JP2009033483A - Calculation method of oscillation frequency deviation and calculation program of oscillation frequency deviation - Google Patents

Calculation method of oscillation frequency deviation and calculation program of oscillation frequency deviation Download PDF

Info

Publication number
JP2009033483A
JP2009033483A JP2007195361A JP2007195361A JP2009033483A JP 2009033483 A JP2009033483 A JP 2009033483A JP 2007195361 A JP2007195361 A JP 2007195361A JP 2007195361 A JP2007195361 A JP 2007195361A JP 2009033483 A JP2009033483 A JP 2009033483A
Authority
JP
Japan
Prior art keywords
oscillation frequency
frequency deviation
piezoelectric oscillator
value
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007195361A
Other languages
Japanese (ja)
Inventor
Tomio Sato
富雄 佐藤
Hirokazu Tanaka
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHEMIACE KENKYUSHO KK
Original Assignee
CHEMIACE KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHEMIACE KENKYUSHO KK filed Critical CHEMIACE KENKYUSHO KK
Priority to JP2007195361A priority Critical patent/JP2009033483A/en
Publication of JP2009033483A publication Critical patent/JP2009033483A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a calculation method of oscillation frequency deviation of a piezoelectric oscillator capable of reflecting an influence of a resistive component in the piezoelectric oscillator on oscillation frequency deviation highly accurately and so of analyzing the oscillation frequency deviation more accurately. <P>SOLUTION: A highly accurate oscillation frequency deviation analysis can be attained by using a recurrence equation that reflects on oscillation frequency deviation highly accurately an influence of equivalent series resistance R1 and equivalent load resistance RL of a piezoelectric oscillator to repeatedly calculating the oscillation frequency for obtaining a converged constant value. More specifically, calculations of determining an arbitrary initial substitution value f0 and substituting n order fn for a predetermined recurrence equation are repeated to determine n+1 order oscillation frequency fn+1, and the constant value to which the fn converges is obtained by repeating the calculation to calculate the frequency deviation. This enables highly accurate calculation of the oscillation frequency deviation of the piezoelectric oscillator. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧電振動子を備えた圧電発振器の発振周波数偏差の解析方法に係り、特にその解析が高精度に行われるようにした解析方法に関わるものである。   The present invention relates to a method for analyzing an oscillation frequency deviation of a piezoelectric oscillator including a piezoelectric vibrator, and more particularly to an analysis method in which the analysis is performed with high accuracy.

圧電発振器の設計段階において、圧電発振器の性能を実際の試作機を試作する前にあらかじめシミュレーションにより把握し、より高性能な発振器の設計に反映させることは、無駄な費用・時間を削減することにつながり非常に重要である。圧電発振器の性能を示す種々のパラメータのうち、発振周波数偏差Δf/fは前記設計段階において非常に重視されるパラメータであって、周波数発生源として用いられることの多い圧電発振器の性能を測る極めて重要なパラメータの1つである。   At the design stage of the piezoelectric oscillator, it is necessary to grasp the performance of the piezoelectric oscillator by simulation before making an actual prototype, and to reflect it in the design of a higher performance oscillator in order to reduce useless cost and time. Connection is very important. Among various parameters indicating the performance of the piezoelectric oscillator, the oscillation frequency deviation Δf / f is a parameter that is very important in the design stage, and is extremely important for measuring the performance of the piezoelectric oscillator often used as a frequency generation source. Is one of the most important parameters.

図1は圧電発振器の等価回路100を示す図である。圧電振動子10は等価直列インダクタンスL1と等価直列容量C1と等価直列抵抗R1と電極間容量C0とを備える。等価直列インダクタンスL1と等価直列容量C1と等価直列抵抗R1とが直列接続され、さらにこれらは電極間容量C0に並列接続される。発振回路20の等価回路は等価負荷抵抗RLと直列接続される等価負荷容量CLで示される。   FIG. 1 is a diagram showing an equivalent circuit 100 of a piezoelectric oscillator. The piezoelectric vibrator 10 includes an equivalent series inductance L1, an equivalent series capacitance C1, an equivalent series resistance R1, and an interelectrode capacitance C0. An equivalent series inductance L1, an equivalent series capacitance C1, and an equivalent series resistance R1 are connected in series, and these are further connected in parallel to the interelectrode capacitance C0. An equivalent circuit of the oscillation circuit 20 is indicated by an equivalent load capacitance CL connected in series with the equivalent load resistor RL.

発振周波数偏差Δf/fは共振周波数オフセットとも呼ばれ、(1)式で与えられる近似式で表わされる。また容量比γは(2)式で与えられる(非特許文献1参照)。

Figure 2009033483

Figure 2009033483

滝貞男、人工水晶とその電気的応用、日刊工業新聞社、(1974) p122〜126 The oscillation frequency deviation Δf / f is also called a resonance frequency offset, and is expressed by an approximate expression given by Expression (1). The capacity ratio γ is given by the equation (2) (see Non-Patent Document 1).
Figure 2009033483

Figure 2009033483

Sadao Taki, artificial quartz and its electrical application, Nikkan Kogyo Shimbun, (1974) p122 ~ 126

しかし(1)式には、圧電振動子10の等価直列抵抗R1と発振回路20の等価負荷抵抗RLが含まれておらず、圧電発振器内に含まれる抵抗の影響を一切考慮していない。よって、(1)式では抵抗が発振周波数に与える影響を求めることができない。実際の圧電発振器内に抵抗を含まないことは現実的にありえないため、(1)式を用いても高精度な発振周波数偏差の解析は不可能である。   However, the equation (1) does not include the equivalent series resistance R1 of the piezoelectric vibrator 10 and the equivalent load resistance RL of the oscillation circuit 20, and does not consider the influence of the resistance included in the piezoelectric oscillator. Therefore, in the equation (1), it is impossible to obtain the influence of the resistance on the oscillation frequency. Since it is practically impossible that the actual piezoelectric oscillator does not include a resistor, it is impossible to analyze the oscillation frequency deviation with high accuracy even if the equation (1) is used.

本発明は、前記従来技術の欠点を解消するためになされたもので、圧電発振器内に含まれる抵抗である等価直列抵抗R1と等価負荷抵抗RLとが発振周波数に与える影響を考慮することが可能であり、従来技術と比較して非常に高精度な発振周波数偏差の解析方法が提供される。   The present invention has been made to eliminate the drawbacks of the prior art, and it is possible to consider the influence of the equivalent series resistance R1 and the equivalent load resistance RL, which are resistances included in the piezoelectric oscillator, on the oscillation frequency. Thus, an oscillation frequency deviation analysis method that is very highly accurate compared to the prior art is provided.

上記の目的を達成するため、本発明の発振周波数偏差の算出方法は、高精度で圧電発振器の発振周波数偏差を算出する発振周波数偏差の算出方法であって、算出対象の圧電発振器が有する圧電振動子の等価直列抵抗および前記圧電発振器が有する負性抵抗の影響が反映され、圧電発振器の発振周波数を求めるのに用いられる所定の漸化式に対して、任意の初期代入値f0を決定する初期ステップと、前記所定の漸化式にn次のfnを代入し、n+1次の発振周波数fn+1を決定する計算を反復する反復ステップと、前記計算の繰返しによりfnが収束した一定値を用いて、周波数偏差を算出する算出ステップと、を有することを特徴としている。   In order to achieve the above object, a method for calculating an oscillation frequency deviation according to the present invention is a calculation method for an oscillation frequency deviation for calculating an oscillation frequency deviation of a piezoelectric oscillator with high accuracy. An initial value for determining an arbitrary initial substitution value f0 with respect to a predetermined recurrence formula used to determine the oscillation frequency of the piezoelectric oscillator, reflecting the influence of the equivalent series resistance of the child and the negative resistance of the piezoelectric oscillator. Using a step, an iterative step of substituting the n-th order fn into the predetermined recurrence formula and repeating the calculation for determining the n + 1-order oscillation frequency fn + 1, and a constant value where fn has converged by the repetition of the calculation, And a calculating step for calculating a frequency deviation.

また、本発明の発振周波数偏差の算出方法は、前記所定の漸化式は、前記圧電発振器が有する圧電振動子の等価直列抵抗の抵抗値、圧電振動子の等価直列容量の容量値、等価直列インダクタンスのインダクタンス値および電極間容量の容量値、ならびに前記圧電発振器の等価負荷容量の容量値を更に含んで構成されることを特徴としている。   Also, in the calculation method of the oscillation frequency deviation according to the present invention, the predetermined recurrence formula is such that a resistance value of an equivalent series resistance of a piezoelectric vibrator included in the piezoelectric oscillator, a capacitance value of an equivalent series capacitance of the piezoelectric vibrator, an equivalent series It is characterized by further including an inductance value of inductance, a capacitance value of interelectrode capacitance, and a capacitance value of an equivalent load capacitance of the piezoelectric oscillator.

また、本発明の発振周波数偏差の算出方法は、前記所定の漸化式は、前記圧電発振器が有する圧電振動子の等価直列抵抗の抵抗値をR1、等価直列容量の容量値をC1、等価直列インダクタンスのインダクタンス値をL1、電極間容量の容量値をC0、前記圧電発振器の等価負荷容量の容量値をCLと表したとき、以下の数式で表されることを特徴としている。

Figure 2009033483

Figure 2009033483

Figure 2009033483

Figure 2009033483
Also, in the calculation method of the oscillation frequency deviation of the present invention, the predetermined recurrence formula is such that the resistance value of the equivalent series resistance of the piezoelectric vibrator included in the piezoelectric oscillator is R1, the capacitance value of the equivalent series capacitance is C1, and the equivalent series. When the inductance value of the inductance is represented by L1, the capacitance value of the interelectrode capacitance is represented by C0, and the capacitance value of the equivalent load capacitance of the piezoelectric oscillator is represented by CL, it is represented by the following formula.
Figure 2009033483

Figure 2009033483

Figure 2009033483

Figure 2009033483

また、本発明の発振周波数偏差の算出方法は、前記算出ステップでは、fnが収束した一定値をfcと表したとき、以下の数式により周波数偏差を算出することを特徴としている。

Figure 2009033483

Figure 2009033483

Figure 2009033483

Figure 2009033483
In addition, the calculation method of the oscillation frequency deviation according to the present invention is characterized in that, in the calculation step, the frequency deviation is calculated by the following formula when a constant value where fn converges is expressed as fc.
Figure 2009033483

Figure 2009033483

Figure 2009033483

Figure 2009033483

また、本発明の発振周波数偏差の算出プログラムは、高精度で圧電発振器の発振周波数偏差を算出する発振周波数偏差の算出プログラムであって、算出対象の圧電発振器が有する圧電振動子の等価直列抵抗の抵抗値および前記圧電発振器が有する負性抵抗の抵抗値を含んで構成される所定の漸化式に対して、任意の初期代入値f0を決定する初期処理と、前記所定の漸化式にn次のfnを代入し、n+1次の発振周波数fn+1を決定する計算を反復する反復処理と、前記計算の繰返しによりfnが収束した一定値を用いて、周波数偏差を算出する算出処理と、を有することを特徴としている。   The oscillation frequency deviation calculation program of the present invention is an oscillation frequency deviation calculation program for calculating the oscillation frequency deviation of the piezoelectric oscillator with high accuracy, and the equivalent series resistance of the piezoelectric vibrator of the piezoelectric oscillator to be calculated is calculated. An initial process for determining an arbitrary initial substitution value f0 for a predetermined recurrence formula including a resistance value and a resistance value of a negative resistance of the piezoelectric oscillator, and n in the predetermined recurrence formula Substituting the next fn and repeating the calculation for determining the (n + 1) th order oscillation frequency fn + 1, and the calculation process for calculating the frequency deviation using a constant value where fn has converged by the repetition of the calculation It is characterized by that.

本発明によれば、圧電発振器に含まれる抵抗の影響を考慮した高精度な周波数偏差の解析が可能となる。   According to the present invention, it is possible to analyze the frequency deviation with high accuracy in consideration of the influence of the resistance included in the piezoelectric oscillator.

上記の通り、本発明の発振周波数偏差の解析方法は、発振周波数偏差に圧電発振器の等価直列抵抗R1と等価負荷抵抗RLとが発振周波数に与える影響を、高精度に反映させることができることを特徴とする。   As described above, the oscillation frequency deviation analyzing method of the present invention can reflect the influence of the equivalent series resistance R1 and equivalent load resistance RL of the piezoelectric oscillator on the oscillation frequency with high accuracy. And

また、本発明の発振周波数偏差の解析方法において、発振周波数を繰り返し計算し実際の発振周波数に一致させることで、より高精度な発振周波数偏差を解析できることを特徴とする。   Further, the oscillation frequency deviation analysis method of the present invention is characterized in that the oscillation frequency deviation can be analyzed with higher accuracy by repeatedly calculating the oscillation frequency and making it coincide with the actual oscillation frequency.

本発明を用いて前記従来技術の欠点を解決するための手段を、以下に詳細に説明する。図2は電極間容量C0を発振回路側に合成した後の等価回路200を示す図である。等価回路200はモーションアーム30と合成等価抵抗−Rcciと合成等価容量Ccciとを備える。−RcciとCcciはそれぞれ(3)、(4)式で表わされる。

Figure 2009033483

Figure 2009033483
Means for solving the drawbacks of the prior art using the present invention will be described in detail below. FIG. 2 is a diagram showing an equivalent circuit 200 after the interelectrode capacitance C0 is synthesized on the oscillation circuit side. The equivalent circuit 200 includes a motion arm 30, a combined equivalent resistance -Rcci, and a combined equivalent capacitance Ccci. -Rcci and Ccci are expressed by equations (3) and (4), respectively.
Figure 2009033483

Figure 2009033483

(3)、(4)式内のωは圧電発振器の発振周波数fの角周波数であり、(5)式に示される。

Figure 2009033483
In the equations (3) and (4), ω is an angular frequency of the oscillation frequency f of the piezoelectric oscillator, and is represented by the equation (5).
Figure 2009033483

電極間容量C0を発振回路側に合成した後の等価回路200の発振条件と周波数条件をそれぞれ(6)、(7)式に示す。等価回路200の周波数条件とは、等価回路200の共振周波数が決定されるための条件式である。

Figure 2009033483

Figure 2009033483
The oscillation conditions and frequency conditions of the equivalent circuit 200 after the interelectrode capacitance C0 is synthesized on the oscillation circuit side are shown in equations (6) and (7), respectively. The frequency condition of the equivalent circuit 200 is a conditional expression for determining the resonance frequency of the equivalent circuit 200.
Figure 2009033483

Figure 2009033483

(7)式内のω1は圧電振動子10の等価直列インダクタンスL1と等価直列容量C1から算出される角周波数であり、(8)式で示される。

Figure 2009033483
Ω1 in the equation (7) is an angular frequency calculated from the equivalent series inductance L1 and the equivalent series capacitance C1 of the piezoelectric vibrator 10, and is represented by the equation (8).
Figure 2009033483

ここで定常発振時では下記の(9)式が成り立つと仮定し(10)式を得る。

Figure 2009033483

Figure 2009033483
Here, it is assumed that the following equation (9) is established at the time of steady oscillation, and the equation (10) is obtained.
Figure 2009033483

Figure 2009033483

(10)式内のMはフィギア・オブ・メリット(Figure of Merit)であり、(11)式で示される。

Figure 2009033483
M in the equation (10) is a figure of merit and is represented by the equation (11).
Figure 2009033483

(10)式のRLを(4)式のCcciへ代入し(12)式のCocciを得る。ここでCocciとは、R1=Rcciの時におけるCcciをいう。

Figure 2009033483
Substituting RL in the equation (10) into Ccci in the equation (4) to obtain Cocci in the equation (12). Here, Cocci means Ccci when R1 = Rcci.
Figure 2009033483

ここで(7)式の左辺は圧電発振器の角周波数ωから決定されるが、(7)式の右辺に含まれるCcciも(4)式から明らかなように角周波数ωの関数である。よって、左辺が決まらないと右辺の値が決定できず、その逆も同様である。よって、Ccciは角周波数ωの関数Ccci(ωn)であることを考慮し、(7)式は(13)式と示すことでこの問題を解消する。即ち、角周波数ωnを先に設定することによりCcciが決定され、発振角周波数ωn+1が定まるものとする。ωnを(14)式に示す。

Figure 2009033483

Figure 2009033483
Here, the left side of the equation (7) is determined from the angular frequency ω of the piezoelectric oscillator, but Ccci included in the right side of the equation (7) is also a function of the angular frequency ω as is apparent from the equation (4). Therefore, if the left side is not determined, the value on the right side cannot be determined, and vice versa. Therefore, considering that Ccci is a function Ccci (ωn) of the angular frequency ω, Equation (7) is expressed as Equation (13) to solve this problem. That is, Ccci is determined by setting the angular frequency ωn first, and the oscillation angular frequency ωn + 1 is determined. ωn is shown in equation (14).
Figure 2009033483

Figure 2009033483

図3は、発振周波数の決定に係るフローチャート300である。   FIG. 3 is a flowchart 300 relating to the determination of the oscillation frequency.

図3のフローチャート300に従い発振周波数偏差の算出方法を以下に説明する。初期状態(n=0)におけるfn即ちf0を決定すると(14)式よりω0が決定される。続いてω0、R1、C0、CLよりCcciが決定され(13)式よりω1が決定される。(14)式よりω1に対応するf1が決定される。次に最初の手順に戻りfn+1即ちf1におけるω1からω2が算出され、以後、発振周波数fnが収束するまでこのルーチンを続ける。同ルーチンにより発振周波数を決定でき、(15)式により周波数偏差Δf/fptを決定できる。

Figure 2009033483
A method for calculating the oscillation frequency deviation will be described below in accordance with the flowchart 300 of FIG. When fn in the initial state (n = 0), that is, f0 is determined, ω0 is determined from the equation (14). Subsequently, Ccci is determined from ω0, R1, C0, and CL, and ω1 is determined from equation (13). From the equation (14), f1 corresponding to ω1 is determined. Next, returning to the first procedure, ω2 is calculated from ω1 at fn + 1, that is, f1, and thereafter this routine is continued until the oscillation frequency fn converges. The oscillation frequency can be determined by this routine, and the frequency deviation Δf / fpt can be determined by equation (15).
Figure 2009033483

上記の発振周波数偏差の算出方法は、プログラムにより算出装置に実行させることも可能である。以下に実施形態の一例を記載する。図4は、算出装置500の機能的構成を示すブロック図である。   The above calculation method of the oscillation frequency deviation can be executed by a calculation device by a program. An example of the embodiment will be described below. FIG. 4 is a block diagram illustrating a functional configuration of the calculation apparatus 500.

算出装置500としては、たとえばPCを用いることができる。入力部501は、ユーザが算出に必要な値を入力するために用いられ、たとえばキーボードやマウスのようなポインティングデバイスにより構成される。算出に必要な値とは、たとえば圧電発信器の等価直列インダクタンスL1、等価直列容量C1、等価直列抵抗R1、電極間容量C0、等価負荷容量CL等である。   As the calculation device 500, for example, a PC can be used. The input unit 501 is used for a user to input a value necessary for calculation, and is configured by a pointing device such as a keyboard or a mouse. The values necessary for the calculation are, for example, an equivalent series inductance L1, an equivalent series capacitance C1, an equivalent series resistance R1, an interelectrode capacitance C0, an equivalent load capacitance CL, and the like of the piezoelectric oscillator.

初期値決定部502は、漸化式へ代入する初期値を決定する。たとえば、ユーザにより入力された値をそのまま初期値として決定してもよいし、所定の条件下で最適な値を自動的に決定してもよい。反復計算部503は、決定された初期値に基づいて上記の漸化式により反復計算を行い、発振周波数fnを算出する。   The initial value determination unit 502 determines an initial value to be substituted into the recurrence formula. For example, a value input by the user may be determined as an initial value as it is, or an optimal value may be automatically determined under a predetermined condition. The iterative calculation unit 503 performs iterative calculation by the above recurrence formula based on the determined initial value, and calculates the oscillation frequency fn.

判定部504は、反復計算部503が算出した発振周波数fnおよびfn+1の差分が、所定の数値の範囲にあるか否かを判定する。所定の数値の範囲はあらかじめユーザにより設定されている数値範囲である。判定部504は、発振周波数fnおよびfn+1の差分が所定の数値の範囲に入っていない場合にはさらに反復計算部503に計算を反復させる。発振周波数fnおよびfn+1の差分が所定の数値の範囲に入っている場合には、発振周波数が収束したと判定し、算出部505に発振周波数偏差の算出を行わせる。   The determination unit 504 determines whether or not the difference between the oscillation frequencies fn and fn + 1 calculated by the iterative calculation unit 503 is within a predetermined numerical range. The predetermined numerical range is a numerical range preset by the user. When the difference between the oscillation frequencies fn and fn + 1 is not within a predetermined numerical range, the determination unit 504 further causes the iterative calculation unit 503 to repeat the calculation. When the difference between the oscillation frequencies fn and fn + 1 is within a predetermined numerical range, it is determined that the oscillation frequency has converged, and the calculation unit 505 calculates the oscillation frequency deviation.

算出部505は、収束した発振周波数を(15)式に代入することにより、発振周波数偏差を算出する。そして、表示部506は、得られた値を結果として表示する。表示部506は、たとえばLCDのようなディスプレイであり、数値の入力時にもユーザへの確認表示等を行う。このようにして得られた発振周周波数偏差に基づいて、ユーザは回路の可変容量Cxを調整することが可能になる。なお、上記の算出を行う各部は、CPU、メモリ等の記憶装置により構成されている。算出装置500においては、図3のフローチャートに示される算出方法にしたがって各部が動作を行う。   The calculation unit 505 calculates the oscillation frequency deviation by substituting the converged oscillation frequency into the equation (15). Then, the display unit 506 displays the obtained value as a result. The display unit 506 is a display such as an LCD, for example, and displays confirmation to the user even when a numerical value is input. Based on the oscillation frequency deviation obtained in this way, the user can adjust the variable capacitance Cx of the circuit. Each unit that performs the above calculation is configured by a storage device such as a CPU or a memory. In the calculation apparatus 500, each unit operates according to the calculation method shown in the flowchart of FIG.

図5は、一般的なトランジスタコルピッツ発振回路の等価回路400を示す図である。Cxは可変容量、RBはベース抵抗、C2、C3はコンデンサ、R3は抵抗、40はnpn型トランジスタの等価回路、Bはトランジスタのベース端子、Cはトランジスタのコレクタ端子、Eはトランジスタのエミッタ端子である。   FIG. 5 is a diagram showing an equivalent circuit 400 of a general transistor Colpitts oscillation circuit. Cx is a variable capacitor, RB is a base resistor, C2 and C3 are capacitors, R3 is a resistor, 40 is an equivalent circuit of an npn transistor, B is a base terminal of the transistor, C is a collector terminal of the transistor, E is an emitter terminal of the transistor is there.

等価回路400のベース・エミッタ間の合成等価抵抗Rπとベース・エミッタ間の合成等価容量Cπはそれぞれ(16)、(17)式で与えられ、Rπはβの関数で表わされる。

Figure 2009033483

Figure 2009033483
The combined equivalent resistance Rπ between the base and emitter of the equivalent circuit 400 and the combined equivalent capacitance Cπ between the base and emitter are given by the equations (16) and (17), respectively, and Rπ is expressed by a function of β.
Figure 2009033483

Figure 2009033483

(16)、(17)式内のβは電流増幅率、τFはベース走行時間、gmは相互コンダクタンスである。ここで、gmとτFが一定(コレクタ電流が一定)と仮定する。等価回路400について回路解析を行い(18)、(19)、(20)式を得る。等価負荷容量CLは(18)式で与えられ、(18)式に含まれる等価回路容量Cciは(19)式、等価負荷抵抗RLは(20)式で与えられる。

Figure 2009033483

Figure 2009033483

Figure 2009033483
In the equations (16) and (17), β is a current amplification factor, τF is a base running time, and gm is a mutual conductance. Here, it is assumed that gm and τF are constant (collector current is constant). Circuit analysis is performed on the equivalent circuit 400 to obtain equations (18), (19), and (20). The equivalent load capacitance CL is given by equation (18), the equivalent circuit capacitance Cci included in equation (18) is given by equation (19), and the equivalent load resistance RL is given by equation (20).
Figure 2009033483

Figure 2009033483

Figure 2009033483

(19)、(20)式に含まれるRcとCcは(21)、(22)式で与えられる。

Figure 2009033483

Figure 2009033483
Rc and Cc included in equations (19) and (20) are given by equations (21) and (22).
Figure 2009033483

Figure 2009033483

(21)、(22)式に含まれるr2、c2、r3、c3はそれぞれ(23)式から(26)式で与えられる。ここでr2とc2はωとβの関数であり、r3、c3はωの関数である。

Figure 2009033483

Figure 2009033483

Figure 2009033483

Figure 2009033483
R2, c2, r3, and c3 included in the equations (21) and (22) are given by equations (23) to (26), respectively. Here, r2 and c2 are functions of ω and β, and r3 and c3 are functions of ω.
Figure 2009033483

Figure 2009033483

Figure 2009033483

Figure 2009033483

図2に示す発振回路の等価回路の合成等価抵抗Rcciと合成等価容量Ccciは(3)、(4)式で示される。更に定常時の(9)式が成立するときの合成等価容量Cocciは(12)式で示される。このCocciと(13)式と振動子との関係により発振周波数fnが決まる。この周波数を(23)式から(26)式へ代入しこれまで述べてきた計算法によりf(n+1)を決定する。この繰り返しによりfは一定値に収束、即ち回路の等価容量を決定する周波数と発振周波数が一致する周波数に収束する。この周波数が発振周波数となる。   The combined equivalent resistance Rcci and the combined equivalent capacitance Ccci of the equivalent circuit of the oscillation circuit shown in FIG. 2 are expressed by equations (3) and (4). Further, the combined equivalent capacity Cocci when the equation (9) in the steady state is established is represented by the equation (12). The oscillation frequency fn is determined by the relationship between the Cocci, the equation (13), and the vibrator. This frequency is substituted into the equation (23) to the equation (26), and f (n + 1) is determined by the calculation method described so far. By repeating this, f converges to a constant value, that is, converges to a frequency at which the oscillation frequency coincides with the frequency that determines the equivalent capacitance of the circuit. This frequency becomes the oscillation frequency.

等価回路400の場合、CLは等価回路容量CciとCxの合成容量であり、Cciは比例定数Kと等価回路抵抗Rci(fとβの関数)で決定される等価回路容量である。(18)式のCLを(12)式へ代入した後、前記ルーチンから発振周波数を算出し(15)式より周波数偏差を求め図6を得る。図6は等価回路400から求めた、可変容量Cxの変化に対する高精度な発振周波数偏差Δf/fptの関係を示す。各回路パラメータはfpt=12.995MHz、gm=38mA/V、Cπ=4pF、C2=C3=30pF、R3=2kΩ、RB=20kΩ、である。   In the case of the equivalent circuit 400, CL is a combined capacity of the equivalent circuit capacities Cci and Cx, and Cci is an equivalent circuit capacity determined by a proportionality constant K and an equivalent circuit resistance Rci (a function of f and β). After substituting CL in the equation (18) into the equation (12), the oscillation frequency is calculated from the routine, and the frequency deviation is obtained from the equation (15) to obtain FIG. FIG. 6 shows the relationship of the oscillation frequency deviation Δf / fpt with high accuracy to the change of the variable capacitor Cx obtained from the equivalent circuit 400. The circuit parameters are fpt = 12.995 MHz, gm = 38 mA / V, Cπ = 4 pF, C2 = C3 = 30 pF, R3 = 2 kΩ, RB = 20 kΩ.

L1=30.8mH、C1=4.87fF、CO=1.35pF、R1=17.8Ωとした。図6はCxが小さい範囲では定常発振を維持するため大きな電流増幅率を必要とすることを特徴的に示している。   L1 = 30.8 mH, C1 = 4.87 fF, CO = 1.35 pF, R1 = 17.8Ω. FIG. 6 characteristically shows that a large current amplification factor is required in order to maintain steady oscillation in a range where Cx is small.

図7にCMOSインバーター発振回路の等価回路700を示す。CMOSインバーターの各MOSFETの出力抵抗をr0、CMOSインバーター内のFET(field-effect transistor:電界効果トランジスタ)の相互コンダクタンスをgmで示す。Cocciは、R1=Rcciの時における合成等価容量Ccciである。PchMOSは、P channel metal-oxide semiconductor(金属酸化膜半導体)である。NchMOSは、N channel metal-oxide semiconductor(金属酸化膜半導体)である。図7のRc、Cc、r3、r3は(27)式〜(30)式で与えられる。

Figure 2009033483

Figure 2009033483

Figure 2009033483

Figure 2009033483
FIG. 7 shows an equivalent circuit 700 of the CMOS inverter oscillation circuit. The output resistance of each MOSFET of the CMOS inverter is indicated by r0, and the mutual conductance of FET (field-effect transistor) in the CMOS inverter is indicated by gm. Cocci is the combined equivalent capacitance Ccci when R1 = Rcci. PchMOS is a P channel metal-oxide semiconductor. NchMOS is an N channel metal-oxide semiconductor. Rc, Cc, r3, and r3 in FIG. 7 are given by equations (27) to (30).
Figure 2009033483

Figure 2009033483

Figure 2009033483

Figure 2009033483

Rc、Cc、r3、r3を(18)、(19)、(20)式へ導入し、(12)、(13)、(15)式とフローチャートにより収束する周波数を得る。   Rc, Cc, r3, and r3 are introduced into the equations (18), (19), and (20), and the convergence frequency is obtained by the equations (12), (13), and (15) and the flowchart.

一般的な圧電発振器の等価回路である。This is an equivalent circuit of a general piezoelectric oscillator. 一般的な圧電発振器の等価回路において、電極間容量C0を発振回路側に合成した後の等価回路である。In an equivalent circuit of a general piezoelectric oscillator, this is an equivalent circuit after the interelectrode capacitance C0 is synthesized on the oscillation circuit side. 本発明に係る発振周波数偏差の算出方法を示すフローチャートである。3 is a flowchart illustrating a method for calculating an oscillation frequency deviation according to the present invention. 本発明に係る算出装置の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the calculation apparatus which concerns on this invention. 一般的なトランジスタコルピッツ発振回路の等価回路である。This is an equivalent circuit of a general transistor Colpitts oscillation circuit. トランジスタコルピッツ発振回路の可変容量Cxの変化に対する高精度な周波数偏差Δf/fptの関係を示す図である。It is a figure which shows the relationship of highly accurate frequency deviation (DELTA) f / fpt with respect to the change of the variable capacitance Cx of a transistor Colpitts oscillation circuit. CMOSインバーター発振回路の等価回路である。It is an equivalent circuit of a CMOS inverter oscillation circuit.

符号の説明Explanation of symbols

10 圧電振動子
20 発振回路
30 モーションアーム
40 トランジスタの等価回路
100、200 圧電発振器の等価回路
300 フローチャート図
400 トランジスタコルピッツ発振回路の等価回路
500 算出装置
501 入力部
502 初期値決定部
503 反復計算部
504 判定部
505 算出部
506 表示部
700 インバーター発振回路の等価回路
C2、C3 コンデンサ
R3 抵抗
Cx 可変容量
RB ベース抵抗
Rπ ベース・エミッタ間の合成等価抵抗
Cπ ベース・エミッタ間の合成等価容量
β 電流増幅率
τF ベース走行時間
gm 相互コンダクタンス
L1 等価直列インダクタンス
C1 等価直列容量
R1 等価直列抵抗
C0 電極間容量
−RL 等価負荷抵抗
CL 等価負荷容量
Rci 等価回路抵抗
Cci 等価回路容量
−Rcci 合成等価抵抗
Ccci 合成等価容量
f 圧電発振器の発振周波数
fn 圧電発振器の発振周波数
fc 算出された発振周波数の収束値
fpt L1およびC1から算出される周波数
ω 圧電発振器の角周波数
ωn 圧電発振器の角周波数
Δf/fpt 発振周波数偏差、共振周波数オフセット
γ 容量比
M フィギア・オブ・メリット(Figure of Merit)
Cocci R1=Rcciの時における合成等価容量Ccci
PchMOS P channel metal-oxide semiconductor(金属酸化膜半導体)
NchMOS Nchannel metal-oxide semiconductor(金属酸化膜半導体)
r0 MOSFETの出力抵抗
DESCRIPTION OF SYMBOLS 10 Piezoelectric vibrator 20 Oscillation circuit 30 Motion arm 40 Equivalent circuit 100, 200 Equivalent circuit 300 of piezoelectric oscillator 300 Flowchart diagram 400 Equivalent circuit 500 of transistor Colpitts oscillation circuit Calculation device 501 Input unit 502 Initial value determination unit 503 Iterative calculation unit 504 Determination unit 505 Calculation unit 506 Display unit 700 Inverter oscillation circuit equivalent circuit C2, C3 Capacitor R3 Resistance Cx Variable capacitance RB Base resistance Rπ Base-emitter combined equivalent resistance Cπ Base-emitter combined equivalent capacitance β Current gain τF Base travel time gm Mutual conductance L1 Equivalent series inductance C1 Equivalent series capacitance R1 Equivalent series resistance C0 Electrode capacitance -RL Equivalent load resistance CL Equivalent load capacity Rci Equivalent circuit resistance Cci Equivalent circuit capacity -Rcci Composite equivalent resistance Ccc Synthetic equivalent capacitance f Oscillation frequency fn of the piezoelectric oscillator Oscillation frequency fc of the piezoelectric oscillator A convergence value fpt of the calculated oscillation frequency fpt A frequency calculated from L1 and C1 An angular frequency ωn of the piezoelectric oscillator An angular frequency Δf / fpt of the piezoelectric oscillator Frequency deviation, resonance frequency offset γ Capacity ratio M Figure of Merit
Combined equivalent capacitance Ccci when Cocci R1 = Rcci
PchMOS P channel metal-oxide semiconductor
NchMOS Nchannel metal-oxide semiconductor
Output resistance of r0 MOSFET

Claims (5)

高精度で圧電発振器の発振周波数偏差を算出する発振周波数偏差の算出方法であって、
算出対象の圧電発振器が有する圧電振動子の等価直列抵抗および前記圧電発振器が有する負性抵抗の影響が反映され、圧電発振器の発振周波数を求めるのに用いられる所定の漸化式に対して、任意の初期代入値f0を決定する初期ステップと、
前記所定の漸化式にn次のfnを代入し、n+1次の発振周波数fn+1を決定する計算を反復する反復ステップと、
前記計算の繰返しによりfnが収束した一定値を用いて、周波数偏差を算出する算出ステップと、を有することを特徴とする発振周波数偏差の算出方法。
An oscillation frequency deviation calculation method for calculating an oscillation frequency deviation of a piezoelectric oscillator with high accuracy,
Reflects the influence of the equivalent series resistance of the piezoelectric vibrator of the piezoelectric oscillator to be calculated and the negative resistance of the piezoelectric oscillator, and is arbitrary for the predetermined recurrence formula used to determine the oscillation frequency of the piezoelectric oscillator. An initial step for determining an initial substitution value f0 of
An iterative step of substituting the nth order fn into the predetermined recurrence formula and repeating the calculation to determine the n + 1st order oscillation frequency fn + 1;
A calculation step of calculating a frequency deviation by using a constant value in which fn is converged by repetition of the calculation.
前記所定の漸化式は、前記圧電発振器が有する圧電振動子の等価直列抵抗の抵抗値、圧電振動子の等価直列容量の容量値、等価直列インダクタンスのインダクタンス値および電極間容量の容量値、ならびに前記圧電発振器の等価負荷容量の容量値を更に含んで構成されることを特徴とする請求項1記載の発振周波数偏差の算出方法。   The predetermined recurrence formula is: a resistance value of an equivalent series resistance of a piezoelectric vibrator included in the piezoelectric oscillator, a capacitance value of an equivalent series capacitance of the piezoelectric vibrator, an inductance value of an equivalent series inductance, and a capacitance value of an interelectrode capacitance, and 2. The oscillation frequency deviation calculation method according to claim 1, further comprising a capacitance value of an equivalent load capacitance of the piezoelectric oscillator. 前記所定の漸化式は、前記圧電発振器が有する圧電振動子の等価直列抵抗の抵抗値をR1、等価直列容量の容量値をC1、等価直列インダクタンスのインダクタンス値をL1、電極間容量の容量値をC0、前記圧電発振器の等価負荷容量の容量値をCLと表したとき、以下の数式で表されることを特徴とする請求項2記載の発振周波数偏差の算出方法。
Figure 2009033483

Figure 2009033483

Figure 2009033483

Figure 2009033483
In the predetermined recurrence formula, the resistance value of the equivalent series resistance of the piezoelectric vibrator included in the piezoelectric oscillator is R1, the capacitance value of the equivalent series capacitance is C1, the inductance value of the equivalent series inductance is L1, and the capacitance value of the interelectrode capacitance. 3. The oscillation frequency deviation calculation method according to claim 2, wherein C0 is represented by C0 and the capacitance value of the equivalent load capacitance of the piezoelectric oscillator is represented by CL.
Figure 2009033483

Figure 2009033483

Figure 2009033483

Figure 2009033483
前記算出ステップでは、fnが収束した一定値をfcと表したとき、以下の数式により周波数偏差を算出することを特徴とする請求項1から請求項3記載の発振周波数偏差の算出方法。
Figure 2009033483

Figure 2009033483

Figure 2009033483

Figure 2009033483
4. The oscillation frequency deviation calculation method according to claim 1, wherein, in the calculation step, when a constant value where fn converges is expressed as fc, the frequency deviation is calculated by the following formula.
Figure 2009033483

Figure 2009033483

Figure 2009033483

Figure 2009033483
高精度で圧電発振器の発振周波数偏差を算出する発振周波数偏差の算出プログラムであって、
算出対象の圧電発振器が有する圧電振動子の等価直列抵抗の抵抗値および前記圧電発振器が有する負性抵抗の抵抗値を含んで構成される所定の漸化式に対して、任意の初期代入値f0を決定する初期処理と、
前記所定の漸化式にn次のfnを代入し、n+1次の発振周波数fn+1を決定する計算を反復する反復処理と、
前記計算の繰返しによりfnが収束した一定値を用いて、周波数偏差を算出する算出処理と、を有することを特徴とする発振周波数偏差の算出プログラム。
An oscillation frequency deviation calculation program for calculating the oscillation frequency deviation of a piezoelectric oscillator with high accuracy,
Arbitrary initial substitution value f0 with respect to a predetermined recurrence formula including the resistance value of the equivalent series resistance of the piezoelectric vibrator of the piezoelectric oscillator to be calculated and the resistance value of the negative resistance of the piezoelectric oscillator. Initial processing to determine,
An iterative process for substituting the nth order fn into the predetermined recurrence formula and repeating the calculation for determining the n + 1st order oscillation frequency fn + 1;
And a calculation process for calculating a frequency deviation using a constant value where fn has converged by the repetition of the calculation.
JP2007195361A 2007-07-27 2007-07-27 Calculation method of oscillation frequency deviation and calculation program of oscillation frequency deviation Pending JP2009033483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195361A JP2009033483A (en) 2007-07-27 2007-07-27 Calculation method of oscillation frequency deviation and calculation program of oscillation frequency deviation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195361A JP2009033483A (en) 2007-07-27 2007-07-27 Calculation method of oscillation frequency deviation and calculation program of oscillation frequency deviation

Publications (1)

Publication Number Publication Date
JP2009033483A true JP2009033483A (en) 2009-02-12

Family

ID=40403486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195361A Pending JP2009033483A (en) 2007-07-27 2007-07-27 Calculation method of oscillation frequency deviation and calculation program of oscillation frequency deviation

Country Status (1)

Country Link
JP (1) JP2009033483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904252A (en) * 2019-12-04 2021-06-04 清华大学 Method for analyzing frequency response of optical electric field sensor
CN114925643A (en) * 2022-06-02 2022-08-19 贵州振华风光半导体股份有限公司 Optimization method for high-frequency oscillation circuit algorithm model

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655279B2 (en) * 1988-11-05 1997-09-17 作富郎 千葉 Collector negative feedback crystal oscillator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655279B2 (en) * 1988-11-05 1997-09-17 作富郎 千葉 Collector negative feedback crystal oscillator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013009704; 電気工学ハンドブック , 19880228, p.41, 社団法人電気学会 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904252A (en) * 2019-12-04 2021-06-04 清华大学 Method for analyzing frequency response of optical electric field sensor
CN114925643A (en) * 2022-06-02 2022-08-19 贵州振华风光半导体股份有限公司 Optimization method for high-frequency oscillation circuit algorithm model
CN114925643B (en) * 2022-06-02 2023-09-15 贵州振华风光半导体股份有限公司 Optimization method for algorithm model of high-frequency oscillation circuit

Similar Documents

Publication Publication Date Title
JP7020632B2 (en) Gas sensor and gas detection method
JP2017123552A5 (en)
JP2017220770A5 (en)
JP2017199947A5 (en)
CN103675025B (en) Control circuit for use with four terminal sensors, and measurement system including such control circuit
JP2004304766A (en) Oscillation circuit, adjustment method therefor, and mass measurement apparatus using the same
JP2006033195A (en) Crystal oscillator and detector
CN106603011B (en) Voltage-controlled temperature compensation crystal oscillator
CN108347209B (en) Overshoot response cancellation system and method
JP2009033483A (en) Calculation method of oscillation frequency deviation and calculation program of oscillation frequency deviation
US20180096088A1 (en) Method of constructing and method of simulating equivalent circuit for capacitor, and simulation device therefor
Arnold et al. A driver for piezoelectric transducers with control of resonance
Stephan Analog and mixed-signal electronics
JP2010249749A (en) Equivalent circuit element constant estimation method, device therefor, equivalent circuit element constant estimation program, characteristic measuring method, device therefor, and characteristic measuring program
Brendel et al. Computer aided design of quartz crystal oscillators
CN106199270B (en) A kind of measurement method of quartz-crystal resonator equivalent circuit parameter
Tyagi et al. Frequency estimation techniques in capacitance-to-frequency conversion measurement
US20140009990A1 (en) Method and apparatus for characterizing power supply impedance for power delivery networks
Buonomo et al. Analyzing the dynamic behavior of RF oscillators
JP2018060516A (en) Method of constructing equivalent circuit of capacitor, and simulation method and apparatus thereof
JP2011250437A (en) Filter calibration
WO2015015910A1 (en) Method for determining capacitance value of capacitor with consideration for applied ac voltage, and program
CN111257633A (en) Test system and test method for nominal frequency of crystal oscillator
Sotner et al. Novel oscillator based on voltage and current-gain adjusting used for control of oscillation frequency and oscillation condition
Banerjee et al. Deriving an electrical model of a two terminal piezoelectric buzzer from its impedance response

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100902

A521 Written amendment

Effective date: 20120725

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A02 Decision of refusal

Effective date: 20130702

Free format text: JAPANESE INTERMEDIATE CODE: A02