JP2009034654A - Hydrogenation catalyst, method of manufacturing the same, and method for producing methane gas using the same - Google Patents

Hydrogenation catalyst, method of manufacturing the same, and method for producing methane gas using the same Download PDF

Info

Publication number
JP2009034654A
JP2009034654A JP2007203653A JP2007203653A JP2009034654A JP 2009034654 A JP2009034654 A JP 2009034654A JP 2007203653 A JP2007203653 A JP 2007203653A JP 2007203653 A JP2007203653 A JP 2007203653A JP 2009034654 A JP2009034654 A JP 2009034654A
Authority
JP
Japan
Prior art keywords
gas
catalyst
metal
oxide
iron group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007203653A
Other languages
Japanese (ja)
Other versions
JP5691119B2 (en
Inventor
Koichi Izumiya
宏一 泉屋
Hiroyuki Takano
裕之 高野
Naokazu Kumagai
直和 熊谷
Koji Hashimoto
功二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Ataka Engineering Co Ltd
Original Assignee
Daiki Ataka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Ataka Engineering Co Ltd filed Critical Daiki Ataka Engineering Co Ltd
Priority to JP2007203653A priority Critical patent/JP5691119B2/en
Priority to US12/184,493 priority patent/US9617196B2/en
Priority to EP08161695.5A priority patent/EP2033943B1/en
Publication of JP2009034654A publication Critical patent/JP2009034654A/en
Application granted granted Critical
Publication of JP5691119B2 publication Critical patent/JP5691119B2/en
Priority to US15/443,233 priority patent/US9731278B2/en
Priority to US15/443,241 priority patent/US9732010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst to be used for the reaction of producing methane by reaction of hydrogen with carbon dioxide, carbon monoxide, or their gas mixture, wherein the catalyst has high activity, improved durability, and is free from a defect, that is, deterioration of capability due to wear even if it is used for a fluidized-bed reactor; and to provide a method for producing the catalyst. <P>SOLUTION: The catalyst is obtained by forming a coating of zirconium oxide, preferably an oxide mixture of zirconium oxide and an oxide of at least one metal of cerium, lanthanum, and barium, on the surface of at least one metal powder of iron-group transition elements (Ni, Fe, Co). The ratio of the zirconium oxide or the oxide mixture to the iron-group elements is adjusted to be 1 to 44% by mole to the total of both. When using the oxide mixture, the ratio of the oxide of metals other than the zirconium in the mixture is adjusted to be 15.5 to 50% by mole in the total of the oxide and zirconium oxide. The catalyst may be a granular catalyst by using a binder. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、一酸化炭素ガス、二酸化炭素ガスまたはそれらの混合ガスと水素ガスからメタンガスを製造するための触媒と、その製造方法に関する。本発明はまた、その触媒を使用してメタンガスを製造する方法にも関する。 The present invention relates to a catalyst for producing methane gas from carbon monoxide gas, carbon dioxide gas or a mixed gas thereof and hydrogen gas, and a production method thereof. The invention also relates to a process for producing methane gas using the catalyst.

化石燃料の燃焼に伴って排出される二酸化炭素は、地球温暖化の原因として、その処理が緊急の課題となっている。一方、木質系バイオマスや石炭のガス化によって得られる、二酸化炭素、一酸化炭素および水素を主成分とする低カロリーガスをメタンガスに転換することにより高カロリー化することが試みられており、この技術は二酸化炭素の処理にも利用できると期待されている。 The treatment of carbon dioxide emitted with the combustion of fossil fuels is an urgent issue as a cause of global warming. On the other hand, attempts have been made to increase calorie by converting low-calorie gas mainly composed of carbon dioxide, carbon monoxide and hydrogen obtained by gasification of woody biomass and coal into methane gas. Is expected to be used for carbon dioxide treatment.

二酸化炭素と一酸化炭素とが混合したガスを水素化してメタンガスに転換する反応の触媒として、これまで、ラネーニッケル触媒とか、ニッケルをアルミナやシリカのような担体に担持させた水素化触媒を使用することが知られている。これらの触媒は安価であるが、反応速度が低いために、1MPa以上の高圧に加圧した状態で反応させる必要があった。 So far, Raney nickel catalysts or hydrogenation catalysts in which nickel is supported on a support such as alumina or silica have been used as catalysts for the reaction of hydrogenating a gas mixture of carbon dioxide and carbon monoxide and converting it to methane gas. It is known. Although these catalysts are inexpensive, since the reaction rate is low, it was necessary to carry out the reaction under a high pressure of 1 MPa or more.

二酸化炭素を水素で効率よくメタンに変換する触媒として、Niに希土類元素とくにCeを添加した合金を活性成分とするものが提案された(特許文献1)が、この触媒も、高圧を必要とする。NiやCoのような鉄族金属と「バルブメタル」と呼ばれるZr,Ti,Nb,Taの合金を、アモルファスの状態で、代表的な手段としては液体急冷法により得て、二酸化炭素のメタン化触媒とすることにより、大気圧でも実用的な反応速度を実現できることが開示された(特許文献2)。このアモルファス合金を前駆体として、酸化還元処理を施してなる触媒も提案された(特許文献3、特許文献4)。この種の触媒は、メタンへの選択率が100%に近く、反応により生成する水を除くだけの単純な工程によって、メタンを得ることを可能にする。 As a catalyst for efficiently converting carbon dioxide into methane with hydrogen, an alloy in which a rare earth element, particularly Ce, is added to Ni as an active component has been proposed (Patent Document 1), but this catalyst also requires high pressure. . An alloy of Zr, Ti, Nb, Ta called “valve metal” such as an iron group metal such as Ni or Co is obtained in an amorphous state by a liquid quenching method as a typical means, and methanation of carbon dioxide. It has been disclosed that a practical reaction rate can be realized even at atmospheric pressure by using a catalyst (Patent Document 2). A catalyst formed by oxidation-reduction treatment using this amorphous alloy as a precursor has also been proposed (Patent Documents 3 and 4). This type of catalyst has a selectivity to methane close to 100% and makes it possible to obtain methane by a simple process that only removes the water produced by the reaction.

ニッケルと、正方晶系ジルコニアとを組み合わせた触媒も提案された(特許文献5)。中でも、正方晶系ジルコニアに安定化元素としてイットリウム(Y)、ランタニド元素(La,Ce,Pr,Nd,Sm,Gd,Td,Dy,Eu)、またはMgもしくCaを15モル%以下添加した担体に、Niおよび(または)Coを担持させたものが、1気圧の反応圧力でも高い反応速度を与えるという。 A catalyst combining nickel and tetragonal zirconia has also been proposed (Patent Document 5). Among them, yttrium (Y), lanthanide element (La, Ce, Pr, Nd, Sm, Gd, Td, Dy, Eu), or Mg or Ca is added in an amount of 15 mol% or less as a stabilizing element to tetragonal zirconia. A carrier having Ni and / or Co supported thereon gives a high reaction rate even at a reaction pressure of 1 atm.

前記のアモルファス合金を前駆体とし、酸化還元処理を施した触媒にしても、また、上記のニッケルと正方晶系ジルコニアとからなる触媒にしても、ジルコニア担体の表面に活性金属が析出し、付着した形態をとっていると考えられる。こうした形態の触媒の問題は、つぎのような理由による、低い耐久性が問題である。 Even if the catalyst is an oxidation-reduction treatment using the amorphous alloy as a precursor, or a catalyst composed of nickel and tetragonal zirconia, the active metal is deposited on the surface of the zirconia support and adheres. It is thought that it has taken the form. The problem with this type of catalyst is low durability due to the following reasons.

二酸化炭素および一酸化炭素と水素との反応によるメタンの生成は発熱反応であるため、反応速度が高くなればなるほど、単位時間内の発熱量が大きくなり、反応空間は高温になる。高温になれば、担体媒表面に存在する金属は、拡散して凝集を引き起こす。それにより、活性金属の表面積は減少し、活性サイトが減少する。一方、触媒を流動床で使用した場合、反応器内部で触媒粒子どうしが激しく接触し、表面が摩耗して、活性金属が脱落する。このような機構で、既知のメタン化触媒は、寿命が短い。 Since the generation of methane by the reaction of carbon dioxide and carbon monoxide with hydrogen is an exothermic reaction, the higher the reaction rate, the greater the amount of heat generated within a unit time and the higher the reaction space. When the temperature becomes high, the metal present on the surface of the carrier medium diffuses to cause aggregation. Thereby, the surface area of the active metal is reduced and the active sites are reduced. On the other hand, when the catalyst is used in a fluidized bed, the catalyst particles are vigorously brought into contact with each other inside the reactor, the surface is worn, and the active metal falls off. With this mechanism, known methanation catalysts have a short life.

活性金属の拡散、凝集が生じないようにし、かつ、摩耗による活性金属の脱落を防ぐことができる触媒の形態として、金属を酸化物の状態とし、担体中に分散させることが提案された(特許文献6)。すなわち、ニッケル酸化物とジルコニウム酸化物が、シリカのような無機担体中に「微粒子形状で均一に分散して埋浸している」形態の触媒である。
特開平8−127544 特開平10−43594 特開平10−263400 特開平10−244158 特開2000−126596 特開2000−126596
As a form of a catalyst that prevents the active metal from diffusing and agglomerating and prevents the active metal from falling off due to wear, it has been proposed that the metal be in an oxide state and dispersed in the support (patent) Reference 6). That is, the catalyst is in a form in which nickel oxide and zirconium oxide are “dispersed and embedded uniformly in the form of fine particles” in an inorganic carrier such as silica.
JP-A-8-127544 JP 10-43594 A JP 10-263400 A JP 10-244158 A JP 2000-126596 A JP 2000-126596 A

本発明の目的は、二酸化炭素、一酸化炭素またはそれらの混合ガスと水素との反応によりメタンを生成させる反応に使用する触媒において、活性成分を金属すなわち還元状態で使用し、かつ、触媒の耐久性が低いという既知の触媒の問題を解消し、とくに流動床反応器に使用した場合でも摩耗による性能の劣化という欠点のない触媒と、その製造方法を提供することにある。この触媒を使用して、バイオマスそのほかの、二酸化炭素、一酸化炭素またはそれらの混合ガスと水素とからメタンを製造する方法を提供することも、本発明の範囲に含まれる。 An object of the present invention is to use an active component in a metal, that is, in a reduced state, in a catalyst used for a reaction for producing methane by reaction of carbon dioxide, carbon monoxide, or a mixed gas thereof with hydrogen, and durability of the catalyst. It is an object of the present invention to provide a catalyst and a method for producing the same which eliminate the problem of known catalysts having low properties and eliminate the disadvantage of deterioration in performance due to wear even when used in a fluidized bed reactor. It is also within the scope of the present invention to use this catalyst to provide a method for producing methane from biomass and other carbon dioxide, carbon monoxide or a mixed gas thereof and hydrogen.

本発明の、一酸化炭素ガス、二酸化炭素ガスまたはそれらの混合ガスと水素ガスとを接触的に反応させてメタンガスとするための触媒は、基本的な形態としては、鉄族遷移元素(Ni、Fe、Co)の少なくとも1種の金属の粉末の表面に酸化ジルコニウムの被覆を設けてなり、鉄族元素に対する酸化ジルコニウムの割合を、両者の合計量の1〜35モル%の範囲とした水素化触媒である。 The catalyst for catalytically reacting carbon monoxide gas, carbon dioxide gas or a mixed gas thereof and hydrogen gas of the present invention into methane gas has a basic form of an iron group transition element (Ni, Fe, Co) Hydrogenation in which the surface of at least one metal powder is provided with a coating of zirconium oxide, and the ratio of zirconium oxide to iron group elements is in the range of 1 to 35 mol% of the total amount of both. It is a catalyst.

本発明の水素化触媒の好ましい態様は、鉄族遷移元素(Ni、Fe、Co)の少なくとも1種の金属の粉末の表面に、酸化ジルコニウムと、セリウム、ランタンおよびバリウムの少なくとも1種の金属の酸化物との混合酸化物の被覆を設けてなり、鉄族遷移元素に対する混合酸化物の割合を両者の合計量の1〜35モル%の範囲とし、混合酸化物中のジルコニウム以外の金属の酸化物の割合を、酸化ジルコニウムとの合計量の15.5〜50モル%の範囲とした水素化触媒である。 In a preferred embodiment of the hydrogenation catalyst of the present invention, zirconium oxide and at least one metal of cerium, lanthanum, and barium are formed on the surface of at least one metal powder of an iron group transition element (Ni, Fe, Co). Oxidation of metals other than zirconium in the mixed oxide by providing a mixed oxide coating with the oxide, the ratio of the mixed oxide to the iron group transition element in the range of 1 to 35 mol% of the total amount of both This is a hydrogenation catalyst in which the ratio of the product is in the range of 15.5 to 50 mol% of the total amount with zirconium oxide.

本発明の水素化触媒は、活性成分である鉄族遷移金属が還元状態で存在し、その周囲を酸化ジルコニウムまたは酸化ジルコニウムを含む混合酸化物が被覆してなる構造を有するから、低い反応圧力においても高い活性を示すだけでなく、従来の酸化ジルコニウムまたは酸化ジルコニウムを含む混合酸化物の担体の周囲に鉄族遷移金属が析出して付着している構造の触媒に比べて、使用状態における高温によって活性金属が拡散・凝集することが少なく、触媒が劣化しにくい。とくに、流動床反応器に使用した場合、触媒粉末どうしの摩耗による活性金属が脱落すると問題がなく、それに起因する活性の低下にわずらわされることがない。酸化ジルコニウムと、セリウム、ランタンおよびバリウムの少なくとも1種の金属の酸化物との混合酸化物の被覆を設けた好ましい態様にあっては、より高い活性と触媒性能の安定性とが得られる。 The hydrogenation catalyst of the present invention has a structure in which an iron group transition metal as an active component is present in a reduced state and the periphery thereof is coated with zirconium oxide or a mixed oxide containing zirconium oxide. In addition to the high activity, the conventional catalyst having a structure in which an iron group transition metal is deposited around the support of zirconium oxide or a mixed oxide containing zirconium oxide is attached to the support due to the high temperature in use. The active metal is less likely to diffuse and aggregate, and the catalyst is unlikely to deteriorate. In particular, when used in a fluidized bed reactor, there is no problem if the active metal is removed due to wear of the catalyst powders, and there is no need to bother the decrease in activity caused by it. In a preferred embodiment provided with a mixed oxide coating of zirconium oxide and an oxide of at least one metal of cerium, lanthanum and barium, higher activity and stability of catalyst performance can be obtained.

本発明の水素化触媒の基本的な形態のものを製造する方法は、鉄族遷移元素の金属または化合物の粒子を、ジルコニウムの塩の水溶液に浸漬し、水溶液を加熱して、鉄族遷移元素の金属または化合物の粒子の表面にジルコニウムの酸化物の層の化合物を金属に還元することからなる。 The method for producing the basic form of the hydrogenation catalyst of the present invention comprises immersing a metal or compound particle of an iron group transition element in an aqueous solution of a salt of zirconium, heating the aqueous solution, and The compound of the zirconium oxide layer on the surface of the metal or compound particles is reduced to metal.

本発明の水素化触媒の好ましい態様のものを製造する方法は、鉄族遷移元素の金属または化合物の粒子を、ジルコニウムの塩と、セリウム、ランタンおよびバリウムの少なくとも1種の金属の塩との混合水溶液に浸漬し、水溶液を加熱して、の金属または化合物の粒子の表面にジルコニウムの酸化物の層を形成したのち、水溶液から分離し、還元性雰囲気において加熱して鉄族遷移元素の化合物を金属に還元することからなる。前述のように、セリウム、ランタンおよびバリウムは、酸化ジルコニウムのもつ酸素貯蔵能を向上させるのに役立ち、触媒の活性を高くする。 A method for producing a preferred embodiment of the hydrogenation catalyst of the present invention comprises mixing a metal or compound particle of an iron group transition element with a salt of zirconium and a salt of at least one metal of cerium, lanthanum and barium. After immersion in an aqueous solution and heating the aqueous solution to form a zirconium oxide layer on the surface of the metal or compound particles, the zirconium oxide layer is separated from the aqueous solution and heated in a reducing atmosphere to convert the iron group transition element compound. Consisting of reduction to metal. As described above, cerium, lanthanum, and barium serve to improve the oxygen storage capacity of zirconium oxide and increase the activity of the catalyst.

触媒の製造に当たっては、さまざまな変更態様が採用できる。たとえば、鉄族遷移元素は、金属の粒子をそのまま用いてもよいし、酸化物のような化合物の粒子を用いてもよいし、さらには錯体を用いてもよい。ジルコニウムの塩も、通常の可溶性塩のほかに、アルコキシドのような有機金属の形をしたものや、ジルコニウム化合物のコロイドなどを用いることもできる。 In manufacturing the catalyst, various modifications can be adopted. For example, as the iron group transition element, metal particles may be used as they are, compound particles such as oxides may be used, or a complex may be used. As the zirconium salt, in addition to a normal soluble salt, an organic metal form such as an alkoxide, a zirconium compound colloid, or the like can also be used.

上記の基本的な態様にせよ、好ましい態様にせよ、本発明の触媒は、粉末の形態に限らず、粒状に形成することができる。粒状の水素化触媒は、上記いずれかの方法により製造した水素化触媒の粉末を、バインダーと混合し、適宜の寸法・形状の粒子に造粒し、焼成することにより製造することができる。バインダーとしては、ケイ酸塩、チタン酸塩、アルミン酸塩、ジルコン酸塩など常用のものが好適であり、それらから選んだものを使用することが推奨されるが、糖類その他の有機物や、アルミナゾルなども使用可能である。いうまでもないが、粒状の触媒は、固定床反応器に充填して使用するのに適する。造粒は、バインダーの水溶液ないし水懸濁液をスプレーして、グラニュレータによりグラニュールにするなど、任意の手段によることができる。 Regardless of the basic aspect or the preferred aspect, the catalyst of the present invention is not limited to a powder form and can be formed in a granular form. The granular hydrogenation catalyst can be produced by mixing the hydrogenation catalyst powder produced by any of the above methods with a binder, granulating the powder into particles having an appropriate size and shape, and firing the particles. Usable binders such as silicate, titanate, aluminate and zirconate are suitable, and it is recommended to use one selected from these, but sugars and other organic substances, alumina sol Etc. can also be used. Needless to say, the particulate catalyst is suitable for use in a fixed bed reactor. The granulation can be carried out by any means such as spraying an aqueous solution or water suspension of the binder and granulating it with a granulator.

本発明の触媒を使用してメタンガスを製造する方法であって、流動床反応器を使用する場合は、上述した粉末状の水素化触媒を、加熱した原料ガス、すなわち一酸化炭素ガス、二酸化炭素ガスまたはそれらの混合ガスと水素ガスとの混合ガスにより流動床の状態としたものに原料ガスを接触させ、反応ガスからメタンガスを回収し、未反応ガスを原料ガスに循環使用することからなる。 In the method for producing methane gas using the catalyst of the present invention and using a fluidized bed reactor, the above-mentioned powdered hydrogenation catalyst is heated to a raw material gas, that is, carbon monoxide gas, carbon dioxide. The raw material gas is brought into contact with a gas or a mixed gas of these gases and hydrogen gas in a fluidized bed state, methane gas is recovered from the reaction gas, and unreacted gas is recycled to the raw material gas.

本発明の触媒を使用してメタンガスを製造する方法であって、固定床反応器を使用する場合は、上述した粒子状の水素化触媒を充填した固定床反応器において、加熱した原料ガス、すなわち一酸化炭素ガス、二酸化炭素ガスまたはそれらの混合ガスと水素ガスとを触媒に接触させてメタン化を行ない、反応ガスからメタンガスを回収し、未反応ガスを原料ガスに循環使用する。 In the method of producing methane gas using the catalyst of the present invention and using a fixed bed reactor, in the fixed bed reactor filled with the above-described particulate hydrogenation catalyst, heated raw material gas, that is, Carbon monoxide gas, carbon dioxide gas or a mixed gas thereof and hydrogen gas are contacted with a catalyst to perform methanation, methane gas is recovered from the reaction gas, and unreacted gas is circulated and used as a raw material gas.

触媒製造例1Catalyst production example 1

オキシジルコニウム塩の酸性(pH3)水溶液(第一希元素工業製「ジルコゾールZA」、ZrOとして15重量%を含有する。)に、酸化ニッケルNiO粉末10gを投入し、撹拌しながらアンモニア水を滴下して、NiO粉末の表面にZrO(OH)を析出させて、表面を被覆させた。この被覆層を有するNiO粉末を濾過して取り、乾燥し、空気中で加熱したのち、1気圧の水素気流中で500℃に5時間加熱して、Niを還元した。得られた粉末触媒の組成は、モル%で、Ni:74%、ZrO:26%であった。 10 g of nickel oxide NiO powder was added to an acidic (pH 3) aqueous solution of oxyzirconium salt (“Zircosol ZA” manufactured by Daiichi Rare Element Industries, containing 15 wt% as ZrO 2 ), and ammonia water was added dropwise with stirring. Then, ZrO (OH) was deposited on the surface of the NiO powder to coat the surface. The NiO powder having this coating layer was filtered off, dried, heated in air, and then heated to 500 ° C. for 5 hours in a hydrogen stream of 1 atm to reduce Ni. The composition of the obtained powder catalyst at molar%, Ni: 74%, ZrO 2: was 26%.

触媒製造例2Catalyst production example 2

ジルコニウムの酸性(pH3)コロイド水溶液(第一希元素工業製「ジルコニアゾルZSL−10A」、ZrOとして10重量%を含有する。)に、酸化ニッケルNiO粉末10gを投入し、製造例1と同様に撹拌しながらアンモニア水を滴下して、NiO粉末の表面にZrO(OH)+Ce(OH)を析出させて、表面を被覆させた。この被覆層を有するNiO粉末を濾過して取り、乾燥し、空気中で加熱したのち、1気圧の水素気流中で500℃に5時間加熱して、Niを還元した。この粉末触媒の組成は、モル%で、Ni:58%、ZrO:42%であった。 In the same manner as in Production Example 1, 10 g of nickel oxide NiO powder was charged into an acidic (pH 3) colloidal aqueous solution of zirconium (“Zirconia sol ZSL-10A” manufactured by Daiichi Rare Element Industries, containing 10 wt% as ZrO 2 ). Aqueous ammonia was added dropwise with stirring to precipitate ZrO (OH) + Ce (OH) 4 on the surface of the NiO powder to coat the surface. The NiO powder having this coating layer was filtered off, dried, heated in air, and then heated to 500 ° C. for 5 hours in a hydrogen stream of 1 atm to reduce Ni. The composition of this powder catalyst was mol%, Ni: 58%, and ZrO 2 : 42%.

触媒製造例3Catalyst production example 3

触媒製造例1で使用したものと同じオキシジルコニウム塩の酸性(pH3)水溶液に硝酸セリウム20gを加えた溶液を用意し、酸化ニッケルNiO粉末10gを投入し、製造例1と同様に撹拌しながらアンモニア水を滴下して、NiO粉末の表面にZrO(OH)+Ce(OH)を析出させて、表面を被覆させた。この被覆層を有するNiO粉末を濾過して取り、乾燥し、空気中で加熱したのち、1気圧の水素気流中で500℃に5時間加熱して、Niを還元した。この粉末触媒の組成は、モル%で、Ni:69%、Zr−Ce混合酸化物:31%であり、混合酸化物中のCeO:40%であった。 Prepare a solution obtained by adding 20 g of cerium nitrate to an acidic (pH 3) aqueous solution of the same oxyzirconium salt used in Catalyst Production Example 1, add 10 g of nickel oxide NiO powder, and stir in the same manner as in Production Example 1. Water was dropped to deposit ZrO (OH) + Ce (OH) 4 on the surface of the NiO powder to coat the surface. The NiO powder having this coating layer was filtered off, dried, heated in air, and then heated to 500 ° C. for 5 hours in a hydrogen stream of 1 atm to reduce Ni. The composition of this powder catalyst was mol%, Ni: 69%, Zr—Ce mixed oxide: 31%, and CeO 2 in the mixed oxide: 40%.

触媒製造例4Catalyst production example 4

触媒製造例1で製造した粉末触媒に、バインダーとしてケイ酸ナトリウムの水溶液をスプレーし、転動造粒法により造粒し、乾燥したのち、大気中で500℃に4時間焼成して、粒状の水素化触媒を得た。この粒状触媒は、平均粒径5mmの球状であった。 The powdered catalyst produced in Catalyst Production Example 1 is sprayed with an aqueous solution of sodium silicate as a binder, granulated by the tumbling granulation method, dried, and then calcined in the atmosphere at 500 ° C. for 4 hours, A hydrogenation catalyst was obtained. This granular catalyst was spherical with an average particle diameter of 5 mm.

反応例Example reaction

下部にガス加熱層を設けた内径100mmの反応管に、触媒製造例4で製造した粒状の水素化触媒50gを充填した。原料ガスとして、バイオガスを模擬した組成、すなわち、容積%で、一酸化炭素20%、二酸化炭素50%、水素60%からなる混合ガスを、上記の反応管に、その下部から流速1L/minで供給した。原料ガスは、275℃に加熱されて触媒床を通過した。反応管出口を出た反応ガスをガスクロマトグラフィーにより分析して、つぎの結果を得た(容積%)。
CO:1%、CO:65%、H:2%、CH:32%。
A reaction tube having an inner diameter of 100 mm provided with a gas heating layer at the bottom was filled with 50 g of the granular hydrogenation catalyst produced in Catalyst Production Example 4. As a raw material gas, a composition simulating biogas, that is, a mixed gas composed of 20% by volume, carbon monoxide 20%, carbon dioxide 50%, and hydrogen 60% is introduced into the reaction tube from the lower part at a flow rate of 1 L / min. Supplied with. The source gas was heated to 275 ° C. and passed through the catalyst bed. The reaction gas exiting the reaction tube outlet was analyzed by gas chromatography to obtain the following result (volume%).
CO: 1%, CO 2: 65%, H 2: 2%, CH 4: 32%.

上記のメタン化の操作を連続的に実施し、所定時間ごとに反応ガスの組成をしらべた。反応開始の初期において、転化率は99%であり、この触媒活性は168時間後も変化がなかった。 The above methanation operation was carried out continuously, and the composition of the reaction gas was examined every predetermined time. At the beginning of the reaction, the conversion was 99%, and the catalytic activity remained unchanged after 168 hours.

Claims (7)

一酸化炭素ガス、二酸化炭素ガスまたはそれらの混合ガスと水素ガスとを接触的に反応させてメタンガスとするための触媒であって、鉄族遷移元素(Ni、Fe、Co)の少なくとも1種の金属の粉末の表面に酸化ジルコニウムの被覆を設けてなり、鉄族元素に対する酸化ジルコニウムの割合を、両者の合計量の1〜35モル%の範囲とした水素化触媒。 A catalyst for catalytically reacting carbon monoxide gas, carbon dioxide gas or a mixed gas thereof with hydrogen gas to form methane gas, which is at least one of iron group transition elements (Ni, Fe, Co) A hydrogenation catalyst in which a surface of a metal powder is provided with a coating of zirconium oxide, and the ratio of zirconium oxide to iron group elements is in the range of 1 to 35 mol% of the total amount of both. 一酸化炭素ガス、二酸化炭素ガスまたはそれらの混合ガスと水素ガスとを接触的に反応させてメタンガスとするための触媒であって、鉄族遷移元素(Ni、Fe、Co)の少なくとも1種の金属の粒子の表面に、酸化ジルコニウムと、セリウム、ランタンおよびバリウムの少なくとも1種の金属の酸化物との混合酸化物の被覆を設けてなり、鉄族遷移元素に対する混合酸化物の割合を両者の合計量の1〜44モル%の範囲とし、混合酸化物中のジルコニウム以外の金属の酸化物の割合を、酸化ジルコニウムとの合計量の15.5〜50モル%の範囲とした水素化触媒。 A catalyst for catalytically reacting carbon monoxide gas, carbon dioxide gas or a mixed gas thereof with hydrogen gas to form methane gas, which is at least one of iron group transition elements (Ni, Fe, Co) The surface of the metal particles is coated with a mixed oxide of zirconium oxide and an oxide of at least one metal of cerium, lanthanum and barium, and the ratio of the mixed oxide to the iron group transition element is The hydrogenation catalyst which made it the range of 1-444 mol% of total amount, and made the ratio of the oxide of metals other than zirconium in mixed oxide the range of 15.5-50 mol% of the total amount with a zirconium oxide. 請求項1に記載の水素化触媒を製造する方法であって、鉄族遷移元素の金属または化合物の粒子を、ジルコニウムの塩の水溶液に浸漬し、水溶液を加熱して、鉄族遷移元素の金属または化合物の粒子の表面にジルコニウムの酸化物の層を形成したのち、水溶液から分離し、還元性雰囲気において加熱して鉄族遷移元素の化合物を金属に還元することからなる製造方法。 A method for producing a hydrogenation catalyst according to claim 1, wherein particles of iron group transition element metal or compound are immersed in an aqueous solution of a salt of zirconium, and the aqueous solution is heated to produce a metal of iron group transition element. Alternatively, a production method comprising forming a zirconium oxide layer on the surface of the compound particles, separating the solution from an aqueous solution, and heating in a reducing atmosphere to reduce the iron group transition element compound to a metal. 請求項2に記載の水素化触媒を製造する方法であって、鉄族遷移元素の金属または化合物の粒子を、ジルコニウムの塩と、セリウム、ランタンおよびバリウムの少なくとも1種の金属の塩との混合水溶液に浸漬し、水溶液を加熱して、鉄族遷移元素の金属または化合物の粒子の表面にジルコニウムの酸化物の層を形成したのち、水溶液から分離し、還元性雰囲気において加熱して鉄族遷移元素の化合物を金属に還元することからなる製造方法。 3. A method for producing a hydrogenation catalyst according to claim 2, wherein particles of iron group transition element metal or compound are mixed with a salt of zirconium and a salt of at least one metal of cerium, lanthanum and barium. Immerse in an aqueous solution and heat the aqueous solution to form a zirconium oxide layer on the surface of the iron group transition element metal or compound particles, then separate from the aqueous solution and heat in a reducing atmosphere to heat the iron group transition A process comprising reducing an elemental compound to a metal. 粒状の水素化触媒を製造する方法であって、請求項3または4の方法により製造した水素化触媒の粉末にバインダーを添加し、造粒したものを焼成することからなる製造方法。 A method for producing a granular hydrogenation catalyst, comprising adding a binder to the hydrogenation catalyst powder produced by the method of claim 3 or 4 and calcining the granulated product. 一酸化炭素ガス、二酸化炭素ガスまたはそれらの混合ガスと水素ガスとからメタンガスを製造する方法であって、請求項1または2の粉末状の水素化触媒を、加熱した原料ガスにより流動床の状態としたものに原料ガスを接触させ、反応ガスからメタンガスを回収し、未反応ガスを原料ガスに循環使用することからなる製造方法。 A method for producing methane gas from carbon monoxide gas, carbon dioxide gas or a mixed gas thereof and hydrogen gas, wherein the powdered hydrogenation catalyst according to claim 1 or 2 is in a fluidized bed state by a heated raw material gas. A manufacturing method comprising bringing a raw material gas into contact with the product, recovering methane gas from the reaction gas, and circulating the unreacted gas into the raw material gas. 一酸化炭素ガス、二酸化炭素ガスまたはそれらの混合ガスと水素ガスとからメタンガスを製造する方法であって、原料ガスを、請求項5の方法により製造した粒状の水素化触媒を充填した固定床反応器において触媒と接触させ、反応ガスからメタンガスを回収し、未反応ガスを原料ガスに循環使用することからなる製造方法。 A method for producing methane gas from carbon monoxide gas, carbon dioxide gas or a mixed gas thereof and hydrogen gas, wherein the raw material gas is packed with a granular hydrogenation catalyst produced by the method of claim 5. A production method comprising contacting a catalyst with a catalyst in a vessel, recovering methane gas from a reaction gas, and recycling unreacted gas as a raw material gas.
JP2007203653A 2007-08-03 2007-08-03 Method for producing hydrogenation catalyst and method for producing methane gas using the same Active JP5691119B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007203653A JP5691119B2 (en) 2007-08-03 2007-08-03 Method for producing hydrogenation catalyst and method for producing methane gas using the same
US12/184,493 US9617196B2 (en) 2007-08-03 2008-08-01 Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
EP08161695.5A EP2033943B1 (en) 2007-08-03 2008-08-04 Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
US15/443,233 US9731278B2 (en) 2007-08-03 2017-02-27 Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
US15/443,241 US9732010B2 (en) 2007-08-03 2017-02-27 Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007203653A JP5691119B2 (en) 2007-08-03 2007-08-03 Method for producing hydrogenation catalyst and method for producing methane gas using the same

Publications (2)

Publication Number Publication Date
JP2009034654A true JP2009034654A (en) 2009-02-19
JP5691119B2 JP5691119B2 (en) 2015-04-01

Family

ID=40437080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007203653A Active JP5691119B2 (en) 2007-08-03 2007-08-03 Method for producing hydrogenation catalyst and method for producing methane gas using the same

Country Status (1)

Country Link
JP (1) JP5691119B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034650A (en) * 2007-08-03 2009-02-19 Daiki Ataka Engineering Co Ltd Methanation catalyst of carbon oxide, its manufacturing method and methanation method
KR101091803B1 (en) 2009-07-07 2011-12-08 서울대학교산학협력단 Nickel catalyst supported on porous zirconia containing metal oxide stabilizer, preparation method thereof and method for producing hydrogen by autothermal reforming of ethanol using said catalyst
WO2013108403A1 (en) * 2012-01-20 2013-07-25 豊田合成株式会社 Method for producing hydrocarbons
WO2013108833A1 (en) * 2012-01-20 2013-07-25 豊田合成株式会社 Method for producing hydrocarbons
WO2013156550A1 (en) * 2012-04-20 2013-10-24 Rhodia Operations Method for the alkanization of co2 using, as a catalyst, a compound containing nickel on a cerium oxide substrate
US9364808B2 (en) 2011-10-24 2016-06-14 Sogang University Research Foundation Apparatus and method for reducing carbon dioxide using solar light

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101688111B1 (en) 2015-08-03 2016-12-21 한국과학기술원 Zinc based catalyst particle having core-shell structure and methanation of carbon dioxide using the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234986A (en) * 1985-08-05 1987-02-14 ザ・ダウ・ケミカル・カンパニ− Abrasion resistant sulfide in conversion of synthetic gas
JPS6324979B2 (en) * 1978-03-23 1988-05-23 Union Carbide Corp
JPH08127545A (en) * 1994-10-31 1996-05-21 Agency Of Ind Science & Technol Production of methane from carbon dioxide
JPH10263400A (en) * 1997-03-24 1998-10-06 Ishii Iron Works Co Ltd Amorphous alloy catalyst for reformed gas of hydrocarbon and use of the catalyst
JPH1190227A (en) * 1997-09-24 1999-04-06 Ishii Iron Works Co Ltd Amorphous alloy catalyst for hydrocarbon-modified gas containing sulfur
JP2000126596A (en) * 1998-10-28 2000-05-09 Ube Ind Ltd Complex oxide, its production, and method for hydrogenating carbon dioxide
JP2000254508A (en) * 1999-03-10 2000-09-19 Mitsui Eng & Shipbuild Co Ltd Catalyst for methanizing carbon dioxide
WO2007025691A1 (en) * 2005-09-02 2007-03-08 Haldor Topsøe A/S Process and catalyst for hydrogenation of carbon oxides
JP2007252990A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP2010520807A (en) * 2007-03-13 2010-06-17 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Metal-doped nickel oxide as a catalyst for methanation of carbon monoxide

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324979B2 (en) * 1978-03-23 1988-05-23 Union Carbide Corp
JPS6234986A (en) * 1985-08-05 1987-02-14 ザ・ダウ・ケミカル・カンパニ− Abrasion resistant sulfide in conversion of synthetic gas
JPH08127545A (en) * 1994-10-31 1996-05-21 Agency Of Ind Science & Technol Production of methane from carbon dioxide
JPH10263400A (en) * 1997-03-24 1998-10-06 Ishii Iron Works Co Ltd Amorphous alloy catalyst for reformed gas of hydrocarbon and use of the catalyst
JPH1190227A (en) * 1997-09-24 1999-04-06 Ishii Iron Works Co Ltd Amorphous alloy catalyst for hydrocarbon-modified gas containing sulfur
JP2000126596A (en) * 1998-10-28 2000-05-09 Ube Ind Ltd Complex oxide, its production, and method for hydrogenating carbon dioxide
JP2000254508A (en) * 1999-03-10 2000-09-19 Mitsui Eng & Shipbuild Co Ltd Catalyst for methanizing carbon dioxide
WO2007025691A1 (en) * 2005-09-02 2007-03-08 Haldor Topsøe A/S Process and catalyst for hydrogenation of carbon oxides
JP2007252990A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP2010520807A (en) * 2007-03-13 2010-06-17 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Metal-doped nickel oxide as a catalyst for methanation of carbon monoxide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YAMASAKI, M. ET AL: "Characterization of CO2 methanation catalysts prepared from amorphous Ni-Zr and Ni-Zr-rare earth ele", STUD. SURF. SCI. CATAL., vol. 114, JPN6012068845, 1998, pages 451 - 454, ISSN: 0002426050 *
YAMASAKI, M. ET AL: "Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni-Z", CATAL. COMMUN., vol. 7, no. 1, JPN6012068848, 2 November 2005 (2005-11-02), pages 24 - 28, XP024972912, ISSN: 0002426051, DOI: 10.1016/j.catcom.2005.08.005 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034650A (en) * 2007-08-03 2009-02-19 Daiki Ataka Engineering Co Ltd Methanation catalyst of carbon oxide, its manufacturing method and methanation method
KR101091803B1 (en) 2009-07-07 2011-12-08 서울대학교산학협력단 Nickel catalyst supported on porous zirconia containing metal oxide stabilizer, preparation method thereof and method for producing hydrogen by autothermal reforming of ethanol using said catalyst
US9364808B2 (en) 2011-10-24 2016-06-14 Sogang University Research Foundation Apparatus and method for reducing carbon dioxide using solar light
WO2013108403A1 (en) * 2012-01-20 2013-07-25 豊田合成株式会社 Method for producing hydrocarbons
WO2013108833A1 (en) * 2012-01-20 2013-07-25 豊田合成株式会社 Method for producing hydrocarbons
US9162936B2 (en) 2012-01-20 2015-10-20 Toyoda Gosei Co., Ltd. Method for manufacturing hydrocarbon
WO2013156550A1 (en) * 2012-04-20 2013-10-24 Rhodia Operations Method for the alkanization of co2 using, as a catalyst, a compound containing nickel on a cerium oxide substrate
FR2989682A1 (en) * 2012-04-20 2013-10-25 Rhodia Operations METHOD FOR ALKANIZING CO2 USING AS CATALYST A COMPOUND COMPRISING NICKEL ON A CERIUM OXIDE BASE

Also Published As

Publication number Publication date
JP5691119B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5691119B2 (en) Method for producing hydrogenation catalyst and method for producing methane gas using the same
EP2924002B1 (en) Process for operating hts reactor at low o/c molar ratio
JP4747339B2 (en) Iron-based catalyst for Fischer-Tropsch synthesis reaction, method for producing the same, and method for producing hydrocarbons using the same
JP5778309B2 (en) Hydrogen production catalyst and hydrogen production method using the same
JP4022615B2 (en) Catalyst for water gas shift reaction and methanol steam reforming reaction
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JPH08127544A (en) Production of methane from carbon dioxide and hydrogen
JP2004209408A (en) Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP5871312B2 (en) Fine particle aggregate production method, steam reforming catalyst, steam reforming catalyst production method, and hydrogen production method
JP4016100B2 (en) Catalyst for water gas shift reaction
JP2004321924A (en) Catalyst for water gas shift reaction
JP2007203159A (en) Catalyst for reforming hydrocarbon, its manufacturing method and hydrogen-manufacturing method using the catalyst
JP2006341206A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method
JP6751606B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JP2017217630A (en) Magnesia catalyst carrier and method for producing the same
JP4013689B2 (en) Hydrocarbon reforming catalyst, hydrocarbon cracking apparatus, and fuel cell reformer
JP2010058043A (en) Method for manufacturing steam reforming catalyst and hydrogen
JP5207755B2 (en) Method for producing hydrocarbon reforming catalyst
PL240039B1 (en) Method for the catalytic conversion of carbon monoxide or dioxide to methane and a catalyst bed for carrying out the method
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
KR101451407B1 (en) CATAlYST COMPOSITION FOR AUTOTHERMAL REACTION OF METHANE, METHOD FOR PREPARING THE SAME, METHOD FOR PREPARING A SYNGAS USING THE SAME
JP2001276620A (en) Catalyst for reforming hydrocarbon
JP2007516825A (en) Reforming catalyst
JP2008302276A (en) Catalyst for steam-reforming and manufacturing method of hydrogen
JP4799312B2 (en) Synthesis gas production catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5691119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250