識別のためにi軸成分とq軸成分の出力を差動で識別することができるため副信号の識別の感度の向上を図ることができる。なお、マルチレベル識別部17−1および17−2は最低限、±√3A、±Aの4つのレベルを識別できるようにするが、ADコンバータなどで構成してもよい。   Further, by using balanced light receiving units such as the light receiving units 15-1 and 15-2, the outputs of the i-axis component and the q-axis component can be identified differentially for identifying the sub-signals. The sensitivity of signal identification can be improved. The multi-level discriminators 17-1 and 17-2 can identify at least four levels of ± √3A and ± A, but may be constituted by an AD converter or the like.

主信号は、ユークリッド距離メトリック比較部18で位相平面上の位置を読み出すことで復号されるが、副信号が復調されることで、主信号が図1〜図3のどちらの符号点配置で送信されたかが判別できるため、その信号点配置で主信号を判定し、復調することができるので主信号の伝送特性には劣化が生じない。   The main signal is decoded by reading the position on the phase plane by the Euclidean distance metric comparison unit 18, but the main signal is transmitted in any of the code point arrangements of FIGS. 1 to 3 by demodulating the sub signal. Since the main signal can be determined and demodulated based on the signal point arrangement, the transmission characteristics of the main signal do not deteriorate.

本発明においては、送信時の平均電力が一定であるため受信信号に自動レベル調整を行い、伝送中の雑音等によるレベル変動を補正することが可能であるが、これに対し、図7に示すように、従来法で振幅成分によって副信号を伝送する場合は、副信号は自動レベル調整部10が自動レベル調整を行う前に分離する必要があり、別系統の受光部20、同期部21を用いて信号判定を行うので、雑音等によるレベル変動との区別をつけるためには副信号の伝送容量をきわめて低く抑える必要がある。自動レベル調整を行わず、主信号を復調後の振幅変動を検出することもできるが、主信号の伝送特性の劣化が大きくなる。   In the present invention, since the average power at the time of transmission is constant, it is possible to perform automatic level adjustment on the received signal and correct the level fluctuation due to noise during transmission, but this is shown in FIG. As described above, when the sub signal is transmitted by the amplitude component in the conventional method, the sub signal needs to be separated before the automatic level adjustment unit 10 performs the automatic level adjustment. Since signal determination is performed using this, it is necessary to keep the transmission capacity of the sub signal extremely low in order to distinguish it from level fluctuations due to noise or the like. Although it is possible to detect amplitude fluctuations after demodulating the main signal without performing automatic level adjustment, the deterioration of the transmission characteristics of the main signal becomes large.

(第二実施形態)
4相位相変調符号(以下、QPSK符号)の位相空間での信号点配置は図3と同じ図であり、QAM符号の特別な場合であると見ることもできる。第一実施形態のQAM符号と同じ送信電力とするためには、振幅は√2Aとなる。このような振幅比をとりQAMとQPSKとを同一送信電力とした場合に両者は位相空間での距離が等しく、故に伝送特性はほぼ等しい(例えば、非特許文献2参照)。
(Second embodiment)
The signal point arrangement in the phase space of the four-phase phase modulation code (hereinafter referred to as QPSK code) is the same as that in FIG. 3, and can be regarded as a special case of the QAM code. In order to achieve the same transmission power as the QAM code of the first embodiment, the amplitude is √2A. When such an amplitude ratio is taken and QAM and QPSK are set to the same transmission power, both have the same distance in the phase space, and therefore the transmission characteristics are almost equal (see, for example, Non-Patent Document 2).

また、QPSK符号はQAM符号の特別な場合であることから、QAM符号と同じ図6に示した受信装置によって復調することができる。すなわち、QAM符号とQPSK符号とを副信号に応じて切替えながら伝送を行っても、受信装置には変更が必要無く主信号の伝送特性の変化も少ない。   Further, since the QPSK code is a special case of the QAM code, it can be demodulated by the same receiving apparatus shown in FIG. 6 as the QAM code. That is, even when transmission is performed while switching between the QAM code and the QPSK code according to the sub-signal, the receiving apparatus does not need to be changed and the change in the transmission characteristic of the main signal is small.

ここで第一実施形態と同様にi軸成分またはq軸成分の振幅成分に注目すると、2値(図1または図2の片方と図3(QPSK))、または3値(図1および図2の双方と図3(QPSK))の振幅変調を行うことができる。3値の振幅変調とした場合には、受信装置のレベル識別部19は3レベルを識別できるような回路を使用する。   Here, focusing on the amplitude component of the i-axis component or the q-axis component as in the first embodiment, binary (one of FIG. 1 or FIG. 2 and FIG. 3 (QPSK)) or ternary (FIG. 1 and FIG. 2). The amplitude modulation shown in FIG. 3 (QPSK) can be performed. In the case of ternary amplitude modulation, the level identifying unit 19 of the receiving apparatus uses a circuit that can identify three levels.

また、この場合もi軸成分とq軸成分の振幅は差動で受信することにより感度の向上を図ることができる。3値を使用する場合には、デュオバイナリ符号など伝送歪に強い符号を用いることもできる。   Also in this case, the sensitivity of the i-axis component and the q-axis component can be improved by receiving them differentially. When ternary values are used, codes that are resistant to transmission distortion, such as duobinary codes, can be used.

マルチレベル識別部17−1および17−2は2値の場合は最低限、±√2Aと±√3Aまたは±√2Aと±Aの4つのレベル、3値の場合は、±√3A、±√2A、±Aの6つのレベルを識別できるようにするが、ADコンバータなどで構成してもよい。   The multi-level discriminators 17-1 and 17-2 are at least four levels of ± √2A and ± √3A or ± √2A and ± A in the case of binary and ± √3A in the case of ternary, ± Although 6 levels of √2A and ± A can be identified, an AD converter or the like may be used.

2値を使用する場合には、2つの信号点配置の振幅は√2Aと√3Aであり、比はおよそ1.8dBである。すなわち、従来の方法に比較し、1.8dBの特性劣化を防ぐことができる。また、3値を使用する場合には、3つの信号点配置の振幅はA、√2A、√3Aであり、最大の比は第一実施形態と同じくおよそ4.8dBである。すなわち、従来の方法に比較して4.8dBの特性劣化を防ぐことができる。   When binary is used, the amplitude of the two signal point arrangements is √2A and √3A, and the ratio is approximately 1.8 dB. That is, the characteristic degradation of 1.8 dB can be prevented as compared with the conventional method. When three values are used, the amplitudes of the three signal point arrangements are A, √2A, and √3A, and the maximum ratio is approximately 4.8 dB as in the first embodiment. That is, the characteristic degradation of 4.8 dB can be prevented as compared with the conventional method.

なお、第二実施形態においても、振幅変調の強度を変更することによって、第一実施形態と同様に、図4または図5の構成の送信装置を用いることができる。   Also in the second embodiment, by changing the intensity of amplitude modulation, the transmission device having the configuration of FIG. 4 or FIG. 5 can be used as in the first embodiment.

以上説明した実施形態ではQAM符号、QPSK符号を使用した場合のみを示したが、変調符号はこれに限らず、伝送特性がほぼ等しい複数の変調方式を使用することができる。   In the embodiment described above, only the case where the QAM code and the QPSK code are used is shown. However, the modulation code is not limited to this, and a plurality of modulation schemes having substantially the same transmission characteristics can be used.

本発明によれば、主信号の伝送特性を劣化させず、また、伝送効率を低下させることなく監視信号等の副信号の伝送を行うことができるので、ディジタル伝送システム全体の伝送効率を高めることに利用できる。   According to the present invention, it is possible to transmit a sub-signal such as a monitoring signal without degrading the transmission characteristics of the main signal and without reducing the transmission efficiency, thereby increasing the transmission efficiency of the entire digital transmission system. Available to:

4値QAM符号の位相空間での信号点配置例を示す図(i軸A、q軸√3A)。The figure which shows the example of signal point arrangement | positioning in the phase space of 4 value QAM code (i axis A, q axis √3A). 4値QAM符号の位相空間での信号点配置例を示す図(i軸√3A、q軸A)。The figure which shows the example of a signal point arrangement | positioning in the phase space of 4 value QAM code (i axis √3A, q axis A). 4値QAM符号の位相空間での信号点配置例を示す図(i軸およびq軸√2A)。The figure which shows the example of signal point arrangement | positioning in the phase space of 4 value QAM code (i axis and q axis √2A). 本実施例の送信装置の模式構成図(その1)。The schematic block diagram of the transmission apparatus of a present Example (the 1). 本実施例の送信装置の模式構成図(その2)。The schematic block diagram (the 2) of the transmitter of a present Example. 本実施例の受信装置の模式構成図。The schematic block diagram of the receiver of a present Example. 従来の従来装置の模式構成図。The schematic block diagram of the conventional conventional apparatus.

符号の説明Explanation of symbols

1 レーザ
2 4相位相変調器
3、6、7 振幅変調器
4−1、4−2 エンコーダ
5 分岐部
8 90度移相器
9 合波部
10 自動レベル調整部
11 キャリア再生部
12 位相調整部
13−1、13−2 干渉計
14−1、14−2 45度移相器
15−1、15−2、20 受光部
16−1、16−2、21 同期部
17−1、17−2 マルチレベル識別部
18 ユークリッド距離メトリック比較部
19、22 レベル識別部
DESCRIPTION OF SYMBOLS 1 Laser 2 4 phase phase modulator 3, 6, 7 Amplitude modulator 4-1, 4-2 Encoder 5 Branch part 8 90 degree phase shifter 9 Combiner part 10 Automatic level adjuster 11 Carrier reproducing part 12 Phase adjuster 13-1, 13-2 Interferometers 14-1, 14-2 45 degree phase shifters 15-1, 15-2, 20 Light receiving units 16-1, 16-2, 21 Synchronizing units 17-1, 17-2 Multi-level identification unit 18 Euclidean distance metric comparison unit 19, 22 Level identification unit

Claims (10)

ディジタルデータを多値符号化し、キャリア信号を変調して送信する送信装置と、
前記多値符号に対応した複数の識別値を用いて受信信号を識別する受信装置とを備えたディジタル伝送システムにおいて、
伝送特性のほぼ等しい複数の変調形態を切替えながら主信号を伝送する手段を備え、
この伝送する手段は、副信号に応じて変調形態を切り替える
ことを特徴とするディジタル伝送システム。
A transmitter that multi-value encodes digital data and modulates and transmits a carrier signal;
In a digital transmission system comprising a receiving device that identifies a received signal using a plurality of identification values corresponding to the multilevel code,
Comprising means for transmitting a main signal while switching a plurality of modulation forms having substantially the same transmission characteristics;
The digital transmission system is characterized in that the means for transmitting switches the modulation form according to the sub-signal.
前記変調には4値直交振幅変調(QAM)を用い、そのi軸成分とq軸成分との振幅比が1:√3である符号を用い、副信号によりそのi軸成分とq軸成分との振幅の入れ替えを行うことでi軸成分およびq軸成分の振幅成分で副信号を伝送する請求項1記載のディジタル伝送システム。   For the modulation, quaternary quadrature amplitude modulation (QAM) is used, and a code having an amplitude ratio of 1: √3 between the i-axis component and the q-axis component is used. The digital transmission system according to claim 1, wherein the sub-signal is transmitted with the amplitude component of the i-axis component and the q-axis component by exchanging the amplitudes of. 前記変調には、i軸成分とq軸成分との振幅比が1:√3である符号を用いるQAM変調と、i軸成分とq軸成分との振幅が等しく前記符号の振幅で規格化した場合に√2の振幅を持つQPSK変調とを用い、副信号によりこれら2つの変調形態の切替えを行うことでi軸成分およびq軸成分の振幅成分で副信号を伝送する請求項1記載のディジタル伝送システム。   For the modulation, QAM modulation using a code in which the amplitude ratio of the i-axis component and the q-axis component is 1: √3, and the amplitude of the i-axis component and the q-axis component are equal and normalized by the amplitude of the code 2. The digital signal according to claim 1, wherein QPSK modulation having an amplitude of {square root over (2)} is used and the sub-signal is transmitted with the amplitude component of the i-axis component and the q-axis component by switching between these two modulation modes by the sub-signal. Transmission system. ディジタル伝送システムに備えられ、ディジタルデータを多値符号化し、キャリア信号を変調して送信する副信号の伝送方法において、
送信装置が、伝送特性のほぼ等しい複数の変調形態を切替えながら主信号を伝送し、この切替えの際には、副信号に応じて変調形態を切り替え、
受信装置が、前記変調形態の切り替えパターンを抽出することにより副信号を復調する
ことを特徴とする副信号の伝送方法。
In a sub-signal transmission method provided in a digital transmission system, which multi-value encodes digital data and modulates and transmits a carrier signal,
The transmission device transmits the main signal while switching a plurality of modulation forms having substantially the same transmission characteristics, and at the time of this switching, the modulation form is switched according to the sub-signal,
A sub-signal transmission method, wherein the receiving device demodulates the sub-signal by extracting the modulation pattern switching pattern.
前記変調には4値直交振幅変調(QAM)を用い、i軸成分とq軸成分との振幅比が1:√3である符号を用い、副信号によりそのi軸成分とq軸成分との振幅の入れ替えを行うことでi軸成分およびq軸成分の振幅成分で副信号を伝送する請求項4記載の副信号の伝送方法。   For the modulation, four-value quadrature amplitude modulation (QAM) is used, and a code having an amplitude ratio of 1: √3 between the i-axis component and the q-axis component is used. The sub-signal transmission method according to claim 4, wherein the sub-signal is transmitted with the amplitude components of the i-axis component and the q-axis component by exchanging the amplitude. 前記変調には、i軸成分とq軸成分との振幅比が1:√3である符号を用いるQAM変調と、i軸成分とq軸成分との振幅が等しく前記符号の振幅で規格化した場合に√2の振幅を持つQPSK変調とを用い、副信号によりこれら2つの変調形態の切替えを行うことでi軸成分およびq軸成分の振幅成分で副信号を伝送する請求項4記載の副信号の伝送方法。   For the modulation, QAM modulation using a code in which the amplitude ratio of the i-axis component and the q-axis component is 1: √3, and the amplitude of the i-axis component and the q-axis component are equal and normalized by the amplitude of the code 5. The sub-signal according to claim 4, wherein the sub-signal is transmitted with the amplitude component of the i-axis component and the q-axis component by using QPSK modulation having an amplitude of √2 and switching between these two modulation modes by the sub-signal. Signal transmission method. ディジタル伝送システムに備えられ、ディジタルデータを多値符号化し、キャリア信号を変調して送信する送信装置において、
キャリア信号を4相位相変調してi軸成分およびq軸成分の振幅がほぼ等しくなる符号点配置の信号を生成する手段と、
前記信号におけるi軸成分とq軸成分との振幅比を副信号に応じて変化させる手段と
を備えたことを特徴とする送信装置。
In a transmission apparatus that is provided in a digital transmission system and that multi-values digital data and modulates and transmits a carrier signal,
Means for four-phase phase-modulating the carrier signal to generate a signal with a code point arrangement in which the amplitudes of the i-axis component and the q-axis component are substantially equal;
Means for changing an amplitude ratio between an i-axis component and a q-axis component in the signal in accordance with a sub-signal.
ディジタル伝送システムに備えられ、ディジタルデータを多値符号化し、キャリア信号を変調して送信する送信装置において、
キャリア信号を2分岐し、一方をi軸成分、他方をq軸成分とするため、q軸成分の位相を90度ずらした後に合波する手段と、
分岐されたi軸成分の振幅とq軸成分の振幅との振幅比を副信号に応じて変化させる手段と
を備えたことを特徴とする送信装置。
In a transmission apparatus that is provided in a digital transmission system and that multi-value encodes digital data and modulates and transmits a carrier signal,
Means for branching the carrier signal into two parts, one being the i-axis component and the other being the q-axis component, so as to multiplex after shifting the phase of the q-axis component by 90 degrees;
A transmission device comprising: means for changing an amplitude ratio between the amplitude of the branched i-axis component and the amplitude of the q-axis component according to a sub-signal.
ディジタル伝送システムに備えられ、多値符号に対応した複数の識別値を用いて受信信号を識別する受信装置において、
請求項7または8記載の送信装置の送信信号を受信信号とし、
復調されたi軸成分およびq軸成分のそれぞれの信号の出力レベルにより副信号を復調する手段を備えた
ことを特徴とする受信装置。
In a receiving apparatus that is provided in a digital transmission system and identifies a received signal using a plurality of identification values corresponding to a multilevel code,
The transmission signal of the transmission device according to claim 7 or 8 as a reception signal,
A receiving apparatus comprising: means for demodulating a sub-signal based on the output levels of the demodulated i-axis component signal and q-axis component signal.
i軸成分の出力とq軸成分の出力とを差動で識別する手段を備えた請求項9記載の受信装置。   10. The receiving apparatus according to claim 9, further comprising means for differentially discriminating between the output of the i-axis component and the output of the q-axis component.
JP2007200532A 2007-08-01 2007-08-01 Digital transmission system Expired - Fee Related JP4842224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007200532A JP4842224B2 (en) 2007-08-01 2007-08-01 Digital transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007200532A JP4842224B2 (en) 2007-08-01 2007-08-01 Digital transmission system

Publications (2)

Publication Number Publication Date
JP2009038553A true JP2009038553A (en) 2009-02-19
JP4842224B2 JP4842224B2 (en) 2011-12-21

Family

ID=40440093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200532A Expired - Fee Related JP4842224B2 (en) 2007-08-01 2007-08-01 Digital transmission system

Country Status (1)

Country Link
JP (1) JP4842224B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133812A (en) * 1978-04-07 1979-10-17 Nec Corp Phase synchronous circuit
JPS6096949A (en) * 1983-10-31 1985-05-30 Matsushita Graphic Commun Syst Inc Data transmission system
JPS62183648A (en) * 1986-02-08 1987-08-12 Nec Corp Digital modulation and demodulation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133812A (en) * 1978-04-07 1979-10-17 Nec Corp Phase synchronous circuit
JPS6096949A (en) * 1983-10-31 1985-05-30 Matsushita Graphic Commun Syst Inc Data transmission system
JPS62183648A (en) * 1986-02-08 1987-08-12 Nec Corp Digital modulation and demodulation system

Also Published As

Publication number Publication date
JP4842224B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
US7983570B2 (en) Direct detection differential polarization-phase-shift keying for high spectral efficiency optical communication
EP3469743B1 (en) Optical data coding method and optical transmitter
EP3107255B1 (en) Optical modulation formats with nonlinearity tolerance at high spectral efficiency
JP5458313B2 (en) Optical multi-value transmission system
KR101031410B1 (en) Method and apparatus for the generation and detection of optical differential varied-multilevel phase-shift keying with pulse amplitude modulation odvmpsk/pam signals
US8437644B2 (en) Vestigial phase shift keying modulation and systems and methods incorporating same
US8873953B2 (en) Multiple-symbol polarization switching for differential-detection modulation formats
JP2008170996A (en) Communication of signal by ask modulation and psk modulation
WO2016056220A1 (en) Optical transmitter, optical communication system, and optical communication method
US20040141222A1 (en) Optical phase multi-level modulation method and apparatus, and error control method
JP2008167126A (en) Optical digital transmission system and method
JP2004170954A (en) Optical phase multi-value modulation method, optical phase multi-value modulating device, and error control method
US7860402B2 (en) Modulating a signal according to 2n-PSK modulation
US7778360B2 (en) Demodulating a signal encoded according to ASK modulation and PSK modulation
JP4842224B2 (en) Digital transmission system
US9071362B1 (en) Noise-tolerant optical modulation
JP2009027441A (en) Optical transmission circuit
JP5217551B2 (en) Multi-level phase shift keying code division multiplexing transmission system
JP4763664B2 (en) Optical receiver circuit
US20080002994A1 (en) Demodulating a signal using a 1 x m coupler
CN116545538A (en) Optical label switching system, method and equipment based on reverse 5B8B code
EP4042600A1 (en) Optical transmitters and transmission methods
CN117768034A (en) Coding method of space optical communication high-order DPSK simplified system
JP2010206473A (en) Optical communication system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090525

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090525

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees