JP2009035586A - Epoxy resin composition, cured product thereof, varnish for printed circuit board, new epoxy resin and method for producing the same - Google Patents

Epoxy resin composition, cured product thereof, varnish for printed circuit board, new epoxy resin and method for producing the same Download PDF

Info

Publication number
JP2009035586A
JP2009035586A JP2007198912A JP2007198912A JP2009035586A JP 2009035586 A JP2009035586 A JP 2009035586A JP 2007198912 A JP2007198912 A JP 2007198912A JP 2007198912 A JP2007198912 A JP 2007198912A JP 2009035586 A JP2009035586 A JP 2009035586A
Authority
JP
Japan
Prior art keywords
epoxy resin
group
resin composition
equivalent
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007198912A
Other languages
Japanese (ja)
Other versions
JP5012290B2 (en
Inventor
Atsuko Kobayashi
厚子 小林
Ichiro Ogura
一郎 小椋
Koji Miwa
広治 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2007198912A priority Critical patent/JP5012290B2/en
Publication of JP2009035586A publication Critical patent/JP2009035586A/en
Application granted granted Critical
Publication of JP5012290B2 publication Critical patent/JP5012290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition having excellent flame retardance and excellent toughness and to provide a new epoxy resin imparting the performances to a cured product. <P>SOLUTION: The epoxy resin composition comprises an epoxy resin (A) and a curing agent (B). The epoxy resin (A) is a bifunctional type epoxy resin prepared by reacting a bifunctional type epoxy resin (a) with a monofunctional active hydrogen-containing phosphorus compound (b) and a diisocyanate compound (c) and having a phosphorus atom and a urethane bond in the molecular structure. The bifunctional type epoxy resin has an epoxy equivalent thereof within the range of 300-2,000 g/equivalent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は得られる硬化物の難燃性に優れ、半導体封止材、プリント回路基板、塗料、注型用途等に好適に用いる事が出来るエポキシ樹脂組成物、その硬化物、及び該エポキシ樹脂組成物に好適に用いる事が出来る新規エポキシ樹脂及びその製造方法に関する。   The present invention is excellent in flame retardancy of the resulting cured product, and can be suitably used for semiconductor encapsulant, printed circuit board, paint, casting application, etc., cured product thereof, and the epoxy resin composition The present invention relates to a novel epoxy resin that can be suitably used for products and a method for producing the same.

エポキシ樹脂は、硬化時の低収縮性、硬化物の寸法安定性、電気絶縁性及び耐薬品性などに優れた硬化物を与える点から半導体封止材やプリント回路基板等のエレクトロニクス分野や高機能塗料分野などに広く用いられている。かかるエレクトロニクス分野や高機能塗料分野においては、高度な難燃性が要求されている為、これらの分野に適用されるエポキシ樹脂組成物は、ビスフェノールA型エポキシ樹脂やノボラック型エポキシ樹脂等のエポキシ樹脂、硬化剤にハロゲン系難燃剤及びアンチモン化合物を配合して調整されるのが一般的である。   Epoxy resins provide cured products with excellent shrinkage during curing, dimensional stability of cured products, electrical insulation and chemical resistance, etc., and are highly functional in the electronics field such as semiconductor encapsulants and printed circuit boards. Widely used in the paint field. In the field of electronics and high-performance paints, high flame retardancy is required, and epoxy resin compositions applied to these fields are epoxy resins such as bisphenol A type epoxy resin and novolac type epoxy resin. In general, the curing agent is adjusted by blending a halogen-based flame retardant and an antimony compound.

しかしながら、近年の環境・安全への取り組みのなかで、ハロゲン系難燃剤はダイオキシン発生が懸念されている。一方、アンチモン化合物も発ガン性が疑われており、ハロゲン系難燃剤・アンチモン化合物に代わる環境・安全対応型の難燃化方法の開発が強く要求されていた。それらの要求に対応するための手段として、エポキシ樹脂自体に難燃性を付与する技術が種々検討されており、例えば、ビスフェノール型エポキシ樹脂に、9、10-ジヒドロ-9-オキサ-10-フォスファフェナンスレン-10-オキサイド(以下、「HCA」と略記する。)を芳香核上の置換基として有するジヒドロキシベンゼン或いはジヒドロキシナフタレンを反応させて得られる2官能型の燐原子含有エポキシ樹脂を用いる技術が知られている(例えば、特許文献1及び2参照)。しかしながら、かかる2官能型の燐原子含有エポキシ樹脂は、ビスフェノール型エポキシ樹脂を燐原子含有の構造部位で結節する為、エポキシ当量が大きくなり、硬化後の架橋点間距離が長くなって硬化物自体の靱性を低下させていた。また、その他の難燃化方法としてはノボラック型エポキシ樹脂のエポキシ基に直接、HCAを反応させて得られるエポキシ樹脂を用いる技術が知られている(例えば、特許文献3)。しかしながら、かかるエポキシ樹脂を主たる成分として用いた場合には樹脂構造自体が剛直なものとなり、引っ張り強度や引っ張り伸びの低下を招き、やはり硬化物の靱性に劣るものであった。
このように硬化物の靱性が十分に発現されない場合、特にプリント回路基板用ワニスとして用いる場合には、プリント配線基板製造時に吸湿後のハンダ処理工程で、剥離やクラックなどの不良が避けられないものであった。
However, among recent environmental and safety initiatives, there is a concern that halogen flame retardants generate dioxins. On the other hand, antimony compounds are also suspected of having carcinogenic properties, and there has been a strong demand for the development of flame retardant methods that are environmental and safety alternatives to halogen-based flame retardants and antimony compounds. As a means for meeting these requirements, various techniques for imparting flame retardancy to the epoxy resin itself have been studied. For example, 9,10-dihydro-9-oxa-10-phos is added to a bisphenol type epoxy resin. A bifunctional phosphorus atom-containing epoxy resin obtained by reacting dihydroxybenzene or dihydroxynaphthalene having phenanthrene-10-oxide (hereinafter abbreviated as “HCA”) as a substituent on the aromatic nucleus is used. Techniques are known (see, for example, Patent Documents 1 and 2). However, such a bifunctional phosphorus atom-containing epoxy resin knots a bisphenol-type epoxy resin at a phosphorus atom-containing structural site, so that the epoxy equivalent becomes large and the distance between cross-linking points after curing becomes long, resulting in a cured product itself. Had reduced toughness. As another flame retardant method, a technique using an epoxy resin obtained by directly reacting an HCA with an epoxy group of a novolak type epoxy resin is known (for example, Patent Document 3). However, when such an epoxy resin is used as a main component, the resin structure itself becomes rigid, leading to a decrease in tensile strength and tensile elongation, which is also inferior in toughness of the cured product.
In this way, when the toughness of the cured product is not sufficiently expressed, especially when used as a varnish for printed circuit boards, defects such as peeling and cracking are unavoidable in the solder treatment process after moisture absorption during printed wiring board manufacture. Met.

特許第3613724号Japanese Patent No. 3613724

本発明が解決しようとする課題は、その硬化物において、優れた難燃性を有すると共に、優れた靭性を有するエポキシ樹脂組成物、及び、これらの性能を硬化物に与える新規エポキシ樹脂を提供することにある。   The problem to be solved by the present invention is to provide an epoxy resin composition having excellent flame retardancy and excellent toughness in the cured product, and a novel epoxy resin that provides these properties to the cured product. There is.

本発明者らは、上記課題を解決すべく鋭意検討した結果、高分子量化された2官能型エポキシ樹脂の樹脂構造中に燐原子と共にウレタン結合を導入することにより優れた難燃性と共に高度な靱性を硬化物に付与できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have introduced a urethane bond together with phosphorus atoms into a resin structure of a high molecular weight bifunctional epoxy resin, and have excellent flame retardancy and advanced It has been found that toughness can be imparted to the cured product, and the present invention has been completed.

即ち、本発明は、分子構造内に燐原子とウレタン結合とを有する2官能型エポキシ樹脂であって、かつ、そのエポキシ当量が300〜2000g/当量の範囲にあるエポキシ樹脂(A)、及び硬化剤(B)を必須成分とすることを特徴とするエポキシ樹脂組成物に関する。   That is, the present invention is a bifunctional epoxy resin having a phosphorus atom and a urethane bond in the molecular structure, and an epoxy resin (A) having an epoxy equivalent in the range of 300 to 2000 g / equivalent, and curing It is related with the epoxy resin composition characterized by making an agent (B) into an essential component.

本発明は、更に、該エポキシ樹脂組成物からなるプリント回路基板用ワニスに関する。
本発明は、更に、下記構造式1
The present invention further relates to a varnish for a printed circuit board comprising the epoxy resin composition.
The present invention further includes the following structural formula 1

Figure 2009035586

(式中、Gはグリシジル基、Arは、ナフチレン基、又は、下記構造式2
Figure 2009035586

(In the formula, G is a glycidyl group, Ar 1 is a naphthylene group, or the following structural formula 2

Figure 2009035586

(構造式2中、Xは炭素原子数1〜3のアルキリデン基又はスルホニル基を表し、R〜Rはそれぞれ独立的に水素原子又はメチル基を表す。)で表される2価の有機基、Arは芳香族炭化水素基、Yは有機ホスファニル基、nは繰り返し単位の平均で0.05〜2.8である。)
で表される構造を有する新規エポキシ樹脂に関する。
本発明は、更に、前記エポキシ樹脂組成物を硬化させてなる硬化物に関する。
Figure 2009035586

(In Structural Formula 2, X represents an alkylidene group having 1 to 3 carbon atoms or a sulfonyl group, and R 1 to R 4 each independently represents a hydrogen atom or a methyl group.) Group, Ar 2 is an aromatic hydrocarbon group, Y is an organic phosphanyl group, and n is 0.05 to 2.8 on the average of the repeating units. )
It relates to a novel epoxy resin having a structure represented by:
The present invention further relates to a cured product obtained by curing the epoxy resin composition.

本発明によれば、その硬化物において、優れた難燃性を有すると共に、優れた靭性を有するエポキシ樹脂組成物、及び、これらの性能を硬化物に与える新規エポキシ樹脂を提供できる。   According to the present invention, it is possible to provide an epoxy resin composition having excellent flame retardancy and excellent toughness in the cured product, and a novel epoxy resin that imparts these performances to the cured product.

以下、本発明を詳細に説明する。
本発明のエポキシ樹脂組成物は、分子構造内に燐原子とウレタン結合とを有する2官能型エポキシ樹脂であって、かつ、そのエポキシ当量が300〜2000g/当量の範囲にあるエポキシ樹脂(A)を主剤として用いることを特徴とするものである。
前記エポキシ樹脂(A)は分子構造中に燐原子を有することから優れた難燃性を発現すると共に、2官能型エポキシ樹脂であってエポキシ当量が300〜2000g/当量であることから、硬化物において適度な架橋密度を形成し、更に分子内にウレタン結合を有することから優れた靱性を発現させることができる。
Hereinafter, the present invention will be described in detail.
The epoxy resin composition of the present invention is a bifunctional epoxy resin having a phosphorus atom and a urethane bond in the molecular structure, and an epoxy resin (A) having an epoxy equivalent in the range of 300 to 2000 g / equivalent. Is used as a main agent.
Since the epoxy resin (A) has a phosphorus atom in its molecular structure, it exhibits excellent flame retardancy and is a bifunctional epoxy resin having an epoxy equivalent of 300 to 2000 g / equivalent, so that a cured product is obtained. In this case, an appropriate toughness can be formed, and an excellent toughness can be exhibited since it has a urethane bond in the molecule.

前記エポキシ樹脂(A)中の燐原子の含有率は0.5〜10質量%の範囲となる割合であることが、難燃効果が顕著なものとなる点から好ましい。また、前記エポキシ樹脂(A)中のウレタン結合の含有率は該エポキシ樹脂1分子中、平均0.1〜5.6個となる割合であることが、硬化物の靱性が良好となる点から好ましい。   The content of phosphorus atoms in the epoxy resin (A) is preferably in a range of 0.5 to 10% by mass from the viewpoint that the flame retardant effect becomes remarkable. In addition, the content of urethane bonds in the epoxy resin (A) is a ratio of 0.1 to 5.6 on average in one molecule of the epoxy resin, because the toughness of the cured product is improved. preferable.

前記エポキシ樹脂(A)の樹脂構造中に燐原子及びウレタン結合を取りこむ方法としては、例えば、2官能型エポキシ樹脂(a)に1官能性活性水素含有燐化合物(b)を反応させ、次いで、生成した水酸基にジイソシアネート化合物(c)を反応させる方法が挙げられる。   Examples of a method for incorporating a phosphorus atom and a urethane bond into the resin structure of the epoxy resin (A) include, for example, reacting a bifunctional epoxy resin (a) with a monofunctional active hydrogen-containing phosphorus compound (b), The method of making the diisocyanate compound (c) react with the produced | generated hydroxyl group is mentioned.

ここで用いられる2官能型エポキシ樹脂(a)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールA型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のビフェニル型エポキシ樹脂;ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;ジグリシジルオキシナフタレン;キサンテン骨格を分子構造中に有するエポキシ樹脂が挙げられる。   Examples of the bifunctional epoxy resin (a) used here include bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethyl bisphenol A type epoxy resin, tetramethyl bisphenol F type epoxy resin, and bisphenol S type epoxy resin. Biphenyl type epoxy resin; biphenyl type epoxy resin such as biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin; dicyclopentadiene-phenol addition reaction type epoxy resin; phenol aralkyl type epoxy resin; diglycidyloxynaphthalene; molecular structure of xanthene skeleton The epoxy resin which it has is mentioned.

これらの中でも、特にビスフェノール型エポキシ樹脂が本発明の効果が顕著なものとなる点から好ましく、特に液状ビスフェノール型エポキシ樹脂であることが、エポキシ樹脂(A)の製造が容易である点から好ましい。更に、該液状ビスフェノール型エポキシ樹脂の中でも、とりわけ2核体の含有率が80質量%以上のものがエポキシ樹脂(A)製造時の三次元化分岐性が低く、燐原子を多量に含有させても、過度の増粘やゲル化に至るような問題が少なく為、特に好ましい。   Among these, a bisphenol type epoxy resin is particularly preferable from the viewpoint that the effect of the present invention is remarkable, and a liquid bisphenol type epoxy resin is particularly preferable from the viewpoint of easy production of the epoxy resin (A). Further, among the liquid bisphenol-type epoxy resins, those having a binuclear content of 80% by mass or more have a low three-dimensional branching property during the production of the epoxy resin (A), and contain a large amount of phosphorus atoms. However, since there are few problems that lead to excessive thickening and gelation, it is particularly preferable.

次に、1官能性活性水素含有燐化合物(b)としては、ジメチルホスフィン酸、ジブチルホスフィン酸、ジフェニルホスフィン酸、ビス(p‐トリル)ホスフィン酸等のホスフィン酸類;ジメチルホスフィン、ジオクチルホスフィン等のジアルキルホスフィン類;ジフェニルホスフィン、ジフェニルホスフィンオキシド、9、10−ジヒドロ−9−オキサ-10-フォスファフェナンスレン-10-オキサイド等の芳香族系ホスフィン化合物が挙げられる。これらのなかでもエポキシ基への反応性が高い点から芳香族系ホスフィン化合物が好ましく、特に9、10−ジヒドロ−9−オキサ-10-フォスファフェナンスレン-10-オキサイドが好ましい。   Next, as the monofunctional active hydrogen-containing phosphorus compound (b), phosphinic acids such as dimethylphosphinic acid, dibutylphosphinic acid, diphenylphosphinic acid and bis (p-tolyl) phosphinic acid; dialkyl such as dimethylphosphine and dioctylphosphine Phosphines; aromatic phosphine compounds such as diphenylphosphine, diphenylphosphine oxide, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and the like. Among these, aromatic phosphine compounds are preferable from the viewpoint of high reactivity with epoxy groups, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide is particularly preferable.

次に、多官能型イソシアネート化合物(c)としては、1分子中に1個以上のイソシアネート基を含有する化合物であれば、全ての種類を用いることができる。例示するならば、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、1,6−ヘキサンジイソシアネート、1,5−ナフタレンジイソシアネート、イソホロンジイソシアネートなどが挙げられる。   Next, as the polyfunctional isocyanate compound (c), any kind can be used as long as it is a compound containing one or more isocyanate groups in one molecule. Illustrative examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,6-hexane diisocyanate, 1,5-naphthalene diisocyanate, isophorone diisocyanate, and the like.

これらのなかでも特に2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート等の芳香族系ジイソシアネート化合物であることが硬化物の難燃性の効果が顕著なものとなる点から好ましい。また、本発明では、前記芳香族系ジイソシアネート化合物に、1,6−ヘキサンジイソシアネートなどの脂肪族系ジイソシアネートを適宜併用することで接着性や靭性のバランスを図ることができる。   Among these, the flame retardant effect of the cured product is particularly remarkable when it is an aromatic diisocyanate compound such as 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, or 4,4′-diphenylmethane diisocyanate. It is preferable from the point of becoming. Moreover, in this invention, the balance of adhesiveness and toughness can be aimed at by using together aliphatic diisocyanate, such as 1, 6- hexane diisocyanate, with the said aromatic diisocyanate compound suitably.

上記した2官能型エポキシ樹脂(a)に1官能性活性水素含有燐化合物(b)を反応させ、次いで、生成した水酸基にジイソシアネート化合物(c)を反応させて得られるエポキシ樹脂(A)は、更に具体的には下記構造式1   An epoxy resin (A) obtained by reacting the bifunctional epoxy resin (a) with the monofunctional active hydrogen-containing phosphorus compound (b) and then reacting the generated hydroxyl group with the diisocyanate compound (c), More specifically, the following structural formula 1

下記構造式1 Structural formula 1

Figure 2009035586

(構造式1中、Gはグリシジル基、Arは、ナフチレン基、又は、下記構造式2
Figure 2009035586

(In Structural Formula 1, G is a glycidyl group, Ar 1 is a naphthylene group, or the following Structural Formula 2

Figure 2009035586

(構造式2中、Xは炭素原子数1〜3のアルキリデン基又はスルホニル基を表し、R〜Rはそれぞれ独立的に水素原子又はメチル基を表す。)で表される2価の有機基、Arは芳香族炭化水素基、Yは有機ホスファニル基をそれぞれ表し、nは繰り返し単位の平均で0.05〜2.8である。)
で表される構造を有する本発明の新規エポキシ樹脂であることが本発明の効果が顕著なものとなる点から好ましい。
Figure 2009035586

(In Structural Formula 2, X represents an alkylidene group having 1 to 3 carbon atoms or a sulfonyl group, and R 1 to R 4 each independently represents a hydrogen atom or a methyl group.) Group, Ar 2 represents an aromatic hydrocarbon group, Y represents an organic phosphanyl group, and n is 0.05 to 2.8 on the average of the repeating units. )
It is preferable that it is the novel epoxy resin of this invention which has a structure represented by these from the point where the effect of this invention becomes remarkable.

前記構造式1で表されるエポキシ樹脂(A)の中でも、特に下記構造式3   Among the epoxy resins (A) represented by the structural formula 1, in particular, the following structural formula 3

Figure 2009035586

(構造式3中、Xは炭素原子数1〜3のアルキリデン基又はスルホニル基を表し、R〜Rはそれぞれ独立的に水素原子又はメチル基を表し、Arは芳香族炭化水素基を表し、Yは有機ホスファニル基を表し、nは繰り返し単位の平均で0.05〜2.8である。)で表されるものが、硬化物の靱性向上の効果が顕著なものとなる点から好ましい。
Figure 2009035586

(In Structural Formula 3, X represents an alkylidene group having 1 to 3 carbon atoms or a sulfonyl group, R 1 to R 4 each independently represents a hydrogen atom or a methyl group, and Ar 2 represents an aromatic hydrocarbon group. Y represents an organic phosphanyl group, and n is 0.05 to 2.8 on the average of repeating units.) From the point that the effect of improving the toughness of the cured product becomes remarkable. preferable.

ここで、構造式1又は構造式3中「Y」で示される有機ホスファニル基は、具体的には、下記構造式p1〜p3で表されるものが挙げられる。   Here, specific examples of the organic phosphanyl group represented by “Y” in Structural Formula 1 or Structural Formula 3 include those represented by the following structural formulas p1 to p3.

Figure 2009035586

これらのなかでもエポキシ樹脂(A)の製造が容易であり、かつ、該エポキシ樹脂(A)の難燃効果が顕著なものとなる点から前記p1で表されるものが好ましい。
Figure 2009035586

Among these, the one represented by p1 is preferable from the viewpoint that the production of the epoxy resin (A) is easy and the flame retardant effect of the epoxy resin (A) becomes remarkable.

また、構造式2又は構造式3中の「X」は、前記した通り、炭素原子数1〜3のアルキリデン基又はスルホニル基であり、炭素原子数1〜3のアルキリデン基としてはメチリデン基、エチリデン基、2,2−プロピリデン基が挙げられる。これらのなかでも本発明の効果が顕著なものとなる点から2,2−プロピリデン基であることが好ましい。   In addition, “X” in Structural Formula 2 or Structural Formula 3 is an alkylidene group having 1 to 3 carbon atoms or a sulfonyl group as described above, and examples of the alkylidene group having 1 to 3 carbon atoms include a methylidene group and an ethylidene group. Group, and 2,2-propylidene group. Among these, a 2,2-propylidene group is preferable because the effects of the present invention are remarkable.

以上詳述したエポキシ樹脂(A)を製造する方法は、
(i)2官能型エポキシ樹脂(a)、1官能性活性水素含有燐化合物(b)及び多官能型イソシアネート化合物(c)を全て一度に混合して反応させる方法、或いは、
(ii)2官能型エポキシ樹脂(a)と1官能性活性水素含有燐化合物(b)とを反応させ(工程1)、次いで得られた反応生成物にジイソシアネート化合物(c)を反応させる(工程2)方法が挙げられる。
The method for producing the epoxy resin (A) detailed above is as follows:
(i) a method in which the bifunctional epoxy resin (a), the monofunctional active hydrogen-containing phosphorus compound (b) and the polyfunctional isocyanate compound (c) are mixed and reacted all at once, or
(ii) reacting the bifunctional epoxy resin (a) with the monofunctional active hydrogen-containing phosphorus compound (b) (step 1), and then reacting the resulting reaction product with the diisocyanate compound (c) (step) 2) A method is mentioned.

ここで、前記方法(i)及び(ii)において、2官能型エポキシ樹脂(a)と1官能性活性水素含有燐化合物(b)との反応割合は、前記2官能型エポキシ樹脂(a)中のエポキシ基1当量に対して、1官能性活性水素含有燐化合物(b)中の活性水素が0.2〜0.8当量の範囲となる割合、特に0.3〜0.6当量の範囲となる割合であることが燐原子濃度を適性範囲に調整できて難燃性が良好なものとなり、かつ、エポキシ樹脂(A)の耐湿信頼性も良好なものとなる点から好ましい。   Here, in the methods (i) and (ii), the reaction ratio between the bifunctional epoxy resin (a) and the monofunctional active hydrogen-containing phosphorus compound (b) is the same as that in the bifunctional epoxy resin (a). The ratio in which the active hydrogen in the monofunctional active hydrogen-containing phosphorus compound (b) is in the range of 0.2 to 0.8 equivalent, particularly in the range of 0.3 to 0.6 equivalent, relative to 1 equivalent of the epoxy group It is preferable that the ratio is such that the phosphorus atom concentration can be adjusted to an appropriate range, the flame retardancy is good, and the moisture resistance reliability of the epoxy resin (A) is also good.

また、ジイソシアネート化合物(c)の使用量は、前記2官能型エポキシ樹脂(a)中のエポキシ基1当量に対して、ジイソシアネート化合物(c)中のイソシアネート基が0.2〜0.8当量の範囲となる割合、特に0.3〜0.6当量の範囲となる割合であることがエポキシ樹脂(A)の硬化物の靱性が良好なものとなる点から好ましい。   The amount of the diisocyanate compound (c) used is such that the isocyanate group in the diisocyanate compound (c) is 0.2 to 0.8 equivalent relative to 1 equivalent of the epoxy group in the bifunctional epoxy resin (a). It is preferable from the point that the toughness of the hardened | cured material of an epoxy resin (A) will be favorable that it is a ratio used as the range, especially the range used as the range of 0.3-0.6 equivalent.

上記した各方法のなかでも、特に後者の方法(ii)が、反応選択性が高く、直鎖構造性の高い分子構造のエポキシ化合物を得ることができる点から好ましい。以下、方法(ii)について詳述する。   Among the above-described methods, the latter method (ii) is particularly preferable because an epoxy compound having a high reaction selectivity and a molecular structure having a high linear structure can be obtained. Hereinafter, the method (ii) will be described in detail.

方法(ii)の工程1の反応条件としては、例えば、2官能型エポキシ樹脂(a)と、1官能性活性水素含有燐化合物(b)を混合して、50〜200℃の温度範囲で1〜20時間撹拌することによって中間体を得ることができる。その際、必要に応じて有機溶媒も使用できる。用いられる有機溶媒としては、キシレン、トルエン等の芳香族系有機溶剤、
アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系有機溶剤、メタノール、エタノール、イソプロピルアルコール、n−ブタノール、メトキシプロパノール、シクロヘキサノール等のアルコール系有機溶剤、メチルセロソルブ、エチルセロソルブ等のエーテル系有機溶剤、酢酸メチル、酢酸エチル、酢酸プロピル等のエステル系有機溶剤、ノルマルヘキサン等の脂肪族炭化水素系有機溶剤などが挙げられる。その使用量は、原料100質量部に対して10〜500質量部となる割合であることが好ましい。
As the reaction conditions of step 1 of method (ii), for example, a bifunctional epoxy resin (a) and a monofunctional active hydrogen-containing phosphorus compound (b) are mixed, and the reaction condition is 1 in a temperature range of 50 to 200 ° C. Intermediates can be obtained by stirring for ~ 20 hours. In that case, an organic solvent can also be used as needed. Examples of organic solvents used include aromatic organic solvents such as xylene and toluene,
Ketone organic solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, alcohol organic solvents such as methanol, ethanol, isopropyl alcohol, n-butanol, methoxypropanol and cyclohexanol, ether organic solvents such as methyl cellosolve and ethyl cellosolve, acetic acid Examples thereof include ester organic solvents such as methyl, ethyl acetate and propyl acetate, and aliphatic hydrocarbon organic solvents such as normal hexane. It is preferable that the usage-amount is a ratio used as 10-500 mass parts with respect to 100 mass parts of raw materials.

また必要に応じて触媒も使用できる。ここで使用し得る触媒としては、例えば、ベンジルジメチルアミン等の第3級アミン類、テトラメチルアンモニウムクロライド等の第4級アンモニウム塩類、トリフェニルホスフィン、トリス(2,6−ジメトキシフェニル)ホスフィン等のホスフィン類、エチルトリフェニルホスホニウムブロマイド等のホスホニウム塩類、2メチルイミダゾール、2エチル4メチルイミダゾール等のイミダゾール類、三弗化ホウ素、無水塩化アルミニウム、塩化亜鉛などのルイス酸、ジブチル錫マレエート、ジブチル錫ジラウレート、2−エチルヘキサン酸亜鉛などの有機酸金属塩等が挙げられる。添加量としては、原料成分との合計に対して、10ppm〜1質量%の範囲であることが好ましい。   Moreover, a catalyst can also be used as needed. Examples of the catalyst that can be used here include tertiary amines such as benzyldimethylamine, quaternary ammonium salts such as tetramethylammonium chloride, triphenylphosphine, and tris (2,6-dimethoxyphenyl) phosphine. Phosphinium salts, phosphonium salts such as ethyltriphenylphosphonium bromide, imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, Lewis acids such as boron trifluoride, anhydrous aluminum chloride, zinc chloride, dibutyltin maleate, dibutyltin dilaurate And organic acid metal salts such as zinc 2-ethylhexanoate. The addition amount is preferably in the range of 10 ppm to 1% by mass with respect to the total of the raw material components.

次に、工程2としては、中間体と多官能イソシアネート化合物(c)の反応工程においては、両者を混合して、50〜200℃の温度で1〜20時間撹拌させることによって目的の燐原子含有ウレタン変性エポキシ樹脂を得ることができる。その際、必要に応じて有機溶媒も使用できる。用いられる有機溶媒としては、具体的には、キシレン、トルエン等の芳香族系有機溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系有機溶剤、メタノール、エタノール、イソプロピルアルコール、n−ブタノール、メトキシプロパノール、シクロヘキサノール等のアルコール系有機溶剤、メチルセロソルブ、エチルセロソルブ等のエーテル系有機溶剤、酢酸メチル、酢酸エチル、酢酸プロピル等のエステル系有機溶剤、ノルマルヘキサン等の脂肪族炭化水素系有機溶剤などが挙げられる。その使用量は、原料100質量部に対して10〜500質量部となる割合であることが好ましい。   Next, as the step 2, in the reaction step of the intermediate and the polyfunctional isocyanate compound (c), both are mixed and stirred at a temperature of 50 to 200 ° C. for 1 to 20 hours to contain the target phosphorus atom. A urethane-modified epoxy resin can be obtained. In that case, an organic solvent can also be used as needed. Specific examples of the organic solvent used include aromatic organic solvents such as xylene and toluene, ketone organic solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, methanol, ethanol, isopropyl alcohol, n-butanol, and methoxypropanol. Alcohol organic solvents such as cyclohexanol, ether organic solvents such as methyl cellosolve and ethyl cellosolve, ester organic solvents such as methyl acetate, ethyl acetate and propyl acetate, and aliphatic hydrocarbon organic solvents such as normal hexane. Can be mentioned. It is preferable that the usage-amount is a ratio used as 10-500 mass parts with respect to 100 mass parts of raw materials.

また必要に応じて触媒も使用できる。ここで使用し得る触媒としては、例えば、オクチル酸錫、ジブチル錫ラウレートなどの有機金属化合物、1、4−ジアザ−2、2、2−ビシクロオクタン、トリエチルアミン、ジメチルシクロヘキシルアミン、
ジアザビシクロウンデカン、ジエチルベンジルアミンなどの3級アミン等が挙げられる。
添加量としては、原料成分との合計に対して、5〜1000ppmとなる範囲であることが好ましい。
Moreover, a catalyst can also be used as needed. Examples of the catalyst that can be used here include organometallic compounds such as tin octylate and dibutyltin laurate, 1,4-diaza-2,2,2-bicyclooctane, triethylamine, dimethylcyclohexylamine,
And tertiary amines such as diazabicycloundecane and diethylbenzylamine.
The addition amount is preferably in a range of 5 to 1000 ppm with respect to the total of the raw material components.

本発明のエポキシ樹脂組成物は、前記エポキシ樹脂(A)と共に、その他のエポキシ樹脂を併用してもよい。   The epoxy resin composition of the present invention may use other epoxy resins in combination with the epoxy resin (A).

ここで使用し得る他の種類のエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂等が挙げられる。またこれらのエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。特にビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂及びキサンテン骨格を分子構造中に有するエポキシ樹脂が、難燃性に優れる点から特に好ましい。
上記したその他のエポキシ樹脂の使用割合は、エポキシ樹脂組成物中5〜70質量%、特に5〜60質量%であることが好ましい。
Examples of other types of epoxy resins that can be used here include bisphenol A type epoxy resins, bisphenol F type epoxy resins, biphenyl type epoxy resins, tetramethylbiphenyl type epoxy resins, phenol novolac type epoxy resins, and cresol novolak type epoxy resins. Resin, bisphenol A novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy Resin, naphthol-phenol co-condensed novolak epoxy resin, naphthol-cresol co-condensed novolac epoxy resin, aromatic hydrocarbon formaldehyde Fat-modified phenol resin type epoxy resin, a biphenyl novolak type epoxy resins. Moreover, these epoxy resins may be used independently and may mix 2 or more types. In particular, a biphenyl type epoxy resin, a naphthalene type epoxy resin, a phenol aralkyl type epoxy resin, a biphenyl novolac type epoxy resin, and an epoxy resin having a xanthene skeleton in the molecular structure are particularly preferable from the viewpoint of excellent flame retardancy.
It is preferable that the usage-amount of said other epoxy resin mentioned above is 5-70 mass% in an epoxy resin composition, especially 5-60 mass%.

次に、本発明で用いる硬化剤(B)は、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ−ル系化合物などが挙げられる。   Next, examples of the curing agent (B) used in the present invention include amine compounds, amide compounds, acid anhydride compounds, phenol compounds, and the like.

具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。 Specifically, examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, and guanidine derivative. Examples of the amide compound include dicyandiamide. And a polyamide resin synthesized from a dimer of linolenic acid and ethylenediamine.

酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。   Acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydro And phthalic anhydride.

フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(通称、「ザイロック樹脂」)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等の多価フェノール化合物、及びこれらの変性物等が挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。   Examples of phenolic compounds include phenol novolac resins, cresol novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins, dicyclopentadiene phenol addition resins, phenol aralkyl resins (commonly known as “Zylock resins”), naphthol aralkyl resins, trimethylol. Methane resin, tetraphenylolethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin (polyphenol compound in which phenol nucleus is linked by bismethylene group), biphenyl Modified naphthol resin (polyvalent naphthol compound in which phenol nucleus is linked by bismethylene group), aminotriazine modified phenolic resin (melamine or benzogua) Min polyhydric phenol compound phenol nuclei are connected by, etc.) the polyhydric phenol compound such as, and and modified products thereof. These may be used alone or in combination of two or more.

これらの中でも、ジシアンジアミド、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂が難燃性に優れることから好ましく、特にフェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂等の高芳香族性、高水酸基当量の多価ヒドロキシ化合物や窒素原子を含有するアミノトリアジン変性フェノール樹脂等の化合物を用いることが、得られる硬化物の難燃性が優れる点から好ましい。   Among these, dicyandiamide, phenol novolak resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, phenol aralkyl resin, naphthol aralkyl resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak Resins, biphenyl-modified phenol resins, biphenyl-modified naphthol resins, and aminotriazine-modified phenol resins are preferred because they are excellent in flame retardancy, and are particularly highly aromatic such as phenol aralkyl resins, naphthol aralkyl resins, biphenyl-modified phenol resins, and biphenyl-modified naphthol resins. , High hydroxyl equivalent polyvalent hydroxy compounds, and compounds such as aminotriazine-modified phenolic resins containing nitrogen atoms DOO is, from the viewpoint of flame retardancy of the cured product obtained is excellent.

本発明のエポキシ樹脂組成物における前記硬化剤(B)の配合量は、得られる硬化物特性が良好である点から、エポキシ樹脂のエポキシ基の合計1当量に対して、硬化剤(B)中の活性基が0.7〜1.5当量になる量が好ましい。イミダゾールなどの触媒硬化系では、エポキシ樹脂に対して0.5〜10質量%の範囲が好ましい。   The compounding quantity of the said hardening | curing agent (B) in the epoxy resin composition of this invention is a point in the hardening | curing agent (B) with respect to a total of 1 equivalent of the epoxy group of an epoxy resin from the point that the hardened | cured material characteristic obtained is favorable. The amount of the active group is preferably 0.7 to 1.5 equivalents. In the catalyst curing system such as imidazole, the range of 0.5 to 10% by mass with respect to the epoxy resin is preferable.

また、必要に応じて本発明のエポキシ樹脂組成物に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1、8−ジアザビシクロ−[5.4.0]−ウンデセン(DBU)が好ましい。   Moreover, a hardening accelerator can also be suitably used together with the epoxy resin composition of this invention as needed. Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts. In particular, when used as a semiconductor sealing material, from the viewpoint of excellent curability, heat resistance, electrical properties, moisture resistance reliability, etc., triphenylphosphine is used for phosphorus compounds, and 1,8-diazabicyclo is used for tertiary amines. -[5.4.0] -undecene (DBU) is preferred.

本発明のエポキシ樹脂組成物は、前記したエポキシ樹脂(A)自身が難燃性付与効果を有するものである事から、別途難燃剤を配合しなくても、硬化物において良好な難燃性を発現させることができるものであるが、より高度な難燃性を発揮させるために、封止工程での成形性や半導体装置の信頼性を低下させない範囲で、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合することが好ましい。   Since the epoxy resin composition of the present invention has the effect of imparting flame retardancy as described above, the epoxy resin (A) itself has good flame retardancy in the cured product even if no flame retardant is added. Although it can be expressed, in order not to lower the moldability in the sealing process and the reliability of the semiconductor device in order to exhibit a higher degree of flame retardancy, it is substantially free of halogen atoms. It is preferable to blend a halogen-based flame retardant.

ここでいう実質的にハロゲン原子を含有しない難燃性樹脂組成物とは、難燃性付与の目的でハロゲン系の化合物を配合しなくても充分な難燃性を示す樹脂組成物を意味するものであり、例えばエポキシ樹脂に含まれるエピハロヒドリン由来の5000ppm以下程度の微量の不純物によるハロゲン原子は含まれていても良い。   The flame retardant resin composition substantially not containing a halogen atom as used herein means a resin composition exhibiting sufficient flame retardancy without blending a halogen-based compound for the purpose of imparting flame retardancy. For example, halogen atoms due to a small amount of impurities of about 5000 ppm or less derived from epihalohydrin contained in an epoxy resin may be contained.

前記非ハロゲン系難燃剤は、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。   Examples of the non-halogen flame retardant include a phosphorus flame retardant, a nitrogen flame retardant, a silicone flame retardant, an inorganic flame retardant, an organic metal salt flame retardant, and the like. It is not intended to be used alone, and a plurality of the same type of flame retardants may be used, or different types of flame retardants may be used in combination.

前記リン系難燃剤は、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。   As the phosphorus flame retardant, either inorganic or organic can be used. Examples of the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. .

また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。   The red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like. Examples of the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide For example, a method of double coating with a resin may be used.

前記有機リン系化合物は、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサー10−ホスファフェナントレン=10−オキシド、10−(2,5―ジヒドロオキシフェニル)―10H−9−オキサ−10−ホスファフェナントレン=10−オキシド、10―(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド等の環状有機リン化合物が挙げられる。   The organic phosphorus compounds include, for example, general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, organic nitrogen-containing phosphorus compounds, and 9,10-dihydro -9-oxa-10-phosphaphenanthrene = 10-oxide, 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide, 10- (2,7-dihydro And cyclic organic phosphorus compounds such as oxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide.

それらの配合量は、リン系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1〜10.0質量部の範囲で配合することが好ましく、特に0.5〜6.0質量部の範囲で配合することが好ましい。   The blending amount thereof is appropriately selected depending on the type of the phosphorus-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. For example, epoxy resin, curing agent, non-halogen type In 100 parts by mass of epoxy resin composition containing all of flame retardant and other fillers and additives, etc., when red phosphorus is used as a non-halogen flame retardant, it is blended in the range of 0.1 to 2.0 parts by mass. In the case of using an organophosphorus compound, it is preferably blended in the range of 0.1 to 10.0 parts by mass, and particularly in the range of 0.5 to 6.0 parts by mass. preferable.

また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。   In addition, when using the phosphorous flame retardant, the phosphorous flame retardant may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.

前記窒素系難燃剤は、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、中でもトリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。   Examples of the nitrogen-based flame retardant include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazines, and the like, among which triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.

前記トリアジン化合物は、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記(ii)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)前記(ii)又は(iii)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。   Examples of the triazine compound include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, (i) guanylmelamine sulfate, melem sulfate, melam sulfate (Iii) co-condensates of phenols such as phenol, cresol, xylenol, butylphenol, nonylphenol with melamines such as melamine, benzoguanamine, acetoguanamine, formguanamine, and formaldehyde, (iii) (Ii) a mixture of a co-condensate and a phenol resin such as a phenol formaldehyde condensate, (iv) those obtained by further modifying (ii) or (iii) above with paulownia oil, isomerized linseed oil, etc. .

前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。   Specific examples of the cyanuric acid compound include cyanuric acid and cyanuric acid melamine.

前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、特に0.1〜5質量部の範囲で配合することが好ましい。   The amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferable to mix in the range of 0.05 to 10 parts by mass, especially in the range of 0.05 to 10 parts by mass, in 100 parts by mass of the epoxy resin composition containing all of the agent, non-halogen flame retardant and other fillers and additives. It is preferable to mix in the range of 5 parts by mass.

また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。   Moreover, when using the said nitrogen-type flame retardant, you may use together a metal hydroxide, a molybdenum compound, etc.

前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。   The silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.

前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。   The amount of the silicone flame retardant is appropriately selected according to the type of the silicone flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferable to mix in the range of 0.05 to 20 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the agent, non-halogen flame retardant and other fillers and additives. Moreover, when using the said silicone type flame retardant, you may use a molybdenum compound, an alumina, etc. together.

前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。   Examples of the inorganic flame retardant include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.

前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。   Specific examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like.

前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。   Specific examples of the metal oxide include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, and cobalt oxide. Bismuth oxide, chromium oxide, nickel oxide, copper oxide, tungsten oxide and the like.

前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。   Specific examples of the metal carbonate compound include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.

前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。   Specific examples of the metal powder include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.

前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。   Specific examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.

前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO2−MgO−H2O、PbO−B2O3系、ZnO−P2O5−MgO系、P2O5−B2O3−PbO−MgO系、P−Sn−O−F系、PbO−V2O5−TeO2系、Al2O3−H2O系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。   Specific examples of the low-melting-point glass include, for example, Shipley (Bokusui Brown), hydrated glass SiO2-MgO-H2O, PbO-B2O3-based, ZnO-P2O5-MgO-based, P2O5-B2O3-PbO-MgO-based, Examples thereof include glassy compounds such as P—Sn—O—F, PbO—V 2 O 5 —TeO 2, Al 2 O 3 —H 2 O, and lead borosilicate.

前記無機系難燃剤の配合量としては、無機系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましく、特に0.5〜15質量部の範囲で配合することが好ましい。   The blending amount of the inorganic flame retardant is appropriately selected according to the type of the inorganic flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. For example, epoxy resin, cured It is preferable to mix in the range of 0.05 to 20 parts by mass in 100 parts by mass of the epoxy resin composition in which all of the agent, non-halogen flame retardant and other fillers and additives are blended. It is preferable to mix in the range of 15 parts by mass.

前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。   Examples of the organic metal salt flame retardant include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound or an ionic bond or Examples thereof include a coordinated compound.

前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.005〜10質量部の範囲で配合することが好ましい。   The amount of the organometallic salt-based flame retardant is appropriately selected depending on the type of the organometallic salt-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferable to mix in the range of 0.005 to 10 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the epoxy resin, the curing agent, the non-halogen flame retardant, and other fillers and additives.

本発明のエポキシ樹脂組成物は、半導体封止材料、アンダーフィル材、導電ペースト、プリント回路基板用ワニス、樹脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、絶縁塗料等のコーティング材料等の各種の用途に適用することができる。   The epoxy resin composition of the present invention includes a semiconductor sealing material, an underfill material, a conductive paste, a varnish for a printed circuit board, a resin casting material, an adhesive, an interlayer insulating material for a build-up board, a coating material such as an insulating paint, etc. It can be applied to various uses.

これらのなかでも特に本発明のエポキシ樹脂組成物をプリント回路基板用ワニスとして用いる場合、硬化物の優れた靱性によってプリント配線基板製造における吸湿後のハンダ処理工程で、剥離やクラックなどを良好に防止できる為好ましい。   Among these, particularly when the epoxy resin composition of the present invention is used as a varnish for a printed circuit board, the excellent toughness of the cured product effectively prevents peeling and cracking in the soldering process after moisture absorption in printed wiring board production. It is preferable because it is possible.

本発明のエポキシ樹脂組成物からプリント回路基板用ワニスを製造する方法は、前記した各成分を有機溶剤を配合してワニス化する方法が挙げられる。前記有機溶剤としては、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤を用いることが好ましく、単独でも2種以上の混合溶剤としても使用することができる。   Examples of the method for producing a varnish for a printed circuit board from the epoxy resin composition of the present invention include a method in which each of the above-described components is varnished with an organic solvent. As the organic solvent, it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower such as methyl ethyl ketone, acetone, dimethylformamide, etc., and it can be used alone or as a mixed solvent of two or more kinds.

前記したプリント回路基板用ワニスからプリント回路基板用銅張積層板を製造するには、先ず、上記プリント回路基板用ワニスを、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などの各種補強基材に含浸させ、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを製造する。この際、エポキシ樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。次いで、このようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、銅張り積層板を得ることができる。   To produce a copper clad laminate for a printed circuit board from the printed circuit board varnish described above, first, the printed circuit board varnish is made of paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, glass. A prepreg which is a cured product is produced by impregnating various reinforcing base materials such as roving cloth and heating at a heating temperature according to the solvent type used, preferably 50 to 170 ° C. At this time, the mass ratio of the epoxy resin composition and the reinforcing base is not particularly limited, but it is usually preferable that the resin content in the prepreg is 20 to 60% by mass. Next, the prepreg obtained in this manner is laminated by a conventional method, and copper foil is appropriately laminated, and then subjected to thermocompression bonding under a pressure of 1 to 10 MPa at 170 to 250 ° C. for 10 minutes to 3 hours. A stretched laminate can be obtained.

本発明のエポキシ樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては例えば、ゴム、フィラーなどを適宜配合した当該硬化性樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。   Examples of a method for obtaining an interlayer insulating material for a build-up board from the epoxy resin composition of the present invention include, for example, a spray coating method, a curtain, and the like on a wiring board on which a circuit is formed by using the curable resin composition appropriately blended with rubber, filler and the like. After applying using a coating method or the like, it is cured. Then, after drilling a predetermined through-hole part etc. as needed, it treats with a roughening agent, forms the unevenness | corrugation by washing the surface with hot water, and metal-treats, such as copper. As the plating method, electroless plating or electrolytic plating treatment is preferable, and examples of the roughening agent include an oxidizing agent, an alkali, and an organic solvent. Such operations are sequentially repeated as desired, and a build-up base can be obtained by alternately building up and forming the resin insulating layer and the conductor layer having a predetermined circuit pattern. However, the through-hole portion is formed after the outermost resin insulating layer is formed. In addition, a resin-coated copper foil obtained by semi-curing the resin composition on the copper foil is thermocompression-bonded at 170 to 250 ° C. on a circuit board on which a circuit is formed, thereby forming a roughened surface and plating treatment. It is also possible to produce a build-up substrate by omitting the process.

また、本発明のエポキシ樹脂組成物は、上記各成分に更に無機充填剤を配合することにより半導体封止材料又は導電ペーストを製造することができる。
前記無機質充填材としては、例えば、半導体封止材料用途では溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられ、また、導電ペースト用途では、銀粉や銅粉等の導電性充填剤が挙げられる。
Moreover, the epoxy resin composition of this invention can manufacture a semiconductor sealing material or an electrically conductive paste by mix | blending an inorganic filler with said each component further.
Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide and the like for semiconductor sealing materials, and conductive filler such as silver powder and copper powder for conductive paste applications. Agents.

ここで、前記無機充填材の配合量は、特に半導体封止材料用途では、エポキシ樹脂組成物100質量部当たり、充填剤を70〜95質量%の範囲であることが好ましい。   Here, it is preferable that the compounding quantity of the said inorganic filler is the range of 70-95 mass% of fillers with respect to 100 mass parts of epoxy resin compositions especially for a semiconductor sealing material use.

また、本発明のエポキシ樹脂組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子を該エポキシ樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。   When the epoxy resin composition of the present invention is used as a conductive paste, for example, a method of dispersing fine conductive particles in the epoxy resin composition to obtain a composition for anisotropic conductive film, liquid at room temperature And a paste resin composition for circuit connection and an anisotropic conductive adhesive.

また、本発明のエポキシ樹脂組成物は、更にレジストインキとして使用することも可能である。この場合、前記エポキシ樹脂(A)に、エチレン性不飽和二重結合を有するビニル系モノマーと、硬化剤(B)としてカチオン重合触媒を配合し、更に、顔料、タルク、及びフィラーを加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。   Moreover, the epoxy resin composition of the present invention can also be used as a resist ink. In this case, a vinyl monomer having an ethylenically unsaturated double bond and a cationic polymerization catalyst as a curing agent (B) are blended with the epoxy resin (A), and a pigment, talc and filler are further added to form a resist. A method for forming a resist ink cured product after coating on a printed circuit board by a screen printing method after an ink composition is used.

本発明のエポキシ樹脂組成物は、上記した各種用途に応じて、適宜、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。   In the epoxy resin composition of the present invention, various compounding agents such as a silane coupling agent, a release agent, a pigment, and an emulsifier can be appropriately added according to the various uses described above.

本発明のエポキシ樹脂組成物は、目的或いは使用する用途に応じて常法により硬化させて硬化物とすることができる。この際、硬化物を得る方法は、本発明のエポキシ樹脂組成物に、各種の配合成分を加え、更に適宜硬化促進剤を配合して得られた組成物を、20〜250℃程度の温度範囲で加熱する方法が好ましい。成形方法などもエポキシ樹脂組成物の一般的な方法を採用することができる。このようにして得られる硬化物は、積層物、注型物、接着層、塗膜、フィルム等を形成する。   The epoxy resin composition of the present invention can be cured by a conventional method in accordance with the purpose or application to be used to obtain a cured product. Under the present circumstances, the method of obtaining hardened | cured material adds the various compounding components to the epoxy resin composition of this invention, and also mix | blends the composition obtained by mix | blending a hardening accelerator suitably, The temperature range of about 20-250 degreeC. The method of heating at is preferred. A general method of an epoxy resin composition can also be adopted as a molding method. The cured product thus obtained forms a laminate, cast product, adhesive layer, coating film, film and the like.

次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り重量基準である。尚、150℃における溶融粘度及びGPC測定、NMR、MSスペクトルは以下の条件にて測定した。
1)150℃における溶融粘度:ASTMD4287に準拠
2)軟化点測定法:JISK7234
3)GPC:
測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折径)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
Next, the present invention will be specifically described with reference to Examples and Comparative Examples. In the following, “parts” and “%” are based on weight unless otherwise specified. The melt viscosity at 150 ° C., GPC measurement, NMR, and MS spectrum were measured under the following conditions.
1) Melt viscosity at 150 ° C .: Conforms to ASTM D4287 2) Softening point measurement method: JIS K7234
3) GPC:
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: Guard column “H XL -L” manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK-GEL G3000HXL”
+ Tosoh Corporation “TSK-GEL G4000HXL”
Detector: RI (Differential refraction diameter)
Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran
Flow rate: 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 Model II version 4.10”.

(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
4)NMR:日本電子株式会社製NMR「GSX270」
5)MS:日本電子株式会社製二重収束型質量分析装置AX505H(FD505H)
また、燐含有量は、以下の方法にて測定した。
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids and filtered through a microfilter (50 μl).
4) NMR: NMR “GSX270” manufactured by JEOL Ltd.
5) MS: Double Density Mass Spectrometer AX505H (FD505H) manufactured by JEOL Ltd.
The phosphorus content was measured by the following method.

[燐含有量測定法]
資料1gに硝酸25ml及び過塩素酸10mlを加えて内容物を5〜10mlになるまで加熱分解し、この液を1000mlメスフラスコに蒸留水で希釈する。この試料液10mlを100mlメスフラスコに入れ、硝酸10ml、0.25%バナジン酸アンモニウム溶液を10ml及び5%モリブデン酸アンモニウム溶液10mlを加えた後、蒸留水で標線まで希釈しよく振り混ぜ、放置するこの発色液を石英セルにいれ、分光光度計を用いて波長440nmの条件でブランク液を対照にして試料及び燐標準液の吸光度を測定する。燐標準液はリン酸カリウムを蒸留水でP=0.1mg/mlとして調整した液を100mlメスフラスコに10ml入れて蒸留水で希釈する。
ついで、燐含有量を次式より求める。
燐含有量(%)=試料の吸光度/燐標準液の吸光度/試料(g)
[Phosphorus content measurement method]
Nitric acid (25 ml) and perchloric acid (10 ml) are added to 1 g of the material, and the contents are thermally decomposed to 5 to 10 ml. This solution is diluted with distilled water in a 1000 ml volumetric flask. Add 10 ml of this sample solution to a 100 ml volumetric flask, add 10 ml of nitric acid, 10 ml of 0.25% ammonium vanadate solution and 10 ml of 5% ammonium molybdate solution, dilute to the mark with distilled water, mix well, and leave to stand. This color developing solution is placed in a quartz cell, and the absorbance of the sample and the phosphor standard solution is measured using a spectrophotometer under the condition of a wavelength of 440 nm using the blank solution as a control. Phosphorus standard solution is prepared by adding 10 ml of a solution prepared by adjusting potassium phosphate to P = 0.1 mg / ml with distilled water, and diluting with distilled water.
Next, the phosphorus content is obtained from the following equation.
Phosphorus content (%) = absorbance of sample / absorbance of phosphor standard solution / sample (g)

実施例1(燐原子含有ウレタン変性エポキシ樹脂(A−1)の合成)
温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、ビスフェノールA型液状エポキシ樹脂(エポキシ当量188g/eq、水酸基価19.3KOHmg/g、大日本インキ化学工業株式会社製「エピクロンN850S」)188g(エポキシ基1.0当量)と9、10−ジヒドロ−9−オキサ-10-フォスファフェナンスレン-10-オキサイド(HCA:三光化学株式会社製)72.1g(P−H基濃度0.3当量)を仕込み、トリフェニルフォスフィン0.135gを添加後、150℃に昇温して、7時間撹拌して、エポキシ当量とGPC測定によってHCAが実質的に消滅したことを確認して中間体を得た。次いで、反応系内にトリレンジイソシアネート(TDI:NCO当量87g/eq.、三井化学ポリウレタン株式会社製:コスモネートT−100)27.5g(イソシアネート基0.3当量)を添加して、130℃で3時間撹拌して、IR測定でイソシアネート基が実質的に消滅したことを確認して、目的の燐原子含有ウレタン変性エポキシ樹脂(A−1)を得た。得られたエポキシ樹脂のエポキシ当量は440g/eq.、軟化点92℃、燐原子含有量3.5質量%であった。得られたエポキシ樹脂(A−1)のマススペクトル図を図1に、13C−NMRのチャート図を図2に、GPCチャート図を図3にそれぞれ示す。
Example 1 (Synthesis of phosphorus atom-containing urethane-modified epoxy resin (A-1))
A flask equipped with a thermometer, a condenser tube, a fractionating tube, a nitrogen gas inlet tube, and a stirrer was added to a bisphenol A type liquid epoxy resin (epoxy equivalent 188 g / eq, hydroxyl value 19.3 KOH mg / g, Dainippon Ink and Chemicals, Inc. 188 g (epoxy group 1.0 equivalent)) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (HCA: Sanko Chemical Co., Ltd.) 72.1 g (PH group concentration of 0.3 equivalent) was added, 0.135 g of triphenylphosphine was added, the temperature was raised to 150 ° C., the mixture was stirred for 7 hours, and HCA was substantially determined by epoxy equivalent and GPC measurement. After confirming disappearance, an intermediate was obtained. Next, 27.5 g (isocyanate group 0.3 equivalent) of tolylene diisocyanate (TDI: NCO equivalent 87 g / eq., Manufactured by Mitsui Chemicals Polyurethane Co., Ltd .: Cosmonate T-100) was added to the reaction system at 130 ° C. The mixture was stirred for 3 hours, and it was confirmed by IR measurement that the isocyanate group had substantially disappeared. Thus, the target phosphorus atom-containing urethane-modified epoxy resin (A-1) was obtained. The epoxy equivalent of the obtained epoxy resin was 440 g / eq., Softening point 92 ° C., and phosphorus atom content 3.5% by mass. A mass spectrum diagram of the obtained epoxy resin (A-1) is shown in FIG. 1, a 13 C-NMR chart is shown in FIG. 2, and a GPC chart is shown in FIG.

実施例2(燐原子含有ウレタン変性エポキシ樹脂(A−2)の合成)
ビスフェノールA型液状エポキシ樹脂の代わりにビスフェノールF型液状エポキシ樹脂(エポキシ当量170g/eq、水酸基価 18.3KOHmg/g、大日本インキ化学工業株式会社製「エピクロル 830S」)170g、トリレンジイソシアネート(TDI)の代わりにジフェニルメタンジイソシアネート(MDI:NCO当量125g/eq.、日本ポリウレタン工業株式会社製「ミリオネートMT」)39.6g(イソシアネート基0.3当量)を用いた以外は,実施例1と同様にして目的の燐原子含有ウレタン変性エポキシ樹脂(A−2)を得た。得られたエポキシ樹脂のエポキシ当量は438g/eq、軟化点89℃、燐原子含有量3.6質量%であった。
Example 2 (Synthesis of phosphorus atom-containing urethane-modified epoxy resin (A-2))
Instead of bisphenol A type liquid epoxy resin, 170 g of bisphenol F type liquid epoxy resin (epoxy equivalent 170 g / eq, hydroxyl value 18.3 KOH mg / g, “Epichlor 830S” manufactured by Dainippon Ink & Chemicals, Inc.), tolylene diisocyanate (TDI) ) Was used in the same manner as Example 1 except that 39.6 g (isocyanate group 0.3 equivalent) of diphenylmethane diisocyanate (MDI: NCO equivalent 125 g / eq., “Millionate MT” manufactured by Nippon Polyurethane Industry Co., Ltd.) was used. Thus, the target phosphorus atom-containing urethane-modified epoxy resin (A-2) was obtained. The epoxy equivalent of the obtained epoxy resin was 438 g / eq, the softening point was 89 ° C., and the phosphorus atom content was 3.6% by mass.

実施例3(燐原子含有ウレタン変性エポキシ樹脂(A−3)の合成)
ビスフェノールA型液状エポキシ樹脂の代わりに1,6−ジヒドロキシナフタレン型エポキシ樹脂(エポキシ当量151g/eq、大日本インキ化学工業株式会社製「エピクロン HP−4032)151g、トリレンジイソシアネート(TDI)の代わりに1,5−ジイソシアネートナフタレン(NDI:NCO当量105g/eq、三井化学ポリウレタン株式会社製「コスモネートND」)34.6g(イソシアネート基0.3当量)を用いた以外は,実施例1と同様にして目的の燐原子含有ウレタン変性エポキシ樹脂(A−3)を得た。得られたエポキシ樹脂のエポキシ当量は410g/eq、軟化点97℃、燐原子含有量3.9質量%であった。
Example 3 (Synthesis of phosphorus atom-containing urethane-modified epoxy resin (A-3))
Instead of bisphenol A liquid epoxy resin, 1,6-dihydroxynaphthalene type epoxy resin (epoxy equivalent 151 g / eq, “Epicron HP-4032” manufactured by Dainippon Ink & Chemicals, Inc.), instead of tolylene diisocyanate (TDI) Except that 34.6 g (isocyanate group 0.3 equivalent) of 1,5-diisocyanate naphthalene (NDI: NCO equivalent 105 g / eq, “Cosmonate ND” manufactured by Mitsui Chemicals Polyurethane Co., Ltd.) was used, the same procedure as in Example 1 was performed. Thus, the target phosphorus atom-containing urethane-modified epoxy resin (A-3) was obtained. The epoxy equivalent of the obtained epoxy resin was 410 g / eq, the softening point was 97 ° C., and the phosphorus atom content was 3.9% by mass.

実施例4(燐原子含有ウレタン変性エポキシ樹脂(A−4)の合成)
ビスフェノールA型液状エポキシ樹脂の代わりにビスフェノールS型エポキシ樹脂(エポキシ当量300g/eq、水酸基価 74.8KOHmg/g、大日本インキ化学工業株式会社製「エピクロン EXA−1514」)300gを用いた以外は、実施例1と同様にして目的の燐原子含有ウレタン変性エポキシ樹脂(A−4)を得た。得られたエポキシ樹脂のエポキシ当量は620g/eq.、軟化点112℃,燐原子含有量2.6質量%であった。
Example 4 (Synthesis of phosphorus atom-containing urethane-modified epoxy resin (A-4))
Except for using 300 g of bisphenol S type epoxy resin (epoxy equivalent 300 g / eq, hydroxyl value 74.8 KOH mg / g, “Epicron EXA-1514” manufactured by Dainippon Ink & Chemicals, Inc.) instead of bisphenol A liquid epoxy resin. The target phosphorus atom-containing urethane-modified epoxy resin (A-4) was obtained in the same manner as in Example 1. The epoxy equivalent of the obtained epoxy resin is 620 g / eq. The softening point was 112 ° C. and the phosphorus atom content was 2.6% by mass.

実施例5(燐原子含有ウレタン変性エポキシ樹脂(A−5)の合成)
HCAを130.9g(P−H基濃度0.6当量)、トリレンジイソシアネート(TDI)52.2g(イソシアネート基0.6当量)を用いた以外は、実施例1と同様にして目的の燐原子含有ウレタン変性エポキシ樹脂(A−5)を得た。得られたエポキシ樹脂のエポキシ当量は940g/eq、軟化点125℃、燐原子含有量5.1質量%であった。
Example 5 (Synthesis of phosphorus atom-containing urethane-modified epoxy resin (A-5))
The target phosphorus was obtained in the same manner as in Example 1 except that 130.9 g of HCA (PH group concentration 0.6 equivalent) and 52.2 g of tolylene diisocyanate (TDI) (isocyanate group 0.6 equivalent) were used. An atom-containing urethane-modified epoxy resin (A-5) was obtained. The epoxy equivalent of the obtained epoxy resin was 940 g / eq, the softening point was 125 ° C., and the phosphorus atom content was 5.1% by mass.

実施例6(燐原子含有ウレタン変性エポキシ樹脂(A−6)の合成)
HCAを157.3g(P−H基濃度0.7当量)を用いる他、実施例1と同様にして中間体を得、次いで、反応系内にトリレンジイソシアネート(TDI)63.3g(イソシアネート基0.7当量)及び反応溶液中の固形分濃度が80%となるようトルエンを加え、130℃で3時間撹拌して、IR測定でイソシアネート基が実質的に消滅したことを確認して、目的の燐原子含有ウレタン変性エポキシ樹脂(A−6)を得た。得られたエポキシ樹脂のエポキシ当量は1600g/eq、軟化点143℃、燐原子含有量5.5質量%であった。
Example 6 (Synthesis of phosphorus atom-containing urethane-modified epoxy resin (A-6))
An intermediate was obtained in the same manner as in Example 1 except that 157.3 g of HCA (PH group concentration 0.7 equivalent) was used, and then 63.3 g of tolylene diisocyanate (TDI) (isocyanate group) in the reaction system. 0.7 equivalent) and toluene was added so that the solid content concentration in the reaction solution became 80%, and the mixture was stirred at 130 ° C. for 3 hours. By IR measurement, it was confirmed that the isocyanate group was substantially disappeared. The phosphorus atom-containing urethane-modified epoxy resin (A-6) was obtained. The epoxy equivalent of the obtained epoxy resin was 1600 g / eq, the softening point was 143 ° C., and the phosphorus atom content was 5.5% by mass.

比較例1
温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、クレゾールノボラックエポキシ樹脂(エポキシ当量206g/eq、大日本インキ化学工業株式会社製「エピクロンN−665」)を206gと9、10−ジヒドロ−9−オキサ-10-フォスファフェナンスレン-10-オキサイド(HCA:三光化学株式会社製)54.2gを仕込み、トリフェニルフォスフィン0.05gを添加後、150℃に昇温して、4時間撹拌して、エポキシ当量とGPC測定によってHCAが実質的に消滅したことを確認して燐原子含有エポキシ樹脂(B−1)を得た。得られたエポキシ樹脂のエポキシ当量は380g/eq.、軟化点65℃、燐原子含有量3.9質量%であった。
Comparative Example 1
A cresol novolak epoxy resin (epoxy equivalent: 206 g / eq, “Epicron N-665” manufactured by Dainippon Ink & Chemicals, Inc.) is attached to a flask equipped with a thermometer, cooling pipe, fractionating pipe, nitrogen gas introduction pipe, and stirrer. 206 g and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (HCA: manufactured by Sanko Chemical Co., Ltd.) 54.2 g were added, and 0.05 g of triphenylphosphine was added. The mixture was heated to 0 ° C., stirred for 4 hours, and it was confirmed by epoxy equivalent and GPC measurement that HCA substantially disappeared to obtain a phosphorus atom-containing epoxy resin (B-1). The epoxy equivalent of the obtained epoxy resin was 380 g / eq., Softening point 65 ° C., and phosphorus atom content 3.9% by mass.

実施例7〜9及び比較例2、3
実施例1、5、6で得られたエポキシ樹脂100部と硬化剤として、フェノールノボラック樹脂(フェノール性水酸基当量105g/eq、軟化点85℃、大日本インキ化学工業株式会社製「TD−2090」)をそれぞれ当量となる量を配合し、硬化促進剤としてトリフェニルホスフィン(TPP)、難燃剤として縮合燐酸エステル(大八化学工業株式会社製「PX−200」)、水酸化マグネシウム(エア・ウォーター株式会社製エコーマグ「Z−10」)、無機充填材として球状シリカ(株式会社マイクロン製「S−COL」)、シランカップリング剤としてγ−グリシドキシトリエトキシキシシラン(信越化学工業株式会社製「KBM−403」)、カルナウバワックス(株式会社セラリカ野田製「PEARLWAXNo.1−P」)、カーボンブラックを用いて表1に示した組成で配合し、2本ロールを用いて85℃の温度で5分間溶融混練してエポキシ樹脂組成物を得た。硬化物の物性は、上記組成物を用いて、評価用サンプルを下記の方法で作成し、難燃性、Tg、引っ張り特性を下記の方法で測定し結果を表1に示した。
Examples 7 to 9 and Comparative Examples 2 and 3
As a curing agent with 100 parts of the epoxy resin obtained in Examples 1, 5 and 6, phenol novolak resin (phenolic hydroxyl group equivalent 105 g / eq, softening point 85 ° C., “TD-2090” manufactured by Dainippon Ink & Chemicals, Inc. ) In an equivalent amount, triphenylphosphine (TPP) as a curing accelerator, condensed phosphoric acid ester ("PX-200" manufactured by Daihachi Chemical Industry Co., Ltd.) as a flame retardant, magnesium hydroxide (air water Echo Mug “Z-10” manufactured by Co., Ltd.), spherical silica (“S-COL” manufactured by Micron Co., Ltd.) as inorganic filler, and γ-glycidoxytriethoxyxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) as silane coupling agent KBM-403 "), Carnauba wax (" PEARLWAX No. 1-P "manufactured by Celalica Noda Co., Ltd.) Were blended with compositions shown in Table 1 using the carbon black, to obtain an epoxy resin composition was 5 minutes melt-kneaded at a temperature of 85 ° C. using two rolls. As for the physical properties of the cured product, a sample for evaluation was prepared by the following method using the above composition, and the flame retardancy, Tg and tensile properties were measured by the following method, and the results are shown in Table 1.

[難燃性]UL規格に準拠した。
[Tg(ガラス転移温度)]DMA法にて測定。昇温スピード3℃/分
[引っ張り強度・伸び率]JIS−K6911に準拠した。
[Flame retardance] Conforms to UL standards.
[Tg (glass transition temperature)] Measured by DMA method. Temperature rising speed 3 ° C./min [Tensile strength / elongation rate] Conforms to JIS-K6911.

Figure 2009035586
Figure 2009035586

図1は、実施例1で得られた燐原子含有ウレタン変性エポキシ樹脂のマススペクトル図である。1 is a mass spectrum diagram of the phosphorus atom-containing urethane-modified epoxy resin obtained in Example 1. FIG. 図2は、実施例1で得られた燐原子含有ウレタン変性エポキシ樹脂の13C−NMRペクトルである。2 is a 13 C-NMR spectrum of the phosphorus atom-containing urethane-modified epoxy resin obtained in Example 1. FIG. 図3は、実施例1で得られた燐原子含有ウレタン変性エポキシ樹脂のGPCチャート図である。3 is a GPC chart of the phosphorus atom-containing urethane-modified epoxy resin obtained in Example 1. FIG.

Claims (15)

分子構造内に燐原子とウレタン結合とを有する2官能型エポキシ樹脂であって、かつ、そのエポキシ当量が300〜2000g/当量の範囲にあるエポキシ樹脂(A)、及び硬化剤(B)を必須成分とすることを特徴とするエポキシ樹脂組成物。 An epoxy resin (A) having a phosphorus atom and a urethane bond in the molecular structure and having an epoxy equivalent in the range of 300 to 2000 g / equivalent, and a curing agent (B) are essential. An epoxy resin composition characterized in that it is a component. 前記エポキシ樹脂(A)が燐原子を0.5〜10質量%の範囲となる割合で含有するものである請求項1記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the epoxy resin (A) contains a phosphorus atom in a proportion of 0.5 to 10% by mass. 前記エポキシ樹脂(A)が2官能型エポキシ樹脂(a)に、1官能性活性水素含有燐化合物(b)とジイソシアネート化合物(c)とを反応させて得られるものである請求項1又は2記載のエポキシ樹脂組成物。 3. The epoxy resin (A) is obtained by reacting a bifunctional epoxy resin (a) with a monofunctional active hydrogen-containing phosphorus compound (b) and a diisocyanate compound (c). Epoxy resin composition. 前記2官能型エポキシ樹脂(a)が液状ビスフェノール型エポキシ樹脂である請求項3記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 3, wherein the bifunctional epoxy resin (a) is a liquid bisphenol type epoxy resin. 1官能性活性水素含有燐化合物(b)が、芳香族系ホスフィン化合物である請求項3又は4記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 3 or 4, wherein the monofunctional active hydrogen-containing phosphorus compound (b) is an aromatic phosphine compound. 前記硬化剤(B)が窒素原子含有フェノール樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル型フェノール樹脂からなる群より選ばれる少なくとも1つのフェノール樹脂であることを特徴とする請求項1〜5の何れか1つに記載のエポキシ樹脂組成物。 The hardener (B) is at least one phenol resin selected from the group consisting of a nitrogen atom-containing phenol resin, a phenol aralkyl resin, and a biphenyl aralkyl type phenol resin. The epoxy resin composition described in 1. エポキシ樹脂(A)及び硬化剤(B)に加え、更に非ハロゲン系難燃剤を含有する請求項1〜6の何れか1つに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 6, further comprising a non-halogen flame retardant in addition to the epoxy resin (A) and the curing agent (B). エポキシ樹脂(A)及び硬化剤(B)に加え、更に有機溶剤を含有する請求項1〜7の何れか1つに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 7, further comprising an organic solvent in addition to the epoxy resin (A) and the curing agent (B). 請求項8記載のエポキシ樹脂組成物からなるプリント回路基板用ワニス。 A varnish for a printed circuit board comprising the epoxy resin composition according to claim 8. 下記構造式1
Figure 2009035586

(式中、Gはグリシジル基、Arは、ナフチレン基、又は、下記構造式2
Figure 2009035586

(構造式2中、Xは炭素原子数1〜3のアルキリデン基又はスルホニル基を表し、R〜Rはそれぞれ独立的に水素原子又はメチル基を表す。)で表される2価の有機基、Arは芳香族炭化水素基、Yは有機ホスファニル基、nは繰り返し単位の平均で0.05〜2.8である。)
で表される構造を有する新規エポキシ樹脂。
Structural formula 1
Figure 2009035586

(In the formula, G is a glycidyl group, Ar 1 is a naphthylene group, or the following structural formula 2
Figure 2009035586

(In Structural Formula 2, X represents an alkylidene group having 1 to 3 carbon atoms or a sulfonyl group, and R 1 to R 4 each independently represents a hydrogen atom or a methyl group.) Group, Ar 2 is an aromatic hydrocarbon group, Y is an organic phosphanyl group, and n is 0.05 to 2.8 on the average of the repeating units. )
A novel epoxy resin having a structure represented by
2官能型エポキシ樹脂(a)と1官能性活性水素含有燐化合物(b)とを反応させ(工程1)、次いで得られた反応生成物にジイソシアネート化合物(c)を反応させる(工程2)ことを特徴とするエポキシ樹脂の製造方法。 Reacting the bifunctional epoxy resin (a) with the monofunctional active hydrogen-containing phosphorus compound (b) (step 1), and then reacting the resulting reaction product with the diisocyanate compound (c) (step 2). A method for producing an epoxy resin characterized by the following. 前記工程1における2官能型エポキシ樹脂(a)と1官能性活性水素含有燐化合物(b)との反応割合が前記2官能型エポキシ樹脂(a)中のエポキシ基1当量に対して、1官能性活性水素含有燐化合物(b)中の活性水素が0.2〜0.8当量となる割合であって、かつ、前記工程2におけるジイソシアネート化合物(c)の使用量が、前記2官能型エポキシ樹脂(a)中のエポキシ基1当量に対して、ジイソシアネート化合物(c)中のイソシアネート基が0.2〜0.8当量となる割合である請求項11記載の製造方法。 The reaction ratio of the bifunctional epoxy resin (a) and the monofunctional active hydrogen-containing phosphorus compound (b) in the step 1 is monofunctional with respect to 1 equivalent of the epoxy group in the bifunctional epoxy resin (a). Active hydrogen in the active active hydrogen-containing phosphorus compound (b) is in a ratio of 0.2 to 0.8 equivalent, and the amount of the diisocyanate compound (c) used in the step 2 is the bifunctional epoxy. The production method according to claim 11, wherein the isocyanate group in the diisocyanate compound (c) is in a ratio of 0.2 to 0.8 equivalent to 1 equivalent of the epoxy group in the resin (a). 前記2官能型エポキシ樹脂(a)が液状ビスフェノール型エポキシ樹脂である請求項11又は12記載の製造方法。 The method according to claim 11 or 12, wherein the bifunctional epoxy resin (a) is a liquid bisphenol type epoxy resin. 1官能性活性水素含有燐化合物(b)が、芳香族系ホスフィン化合物ある請求項12又は13記載の製造方法。 The production method according to claim 12 or 13, wherein the monofunctional active hydrogen-containing phosphorus compound (b) is an aromatic phosphine compound. 請求項1〜9の何れか一つに記載のエポキシ樹脂組成物を硬化させてなる硬化物。 Hardened | cured material formed by hardening | curing the epoxy resin composition as described in any one of Claims 1-9.
JP2007198912A 2007-07-31 2007-07-31 Epoxy resin composition, cured product thereof, varnish for printed circuit board, novel epoxy resin and production method thereof Active JP5012290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007198912A JP5012290B2 (en) 2007-07-31 2007-07-31 Epoxy resin composition, cured product thereof, varnish for printed circuit board, novel epoxy resin and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007198912A JP5012290B2 (en) 2007-07-31 2007-07-31 Epoxy resin composition, cured product thereof, varnish for printed circuit board, novel epoxy resin and production method thereof

Publications (2)

Publication Number Publication Date
JP2009035586A true JP2009035586A (en) 2009-02-19
JP5012290B2 JP5012290B2 (en) 2012-08-29

Family

ID=40437794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007198912A Active JP5012290B2 (en) 2007-07-31 2007-07-31 Epoxy resin composition, cured product thereof, varnish for printed circuit board, novel epoxy resin and production method thereof

Country Status (1)

Country Link
JP (1) JP5012290B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021050A (en) * 2009-07-13 2011-02-03 Dic Corp Epoxy resin composition, cured product thereof, circuit board, build-up material, and semiconductor sealing material
KR20170100111A (en) * 2016-02-24 2017-09-04 주식회사 신아티앤씨 Phosphorus epoxy compound and method for preparing the same, epoxy composition comprising the same
CN113105860A (en) * 2021-03-19 2021-07-13 上海康达化工新材料集团股份有限公司 Ultrafast-curing flame-retardant bi-component epoxy modified silyl-terminated polymer adhesive, and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143639A (en) * 1994-09-20 1996-06-04 Asahi Denka Kogyo Kk Urethane-modified epoxy resin
JP2002322241A (en) * 2001-04-26 2002-11-08 Dainippon Ink & Chem Inc Flame-retardant epoxy resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143639A (en) * 1994-09-20 1996-06-04 Asahi Denka Kogyo Kk Urethane-modified epoxy resin
JP2002322241A (en) * 2001-04-26 2002-11-08 Dainippon Ink & Chem Inc Flame-retardant epoxy resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021050A (en) * 2009-07-13 2011-02-03 Dic Corp Epoxy resin composition, cured product thereof, circuit board, build-up material, and semiconductor sealing material
KR20170100111A (en) * 2016-02-24 2017-09-04 주식회사 신아티앤씨 Phosphorus epoxy compound and method for preparing the same, epoxy composition comprising the same
KR102587599B1 (en) 2016-02-24 2023-10-12 주식회사 신아티앤씨 Phosphorus epoxy compound and method for preparing the same, epoxy composition comprising the same
CN113105860A (en) * 2021-03-19 2021-07-13 上海康达化工新材料集团股份有限公司 Ultrafast-curing flame-retardant bi-component epoxy modified silyl-terminated polymer adhesive, and preparation method and application thereof

Also Published As

Publication number Publication date
JP5012290B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP4285491B2 (en) Epoxy resin composition, cured product thereof, novel epoxy resin, novel phenol resin, and semiconductor sealing material
JP4259536B2 (en) Method for producing phenol resin and method for producing epoxy resin
US9045508B2 (en) Phosphorus-containing oligomer and method for producing the same, curable resin composition and cured product of the same, and printed wiring board
JP2016169362A (en) Oxazolidone ring-containing epoxy resin and method for producing the same, and epoxy resin composition and cured product of the same
WO2007099670A1 (en) Process for producing phenolic resin and process for producing epoxy resin
KR101903190B1 (en) Flame-retardant epoxy resin, epoxy resin composition containing the epoxy resin as essential component and cured product thereof
TWI753136B (en) Phosphorus-containing phenolic compounds, phosphorus-containing epoxy resins, curable resin compositions thereof or epoxy resin compositions and cured products thereof
JP5146793B2 (en) Phosphorus atom-containing oligomer composition, curable resin composition, cured product thereof, and printed wiring board
JP2006248912A (en) Polyvalent hydroxy compound, epoxy resin, method for producing the same, epoxy resin composition and cured product
JP5967401B2 (en) High molecular weight urethane resin, epoxy resin composition containing the urethane resin, and cured product thereof
JP2013035921A (en) New phosphorus atom-containing epoxy resin, method for producing the same, curable resin composition, cured product of the same, resin composition for printed wiring board, printed wiring board, and resin composition for semiconductor sealing material
JP5793086B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP4706904B2 (en) Epoxy resin composition, cured product thereof, novel epoxy resin and production method thereof
JP5135973B2 (en) Epoxy resin composition and cured product thereof
JP5012290B2 (en) Epoxy resin composition, cured product thereof, varnish for printed circuit board, novel epoxy resin and production method thereof
JP7368551B2 (en) Method for producing epoxy resin composition and method for using biphenylaralkyl phenolic resin
JP5441477B2 (en) Flame retardant phosphorus-containing epoxy resin composition and cured product thereof
KR101954455B1 (en) Phosphorus-containing phenolic resin and the producing method, phenolic resin composition and cured product thereof
JP2020158565A (en) Phosphorus-containing epoxy resin, epoxy resin composition, and its cured product
JP4706905B2 (en) Epoxy resin composition, cured product thereof, novel polyvalent hydroxy compound, and production method thereof
TW202012484A (en) Epoxy resin composition, prepreg, laminate, and printed wiring substrate
JP5011683B2 (en) Polyvalent hydroxy compound, epoxy resin, and production method thereof, epoxy resin composition and cured product
JP5082492B2 (en) Bifunctional hydroxy compound, epoxy resin, production method thereof, epoxy resin composition, cured product thereof, and semiconductor sealing material
JP6113454B2 (en) Epoxy resin composition and cured product
JP4984432B2 (en) Polyvalent hydroxy compound, epoxy resin, and production method thereof, epoxy resin composition and cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5012290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250