JP2009036292A - Manufacturing method for suspension body or axle spring - Google Patents

Manufacturing method for suspension body or axle spring Download PDF

Info

Publication number
JP2009036292A
JP2009036292A JP2007200753A JP2007200753A JP2009036292A JP 2009036292 A JP2009036292 A JP 2009036292A JP 2007200753 A JP2007200753 A JP 2007200753A JP 2007200753 A JP2007200753 A JP 2007200753A JP 2009036292 A JP2009036292 A JP 2009036292A
Authority
JP
Japan
Prior art keywords
hard
manufacturing
partition walls
bridge
hard partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007200753A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayashi
博 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2007200753A priority Critical patent/JP2009036292A/en
Publication of JP2009036292A publication Critical patent/JP2009036292A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a suspension body or an axle spring enabling easy operation for loading a plurality of hard partition walls in dies by reexamining and devising a way of manufacturing and improving production efficiency by completing the loading operation in the plurality of dies for a short time. <P>SOLUTION: In the axle spring, an elastic part 3 having a laminated rubber structure wherein a plurality of rubber layers 4 and the hard partition walls 5 are laminated alternately in radial inner and outer directions in the concentric state with an axial center P is interposed between a spindle 1 and an outer cylinder 2 having the same axial center P as that of the spindle 1. In the manufacturing method for the axle spring, the plurality of hard partition walls 5 are connected and integrated by a bridge 18 maintaining the hard partition walls 5 at predetermined radial intervals and bypassed on one outer side in the axial center P direction, and the plurality of partition walls 5 integrated by the bridge 18 are fitted to the die K1 for holding the hard partition walls 5 from the other side in the axial center P direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、軸ばね、免震支承(免震装置)、防振ゴムといった懸架体の製造方法、或いは鉄道車両やトラック等に好適な軸ばねの製造方法に係り、詳しくは、複数の弾性層と硬質隔壁とを交互に積層する積層ゴム構造の弾性部を有する懸架体の製造方法に関するものである。尚、懸架体は軸ばねをも含む概念であると定義しておく。   The present invention relates to a method for manufacturing a suspension body such as a shaft spring, a seismic isolation bearing (seismic isolation device), a vibration isolating rubber, or a method for manufacturing a shaft spring suitable for a railway vehicle, a truck, or the like. The present invention relates to a method of manufacturing a suspension body having an elastic part of a laminated rubber structure in which a laminated structure and hard partition walls are alternately laminated. The suspension is defined as a concept including a shaft spring.

懸架体の一例として、例えば、特許文献1において開示されるように、筒状の主軸と外筒との間に、4層の弾性層と3層の硬質隔壁とを同一軸心状に介装して成る軸ばね(鉄道車両用の軸ばね)が知られている。軸ばねの弾性層としてはゴムが多く用いられるが、この軸ばねのように一対の肉抜き部を有する構造のものでは、6個の硬質隔壁と主軸と外筒との計8個の部材がゴムの加硫によって一体的に加硫接着されることにより、単一の部品である軸ばね形成されることになる。   As an example of a suspended body, for example, as disclosed in Patent Document 1, a four-layer elastic layer and a three-layer hard partition wall are arranged in the same axial center between a cylindrical main shaft and an outer cylinder. A shaft spring (shaft spring for a railway vehicle) is known. Rubber is often used as the elastic layer of the shaft spring. However, in the structure having a pair of cutout portions such as this shaft spring, a total of eight members including six hard partition walls, the main shaft, and the outer cylinder are provided. By integrally vulcanizing and bonding by rubber vulcanization, a single part is formed as a shaft spring.

軸ばねの作り方としては、図13に示すように、主軸1、複数の硬質隔壁5A,5B,5C、外筒2を下金型K1にセットしてから上金型(図示省略)を被せて固定し、それからゴムを注入するという具合になる。つまり、複数の硬質隔壁5A,5B,5Cはその一つ一つを下金型K1の硬質隔壁用の溝m1,m2,m3に入れ込み配置する必要があるが、下金型K1の底部において若干の深さを持つ前記溝(円弧溝)m1,m2,m3に硬質隔壁5A,5B,5Cを挿入させる操作がやり辛く面倒なものであった。このような金型へのセット操作の類似例としては、特許文献2(特に図面第4図や第1図を参照)において開示される建築物用免震装置が挙げられる。   As shown in FIG. 13, the shaft spring is made by setting the main shaft 1, the plurality of hard partition walls 5A, 5B, 5C and the outer cylinder 2 in the lower mold K1, and then covering the upper mold (not shown). Fix it and then inject rubber. In other words, each of the plurality of hard partition walls 5A, 5B, and 5C needs to be placed in the hard partition grooves m1, m2, and m3 of the lower mold K1, but is slightly located at the bottom of the lower mold K1. The operation of inserting the hard partition walls 5A, 5B, and 5C into the grooves (arc grooves) m1, m2, and m3 having a depth of 1 mm was difficult and troublesome. As a similar example of the setting operation to such a mold, there is a building seismic isolation device disclosed in Patent Document 2 (refer to FIG. 4 and FIG. 1 in particular).

懸架体の別例として、特許文献2の建築物用免震装置におけるアイソレータ(積層体)のように、硬質隔壁の数が多くなると、元々やり難い金型への装填操作に時間がますます多く掛り、作業効率の悪化を招き易くなる。また、一般的な板金製の硬質隔壁では、寸法が所期した値からずれている(所定通りの曲率でないことがしばしばある)場合が多く、溝へ強制的に差し入れるのに大なる労力が必要になるとともに、金型への装填操作に要する時間も余計に掛ってしまう不都合がある。   As another example of a suspended body, as the number of hard bulkheads increases, as in the isolator (laminated body) in the building seismic isolation device of Patent Document 2, more time is required to load the mold that was originally difficult to perform. Therefore, work efficiency is liable to deteriorate. Moreover, in the case of a hard partition made of a general sheet metal, the dimensions are often deviated from the intended values (often not the predetermined curvature), and a large amount of labor is required to force the insertion into the groove. In addition to this, there is an inconvenience that the time required for loading the mold is excessive.

このように、懸架体(軸ばね)における硬質隔壁の金型への装填作業性には改善の余地が残されているものであった。
特開2005−282701号公報 特開平2−153713号公報
Thus, there remains room for improvement in the workability of loading the hard partition wall into the mold in the suspension (shaft spring).
JP 2005-282701 A Japanese Patent Laid-Open No. 2-153713

本発明の目的は、作り方を見直して工夫することにより、複数存在する硬質隔壁の金型への装填操作が行い易く、かつ、それら複数の金型への装填操作が短時間で完了できるようにして、生産効率の改善される懸架体や軸ばねの製造方法を提供する点にある。   The object of the present invention is to make it easy to load a plurality of hard bulkheads into a mold by reviewing and devising how to make them, and to complete the loading operation into the plurality of molds in a short time. Thus, the present invention is to provide a method of manufacturing a suspension body and a shaft spring that can improve production efficiency.

請求項1に係る発明は、第1支持部材1と第2支持部材2との間に、複数の弾性層4と硬質隔壁5とを交互に積層する積層ゴム構造の弾性部3が介装されて成る懸架体の製造方法おいて、
前記複数の硬質隔壁5を、それらを所定の積層方向間隔に維持して前記積層方向に交差する方向の一方の外側に迂回配置されるブリッジ18で連結一体化しておき、そのブリッジ18で一体化されている複数の硬質隔壁5を前記積層方向に交差する方向の他方の側から硬質隔壁保持用金型K1に装着させることを特徴とするものである。
In the invention according to claim 1, between the first support member 1 and the second support member 2, an elastic portion 3 having a laminated rubber structure in which a plurality of elastic layers 4 and hard partition walls 5 are alternately stacked is interposed. In the manufacturing method of the suspension body,
The plurality of hard partition walls 5 are connected and integrated by a bridge 18 that is detoured outside one side in a direction intersecting the stacking direction while maintaining a predetermined interval in the stacking direction, and integrated by the bridge 18. The plurality of hard partition walls 5 are attached to the hard partition wall holding mold K1 from the other side in the direction crossing the stacking direction.

請求項2に係る発明は、主軸1とこれと互いに同一又はほぼ同一の軸心Pを有する外筒2との間に、複数の弾性層4と硬質隔壁5とを前記軸心Pと同心又はほぼ同心状態で径内外方向で交互に積層する積層ゴム構造の弾性部3が介装されて成る軸ばねの製造方法において、
前記複数の硬質隔壁5を、それらを所定の径方向間隔に維持して前記軸心P方向の一方の外側に迂回配置されるブリッジ18で連結一体化しておき、そのブリッジ18で一体化されている複数の硬質隔壁5を前記軸心P方向の他方の側から硬質隔壁保持用金型K1に装着させることを特徴とするものである。
According to the second aspect of the present invention, a plurality of elastic layers 4 and hard partition walls 5 are concentric with the shaft center P or between the main shaft 1 and the outer cylinder 2 having the same or substantially the same shaft center P. In the manufacturing method of the shaft spring in which the elastic part 3 of the laminated rubber structure that is alternately laminated in the inner and outer directions in a substantially concentric state is interposed,
The plurality of hard partition walls 5 are connected and integrated by a bridge 18 that is detoured to the outside of one side in the axis P direction while maintaining a predetermined radial interval therebetween, and is integrated by the bridge 18. The plurality of hard partition walls 5 are mounted on the hard partition wall holding mold K1 from the other side in the direction of the axis P.

請求項3に係る発明は、請求項2に記載の軸ばねの製造方法において、前記硬質隔壁5が、前記軸心Pに対する周方向で2以上の円弧隔壁部5a,5b,5cから形成される場合には、前記ブリッジ18として、周方向で隣合う前記円弧隔壁部5a,5b,5cどうしを連結すべく前記一方の外側に迂回配置される横ブリッジ部18bを有するものを用いることを特徴とするものである。   According to a third aspect of the present invention, in the method for manufacturing a shaft spring according to the second aspect, the hard partition wall 5 is formed of two or more arc partition walls 5a, 5b, 5c in the circumferential direction with respect to the axis P. In this case, the bridge 18 is characterized in that it has a lateral bridge portion 18b that is detoured on the one outer side so as to connect the circular arc partition portions 5a, 5b, 5c adjacent in the circumferential direction. To do.

請求項4に係る発明は、請求項1に記載の懸架体の製造方法、或いは請求項2又は3に記載の軸ばねの製造方法において、前記硬質隔壁5として合成樹脂製のものを用いることを特徴とするものである。   The invention according to claim 4 is the method for manufacturing the suspension body according to claim 1 or the method for manufacturing the shaft spring according to claim 2 or 3, wherein the hard partition wall 5 is made of a synthetic resin. It is a feature.

請求項1の発明によれば、複数の部品である硬質隔壁の硬質隔壁保持用金型への装着操作を単一の操作でもって一挙に行うことが可能になる。これは、ブリッジで連結一体化されて単一部品となっている複数の硬質隔壁の嵌め入れ操作のみで済むから、複数の硬質隔壁を各別に硬質隔壁保持用金型に嵌め入れる従来の作業に比べて操作簡単であり、かつ、短時間で行える効率の良いものとなる。その結果、作り方を見直して工夫することにより、複数存在する硬質隔壁の金型への装填操作が行い易く、かつ、それら複数の金型への装填操作が短時間で完了できるようにして、生産効率の改善される懸架体の製造方法を提供することができる。   According to the first aspect of the present invention, the mounting operation of the hard partition walls, which are a plurality of parts, to the hard partition wall holding mold can be performed at once by a single operation. This requires only the operation of fitting a plurality of hard bulkheads that are connected and integrated by a bridge into a single part, so that the conventional work of fitting a plurality of hard bulkheads individually into a mold for holding a hard bulkhead. Compared to the above, the operation is simple and the efficiency can be improved in a short time. As a result, by revising and devising how to make it, it is easy to load multiple hard partition walls into a mold, and the loading operation to these multiple molds can be completed in a short time. A method of manufacturing a suspension body with improved efficiency can be provided.

請求項2の発明によれば、詳しくは実施形態の項において説明するが、複数の部品である硬質隔壁の硬質隔壁保持用金型への装着操作を単一の操作でもって一挙に行うことが可能になる。これは、ブリッジで連結一体化されて単一部品となっている複数の硬質隔壁の嵌め入れ操作のみで済むから、複数の硬質隔壁を各別に硬質隔壁保持用金型に嵌め入れる従来の作業に比べて操作簡単であり、かつ、短時間で行える効率の良いものとなる。その結果、作り方を見直して工夫することにより、複数存在する硬質隔壁の金型への装填操作が行い易く、かつ、それら複数の金型への装填操作が短時間で完了できるようにして、生産効率の改善される軸ばねの製造方法を提供することができる。   According to the invention of claim 2, although described in detail in the section of the embodiment, the mounting operation of the hard partition walls, which are a plurality of parts, to the hard partition holding mold can be performed at once by a single operation. It becomes possible. This requires only the operation of fitting a plurality of hard bulkheads that are connected and integrated by a bridge into a single part, so that the conventional work of fitting a plurality of hard bulkheads individually into a mold for holding a hard bulkhead. Compared to the above, the operation is simple and the efficiency can be improved in a short time. As a result, by revising and devising how to make it, it is easy to load multiple hard partition walls into a mold, and the loading operation to these multiple molds can be completed in a short time. A method of manufacturing a shaft spring with improved efficiency can be provided.

請求項3の発明によれば、径方向に複数層で存在する硬質隔壁が周方向にも分離されている場合(細切れ状態の場合)には、それら周方向で分離されている硬質隔壁どうしを繋ぐ横ブリッジ部を有するブリッジを設ける手段を採ることにより、請求項2の発明による効果を得ることが可能になる。   According to invention of Claim 3, when the hard partition which exists in multiple layers by radial direction is isolate | separated also in the circumferential direction (in the case of a shredded state), the hard partition separated in these circumferential directions is made. The effect of the invention of claim 2 can be obtained by adopting a means for providing a bridge having a connecting horizontal bridge portion.

請求項4の発明によれば、硬質隔壁を合成樹脂製とすれば、ブリッジも剛性樹脂製として、それら全体を合成樹脂材による一体部品、つまり単一の部品として作っておくことが可能になる。従って、ブリッジ付硬質隔壁としての生産性にも優れるとともに、剛性樹脂製故に製品としての軽量化や、製造時の取扱い性にも優れる軸ばねの製造方法を提供することができる。   According to the invention of claim 4, if the hard partition walls are made of synthetic resin, the bridges are also made of rigid resin, and the whole can be made as an integral part made of synthetic resin material, that is, as a single part. . Therefore, it is possible to provide a method for manufacturing a shaft spring that is excellent in productivity as a hard partition with a bridge, and that is lightweight as a product because of the rigid resin, and excellent in handling at the time of manufacture.

以下に、本発明による懸架体の製造方法の実施の形態を、鉄道車両用軸ばねに適用した場合について図面を参照しながら説明する。図1,2は軸ばねの側面図と底面図、図3は第1金型の半断面図、図4〜図7は軸ばねの成形工程を示す作用図、図8はブリッジを示す硬質隔壁の平面図、図9は軸ばねの製造方法の概略を示すフロー図、図10,11は鉄道台車への使用例を示す要部の側面図と全体斜視図、図12はブリッジの別実施例を示す斜視図、図13は軸ばね製造方法の従来を示す斜視図である。   Hereinafter, an embodiment of a method for manufacturing a suspension body according to the present invention will be described with reference to the drawings when applied to a railway vehicle shaft spring. 1 and 2 are a side view and a bottom view of the shaft spring, FIG. 3 is a half sectional view of the first mold, FIGS. 4 to 7 are operational views showing a molding process of the shaft spring, and FIG. 8 is a hard partition wall showing a bridge. FIG. 9 is a flowchart showing an outline of a manufacturing method of a shaft spring, FIGS. 10 and 11 are side views and general perspective views of main parts showing an example of use in a railway carriage, and FIG. 12 is another embodiment of a bridge. FIG. 13 is a perspective view showing a conventional shaft spring manufacturing method.

〔実施例1〕
懸架体の一例である鉄道車両用の軸ばねAは、例えば、図10,図11に示すように、ボルスタレス台車Dにおける車軸6を支える車軸箱7の両端と台車枠8との間のそれぞれに上下向きの縦軸心Pを有する状態で組付けられている。台車枠8は、左右の主枠部材8A,8Aと、それらを繋ぐ一対の連結枠部材8B,8Bとを備えて構成され、主枠部材8Aの前後に車軸箱7が懸架装置Kを用いて支持されている。軸ばねAは、懸架装置Kの一構成部品として組み込まれている。尚、15は牽引装置、16は空気ばねである。
[Example 1]
For example, as shown in FIGS. 10 and 11, a shaft spring A for a railway vehicle that is an example of a suspended body is provided between each end of the axle box 7 that supports the axle 6 in the bolsterless carriage D and the carriage frame 8. It is assembled in a state having a vertically oriented vertical axis P. The bogie frame 8 includes left and right main frame members 8A and 8A and a pair of connecting frame members 8B and 8B that connect them, and the axle box 7 is attached to the front and rear of the main frame member 8A using the suspension device K. It is supported. The shaft spring A is incorporated as a component of the suspension device K. In addition, 15 is a traction device and 16 is an air spring.

懸架装置Kは、車軸箱7を支える支持アーム9と、主枠部材8Aとに亘る前後一対のクッション機構10,10を設けて構成されており、クッション機構10は、コイルばね11と、その内側に配置される軸ばねAとから成っている。即ち、支持アーム9におけるコイルばね11の下側の受台である下フランジ13に軸ばねAの外筒2が内嵌連結され、主枠部材8Aにおけるコイルばね11の上側の受台である上フランジ14の軸部14Aが筒状の主軸1に内嵌連結されている。上下の荷重は主にコイルばね11が受け持ち、前後左右には軸ばねAが弾性支持する構造となっている。   The suspension device K includes a support arm 9 that supports the axle box 7 and a pair of front and rear cushion mechanisms 10 and 10 that extend over the main frame member 8A. The cushion mechanism 10 includes a coil spring 11 and an inner side thereof. And a shaft spring A disposed on the surface. That is, the outer cylinder 2 of the shaft spring A is fitted and connected to a lower flange 13 which is a lower pedestal of the coil spring 11 in the support arm 9, and an upper cradle of the main frame member 8A which is the upper side of the coil spring 11 is connected. A shaft portion 14 </ b> A of the flange 14 is internally fitted and connected to the cylindrical main shaft 1. The upper and lower loads are mainly handled by the coil spring 11, and the shaft spring A is elastically supported on the front, rear, left and right.

軸ばねAは、図1に示すように、主軸1と、これと互いに同一(又はほぼ同一)の縦軸心Pを有する外筒2と、複数(四層)の弾性層4A〜4Dと複数(三層)の硬質隔壁5A〜5Cとを縦軸心Pと同心(又はほぼ同心)状態で径内外方向で交互に積層されて主軸1と外筒2との間に介装される積層ゴム構造の弾性部3と、を有して構成されている。尚、図1に示す軸ばねAと、図7,8に描かれている軸ばねAとは、主軸1と外筒2との軸方向の相対位置が互いにやや異なるタイプのものとして描いてあるが、基本的には同じものである。   As shown in FIG. 1, the shaft spring A includes a main shaft 1, an outer cylinder 2 having the same (or substantially the same) longitudinal axis P as the main shaft 1, a plurality (four layers) of elastic layers 4 </ b> A to 4 </ b> D and a plurality of elastic layers 4 </ b> A to 4 </ b> D. Laminated rubber in which (three layers) of hard partition walls 5A to 5C are alternately laminated in the radial inner and outer directions in a state of being concentric (or substantially concentric) with the vertical axis P and interposed between the main shaft 1 and the outer cylinder 2. And an elastic portion 3 having a structure. The shaft spring A shown in FIG. 1 and the shaft spring A depicted in FIGS. 7 and 8 are depicted as those of a type in which the relative positions in the axial direction of the main shaft 1 and the outer cylinder 2 are slightly different from each other. But basically the same thing.

筒状の主軸1と外筒2とは金属(鉄)製であるに対して、内側から外側に向かって第1〜第3硬質隔壁5A〜5Cは合成樹脂材製であり、内側から外側に向かって第1〜第4の各弾性層4A〜4Dはゴム製である。硬質隔壁5A〜5Cの縦軸心P方向の長さは、最内側の第1硬質隔壁5Aが最も長く(主軸1よりは短い)、外側に行くに従って短くなり、最外側の第3硬質隔壁5Cは最も短い(外筒2よりも短い)。各硬質隔壁5A〜5Cの素材としては、FRP、GFRP、CERP等の繊維強化プラスチック、或いは複合材でも良い。尚、主軸1の下端には、位置決めやその他用としての対向する計2箇所の切欠き1aが形成されている。   While the cylindrical main shaft 1 and the outer cylinder 2 are made of metal (iron), the first to third hard partition walls 5A to 5C are made of synthetic resin material from the inside to the outside, and from the inside to the outside. The first to fourth elastic layers 4A to 4D are made of rubber. The length of the hard partition walls 5A to 5C in the direction of the vertical axis P is the longest in the innermost first hard partition wall 5A (shorter than the main shaft 1), and becomes shorter toward the outer side, and the outermost third hard partition wall 5C. Is the shortest (shorter than the outer cylinder 2). The material of each of the hard partition walls 5A to 5C may be fiber reinforced plastic such as FRP, GFRP, CERP, or a composite material. Note that a total of two notches 1a facing each other for positioning and other purposes are formed at the lower end of the main shaft 1.

図1に示すように、各弾性層4A〜4Dは円筒形ではなく、半円よりやや角度の小なる円弧状弾性部4a〜4dの一対を縦軸心Pに関する点対称に配置して構成される周方向で不連続なものである。同様に、各硬質隔壁5A〜5Cも、半円よりやや角度の小なる円弧隔壁部5a〜5cの一対を縦軸心Pに関する点対称に配置して構成される周方向で不連続なものである。その結果、主軸1と外筒2とに亘る2箇所の肉抜き部12,12が形成されている。台車Dへの組付け方の例としては、一対の肉抜き部12,12がレール方向を前後方向とした場合の左右方向である矢印イ方向に向く状態とする。つまり、前後方向(レール方向又は車両進行方向)である矢印ロ方向には弾性層4も硬質隔壁5も詰まった状態とする手段である。   As shown in FIG. 1, the elastic layers 4A to 4D are not cylindrical, and are configured by arranging a pair of arc-shaped elastic portions 4a to 4d having a slightly smaller angle than a semicircle symmetrically with respect to the longitudinal axis P. It is discontinuous in the circumferential direction. Similarly, each of the hard partition walls 5A to 5C is also discontinuous in the circumferential direction configured by arranging a pair of arc partition walls 5a to 5c having a slightly smaller angle than the semicircle in point symmetry with respect to the longitudinal axis P. is there. As a result, two thinned portions 12, 12 extending between the main shaft 1 and the outer cylinder 2 are formed. As an example of how to assemble to the carriage D, the pair of lightening portions 12 and 12 are in a state of being directed in the direction of arrow A, which is the left-right direction when the rail direction is the front-rear direction. That is, the elastic layer 4 and the hard partition wall 5 are packed in the arrow B direction, which is the front-rear direction (rail direction or vehicle traveling direction).

軸ばねAは、図9に示す製造方法のフロー図のように、型成形によって作成される。即ち、軸ばねAは、主軸1、外筒2、及び硬質隔壁5A〜5Cが装填されている上下一対の金型K1,K2内にゴムを流し込む型成形工程Bと、そのしかる後の加硫工程Cとを有する製造方法によって作成される。型成形工程Bは、主軸1を第1金型K1に嵌め入れる主軸装填工程aと、外筒2を第1金型K1に嵌め入れる外筒装填工程bと、硬質隔壁5A〜5Cを第1金型K1に嵌め入れる隔壁装填工程cと、上側の第2金型K2を第1金型K1に被せてセットする金型セット工程dと、第1金型K1と第2金型K2とによる内部空間にゴムを流し込むゴム注入工程eと、を有している。   The shaft spring A is created by molding as shown in the flowchart of the manufacturing method shown in FIG. That is, the shaft spring A includes a mold forming step B in which rubber is poured into a pair of upper and lower molds K1, K2 in which the main shaft 1, the outer cylinder 2, and the hard partition walls 5A to 5C are loaded, and vulcanization after that. It is created by a manufacturing method having step C. The mold forming step B includes a main shaft loading step a for fitting the main shaft 1 into the first die K1, an outer tube loading step b for fitting the outer tube 2 into the first die K1, and the hard partition walls 5A to 5C as the first. A partition loading step c for fitting into the mold K1, a mold setting step d for placing the upper second mold K2 on the first mold K1, and a first mold K1 and a second mold K2. A rubber injection step e for pouring rubber into the internal space.

図3は下金型である第1金型K1を示しており、第1金型K1は、主軸1の下端部を嵌め入れるための中心凹入円部25、第1硬質隔壁5A(第1円弧隔壁部5a)の下端部を嵌め入れるための第1円環溝m1、第2硬質隔壁5B(第2円弧隔壁部5b)の下端部を嵌め入れるための第2円環溝m2、第3硬質隔壁5C(第3円弧隔壁部5c)の下端部を嵌め入れるための第3円環溝m3、及び外筒2の下端部を嵌め入れるための外側円環溝m4が、互いに等しい軸心Zを有する状態(同心円の状態)で型部材17に形成されることで構成されている。   FIG. 3 shows a first mold K1 which is a lower mold, and the first mold K1 includes a central recessed circular portion 25 for fitting the lower end portion of the main shaft 1, a first hard partition wall 5A (first A first annular groove m1 for fitting the lower end portion of the arc partition wall portion 5a), a second annular groove m2 for fitting the lower end portion of the second hard partition wall 5B (second arc partition wall portion 5b), a third The third annular groove m3 for fitting the lower end portion of the hard partition wall 5C (third arc partition wall portion 5c) and the outer annular groove m4 for fitting the lower end portion of the outer cylinder 2 have the same axis Z. It is comprised by forming in the mold member 17 in the state (concentric state) which has.

そして、第1弾性層4A(第1円弧状弾性部4a)の下端面を設定すべく、中心凹入円部25と第1円環溝m1との間に形成される第1突条環t1、第2弾性層4B(第2円弧状弾性部4b)の下端面を設定すべく、第1円環溝m1と第2円環溝m2との間に形成される第2突条環t2、第3弾性層4C(第3円弧状弾性部4c)の下端面を設定すべく、第2円環溝m2と第3円環溝m3との間に形成される第3突条環t3、及び、第4弾性層4D(第4円弧状弾性部4d)の下端面を設定すべく、第3円環溝m3と第4円環溝m4との間に形成される第4突条環t4には、ゴムを射出するための注入路19〜22が穿孔形成されている。これら注入路19〜22は、太い主注入路23に連通されている。   Then, in order to set the lower end surface of the first elastic layer 4A (first arc-shaped elastic portion 4a), the first protruding ring t1 formed between the central recessed circular portion 25 and the first annular groove m1. In order to set the lower end surface of the second elastic layer 4B (second arcuate elastic portion 4b), a second rib ring t2 formed between the first annular groove m1 and the second annular groove m2, A third protrusion ring t3 formed between the second annular groove m2 and the third annular groove m3 to set a lower end surface of the third elastic layer 4C (third arc-shaped elastic portion 4c); In order to set the lower end surface of the fourth elastic layer 4D (fourth arc-shaped elastic portion 4d), a fourth protrusion ring t4 formed between the third annular groove m3 and the fourth annular groove m4 is provided. Are formed with perforations for injection paths 19 to 22 for injecting rubber. These injection paths 19 to 22 communicate with a thick main injection path 23.

隔壁装填工程cは、図4に示すように、各円弧隔壁部5a〜5c(即ち、3組の硬質隔壁5A〜5C)を第1金型K1に装填する工程である。ここで、計6個の円弧隔壁部5a〜5cは、図8に示すように、ブリッジ18で相互に連結一体化されている。第1〜第3円弧隔壁部5a〜5cの1個ずつで成る隔壁列5Rは、周方向の両端部に配される一対の縦アーム部18a,18aによって連結一体化されている。そして、それら縦アーム部18a,18aは、周方向で隣合うもう一組の隔壁列5Rの縦アーム部18a,18aと一対の円弧アーム部(「横ブリッジ部」の一例)18b,18bによって連結一体化されており、従って、一対の隔壁列5R,5R、即ち6個の円弧隔壁部5a〜5cは、2個の縦アーム部18aと2個の円弧アーム部18bとで成るブリッジ18の一対により、単一の部品である隔壁群5G(即ち、硬質隔壁5)に一体形成されている。   As shown in FIG. 4, the partition wall loading step c is a step of loading the arc partition wall portions 5 a to 5 c (that is, three sets of hard partition walls 5 </ b> A to 5 </ b> C) into the first mold K <b> 1. Here, as shown in FIG. 8, the total six arc partition walls 5 a to 5 c are connected and integrated with each other by a bridge 18. The partition row 5R including one each of the first to third arc partition portions 5a to 5c is connected and integrated by a pair of vertical arm portions 18a and 18a arranged at both ends in the circumferential direction. And these vertical arm parts 18a and 18a are connected by the vertical arm parts 18a and 18a of another set of partition wall rows 5R adjacent in the circumferential direction by a pair of arc arm parts (an example of “lateral bridge part”) 18b and 18b. Therefore, the pair of partition walls 5R, 5R, that is, the six arc partition walls 5a to 5c are a pair of bridges 18 composed of two vertical arm portions 18a and two arc arm portions 18b. Thus, the partition wall group 5G (that is, the hard partition wall 5), which is a single component, is integrally formed.

つまり、ブリッジ18は、軸心P(=軸心Z)方向の一方(図4,5の矢印ハ方向であって、「積層方向に交差する方向の一方」に相当)で硬質隔壁5の外側に迂回配置されており、ブリッジ18で一体化されている複数の硬質隔壁5(隔壁群5G)を軸心P方向の他方(図4,5の矢印二方向であって、「積層方向に交差する方向の他方」に相当)の側から第1金型(硬質隔壁保持用金型の一例)K1に硬質隔壁5を挿入して装着させる方法が採られるようになる(隔壁装填工程c)。   That is, the bridge 18 is on the outer side of the hard partition wall 5 on one side in the direction of the axis P (= axis Z) (corresponding to “one direction in the direction of the arrow C in FIGS. 4 and 5 and intersecting the stacking direction”). A plurality of hard partition walls 5 (partition wall group 5G) that are integrated around the bridge 18 are arranged in the other direction in the direction of the axis P (two directions of arrows in FIGS. A method of inserting the hard partition wall 5 into the first mold (an example of a hard partition wall holding mold) K1 and mounting it from the other side (corresponding to the “other side in the direction to perform”) (partition loading step c).

上記の隔壁群5Gは、予めこれ専用の金型(図示省略)を用いての射出成形等によって単一の部品として形成されており、隔壁装填工程cは、その一部品である隔壁群5Gを、ブリッジ18を手で持つ等して、各円弧隔壁部5a〜5cの下端が対応する円環溝m1〜m3に挿入されるように第1金型K1に装填することにより為される。つまり、本来的には6個の部品である各円弧隔壁部5a〜5cの対応する第1〜第3円環溝m1〜m3への挿入操作が単一の操作でもって一挙に行うことが可能になっている。この隔壁装填工程cは、単一部品の隔壁群5Gを嵌め入れるだけで済むから、各第1〜第3円弧隔壁部5a〜5cの計6個の部品を各別に第1金型K1に嵌め入れる作業に比べて、簡単であり、かつ、短時間で行える効率の良いものとなっている。尚、図4では原理を理解し易くするために、ブリッジ18の硬質隔壁5に対する位置を、図8の状態とは異なる箇所に描いてある。   The partition wall group 5G is formed in advance as a single part by injection molding or the like using a dedicated die (not shown), and the partition wall loading step c is performed by removing the partition wall group 5G as one part. For example, by holding the bridge 18 by hand, the first mold K1 is loaded so that the lower ends of the arc partition walls 5a to 5c are inserted into the corresponding annular grooves m1 to m3. In other words, it is possible to perform the insertion operation into the corresponding first to third annular grooves m1 to m3 of the circular arc partition portions 5a to 5c, which are essentially six parts, at once by a single operation. It has become. In this partition wall loading step c, it is only necessary to fit the partition wall group 5G of a single part, so that a total of six parts, each of the first to third arc partition wall portions 5a to 5c, are individually fitted to the first mold K1. Compared to the work of putting in, it is simple and efficient, which can be done in a short time. In FIG. 4, for easy understanding of the principle, the position of the bridge 18 with respect to the hard partition wall 5 is depicted at a location different from the state of FIG.

図4に示すように、各円弧隔壁部5a〜5cとブリッジ18とは、縦アーム部18aから下方に延出される第1〜第3取付片r1〜r3を介して一体化されている。各取付片r1〜r3は、例えば、図示されるように先細り状(下窄まり状)に形成する等により、いずれも対応する円弧隔壁部5a〜5cとの分離がし易いように構成されている。隔壁群5Gは合成樹脂製であるから、カッター刃等の切断手段(図示省略)を用いて第1〜第3取付片r1〜r3を対応する円弧隔壁部5a〜5c寸前の位置で切断除去し易いものとなっている。   As shown in FIG. 4, each of the circular arc partition portions 5 a to 5 c and the bridge 18 are integrated via first to third attachment pieces r <b> 1 to r <b> 3 extending downward from the vertical arm portion 18 a. Each of the attachment pieces r1 to r3 is configured so as to be easily separated from the corresponding circular arc partition portions 5a to 5c, for example, by being formed in a tapered shape (constricted shape) as illustrated. Yes. Since the partition group 5G is made of synthetic resin, the first to third attachment pieces r1 to r3 are cut and removed at positions just before the corresponding circular arc partition portions 5a to 5c using a cutting means (not shown) such as a cutter blade. It is easy.

隔壁装填工程cは、図5に示すように、第1金型K1に挿入セットされた状態の隔壁群5Gから、ブリッジ18を取り去る(除去する)ブリッジ除去工程jを含んでいる。即ち、ブリッジ除去工程jは、前述したようにカッター刃等を用いて各第1〜第3取付片r1〜r3をそれらの下端でカットする工程であって、ブリッジ18が除去された状態は、6個の円弧隔壁部5a〜5cが各別に第1金型K1にセットされた状態になる。   As shown in FIG. 5, the partition wall loading step c includes a bridge removal step j that removes (removes) the bridge 18 from the partition wall group 5G inserted and set in the first mold K1. That is, the bridge removing step j is a step of cutting the first to third attachment pieces r1 to r3 at their lower ends using a cutter blade or the like as described above, and the state where the bridge 18 is removed is as follows. The six arc partition walls 5a to 5c are set in the first mold K1 separately.

金型セット工程dは、図6に示すように、主軸1、外筒2、及び全ての硬質隔壁5がセットされた状態の第1金型K1に、第2金型K2を被せて密封させる工程である。この第1及び第2金型のセットにより、主軸1と各硬質隔壁5A〜5Cと外筒2との間に、第1〜第4弾性層4A〜4D用の計8箇所の円弧状の第1〜第4空間部s1,s2,s3,s4が形成されている。尚、主軸1を第1金型K1に装填する主軸装填工程a、及び外筒2を第1金型K1に嵌め入れる外筒装填工程bは、隔壁装填工程cに先立って行ってもその後に行っても良く、それら工程b,cの図示は省略する。   In the mold setting step d, as shown in FIG. 6, the first mold K1 in which the main shaft 1, the outer cylinder 2, and all the hard partition walls 5 are set is covered with the second mold K2 and sealed. It is a process. By setting the first and second molds, a total of eight arc-shaped firsts for the first to fourth elastic layers 4A to 4D are provided between the main shaft 1, the hard partition walls 5A to 5C, and the outer cylinder 2. 1st-4th space part s1, s2, s3, s4 is formed. The spindle loading process a for loading the spindle 1 into the first mold K1 and the outer cylinder loading process b for fitting the outer cylinder 2 into the first mold K1 may be performed prior to the partition wall loading process c. The steps b and c are not shown.

また、図示は省略するが、一対の肉抜き部12,12を形成するための一対の突起型部が第1及び第2金型K1,K2に形成されている。第1金型K1の突起型部は上方に伸びる状態に立設され、第2金型K2の突起型部は下方に伸びる状態に垂設されている。   Although not shown, a pair of protruding mold parts for forming the pair of lightening parts 12 and 12 are formed in the first and second molds K1 and K2. The protruding mold part of the first mold K1 is erected in a state of extending upward, and the protruding mold part of the second mold K2 is suspended in a state of extending downward.

ところで、上側の第2金型K2は、第1金型K1と同様に、主軸1の上端部を嵌め入れるための中心凹入円部26、第1硬質隔壁5A(第1円弧隔壁部5a)の上端部を嵌め入れるための第1円環溝m1、第2硬質隔壁5B(第2円弧隔壁部5b)の上端部を嵌め入れるための第2円環溝m2、第3硬質隔壁5C(第3円弧隔壁部5c)の上端部を嵌め入れるための第3円環溝m3、及び外筒2の上端部を嵌め入れるための外側円環溝m4が、互いに等しい軸心Zを有する状態(同心円の状態)で型部材24に形成されることで構成されている。また、第1金型K1にある第1〜第4突条環t1〜t4も同様に形成されている。   By the way, the upper second mold K2, like the first mold K1, has a center recessed circular portion 26 for fitting the upper end portion of the main shaft 1 and the first hard partition 5A (first arc partition 5a). The first annular groove m1 for fitting the upper end of the second annular groove m2, the second annular groove m2 for fitting the upper end of the second hard partition 5B (second arc partition 5b), and the third hard partition 5C (first A state in which the third annular groove m3 for fitting the upper end portion of the three arc partition walls 5c) and the outer annular groove m4 for fitting the upper end portion of the outer cylinder 2 have the same axis Z (concentric circles). In this state, the mold member 24 is formed. Moreover, the 1st-4th protrusion ring t1-t4 in the 1st metal mold | die K1 is also formed similarly.

ゴム注入工程eは、図7に示すように、第1〜第4弾性層4A〜4Dを形成すべく、第1〜第4空間部s1〜s4に主注入路23及び注入路19〜22を通してゴムを流し込み注入する工程である。図7等では省略してあるが、ゴム注入時におけるエア抜き用路が各空間部s1〜s4に連通する状態で設けられている。ゴム注入工程eが終了すると、その後に所定の加硫温度に加熱(又は加熱及び加圧)された状態を設定時間維持する加硫工程C(図9参照)が行われ、製品(軸ばねA)が完成する。   In the rubber injection step e, as shown in FIG. 7, in order to form the first to fourth elastic layers 4A to 4D, the main injection path 23 and the injection paths 19 to 22 are passed through the first to fourth space portions s1 to s4. This is a process of pouring and injecting rubber. Although omitted in FIG. 7 and the like, an air venting path at the time of rubber injection is provided in a state communicating with each of the spaces s1 to s4. When the rubber injection step e is completed, a vulcanization step C (see FIG. 9) is performed to maintain a state heated (or heated and pressurized) to a predetermined vulcanization temperature for a set time, and a product (shaft spring A ) Is completed.

〔別実施例〕
隔壁装填工程cとしては、図12に示すように、第1〜第3ブリッジ円弧隔壁部5a〜5cの3個で成る隔壁列5Rと、それらを一体化する単一のブリッジ18とから隔壁群5Gを用意し、これを第1金型K1に挿入セットするものとしても良い。この場合のブリッジ18は、第1〜第3取付片r1〜r3を有する単一の縦アーム部18aで構成されている。
[Another Example]
As shown in FIG. 12, the partition wall loading step c includes a partition wall group composed of three partition wall rows 5R including first to third bridge arc partition walls 5a to 5c and a single bridge 18 that integrates them. 5G may be prepared and inserted and set in the first mold K1. The bridge 18 in this case is configured by a single vertical arm portion 18a having first to third attachment pieces r1 to r3.

各硬質隔壁5A〜5Cが円筒状のものである場合には、図12に示される構成のブリッジ18の一対を設けるとか、複数又は多数の硬質隔壁の一部分(例えば、6層あるうちの3層ずつ一体化するとか、5層あるうちの3層と2層ずつを一体化する等)をブリッジ18で連結一体化する手段でも良い。複数の硬質隔壁5が金属製である場合には、金属製のブリッジ18を溶着によって連結一体化する手段も可能である。また、本発明によるブリッジ18を、懸架体の一例である免震支承装置における積層ゴム(圧縮型積層ゴム)の製造時や、コニカルストッパー等のせん断型積層ゴムを有する車両用軸ばねの製造時等に適用することが可能である。   When each of the hard partition walls 5A to 5C has a cylindrical shape, a pair of bridges 18 having the configuration shown in FIG. 12 is provided, or a part of a plurality or a plurality of hard partition walls (for example, 3 layers out of 6 layers) Alternatively, the bridge 18 may be used to integrate the three layers or the two layers of the five layers. In the case where the plurality of hard partition walls 5 are made of metal, means for connecting and integrating the metal bridges 18 by welding is also possible. Further, the bridge 18 according to the present invention is manufactured at the time of manufacturing laminated rubber (compression type laminated rubber) in a seismic isolation bearing device which is an example of a suspension body, or at the time of manufacturing a vehicle shaft spring having a shear type laminated rubber such as a conical stopper. It is possible to apply to.

軸ばねの断面図Cross section of shaft spring 図1の軸ばねの底面図Bottom view of the shaft spring of FIG. 第1金型を示す半断面図Half sectional view showing the first mold 隔壁装填工程を示す作用図Action diagram showing bulkhead loading process ブリッジ除去工程を示す作用図Action diagram showing bridge removal process 第2金型装着工程を示す作用図Action diagram showing the second mold mounting process ゴム注入工程を示す作用図Action diagram showing rubber injection process ブリッジを示す硬質隔壁の平面図Top view of hard bulkhead showing bridge 軸ばねの製造方法を示すフローチャートFlow chart showing a method for manufacturing a shaft spring 軸ばねの使用例を示す鉄道台車要部の一部切欠き側面図Partially cutaway side view of the main part of a railway carriage showing an example of the use of a shaft spring 鉄道台車の概略構成を示す見下ろしの全体斜視図Overall perspective view of the overhead view showing the schematic configuration of the railway carriage ブリッジの別実施例を示す硬質隔壁の斜視図The perspective view of the hard partition which shows another example of a bridge 従来の軸ばねの製造方法を示す作用図Operational diagram showing a conventional method of manufacturing a shaft spring

符号の説明Explanation of symbols

1 第1支持部材、主軸
2 第2支持部材、外筒
3 弾性部
4 弾性層
5 硬質隔壁
5a〜5c 円弧隔壁部
18 ブリッジ
18b 横ブリッジ部
A 懸架体、軸ばね
K1 硬質隔壁保持用金型
P 軸心
DESCRIPTION OF SYMBOLS 1 1st support member, main shaft 2 2nd support member, outer cylinder 3 Elastic part 4 Elastic layer 5 Hard partition 5a-5c Arc partition part 18 Bridge 18b Lateral bridge part A Suspension body, Shaft spring K1 Hard partition holding mold P Axis

Claims (4)

第1支持部材と第2支持部材との間に、複数の弾性層と硬質隔壁とを交互に積層する積層ゴム構造の弾性部が介装されて成る懸架体の製造方法であって、
前記複数の硬質隔壁を、それらを所定の積層方向間隔に維持して前記積層方向に交差する方向の一方の外側に迂回配置されるブリッジで連結一体化しておき、そのブリッジで一体化されている複数の硬質隔壁を前記積層方向に交差する方向の他方の側から硬質隔壁保持用金型に装着させる懸架体の製造方法。
A method for manufacturing a suspension body in which an elastic part of a laminated rubber structure in which a plurality of elastic layers and hard partition walls are alternately stacked is interposed between a first support member and a second support member,
The plurality of hard partition walls are connected and integrated by a bridge that is detoured outside one of the directions intersecting the stacking direction while maintaining the predetermined interval in the stacking direction, and integrated by the bridge. A method for manufacturing a suspension body, wherein a plurality of hard partition walls are attached to a hard partition wall holding mold from the other side in a direction crossing the stacking direction.
主軸とこれと互いに同一又はほぼ同一の軸心を有する外筒との間に、複数の弾性層と硬質隔壁とを前記軸心と同心又はほぼ同心状態で径内外方向で交互に積層する積層ゴム構造の弾性部が介装されて成る軸ばねの製造方法であって、
前記複数の硬質隔壁を、それらを所定の径方向間隔に維持して前記軸心方向の一方の外側に迂回配置されるブリッジで連結一体化しておき、そのブリッジで一体化されている複数の硬質隔壁を前記軸心方向の他方の側から硬質隔壁保持用金型に装着させる軸ばねの製造方法。
Laminated rubber in which a plurality of elastic layers and hard partition walls are alternately laminated in the inner and outer directions concentrically or substantially concentrically with the shaft center between the main shaft and the outer cylinder having the same or substantially the same shaft center. A method of manufacturing a shaft spring comprising an elastic part of a structure,
The plurality of hard partition walls are connected and integrated by a bridge that is detoured to one outside in the axial direction while maintaining a predetermined radial interval therebetween, and the plurality of hard partitions integrated by the bridge A manufacturing method of a shaft spring in which a partition wall is mounted on a hard partition wall holding mold from the other side in the axial direction.
前記硬質隔壁が、前記軸心に対する周方向で2以上の円弧隔壁部から形成される場合には、前記ブリッジとして、周方向で隣合う前記円弧隔壁部どうしを前記一方の外側に迂回配置される横ブリッジ部を有するものを用いる請求項2に記載の軸ばねの製造方法。   When the hard partition is formed of two or more arc partition portions in the circumferential direction with respect to the shaft center, the arc partition portions adjacent in the circumferential direction are arranged around the outside of the one as the bridge. The manufacturing method of the axial spring of Claim 2 using what has a horizontal bridge part. 前記硬質隔壁として合成樹脂製のものを用いる請求項1に記載の懸架体の製造方法、或いは請求項2又は3に記載の軸ばねの製造方法。   The method for manufacturing a suspension body according to claim 1, or the method for manufacturing a shaft spring according to claim 2 or 3, wherein the hard partition wall is made of a synthetic resin.
JP2007200753A 2007-08-01 2007-08-01 Manufacturing method for suspension body or axle spring Withdrawn JP2009036292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007200753A JP2009036292A (en) 2007-08-01 2007-08-01 Manufacturing method for suspension body or axle spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007200753A JP2009036292A (en) 2007-08-01 2007-08-01 Manufacturing method for suspension body or axle spring

Publications (1)

Publication Number Publication Date
JP2009036292A true JP2009036292A (en) 2009-02-19

Family

ID=40438384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200753A Withdrawn JP2009036292A (en) 2007-08-01 2007-08-01 Manufacturing method for suspension body or axle spring

Country Status (1)

Country Link
JP (1) JP2009036292A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092400A (en) * 2009-12-15 2011-06-15 东洋橡胶工业株式会社 Shaft spring for railway vehicle and producing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092400A (en) * 2009-12-15 2011-06-15 东洋橡胶工业株式会社 Shaft spring for railway vehicle and producing method thereof
JP2011127627A (en) * 2009-12-15 2011-06-30 Toyo Tire & Rubber Co Ltd Shaft spring for railroad vehicle and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR102330987B1 (en) Method for the powder-based additive manufacture of a component, notably a sype-moulding tyre-mould liner, with an asociated reinforcing element
ES2893276T3 (en) Wheel composed of assembled spoke elements
US20100019564A1 (en) Wheel wound from fiber-reinforced plastic and method for its production
CN103171755B (en) Standardization isolating device for aircraft and production and preparation method thereof
JP6030480B2 (en) Fastening resin structure and manufacturing method thereof
JP2019528408A (en) Method for manufacturing leaf spring and chassis for vehicle with leaf spring and motor
US10189509B2 (en) Vehicular structure
JP2009036292A (en) Manufacturing method for suspension body or axle spring
JP2008195223A (en) Car body skeleton structure
CN102741119A (en) Aircraft fuselage and skin section
US10611065B2 (en) Manufacturing method for conveyance seat
JP2013201802A (en) Clamp integrated type assembly wire harness protection member and manufacturing method of the same
JP4571568B2 (en) Dynamic damper, manufacturing method thereof, and propeller shaft
CN103228425B (en) For the half-finished modular manufacturing device of integrated cellulose and the method for being manufactured endless fibers composite component by the integrated cellulose compound semi-finished product with hollow body structure
KR102194790B1 (en) H beam shape bead wire filed bead core applied heavy load pneumatic tire
JP5973366B2 (en) Closed section frame structure
JP2019532866A (en) Reinforcing element for automotive liquid container and automotive liquid container with reinforcing element
JPH01278801A (en) Rail wheel
EP2746038A1 (en) Method for the production of a structural component, structural component, shell, and aircraft or spacecraft
KR102389357B1 (en) Pneumatic fender and manufacturing method thereof
JP2020006804A (en) Vehicular wheel
JP4511438B2 (en) Vibration isolator and manufacturing method thereof
JP2006247867A (en) Frp honeycomb structure and its manufacturing method
JP5707933B2 (en) Method for producing hollow structure provided with foam reinforcing member
JP2008179307A (en) Vehicle wheel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005