JP2009033212A - METHOD FOR DETECTING CONCENTRATION OF Cu ON SILICON SUBSTRATE - Google Patents

METHOD FOR DETECTING CONCENTRATION OF Cu ON SILICON SUBSTRATE Download PDF

Info

Publication number
JP2009033212A
JP2009033212A JP2008289965A JP2008289965A JP2009033212A JP 2009033212 A JP2009033212 A JP 2009033212A JP 2008289965 A JP2008289965 A JP 2008289965A JP 2008289965 A JP2008289965 A JP 2008289965A JP 2009033212 A JP2009033212 A JP 2009033212A
Authority
JP
Japan
Prior art keywords
silicon substrate
substrate
concentration
heated
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008289965A
Other languages
Japanese (ja)
Other versions
JP4849117B2 (en
Inventor
B Shabany Mohammad
モハマッド.ビー.シャバニー
Yoshikazu Shiina
慶和 椎名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2008289965A priority Critical patent/JP4849117B2/en
Publication of JP2009033212A publication Critical patent/JP2009033212A/en
Application granted granted Critical
Publication of JP4849117B2 publication Critical patent/JP4849117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To know in-process contamination by evaluating Cu present on a silicon substrate quantitatively in a simple manner, without dissolving the silicon substrate totally. <P>SOLUTION: An improved version of a method for detecting the concentration of Cu present on a silicon substrate while heating it at a temperature equal to or lower than 600°C, has a characteristic configuration in which the substrate contains boron at a concentration of 3×10<SP>18</SP>atoms/cm<SP>3</SP>or more, and it is divided into four parts, which are heated for one to 12 hours at a temperature of 300°C or higher and lower than 350°C, and a Cu amount present on the front and rear surfaces of each of the heated substrates is analyzed quantitatively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高濃度ボロンドープシリコン基板に存在するCuの濃度を検出する方法に関する。更に詳しくは、3×1018atoms/cm3以上のボロンを含むシリコン基板に存在する1011atoms/cm2未満の低濃度Cuを検出する方法に関するものである。 The present invention relates to a method for detecting the concentration of Cu present in a high-concentration boron-doped silicon substrate. More specifically, the present invention relates to a method for detecting low concentration Cu of less than 10 11 atoms / cm 2 present in a silicon substrate containing boron of 3 × 10 18 atoms / cm 3 or more.

シリコン基板の酸化、拡散プロセスで生じる汚染金属のうち、Cuは非常に拡散速度が速く容易にシリコン基板内部に拡散する。この拡散したCuはデバイス特性(電気特性等)を劣化させる。このため、このCuを低減し、熱プロセスを管理することが重要となる。   Of the contaminating metals produced in the oxidation and diffusion processes of the silicon substrate, Cu has a very high diffusion rate and easily diffuses into the silicon substrate. This diffused Cu deteriorates device characteristics (electrical characteristics, etc.). For this reason, it is important to reduce this Cu and manage the thermal process.

この基板内部のCuの濃度測定には原子吸光分析(以下、AASという。)、二次イオン質量分析(SIMS)を使った分析方法が主に用いられている。特に、AAS法は高感度分析が可能である。このAASを用いる方法は、シリコン基板をフッ化水素酸(以下、HFという。)と硝酸を含む混合液でシリコン基板を全溶解して分析する必要がある。しかし、これらの方法には以下の問題がある。即ち測定に非常に手間がかかり、測定前の前処理中に更に汚染が生じることがあった。また、いずれの方法も基板を破壊して行うため、その基板を再利用することはできなかった。   An analysis method using atomic absorption analysis (hereinafter referred to as AAS) and secondary ion mass spectrometry (SIMS) is mainly used for measuring the Cu concentration inside the substrate. In particular, the AAS method can perform highly sensitive analysis. In the method using AAS, it is necessary to analyze the silicon substrate by completely dissolving the silicon substrate with a mixed solution containing hydrofluoric acid (hereinafter referred to as HF) and nitric acid. However, these methods have the following problems. That is, the measurement is very time-consuming and further contamination may occur during the pretreatment before the measurement. In addition, since any method is performed by destroying the substrate, the substrate cannot be reused.

そこで本出願人は半導体基板の非破壊分析に関する方法として半導体基板内部のCu濃度の検出方法を提案した(例えば、特許文献1参照。)。この方法はシリコン基板を600℃以下の温度で加熱し、シリコン基板内部に存在するCuを拡散させて表裏面側に集め、表裏面をAAS、全反射蛍光X線分析(以下、TXRFという。)等の方法で分析する方法である。この方法によれば、シリコン基板がPタイプの場合、大気中で500℃で15分間の加熱を行うことで十分なCuの拡散が行われる。   Therefore, the present applicant has proposed a method for detecting the Cu concentration inside the semiconductor substrate as a method relating to nondestructive analysis of the semiconductor substrate (see, for example, Patent Document 1). In this method, a silicon substrate is heated at a temperature of 600 ° C. or less, Cu existing inside the silicon substrate is diffused and collected on the front and back surfaces, and the front and back surfaces are AAS and total reflection X-ray fluorescence analysis (hereinafter referred to as TXRF). It is a method of analyzing by such a method. According to this method, when the silicon substrate is a P type, sufficient Cu diffusion is performed by heating at 500 ° C. for 15 minutes in the atmosphere.

一方、近年シリコン基板の洗浄を含むクリーン化技術が向上し、シリコン基板を汚染する金属の濃度は1011atoms/cm2程度に低下してきている。
特開平9−64133号公報
On the other hand, in recent years, cleaning technology including cleaning of a silicon substrate has been improved, and the concentration of a metal that contaminates the silicon substrate has been reduced to about 10 11 atoms / cm 2 .
JP-A-9-64133

しかし、上述した特許文献1に示された方法で、使用されるPタイプシリコン基板は、ボロンが1015atoms/cm3程度の濃度しか含まれていない、高濃度のボロンドープシリコン基板ではなかった。そのため、ボロンが3×1018atoms/cm3以上の濃度を含むP+シリコン基板やP++シリコン基板のような、基板内部にボロンが高濃度にドープしたシリコン基板において、基板内部に存在するCuが1011atoms/cm2未満の低濃度である場合、基板内部に存在するCuは、ボロンと電子静力学効果(electro statics effect)を生じて、Cuは基板表裏面側への拡散が十分に行われず、基板に含まれるCu濃度の評価を行う上で分析精度に劣る問題があった。 However, the P-type silicon substrate used in the method disclosed in Patent Document 1 described above is not a high-concentration boron-doped silicon substrate in which boron is contained only at a concentration of about 10 15 atoms / cm 3 . . Therefore, a silicon substrate in which boron is highly doped inside the substrate, such as a P + silicon substrate or a P ++ silicon substrate having a concentration of 3 × 10 18 atoms / cm 3 or more, exists inside the substrate. When Cu has a low concentration of less than 10 11 atoms / cm 2 , Cu present in the substrate causes boron and an electro static effect, and Cu is sufficiently diffused to the front and back sides of the substrate. However, there is a problem that the analysis accuracy is inferior in evaluating the Cu concentration contained in the substrate.

本発明の目的は、シリコン基板を全溶解することなくCuを簡便かつ定量的に評価できるシリコン基板のCu濃度検出方法を提供することにある。   An object of the present invention is to provide a method for detecting the Cu concentration of a silicon substrate, which can easily and quantitatively evaluate Cu without completely dissolving the silicon substrate.

本発明の別の目的は、工程汚染の把握を行うシリコン基板のCu濃度検出方法を提供することにある。   Another object of the present invention is to provide a method for detecting the Cu concentration of a silicon substrate for grasping process contamination.

請求項1に係る発明は、シリコン基板を600℃以下の温度で加熱して基板に存在するCu濃度を検出する方法の改良である。その特徴ある構成は、基板はボロンを3×1018atoms/cm3以上の濃度で含み、基板は4分割され、こ分割された基板を300℃以上350℃未満の温度で1時間〜12時間加熱し、加熱した基板の表裏面に存在するCuを定量分析するところにある。 The invention according to claim 1 is an improvement of a method for detecting a Cu concentration present in a substrate by heating the silicon substrate at a temperature of 600 ° C. or lower. Its characteristic configuration is substrate comprises at 3 × 10 18 atoms / cm 3 or more concentrations of boron, the substrate is divided into four, 1 hour in divided temperature 350 below ° C. 300 ° C. or more substrates of this ~ 12 Heating is performed for a time, and Cu existing on the front and back surfaces of the heated substrate is quantitatively analyzed.

この検出方法における定量分析はAAS、誘導結合プラズマ質量分析(以下、ICP−MSという。)又はTXRFにより行われることが好ましい。   The quantitative analysis in this detection method is preferably performed by AAS, inductively coupled plasma mass spectrometry (hereinafter referred to as ICP-MS) or TXRF.

多くのボロンが存在する基板内部ではボロンはマイナス電位、Cuはプラス電位をそれぞれ有する。そのため電子静力学効果(electro statics effect)により基板内部のCuは拡散し難い状況となる。本発明ではボロンを3×1018atoms/cm3以上の濃度で含む基板に上記範囲内の条件で加熱を施すことにより、Cuを表裏面側への拡散量を向上させることができる。従って、この表裏面側に拡散したCuをAAS、ICP−MS又はTXRFにより定量分析することでシリコン基板を全溶解することなくCuを簡便にかつ定量的に評価することができる。 Boron has a negative potential and Cu has a positive potential inside the substrate where many boron are present. Therefore, Cu inside the substrate is difficult to diffuse due to an electro static effect. In the present invention, the amount of diffusion of Cu to the front and back sides can be improved by heating a substrate containing boron at a concentration of 3 × 10 18 atoms / cm 3 or more under the conditions within the above range. Therefore, Cu can be easily and quantitatively evaluated without completely dissolving the silicon substrate by quantitatively analyzing the Cu diffused on the front and back sides by AAS, ICP-MS or TXRF.

請求項3に係る発明は、請求項1に係る発明であって、加熱したシリコン基板の表裏面に存在するCuを回収液により溶解して回収し、回収した回収液をAAS又はTXRFにより定量分析するシリコン基板のCu濃度検出方法である。   The invention according to claim 3 is the invention according to claim 1, wherein Cu present on the front and back surfaces of the heated silicon substrate is dissolved and recovered by a recovery liquid, and the recovered recovery liquid is quantitatively analyzed by AAS or TXRF. This is a method for detecting the Cu concentration of a silicon substrate.

上記方法を用いることにより、表裏面側にCuを集め、表裏面を溶解して回収した回収液を測定するのでシリコン基板を全溶解することなく簡易に測定できる。   By using the above method, Cu is collected on the front and back sides, and the recovered liquid collected by dissolving the front and back sides is measured, so that the silicon substrate can be easily measured without completely dissolving it.

請求項4に係る発明は、請求項3に係る発明であって、回収液がHF溶液、HF及び過酸化水素を含む混合溶液、塩酸溶液、塩酸及び過酸化水素を含む混合溶液、塩酸及びHFを含む混合溶液、SC−1溶液又は硫酸及び過酸化水素を含む混合溶液であるシリコン基板のCu濃度検出方法である The invention according to claim 4 is the invention according to claim 3, wherein the recovered liquid is an HF solution, a mixed solution containing HF and hydrogen peroxide, a hydrochloric acid solution, a mixed solution containing hydrochloric acid and hydrogen peroxide, hydrochloric acid and HF. This is a method for detecting the Cu concentration of a silicon substrate, which is a mixed solution containing NO, an SC-1 solution, or a mixed solution containing sulfuric acid and hydrogen peroxide .

以上述べたように、本発明はシリコン基板を600℃以下の温度で加熱して基板に存在するCu濃度を検出する方法の改良であり、その特徴ある構成は、基板はボロンを3×1018atoms/cm3以上の濃度で含み、基板を300℃以上350℃未満の温度で1時間〜12時間加熱し、加熱した基板の表裏面に存在するCuを定量分析するため、シリコン基板を全溶解することなくCuを簡便かつ迅速に評価できる。従って、工程汚染の把握も容易に行うことができる。 As described above, the present invention is an improvement of a method for detecting a Cu concentration present in a substrate by heating the silicon substrate at a temperature of 600 ° C. or lower. The characteristic configuration is that the substrate is made of 3 × 10 18 boron. The silicon substrate is completely dissolved in order to quantitatively analyze Cu present on the front and back surfaces of the heated substrate, which is contained at a concentration of atoms / cm 3 or higher, heated at a temperature of 300 ° C. or higher and lower than 350 ° C. for 1 to 12 hours. Cu can be evaluated easily and quickly without the need to do so. Therefore, it is possible to easily grasp the process contamination.

また、加熱したシリコン基板の表裏面に存在するCuを回収液により溶解して回収し、回収した回収液を原子吸光分析法又は全反射X線蛍光分析法により定量分析することによってもCu濃度を簡便かつ定量的に評価できる。   Also, Cu concentration on the front and back surfaces of the heated silicon substrate can be recovered by dissolving it with a recovery liquid, and the recovered recovery liquid can be quantitatively analyzed by atomic absorption spectrometry or total reflection X-ray fluorescence analysis. Easy and quantitative evaluation.

本発明は、シリコン基板を600℃以下の温度で加熱して基板に存在するCu濃度を検出する方法の改良である。その特徴ある構成は、基板はボロンを3×1018atoms/cm3以上の濃度で含み、この基板を300℃以上350℃未満の温度で1時間〜12時間加熱し、加熱した基板の表裏面に存在するCuを定量分析するところにある。 The present invention is an improvement of a method for detecting a Cu concentration present in a substrate by heating the silicon substrate at a temperature of 600 ° C. or lower. The characteristic structure is that the substrate contains boron at a concentration of 3 × 10 18 atoms / cm 3 or more, and the substrate is heated at a temperature of 300 ° C. or more and less than 350 ° C. for 1 to 12 hours, and the front and back surfaces of the heated substrate It is in the place where quantitative analysis of Cu which exists in is.

多くのボロンが存在する基板内部ではボロンはマイナス電位、Cuはプラス電位をそれぞれ有する状態で存在する。そのためボロンとCuによる電子静力学効果が働き、Cuは拡散し難い状況となる。従って、高濃度のボロンが含まれる基板において、1011atoms/cm2未満の低濃度のCuが汚染している場合、従来の条件で加熱を施したとしても、Cuは十分な拡散が得られなかった。本発明ではボロンを3×1018atoms/cm3以上の濃度で含む基板に上記加熱条件で加熱を施すことにより、汚染しているCuが低濃度であっても、Cuを表裏面側への拡散量を向上させることができる。 Inside the substrate in which many boron exists, boron exists in a state having a negative potential and Cu has a positive potential. Therefore, the electrostatic effect of boron and Cu works, and Cu is difficult to diffuse. Therefore, if a substrate containing a high concentration of boron is contaminated with a low concentration of Cu of less than 10 11 atoms / cm 2 , Cu can be sufficiently diffused even when heated under conventional conditions. There wasn't. In the present invention, a substrate containing boron at a concentration of 3 × 10 18 atoms / cm 3 or more is heated under the above heating conditions, so that even if the contaminated Cu is at a low concentration, Cu is transferred to the front and back sides. The amount of diffusion can be improved.

本発明の第1の実施の形態について説明する。   A first embodiment of the present invention will be described.

バルク内部にボロンを3×1018atoms/cm3以上の濃度で含み、Cu汚染の生じたシリコン基板であるシリコンウェーハで表面に酸化膜を有する場合、先ず、所定のHF水溶液で洗浄してこの表面酸化膜(SiO2)を除去する。具体的には20〜50重量%のHF水溶液中にシリコン基板を約10分間浸漬する。次いで、図1に示すように、このシリコン基板10を清浄な別のシリコン基板11の上に載せる。この清浄なシリコン基板11は、ホットプレート12(表面はセラミックス製)上に載せられている。清浄なシリコン基板11には被測定物であるシリコン基板10よりも径の大きいシリコン基板が選択される。次に、シリコン基板10をその下表面(裏面)から大気中で300℃以上350℃未満の温度で1時間〜12時間加熱する。シリコン基板内部に3×1018atoms/cm3以上の高濃度でボロンが含まれている場合、300℃未満、1時間未満であるとボロンとCuによる電子静力学効果の影響からCuが十分に拡散されず、350℃を越えるとCuの固溶度が高くなり検出し難くなる。加熱時間が12時間を越えてもそれ以上の成果は得られない。この加熱はシリコン基板を汚染しないクリーンルーム等の環境下で行うことが好ましい。特に、シリコン基板に汚染したCu濃度が1011atoms/cm2未満の場合、300℃以上350℃未満で12時間程度加熱することが好ましい。Cu濃度が1011atoms/cm2〜1012atoms/cm2の場合、300℃以上350℃未満で1〜12時間加熱することが好ましい。Cu濃度が1012atoms/cm2を越える濃度の場合、300℃以上350℃未満で1時間程度加熱することが好ましい。 When a silicon wafer, which is a silicon substrate containing Cu in a bulk and contains boron at a concentration of 3 × 10 18 atoms / cm 3 or more and having an oxide film on the surface, is first cleaned with a predetermined aqueous HF solution. The surface oxide film (SiO 2 ) is removed. Specifically, the silicon substrate is immersed in a 20 to 50% by weight HF aqueous solution for about 10 minutes. Next, as shown in FIG. 1, this silicon substrate 10 is placed on another clean silicon substrate 11. This clean silicon substrate 11 is placed on a hot plate 12 (the surface is made of ceramics). As the clean silicon substrate 11, a silicon substrate having a diameter larger than that of the silicon substrate 10 that is the object to be measured is selected. Next, the silicon substrate 10 is heated from the lower surface (back surface) in the atmosphere at a temperature of 300 ° C. or higher and lower than 350 ° C. for 1 hour to 12 hours. When boron is contained at a high concentration of 3 × 10 18 atoms / cm 3 or more in the silicon substrate, Cu is sufficiently sufficient when the temperature is less than 300 ° C. and less than 1 hour due to the influence of the electrostatic effect of boron and Cu. If it is not diffused and the temperature exceeds 350 ° C., the solid solubility of Cu increases and it is difficult to detect. No further results can be obtained even if the heating time exceeds 12 hours. This heating is preferably performed in an environment such as a clean room that does not contaminate the silicon substrate. In particular, when the concentration of Cu contaminating the silicon substrate is less than 10 11 atoms / cm 2, it is preferable to heat at 300 ° C. or more and less than 350 ° C. for about 12 hours. When the Cu concentration is 10 11 atoms / cm 2 to 10 12 atoms / cm 2 , it is preferable to heat at 300 ° C. or higher and lower than 350 ° C. for 1 to 12 hours. When the Cu concentration exceeds 10 12 atoms / cm 2 , it is preferable to heat at 300 ° C. or higher and lower than 350 ° C. for about 1 hour.

シリコン基板を加熱処理すると加熱媒体であるホットプレートの非接触側の上表面に80%以上のCuが集まる。一方、ホットプレートの接触側の下表面(裏面)には20%未満のCuが集まる。加熱を施した後、シリコン基板10表裏面を直接TXRFにより定量分析することにより、全溶解することなくCuを簡便にかつ定量的に評価することができる。   When the silicon substrate is heat-treated, 80% or more of Cu collects on the upper surface of the non-contact side of the hot plate as a heating medium. On the other hand, less than 20% of Cu collects on the lower surface (back surface) of the contact side of the hot plate. After heating, the front and back surfaces of the silicon substrate 10 are quantitatively analyzed directly by TXRF, whereby Cu can be simply and quantitatively evaluated without being completely dissolved.

本発明の第2の実施の形態を図2に基づいて説明する。図2において、図1と同一符号は同一構成要素を示す。この実施の形態では、次の点が第1の実施の形態と相違する。即ち、加熱を施したシリコン基板10の表裏面に存在するCuを回収液13により溶解して回収し、この回収した回収液13をAAS又はTXRFにより定量分析する。上記以外の構成は第1の実施の形態と同様である。   A second embodiment of the present invention will be described with reference to FIG. 2, the same reference numerals as those in FIG. 1 denote the same components. In this embodiment, the following points are different from the first embodiment. That is, Cu present on the front and back surfaces of the heated silicon substrate 10 is dissolved and recovered by the recovery liquid 13, and the recovered recovery liquid 13 is quantitatively analyzed by AAS or TXRF. The configuration other than the above is the same as that of the first embodiment.

第1の実施の形態と比較して、第2の実施の形態では、表裏面側にCuを集め、表裏面を溶解して回収した回収液を測定するのでシリコン基板を全溶解することなく簡易に測定できる。回収方法としては、DE法(one Drop Etching Method)が好適である。DE法はシリコン基板表面の端部に回収液を数滴滴下し、図2に示すように、この液滴を基板表面全体に行き渡らせて、相対向する端部に再び液滴の形態で集めることにより、基板表面を清浄化して金属不純物を回収する方法である。回収液にはHF溶液、HF及び過酸化水素を含む混合溶液、塩酸溶液、塩酸及び過酸化水素を含む混合溶液、塩酸及びHFを含む混合溶液、SC−1溶液又は硫酸及び過酸化水素を含む混合溶液から選択される。   Compared to the first embodiment, in the second embodiment, Cu is collected on the front and back sides, and the recovered liquid is measured by dissolving the front and back sides. Can be measured. As the recovery method, the DE method (one Drop Etching Method) is suitable. In the DE method, a few drops of recovered liquid are dropped on the edge of the silicon substrate surface, and as shown in FIG. 2, the droplet is spread over the entire surface of the substrate and collected again in the form of a droplet at the opposite edge. In this way, the substrate surface is cleaned to recover metal impurities. The recovered liquid contains HF solution, mixed solution containing HF and hydrogen peroxide, hydrochloric acid solution, mixed solution containing hydrochloric acid and hydrogen peroxide, mixed solution containing hydrochloric acid and HF, SC-1 solution or sulfuric acid and hydrogen peroxide. Selected from a mixed solution.

なお、シリコン基板20を4枚に分割し、分割した基板20を加熱、定量分析してもよい。4分割することにより、ホットプレート上に4枚の基板を載せることができるので、例えば図3に示すように、4枚のシリコン基板20,30,40,50を用意して、これらの基板をそれぞれ4分割する。4分割した基板片20a〜20d,30a〜30d,40a〜40d,50a〜50dのうち、各シリコン基板から各1枚ずつ基板片(図3中では20a,30b,40c,50d)をホットプレート上に載せて加熱処理を施すことで、4枚のシリコン基板を同時に定量分析できるため、スループットを向上させることが可能となる。   The silicon substrate 20 may be divided into four pieces, and the divided substrate 20 may be heated and quantitatively analyzed. By dividing into four, four substrates can be placed on the hot plate. For example, as shown in FIG. 3, four silicon substrates 20, 30, 40, and 50 are prepared, and these substrates are mounted. Divide each into four. Of the four divided substrate pieces 20a to 20d, 30a to 30d, 40a to 40d, and 50a to 50d, one piece from each silicon substrate (20a, 30b, 40c, and 50d in FIG. 3) is placed on the hot plate. By performing the heat treatment on the substrate, the four silicon substrates can be quantitatively analyzed simultaneously, so that the throughput can be improved.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
シリコン基板にボロンを1×1019atoms/cm3の濃度でドープしたP+シリコン基板を6枚用意した。このP+シリコン基板をスピンコーティング法により各所定濃度だけCu汚染させた。汚染させた基板をN2雰囲気中900℃、2時間の条件で熱処理を施して、バルク中のCu濃度が2×1011atoms/cm2、4×1011atoms/cm2、5×1011atoms/cm2、8×1011atoms/cm2、1×1012atoms/cm2及び3×1012atoms/cm2の6種類のサンプル基板(A基板〜F基板)を用意した。
<Example 1>
Six P + silicon substrates doped with boron at a concentration of 1 × 10 19 atoms / cm 3 were prepared on a silicon substrate. This P + silicon substrate was contaminated with Cu at each predetermined concentration by spin coating. The contaminated substrate was heat-treated in an N 2 atmosphere at 900 ° C. for 2 hours, and the Cu concentration in the bulk was 2 × 10 11 atoms / cm 2 , 4 × 10 11 atoms / cm 2 , 5 × 10 11. Six types of sample substrates (A substrate to F substrate) of atoms / cm 2 , 8 × 10 11 atoms / cm 2 , 1 × 10 12 atoms / cm 2 and 3 × 10 12 atoms / cm 2 were prepared.

それぞれ用意したA基板〜F基板をそれぞれ清浄な基板を介してホットプレート上に載せ、300℃で1時間加熱した。加熱した基板の表裏面をTXRFによりCuを定量分析した。   Each of the prepared A to F substrates was placed on a hot plate through a clean substrate and heated at 300 ° C. for 1 hour. Cu was quantitatively analyzed by TXRF on the front and back surfaces of the heated substrate.

<実施例2>
実施例1のA基板〜F基板と同様の基板をそれぞれ用意し、これらの基板を清浄な基板を介してホットプレート上に載せ、300℃で12時間加熱した。加熱した基板の表裏面をAAS、ICP−MS、TXRFによりCuを定量分析した。
<Example 2>
Substrates similar to the A to F substrates in Example 1 were prepared, and these substrates were placed on a hot plate through clean substrates and heated at 300 ° C. for 12 hours. Cu was quantitatively analyzed on the front and back surfaces of the heated substrate by AAS, ICP-MS, and TXRF.

<比較例1>
実施例1のA基板〜F基板と同様の基板を用意し、これらの基板を清浄な基板を介してホットプレート上に載せ、500℃で15分間加熱した。加熱した基板の表裏面をAAS、ICP−MS、TXRFによりCuを定量分析した。
<Comparative Example 1>
Substrates similar to the A to F substrates in Example 1 were prepared, and these substrates were placed on a hot plate through clean substrates and heated at 500 ° C. for 15 minutes. Cu was quantitatively analyzed on the front and back surfaces of the heated substrate by AAS, ICP-MS, and TXRF.

<比較例2>
先ず、実施例1のA基板〜F基板と同様の基板をそれぞれ用意した。次いで、ポリプロピレン(PP)製収容容器にHFと硝酸とH2SO4を含む分解液を入れ、ポリテトラフルオロエチレン製の支持台を収容容器の内部に置いた。支持台のテーブルは分解液の液面より高い位置にあり、このテーブルの上にA基板を載置した。収容容器にPP製の蓋をして、室温下、反応容器を密閉に保った。約12時間保持することにより、A基板をそれぞれ分解昇華させた。分解残渣に塩酸と硝酸を混合した酸を滴下することにより、分解残渣を溶解し、溶解液を200℃で30分間加熱することにより、分解残渣を昇華させた。この残留物をICP−MSにより定量分析した。B基板〜F基板についても同様の方法を用いて分解昇華させ、ICP−MSにより定量分析した。
<Comparative Example 2>
First, substrates similar to the A to F substrates in Example 1 were prepared. Next, a decomposition solution containing HF, nitric acid, and H 2 SO 4 was placed in a polypropylene (PP) container, and a support made of polytetrafluoroethylene was placed inside the container. The table of the support base was at a position higher than the liquid level of the decomposition solution, and the A substrate was placed on this table. The container was covered with PP and the reaction vessel was kept sealed at room temperature. By holding for about 12 hours, each of the A substrates was decomposed and sublimated. The decomposition residue was dissolved by adding dropwise an acid mixture of hydrochloric acid and nitric acid to the decomposition residue, and the decomposition residue was sublimated by heating the solution at 200 ° C. for 30 minutes. This residue was quantitatively analyzed by ICP-MS. B substrate to F substrate were also decomposed and sublimated using the same method and quantitatively analyzed by ICP-MS.

<比較評価1>
実施例1〜2及び比較例1及び2のA基板〜F基板に存在するCu検出濃度の測定結果を図4に示す。
<Comparison evaluation 1>
The measurement result of the Cu detection density | concentration which exists in Examples 1-2 and Comparative Example 1 and the A board | substrate-F board | substrate of FIG. 4 is shown in FIG.

図4より明らかなように、本発明の加熱条件である300℃以上350℃未満の温度で1時間〜12時間の範囲外で加熱処理を施した比較例1では、Cu汚染させた濃度が十分に検出されていない。シリコン基板を全て昇華させてその残渣より定量分析した比較例2は、汚染させたCu濃度を十分に検出することはできるが、分析時間がかかるために、スループットの面から不利である。これらに対して、実施例1及び2は、汚染させたCu濃度の約70%以上が検出できた。   As is clear from FIG. 4, in Comparative Example 1 where heat treatment was performed outside the range of 1 hour to 12 hours at a temperature of 300 ° C. or more and less than 350 ° C., which is the heating condition of the present invention, the concentration contaminated with Cu was sufficient. Not detected. In Comparative Example 2 in which the silicon substrate is all sublimated and quantitatively analyzed from the residue, the contaminated Cu concentration can be sufficiently detected, but the analysis time is required, which is disadvantageous in terms of throughput. On the other hand, in Examples 1 and 2, about 70% or more of the contaminated Cu concentration could be detected.

<比較評価2>
実施例1のF基板(3×1012atoms/cm2)と同様にCu汚染させた基板を21枚用意した。これらの基板をそれぞれ清浄な基板を介してホットプレート上に載せ、所定の加熱温度で、所定の保持時間加熱した。加熱温度は250℃、300℃、350℃、400℃、450℃、500℃及び540℃とし、各加熱温度ごとに加熱保持時間を5分間、15分間及び60分間と変化させた。これら上記条件のもとで熱処理を施した基板の表裏面をTXRFによりCuを定量分析した。これら21枚の基板より検出されたCu濃度の測定結果を図5に示す。
<Comparison evaluation 2>
As with the F substrate (3 × 10 12 atoms / cm 2 ) of Example 1, 21 substrates contaminated with Cu were prepared. Each of these substrates was placed on a hot plate through a clean substrate and heated at a predetermined heating temperature for a predetermined holding time. The heating temperature was 250 ° C., 300 ° C., 350 ° C., 400 ° C., 450 ° C., 500 ° C. and 540 ° C., and the heating and holding time was changed to 5 minutes, 15 minutes and 60 minutes for each heating temperature. Cu was quantitatively analyzed by TXRF on the front and back surfaces of the substrate that had been heat-treated under these conditions. The measurement results of the Cu concentration detected from these 21 substrates are shown in FIG.

図5より明らかなように、3×1012atoms/cm2のようなCu汚染濃度が高い場合、加熱温度が300℃〜350℃の範囲内であれば60分間の加熱保持で十分な検出濃度が得られることが判る。しかし、加熱保持時間が5分間、15分間と短い場合、十分な検出濃度が得られていない。これは短時間の保持時間では、基板表面へのCu拡散が十分に行われないためであると考えられる。 As is clear from FIG. 5, when the Cu contamination concentration is high, such as 3 × 10 12 atoms / cm 2 , if the heating temperature is in the range of 300 ° C. to 350 ° C., sufficient detection concentration can be achieved by holding for 60 minutes. It can be seen that However, when the heating and holding time is as short as 5 minutes and 15 minutes, a sufficient detection concentration is not obtained. This is considered to be because Cu diffusion to the substrate surface is not sufficiently performed with a short holding time.

本発明の第1の実施の形態のシリコン基板のCu濃度測定方法を示す工程図。Process drawing which shows the Cu density | concentration measuring method of the silicon substrate of the 1st Embodiment of this invention. 本発明の第2の実施の形態のシリコン基板のCu濃度測定方法を示す工程図。Process drawing which shows the Cu density | concentration measuring method of the silicon substrate of the 2nd Embodiment of this invention. シリコン基板を4分割して加熱する状態を示す図。The figure which shows the state which divides a silicon substrate into 4 parts and heats. 実施例1〜3及び比較例1のA基板〜F基板に存在するCu検出濃度の測定結果を示す図。The figure which shows the measurement result of Cu detection density | concentration which exists in Examples 1-3 and A substrate-F substrate of the comparative example 1. FIG. 比較評価2の熱処理条件を変化させたときのCu検出濃度の測定結果を示す図。The figure which shows the measurement result of Cu detection density | concentration when changing the heat processing conditions of the comparative evaluation 2. FIG.

Claims (4)

シリコン基板を600℃以下の温度で加熱して前記基板に存在するCu濃度を検出する方法において、
前記基板はボロンを3×1018atoms/cm3以上の濃度で含み
前記基板は4分割され、
前記分割された基板を300℃以上350℃未満の温度で1時間〜12時間加熱し、前記加熱した基板の表裏面に存在するCuを定量分析することを特徴とするシリコン基板のCu濃度検出方法。
In a method for detecting a Cu concentration present in the substrate by heating the silicon substrate at a temperature of 600 ° C. or lower,
The substrate includes boron at a concentration of 3 × 10 18 atoms / cm 3 or more ,
The substrate is divided into four parts,
The divided substrate is heated at a temperature of 300 ° C. or higher and lower than 350 ° C. for 1 hour to 12 hours, and Cu present on the front and back surfaces of the heated substrate is quantitatively analyzed. .
定量分析を原子吸光分析法、誘導結合プラズマ質量分析又は全反射X線蛍光分析法により行う請求項1記載のシリコン基板のCu濃度検出方法。   The method for detecting a Cu concentration in a silicon substrate according to claim 1, wherein the quantitative analysis is performed by atomic absorption spectrometry, inductively coupled plasma mass spectrometry, or total reflection X-ray fluorescence analysis. 加熱したシリコン基板の表裏面に存在するCuを回収液により溶解して回収し、前記回収した回収液を原子吸光分析法又は全反射X線蛍光分析法により定量分析する請求項1記載のシリコン基板のCu濃度検出方法。   2. The silicon substrate according to claim 1, wherein Cu present on the front and back surfaces of the heated silicon substrate is dissolved and recovered by a recovery liquid, and the recovered recovery liquid is quantitatively analyzed by atomic absorption spectrometry or total reflection X-ray fluorescence analysis. Cu concentration detection method. 回収液がフッ化水素酸溶液、フッ化水素酸及び過酸化水素を含む混合溶液、塩酸溶液、塩酸及び過酸化水素を含む混合溶液、塩酸及びフッ化水素酸を含む混合溶液、SC−1溶液又は硫酸及び過酸化水素を含む混合溶液である請求項3記載のシリコン基板のCu濃度検出方法 Recovery liquid is hydrofluoric acid solution, mixed solution containing hydrofluoric acid and hydrogen peroxide, hydrochloric acid solution, mixed solution containing hydrochloric acid and hydrogen peroxide, mixed solution containing hydrochloric acid and hydrofluoric acid, SC-1 solution 4. The method for detecting the Cu concentration of a silicon substrate according to claim 3, which is a mixed solution containing sulfuric acid and hydrogen peroxide .
JP2008289965A 2008-11-12 2008-11-12 Method for detecting Cu concentration in silicon substrate Expired - Lifetime JP4849117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008289965A JP4849117B2 (en) 2008-11-12 2008-11-12 Method for detecting Cu concentration in silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008289965A JP4849117B2 (en) 2008-11-12 2008-11-12 Method for detecting Cu concentration in silicon substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003133197A Division JP2004335955A (en) 2003-05-12 2003-05-12 METHOD FOR DETECTING CONCENTRATION OF Cu ON SILICON SUBSTRATE

Publications (2)

Publication Number Publication Date
JP2009033212A true JP2009033212A (en) 2009-02-12
JP4849117B2 JP4849117B2 (en) 2012-01-11

Family

ID=40403282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008289965A Expired - Lifetime JP4849117B2 (en) 2008-11-12 2008-11-12 Method for detecting Cu concentration in silicon substrate

Country Status (1)

Country Link
JP (1) JP4849117B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018781A (en) * 2009-07-09 2011-01-27 Shin Etsu Handotai Co Ltd Method for evaluating silicon wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964133A (en) * 1995-08-29 1997-03-07 Mitsubishi Materials Shilicon Corp Detecting method of cu concentration in semiconductor substrate
JPH0982770A (en) * 1995-09-18 1997-03-28 Shin Etsu Handotai Co Ltd Impurity analyzing method for silicon wafer interior

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964133A (en) * 1995-08-29 1997-03-07 Mitsubishi Materials Shilicon Corp Detecting method of cu concentration in semiconductor substrate
JPH0982770A (en) * 1995-09-18 1997-03-28 Shin Etsu Handotai Co Ltd Impurity analyzing method for silicon wafer interior

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018781A (en) * 2009-07-09 2011-01-27 Shin Etsu Handotai Co Ltd Method for evaluating silicon wafer

Also Published As

Publication number Publication date
JP4849117B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
US7888265B2 (en) Method for assaying copper in silicon wafers
JP6118031B2 (en) Impurity analysis apparatus and method
JP3494102B2 (en) Evaluation method of metal impurity concentration in silicon wafer
JP2004335955A (en) METHOD FOR DETECTING CONCENTRATION OF Cu ON SILICON SUBSTRATE
JP2008020339A (en) Analyzing method for polishing slurry of silicone wafer
JP4849117B2 (en) Method for detecting Cu concentration in silicon substrate
JP3933090B2 (en) Method for recovering metal impurities from silicon substrate
US8815107B2 (en) Method of etching surface layer portion of silicon wafer and method of analyzing metal contamination of silicon wafer
JP2012132779A (en) Method for analyzing silicon sample
JP3804864B2 (en) Impurity analysis method
JPH0964133A (en) Detecting method of cu concentration in semiconductor substrate
Beebe et al. Monitoring wafer cleanliness and metal contamination via VPD ICP-MS: Case studies for next generation requirements
JP2009294091A (en) Analyzing method of contaminant in silicon wafer
JP5541190B2 (en) Metal impurity concentration evaluation method for P-type silicon wafer
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
JP2019078684A (en) Silicon wafer metal impurity analysis method
JP2004212261A (en) Method of analyzing metal impurities on silicon substrate surface
JP2001196433A (en) METHOD FOR MEASURING CONCENTRATION OF Cu IN SILICON WAFER
JP5645601B2 (en) Water quality evaluation method
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
JP3867014B2 (en) Semiconductor wafer metal contamination evaluation method, semiconductor wafer manufacturing method, these apparatuses and dummy wafer
JP4232457B2 (en) Method for analyzing metal impurities in surface oxide film on silicon substrate surface
JP2013115261A (en) Recovery method of impurity on semiconductor substrate surface and quantitative analysis method for impurity
JP2005300450A (en) Method for analyzing nickel concentration in alkaline solution
Tan et al. Contamination‐Free Manufacturing: Tool Component Qualification, Verification and Correlation with Wafers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

R150 Certificate of patent or registration of utility model

Ref document number: 4849117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term