JP2009032753A - Manufacturing method for electromagnetic steel laminated core - Google Patents

Manufacturing method for electromagnetic steel laminated core Download PDF

Info

Publication number
JP2009032753A
JP2009032753A JP2007192680A JP2007192680A JP2009032753A JP 2009032753 A JP2009032753 A JP 2009032753A JP 2007192680 A JP2007192680 A JP 2007192680A JP 2007192680 A JP2007192680 A JP 2007192680A JP 2009032753 A JP2009032753 A JP 2009032753A
Authority
JP
Japan
Prior art keywords
electromagnetic steel
laminated
core
steel sheet
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007192680A
Other languages
Japanese (ja)
Inventor
Isao Sato
藤 功 佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007192680A priority Critical patent/JP2009032753A/en
Publication of JP2009032753A publication Critical patent/JP2009032753A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new manufacturing technique which eliminates punching machining that invites cracking or breaking of a silicon-enriched electromagnetic steel plate, enables precise and free machining of a silicon-enriched electromagnetic steel plate reduced in strength by increasing silicon contents and lessening thickness into a desired shape, and enables manufacturing of a motor core having sufficient strength for practical use. <P>SOLUTION: According to a manufacturing method for an electromagnetic steel laminated core, a plurality of electromagnetic steel plates 1, 1... are joined together with respective insulating layers 11 set face to face, thus laminated and fixed temporarily (A) into an electromagnetic steel plate assembly 2. The part of the electromagnetic steel plate assembly 2 that is equivalent to one pair of opposed vertical sections 21 and 21 and the other pair of opposed vertical sections 22 and 22, which make up part of a core outline, are cut by laser, and the laser cut portion of the electromagnetic steel plate assembly 2 is melted together (B) to form a laminated electromagnetic steel plate block 3. One pair of opposed vertical sections 21 and 21 are ground (C), after which a caulking part 4 is wound around the ground opposed vertical sections 21 and 21 to fasten the steel plate block 3 together (D), and the other pair of opposed vertical sections 22 and 22 are ground (E). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、電磁鋼板に関連するあらゆる分野をその技術分野とするものであり、電磁鋼積層コアを製造する分野は勿論のこと、電磁鋼積層コアを輸送、保管、販売、利用ならびにその製造に必要となる設備、器具類を提供、販売する分野から、それら資材や機械装置、部品類に必要となる素材、例えば、木材、石材、各種繊維類、プラスチック、各種金属材料等を提供する分野、それらに組み込まれる電子部品やそれらを集積した制御関連機器の分野、各種計測器の分野、当該設備、器具を動かす動力機械の分野、そのエネルギーとなる電力やエネルギー源である電気、オイルの分野といった一般的に産業機械と総称されている分野、更には、それら設備、器具類を試験、研究したり、それらの展示、販売、輸出入に係わる分野、将又、それらの使用の結果やそれを造るための設備、器具類の運転に伴って発生するゴミ屑の回収、運搬等に係わる分野、それらゴミ屑を効率的に再利用するリサイクル分野などの外、現時点で想定できない新たな分野までと、関連しない技術分野はない程である。     The present invention has all fields related to electrical steel sheets as its technical field, and not only in the field of manufacturing electrical steel laminated cores, but also for transporting, storing, selling, using and producing electrical steel laminated cores. From the field of providing and selling necessary equipment and instruments, the field of providing materials, machinery and equipment, materials necessary for parts, such as wood, stone, various fibers, plastic, various metal materials, The field of electronic components incorporated in them, the field of control-related equipment that integrates them, the field of various measuring instruments, the field of power equipment that moves the equipment and equipment, the field of electricity and energy that is the energy and energy source, etc. Fields generally referred to as industrial machinery, as well as testing and researching those facilities and equipment, fields related to display, sales, import / export, generals, In addition to the results of their use, the equipment used to build them, the fields related to the collection and transportation of garbage generated by the operation of equipment, the recycling field for efficiently reusing these wastes, etc. There are no new technical fields that cannot be envisaged, and there are no unrelated technical fields.

(着目点)
自動車による大気汚染や地球温暖化、騒音などの環境問題を解決する技術として、近年、電気自動車やハイブリッド自動車などが注目を集めており、各自動車メーカーやその関連企業によって、より小型、高性能なインホイール型の駆動用モーターや航続距離が長く軽量で充電時間の短いバッテリーなどの開発が盛んに行われている。
(Points of interest)
In recent years, electric vehicles and hybrid vehicles have attracted attention as technologies for solving environmental problems such as air pollution, global warming, and noise caused by automobiles. In-wheel type drive motors and batteries with long cruising distance, light weight and short charging time are being actively developed.

こうした情勢の中、小型、軽量な上に高出力が得られるリラクタンスモーターやインダクションモーター、その他のモーターに用いられる薄型積層電磁鋼板は、交流磁化されるときに鉄損(エネルギー損失)を生じるという性質を持ち、この鉄損は、板厚を薄くするほど少なくできるという理由から、従来品よりも更に薄い電磁鋼板の生産技術が求められている。
また、電磁鋼板には、薄くなるに従って磁束密度が低下してしまう傾向があり、この現象を改善してモーター性能を高めるために、1889年にイギリスのハッドフィールド(Hadfield)が発見した、鉄に珪素を添加すると電気抵抗が上がり、鉄損を低下させる効果が得られ、珪素含有量が6.5%までは磁歪と結晶異方性エネルギーとが低下するという性質を利用し、結晶方位制御によって飽和磁束密度を高め、珪素の添加によって電気抵抗を高めるという技術の開発が、現在、盛んに進められている。
Under such circumstances, thin laminated electrical steel sheets used for reluctance motors, induction motors, and other motors that are small and light, yet have high output, have the property of causing iron loss (energy loss) when AC magnetized. In view of the fact that the iron loss can be reduced as the plate thickness is reduced, a production technology for an electromagnetic steel sheet that is thinner than the conventional product is required.
In addition, magnetic steel sheets tend to have a lower magnetic flux density as they become thinner. To improve this phenomenon and improve motor performance, in 1889 the British Hadfield found that iron. When silicon is added, the electrical resistance is increased and the effect of lowering the iron loss is obtained. By utilizing the property that magnetostriction and crystal anisotropy energy are reduced up to a silicon content of 6.5%, the crystal orientation is controlled. The development of a technique for increasing the saturation magnetic flux density and increasing the electric resistance by adding silicon is being actively promoted.

(従来の技術)
これらに関する先行技術の例としては、特開平5−287383号公報「超高珪素電磁鋼板の製造方法」発明として提案されているように、重量でC≦0.006%、Si:5.0〜7.1%、Mn:0.07〜0.30%、S≦0.007%、酸可溶性Al:0.006〜0.038%、totalN:8〜30ppm、残部Feおよび不可避的不純物からなる材料を、1100℃を超え1250℃以下の温度域に加熱して15〜40%の圧下率を適用する粗熱間圧延を施して歪を導入し、次いで1100℃を超え1250℃以下の温度域に再加熱して仕上圧延を施した後、板温を120〜350℃の温度域として冷間圧延して最終板厚とし、次いで再結晶と粒成長とを目的とする焼鈍を施す超高珪素電磁鋼板の製造方法により、磁気特性、就中高周波数領域で秀れた鉄損特性を有する超高珪素鋼(6.5%あるいはその近傍のSiを含有する鋼)熱延板および冷延板を、材料に耳割れ(エッジクラック)、延いては材料破断を惹起することなく、180℃の板温度で0.23mm厚まで冷間圧延加工することができるプロセスを提供可能とした技術や、特開2003−160848号公報に開示された「高珪素電磁鋼板及びその製造方法」発明のように、Si含有量が5重量%以上7重量%以下、Cr含有量が0.1重量%以上2重量%以下、Al含有量が0.005重量%未満であり、板厚が0.3mm以下で且つ板厚方向に貫通粒組織を有し、高透磁率特性を維持したまま高周波で低鉄損特性を有する高珪素電磁鋼板およびその製造方法を提供可能とした技術などが既に開発されている。
(Conventional technology)
As an example of prior art relating to these, as proposed in Japanese Patent Application Laid-Open No. 5-287383 “Method for producing ultra-high silicon electrical steel sheet”, C ≦ 0.006% by weight, Si: 5.0˜ 7.1%, Mn: 0.07 to 0.30%, S ≦ 0.007%, acid-soluble Al: 0.006 to 0.038%, total N: 8 to 30 ppm, balance Fe and unavoidable impurities The material is heated to a temperature range of more than 1100 ° C. and not more than 1250 ° C. and subjected to rough hot rolling applying a rolling reduction of 15 to 40% to introduce strain, and then the temperature range of more than 1100 ° C. and not more than 1250 ° C. Ultra-high silicon that is subjected to finish rolling after reheating to, then cold-rolled at a temperature range of 120 to 350 ° C. to obtain the final thickness, and then annealed for recrystallization and grain growth Magnetic properties by the manufacturing method of electrical steel sheet In particular, ultra-high silicon steel (steel containing 6.5% or near Si) with excellent iron loss characteristics in the high frequency region, hot-rolled and cold-rolled plates, ear cracks (edge cracks), As a result, a technique capable of providing a process that can be cold-rolled to a thickness of 0.23 mm at a plate temperature of 180 ° C. without causing material breakage, or disclosed in JP 2003-160848 A As in the “high silicon electrical steel sheet and manufacturing method thereof” Si content is 5 wt% or more and 7 wt% or less, Cr content is 0.1 wt% or more and 2 wt% or less, and Al content is 0.005. High silicon electrical steel sheet having a low iron loss characteristic at a high frequency while maintaining a high magnetic permeability characteristic, and having a through grain structure in a thickness direction of less than 0.3% by weight, having a thickness of 0.3 mm or less, and a method for producing the same Technology that has made it possible to provide It is.

このような新たな技術を投入して生産される薄型の高珪素電磁鋼板を用いてモーター用コアを製造する場合であっても、未だ打ち抜き加工して積層一体化させるまでの様々な加工段階において、高珪素電磁鋼板に割れや欠けを発生し易く、良品率が低く効率的に生産できないという欠点があり、また、こうしたモーター用コアの製造には、型式の異なるモーター形状や寸法毎に応じて高珪素電磁鋼板打抜き用の金型を夫々個別に製作しなければならず、したがって経済的負担が多くなり、さらに、三次元的形状コア組み立て工程中に、打ち抜き加工後の複数枚の高珪素電磁鋼板を積層状に組み合わせる作業でも、運搬や取り扱い中に他物と接触するなどして高珪素電磁鋼板に亀裂や欠けなどを生じる虞が高く、不良率が高く生産コストが嵩むという欠点を残すものとなっていた。     Even in the case of manufacturing motor cores using thin high-silicon electromagnetic steel sheets produced by introducing such new technology, it is still in various processing stages from stamping to stacking and integration. However, the high silicon electrical steel sheet is prone to cracking and chipping, has a defect that the yield rate is low and cannot be produced efficiently. In addition, the manufacturing of such motor cores depends on the motor shape and dimensions of different models. Each die for punching high silicon electromagnetic steel sheets must be manufactured individually, which increases the economic burden, and further, during the assembly process of the three-dimensional core, a plurality of high silicon electromagnetic plates after punching are processed. Even in the process of combining steel sheets in a laminated form, there is a high risk of cracking or chipping in high-silicon electrical steel sheets due to contact with other objects during transportation and handling, resulting in high defect rates and high production costs. Had become a thing to leave a drawback say.

そうした課題を解決する技術として、例えば特開2001−295000号公報「組立作業性に優れた高珪素電磁鋼板」発明に開示されたように、圧延法で製造される高珪素電磁鋼板を用いてコアを組み立てる際に生じる鋼板の破断の発生原因が、高珪素鋼板のすべり性が悪いことに起因していること、このすべり性を向上させるためには鋼板表面粗さと絶縁皮膜厚を特定の範囲に規制することが有効であることを見出し、これらの原因を解消すべく開発されたものであり、圧延法で製造されるSi含有量が4〜7mass%の高珪素鋼板の表面に絶縁皮膜を形成した高珪素電磁鋼板であって、表面粗さRaを0.10μm以上とし、且つ前記絶縁皮膜の平均厚さが2μm以下であることを特徴とし、これによってコア組み立て時に破断を生じない良好な組立作業性を示し、このため、従来の高珪素鋼板に較べてコアの生産性が著しく向上するという効果が得られるようにしたものや、特開平11−234972号公報「積層鉄芯の製造方法」発明に示されるように、表面に接着被膜が施されている電磁鋼板を単位鉄芯形状に加工し積層した後、加圧と同時に高周波吸収材と支持体とから構成される高周波吸収体を接触させて高周波を印加し、高周波吸収体を発熱させ、その熱エネルギーで鉄芯を加熱することにより、安価な設備で鉄芯を一体化し、鉄芯固着作業性を大幅に向上させ、接着被膜を有する電磁鋼板を用いて積層鉄芯を安価な設備で素早く固着することが可能であり、従来の加熱炉を用いた固着ではないので、短時間に接着被膜を有する電磁鋼板を固着でき、鉄芯の固着工程の作業性が大幅に向上できるようにしたものなどが散見される。     As a technique for solving such a problem, for example, as disclosed in Japanese Patent Application Laid-Open No. 2001-295000 “High Silicon Electrical Steel Sheet Excellent in Assembly Workability”, a core using a high silicon electrical steel sheet manufactured by a rolling method is used. The cause of the breakage of the steel sheet that occurs when assembling the steel sheet is due to the poor slipperiness of the high silicon steel sheet, and in order to improve the slipperiness, the steel sheet surface roughness and the insulation film thickness are within a specific range. Found to be effective to regulate, developed to eliminate these causes, forming an insulating film on the surface of high silicon steel sheet with Si content of 4-7 mass% produced by rolling method A high silicon electrical steel sheet having a surface roughness Ra of 0.10 μm or more and an average thickness of the insulating film of 2 μm or less, which causes breakage during core assembly. Therefore, it is possible to obtain an effect that the productivity of the core is remarkably improved as compared with the conventional high silicon steel sheet, and Japanese Patent Laid-Open No. 11-234972 “Laminated iron core” As shown in the invention, a high-frequency structure composed of a high-frequency absorber and a support simultaneously with pressurization after processing and laminating a magnetic steel sheet with a surface coated with an adhesive coating into a unit iron core shape By contacting the absorber and applying high frequency to heat the high frequency absorber and heating the iron core with the heat energy, the iron core is integrated with inexpensive equipment, greatly improving the iron core fixing workability. It is possible to quickly fix laminated iron cores with inexpensive equipment using electrical steel sheets with adhesive coating, and it is not fixing with conventional heating furnaces, so electrical steel sheets with adhesive coating are fixed in a short time Yes, iron core sticking Etc. are scattered those degree of workability is to be greatly improved.

しかしながら、前者の「組立作業性に優れた高珪素電磁鋼板」発明は、高珪素電磁鋼板(絶縁皮膜面)の表面粗さRaが0.10μm以上であり、且つ絶縁皮膜の平均厚さが2μm以下としなければならず、既に生産済みであって、高珪素電磁鋼板(絶縁皮膜面)の表面粗さRaが0.10μm未満、または、絶縁皮膜の平均厚さが2μmを超えた高珪素電磁鋼板を使用することができず、市場での広範な資材、調達による経費削減、効果を享受できないという欠点がある。     However, the former “high silicon electrical steel sheet excellent in assembly workability” invention has a surface roughness Ra of the high silicon electrical steel sheet (insulating film surface) of 0.10 μm or more and an average thickness of the insulating film of 2 μm. The high silicon electromagnetic steel that has already been produced and the surface roughness Ra of the high silicon electromagnetic steel sheet (insulating film surface) is less than 0.10 μm or the average thickness of the insulating film exceeds 2 μm. Steel plates cannot be used, and there are disadvantages that a wide range of materials in the market, cost reduction by procurement, and the effect cannot be enjoyed.

また、後者の「積層鉄芯の製造方法」発明は、その実施例中に、表面にエポキシ樹脂からなり、接着能のある絶縁被膜が片面に8μmずつ施された無方向性電磁鋼板をモーターコアの単位鉄芯形状に打抜き、積層したモーターコア素材を、高周波吸収材として厚さ2mmのベークライト板と支持体としての厚さ5mmの鋼板とで挟み込み、ボルトで上下の支持体を連結して全体を固定し、その後、出力600kWのオーブン型マイクロ波加熱装置の加熱部内にセットし、3分間加熱し積層鉄芯を一体化させ、割れや剥離の発生が無く十分な接着強度が得られたとしているが、珪素含有量が4.0重量%を超え、板厚を0.1mm以下に設定された高珪素電磁鋼板に割れや破断を生じないよう、モーターコアの単位鉄芯形状に打抜く加工技術については記載がなく、この発明に開示された技術だけでは、薄型の高珪素電磁鋼板を用いたモーター用コアの製造は不可能であるという欠点を有していた。
(1)特開平5−287383号公報 (2)特開2003−160848号公報 (3)特開2001−295000号公報 (4)特開平11−234972号公報
In addition, the latter “method for producing a laminated iron core” includes a non-oriented electrical steel sheet having an epoxy resin on the surface and an insulating coating having an adhesive ability applied to each side by 8 μm. The motor core material punched and laminated into a unit core shape is sandwiched between a bakelite plate with a thickness of 2 mm as a high-frequency absorber and a steel plate with a thickness of 5 mm as a support, and the upper and lower supports are connected with bolts as a whole. After that, it was set in the heating part of an oven type microwave heating device with an output of 600 kW, heated for 3 minutes, and the laminated iron core was integrated, and there was no occurrence of cracking or peeling, and sufficient adhesive strength was obtained. However, punching into a unit core shape of the motor core so that the silicon content exceeds 4.0 wt% and the high silicon electrical steel sheet with a thickness of 0.1 mm or less will not crack or break. Technology No description is Te, just the technique disclosed in the present invention, had the disadvantage of producing a core for a motor using a high silicon electrical steel sheet thin it is not possible.
(1) JP-A-5-287383 (2) JP-A-2003-160848 (3) JP-A-2001-295000 (4) JP-A-11-234972

(問題意識)
上述した事例を含め、これまでにも様々な高珪素電磁鋼板に関する製造技術の提案がなされてきており、確かにそれらの多くが、高珪素電磁鋼板の珪素含有量を高めて鉄損を低減するよう、より薄く製造することを可能とするものではあったが、これらの技術は、珪素やその他成分の添加、および溶融や熱処理、圧延可能などの製造工程の細部に及ぶものが殆どであって、さらに、積層鉄芯を一体化する前段階において、板厚を0.1mm以下に設定した高珪素電磁鋼板に割れや破断を生じないようモーターコアの単位鉄芯形状に打ち抜く高度なプレス加工技術が不可欠であり、こうした課題を解決するには、打ち抜き強度に秀れた高珪素電磁鋼板を使用せざるを得ないが、こうした高度な製造技術による生産は、経費が嵩んで低価格に抑えるのが難しく、実際には、プレス加工にも十分に耐える珪素含有量3.2重量%程度のものとして市場に多く供給されている電磁鋼板を利用しなければならないような実情となっている。
(Awareness of problems)
Including the cases mentioned above, various manufacturing technologies related to high silicon electrical steel sheets have been proposed so far, and certainly many of them increase the silicon content of high silicon electrical steel sheets and reduce iron loss. However, most of these technologies cover the details of any manufacturing process that can be added with silicon and other components, and can be melted, heat treated and rolled. In addition, advanced press working technology that punches into the unit core shape of the motor core so as not to break or break the high silicon electrical steel sheet with the plate thickness set to 0.1 mm or less before the laminated iron core is integrated In order to solve these problems, high silicon electrical steel sheets with excellent punching strength must be used, but production using such advanced manufacturing technology is costly and inexpensive. The difficult, in fact, has a situation that must use the magnetic steel sheets are widely supplied to the market as the silicon content of about 3.2 wt% sufficiently withstand even pressing.

(発明の目的)
そこで、この発明は、高珪素電磁鋼板の割れや破断を招く打ち抜き加工を廃止し、珪素含有量の増加と薄型化とによって強度が低下した高珪素電磁鋼板を所望の形状に高精度且つ自由に加工可能であって、しかも実用に耐える十分な強度のモーター用コアを製造可能とする新たな製造技術の開発はできないものかとの判断から、逸速くその開発、研究に着手し、長期に渡る試行錯誤と幾多の試作、実験とを繰り返してきた結果、今回、遂に新規な電磁鋼積層コアの製造方法を実現化することに成功したものであり、以下では、図面に示すこの発明を代表する実施例と共に、その構成を詳述することとする。
(Object of invention)
Therefore, the present invention eliminates the punching process that causes cracking and fracture of the high-silicon electrical steel sheet, and allows the high-silicon electrical steel sheet whose strength is reduced by increasing the silicon content and reducing the thickness to a desired shape with high accuracy and freedom. Judging whether it is possible to develop a new manufacturing technology that can produce a motor core that can be processed and that has sufficient strength to withstand practical use, we quickly started its development and research, and conducted a long-term trial. As a result of repeating mistakes and many trial manufactures and experiments, this time, we finally succeeded in realizing a new method for manufacturing laminated steel cores. The configuration will be described in detail with an example.

(発明の構成)
図面に示すこの発明を代表する実施例からも明確に理解されるように、この発明の電磁鋼積層コアの製造方法は、基本的に次のような構成から成り立っている。
即ち、平面または曲面を持つ所定厚さに設定した複数枚の電磁鋼板を、互いの電気的絶縁層同士で接合するよう積層仮固定した電磁鋼板集合体の、各電磁鋼板の積み重なり面に交叉する少なくともコア輪郭の一部をなす対峙木口面、および同コア輪郭の他の一部をなす対峙木口面相当箇所を、夫々任意形状にレーザー裁断すると同時に各裁断面を溶融結合させ積層電磁鋼板ブロックとし、これら溶融結合済みの四つの木口面の中、一方の対峙木口面を研磨加工した後、該研磨したがわの対峙木口面中央付近にカシメ部品を通過させるよう巻き掛けて強固に一体化させ、残された対峙木口面およびその他の要研磨木口面を研磨するようにした構成を要旨とする電磁鋼積層コアの製造方法である。
(Structure of the invention)
As clearly understood from the embodiments representing the present invention shown in the drawings, the method for manufacturing an electromagnetic steel laminated core according to the present invention basically includes the following configuration.
That is, a plurality of electromagnetic steel sheets set to a predetermined thickness having a flat surface or a curved surface are crossed over the stacking surfaces of the electromagnetic steel sheets in an assembly of magnetic steel sheets temporarily laminated and fixed so as to be joined together with each other's electrical insulation layers. A laminated electrical steel sheet block is formed by laser-cutting at least a part of the core contour corresponding to the opposite side of the core contour and a portion corresponding to the opposite side of the core contour corresponding to the laser cutting at the same time, and at the same time melt-bonding the respective cut surfaces. After polishing one of the four melt-bonded butt faces, the caulking part is passed around the center of the ground side of the polished potato so that the caulking part is passed through and firmly integrated. This is a method for producing an electromagnetic steel laminated core having the gist of polishing the remaining anti-waist face and other necessary face surfaces.

この基本的な構成をより具体的なものとして示すと、平面または曲面を持つ厚さ0.1mm未満に設定した複数枚の電磁鋼板を、互いの電気的絶縁層同士で接合するよう積層仮固定した電磁鋼板集合体の、各電磁鋼板の積み重なり面に交叉する少なくともコア輪郭の一部をなす対峙木口面、および同コア輪郭の他の一部をなす対峙木口面相当箇所を、夫々任意形状にレーザー裁断すると同時に各裁断面を溶融結合させ積層電磁鋼板ブロックとし、これら溶融結合済みの四つの木口面の中、一方の対峙木口面を研磨加工した後、該研磨したがわの対峙木口面中央付近にカシメ部品を通過させるよう巻き掛けて強固に一体化させ、残された対峙木口面およびその他の要研磨木口面を研磨するようにした構成からなる電磁鋼積層コアの製造方法となる。     When this basic configuration is shown as a more concrete one, a plurality of electromagnetic steel sheets having a plane or curved surface set to a thickness of less than 0.1 mm are laminated and temporarily fixed so that the respective electrical insulating layers are bonded to each other. In the electromagnetic steel sheet assembly, the opposite side of the opposite edge that forms at least a part of the core contour that intersects with the stacking surface of each electromagnetic steel sheet, and the opposite part of the opposite side of the core that forms the other part of the core outline are arbitrarily shaped. At the same time as laser cutting, each cut surface is melt-bonded to form a laminated electrical steel steel steel block, and one of the four bonded ends is polished and then the center of the polished wafer is opposite A method for producing an electromagnetic steel laminated core comprising a structure in which a caulking part is passed in the vicinity so as to be tightly integrated and polished, and the remaining anti-waist face and other necessary grind face are polished. .

更に表現を変えて示すと、珪素含有量を4.0重量%ないし7.0重量%、望ましくは6.5重量%に規制し、平面または曲面を持つ厚さ0.1mm未満に設定した複数枚の電磁鋼板を、互いの電気的絶縁層同士で接合するよう積層仮固定した電磁鋼板集合体の、各電磁鋼板の積み重なり面に交叉する少なくともコア輪郭の一部をなす対峙木口面、および同コア輪郭の他の一部をなす対峙木口面相当箇所を、夫々任意形状にレーザー裁断すると同時に各裁断面を溶融結合させ積層電磁鋼板ブロックとし、これら溶融結合済みの四つの木口面の中、一方の対峙木口面を研磨加工した後、この研磨したがわの対峙木口面中央付近にカシメ部品を通過させるよう巻き掛けて強固に一体化させ、残された対峙木口面およびその他の要研磨木口面を研磨するようにした構成からなる電磁鋼積層コアの製造方法となる。     In other words, the silicon content is regulated to 4.0 to 7.0% by weight, preferably 6.5% by weight, and a plurality of planes or curved surfaces having a thickness of less than 0.1 mm are set. An assembly of electrical steel sheets laminated and temporarily fixed so that two electrical steel sheets are joined together with each other's electrical insulation layers. The part corresponding to the opposite end of the core, which forms the other part of the core contour, is laser-cut into an arbitrary shape, and at the same time, each cut surface is melt-bonded to form a laminated electrical steel sheet block. After polishing the front face of the wood facing the wood, it is tightly integrated by passing the caulking part around the center of the ground side of the polished wood, and the remaining face of the wood facing the other side and other necessary wood face Polishing A method of manufacturing electrical steel laminated core having the structure in which the so that.

以上のとおり、この発明の電磁鋼積層コアの製造方法によれば、平面または曲面を持つ所定厚さに設定した複数枚の電磁鋼板を、互いの電気的絶縁層同士で接合するよう積層仮固定した電磁鋼板集合体としてあり、従前までの一枚毎の電磁鋼板を取り扱う場合に比較し、欠けや割れなどの発生を格段に低減することができ、また各電磁鋼板の積み重なり面に交叉する少なくともコア輪郭の一部をなす対峙木口面、および同コア輪郭の他の一部をなす対峙木口面相当箇所を、夫々任意形状にレーザー裁断すると同時に各裁断面を溶融結合させて積層電磁鋼板ブロックとしてあって、各電磁鋼板同士を一個のブロック状に一体化させ、互いの位置決めをして加工精度を高めると共に、不用意な落下や他物への干渉にも耐える高い強度を確保可能とし、この積層電磁鋼板ブロックの溶融結合済みの少なくとも四つの木口面の中、一方の対峙木口面を研磨加工するようにし、亀裂や欠けなどの発生を確実に防止しながら、結合していた溶融結合部分の各電磁鋼板端部を電気絶縁状態に再分離すると同時に精密仕上げすることができ、その後にこの研磨したがわの対峙木口面中央付近にカシメ部品を通過させるよう巻き掛けて強固に一体化させ、残された対峙木口面およびその他の要研磨木口面を研磨するよう加工を進め、従来は加工が非常に困難とされてきた、厚さ0.1mm前後、珪素含有量4.0重量%ないし7.0重量%の高珪素電磁鋼板製の電磁鋼積層コアを、高精度で効率的、しかも歩留まり良く低廉に大量生産可能とした上、レーザー加工装置と研磨装置とを準備するだけで十分に生産できるようにしてあり、金型の製作ならびに維持管理などへの高額の設備投資を必要とせず、小規模な施設を有する少人数の工場内で容易に多品種生産することができるという経済性にも格段に秀れた製造技術を提供することができる。     As described above, according to the method for manufacturing an electromagnetic steel laminated core according to the present invention, laminated temporary fixing is performed so that a plurality of electromagnetic steel sheets set to a predetermined thickness having a flat surface or a curved surface are joined to each other by electrical insulating layers. Compared to the case of handling every single electromagnetic steel sheet up to now, it is possible to significantly reduce the occurrence of chipping and cracking, and at least cross over the stacking surface of each electromagnetic steel sheet A laminated electrical steel sheet block is formed by laser-cutting the anti-cutting mouth part that forms part of the core outline and the equivalent part of the anti-cutting mouth part that forms another part of the core outline, respectively, while simultaneously cutting each section into a melt. In addition, each magnetic steel sheet can be integrated into a single block and positioned to increase the processing accuracy, while ensuring high strength to withstand inadvertent drops and interference with other objects. , Of the laminated magnetic steel sheet block, at least four of the fused ends, one of the opposite ends is polished to ensure the prevention of cracks and chips The electrical steel sheet ends of the parts can be re-isolated into an electrical insulation state and precision finished at the same time, and then tightly integrated by winding the caulking parts to pass near the center of the ground surface of the polished saw. Then, processing was continued to polish the remaining anti-waist face and other necessary polish face surfaces, and the thickness was around 0.1 mm, silicon content was 4.0% by weight, which was conventionally considered to be very difficult to process. In addition, it is possible to mass-produce an electromagnetic steel laminated core made of 7.0% by weight high-silicon electrical steel sheets with high accuracy, efficiency, good yield and low cost, and it is sufficient to prepare a laser processing apparatus and a polishing apparatus. Economy that can be easily produced in a small number of factories with small facilities, without requiring large capital investment in the production and maintenance of molds. It is possible to provide manufacturing technology that is remarkably superior in nature.

加えて、使用する材料として平面または曲面を持つ厚さ0.1mm未満に設定した複数枚の電磁鋼板を使用するようにし、鉄損の発生を大幅に低減可能とすると共に発生磁力を強化し、電磁鋼積層コアを一段と小型、軽量化できる上、レーザー加工の採用によって高珪素薄型電磁鋼板の最大のデメリットであった脆さによる加工困難、およびそれに起因する不良率の増大という弊害の一切を解消し、プレス加工と同等以上の加工精度が得られる上、従来品より格段に複雑な形状のモーター用コアを効率的に製造可能とすることができるという大きな効果を発揮することになる。     In addition, as a material to be used, a plurality of electromagnetic steel sheets set to a thickness of less than 0.1 mm having a flat or curved surface is used, the generation of iron loss can be greatly reduced and the generated magnetic force is enhanced, In addition to being able to further reduce the size and weight of electromagnetic steel laminated cores, the use of laser processing eliminates all of the negative effects of brittleness, which is the biggest disadvantage of high-silicon thin electromagnetic steel sheets, and the resulting increase in defect rate. In addition, a processing accuracy equal to or higher than that of press processing can be obtained, and a great effect can be achieved in that a motor core having a much more complicated shape than that of a conventional product can be efficiently manufactured.

そして、珪素含有量を4.0重量%ないし7.0重量%、望ましくは6.5重量%に規制し、平面または曲面を持つ厚さ0.1mm未満に設定した複数枚の電磁鋼板を使用するようにし、従来までのプレス加工によって生産するものでは全く不可能な程度の小型で高効率および高出力なモーターやその他の電気製品などを大量生産可能とする電磁鋼積層コアを提供ができるという利点が得られる。     In addition, a plurality of electromagnetic steel sheets having a flat or curved surface and a thickness of less than 0.1 mm are used, with the silicon content being regulated to 4.0 wt% to 7.0 wt%, preferably 6.5 wt%. It is possible to provide an electromagnetic steel laminated core that enables mass production of small, high-efficiency and high-power motors and other electrical products that are completely impossible with conventional press working. Benefits are gained.

更に、複数枚の電磁鋼板が、互いの電気絶縁性結晶粒界を介して積層仮固定し、電磁鋼板集合体とした後にレーザー裁断を行うようにした場合には、各電磁鋼板の接合面に絶縁層を形成または介在させる工程が不要となり、電磁鋼積層コアの積層厚みを低減し、一段と小型軽量化や高効率化することができ、しかも製造工数および製造コストを大幅に節減できるという効果が得られる。     Furthermore, when a plurality of electromagnetic steel sheets are laminated and temporarily fixed via each other's electrical insulating crystal grain boundaries to form an electromagnetic steel sheet aggregate, laser cutting is performed. The process of forming or interposing an insulating layer is no longer necessary, reducing the thickness of the electromagnetic steel laminated core, further reducing the size and weight and increasing the efficiency, and also greatly reducing the number of manufacturing steps and costs. can get.

積層電磁鋼板ブロックの対峙木口面相当箇所の中の少なくとも一面またはその一部を、各電磁鋼板の積み重なり面に対して90度未満の所定角度か、もしくは90度を超えた所定角度かの何れかの角度に傾斜した面形状に裁断する三次元的加工によるものとした場合には、より複雑な形状の電磁鋼積層コアを、効率的に生産することができるようになり、従前までであれば不良率が高く価格が高騰していた複雑形状の高珪素電磁鋼板使用の電磁鋼積層コアを低価格にて大量に提供できるようになる。     Either at least one surface or a part of the portion corresponding to the front surface of the laminated electromagnetic steel sheet block is either a predetermined angle less than 90 degrees or a predetermined angle exceeding 90 degrees with respect to the stacking surface of each electromagnetic steel sheet If it is based on three-dimensional processing that cuts into a surface shape inclined at an angle of, it becomes possible to efficiently produce electromagnetic steel laminated cores with more complex shapes, It becomes possible to provide a large number of electromagnetic steel laminated cores using a complex-shaped high silicon electromagnetic steel sheet, which has a high defect rate and a high price, at a low price.

また、積層電磁鋼板ブロックの積層状木口面相当箇所の中の少なくとも一面あるいはその一部を、折れ曲げ直線状および/または曲線状に裁断する三次元的加工によるものとした場合には、従前までの積層前の各電磁鋼板をプレス加工してから積層一体化する製造方法では全く不可能であった三次元的加工を実現することができ、しかも一層微少で複雑な形状寸法の高珪素電磁鋼板使用の電磁鋼積層コアを、格段に効率良く且つ高良品率で生産できるという秀れた効果を発揮可能となる。     In addition, when three-dimensional processing is performed by cutting at least one surface or a part of the laminated magnetic steel sheet block corresponding to the laminated mouthpiece surface into a bent straight line and / or curved line, until now. High-silicon electrical steel sheets that can achieve three-dimensional processing that was completely impossible with the manufacturing method in which each electrical steel sheet before lamination is pressed and then laminated and integrated. It is possible to exhibit the excellent effect that the used electromagnetic steel laminated core can be produced with extremely high efficiency and high yield rate.

上記したとおりの構成からなるこの発明の実施に際し、その最良もしくは望ましい形態について説明を加えることにする。
電磁鋼板は、電気および磁気エネルギーの交換を効率的に行う鋼板であり、表現を変えると大型または小型回転機、汎用モーター、小型精密モーター、電気自動車用モーター、各種発電機、各種電力用変圧器、配電用変圧器、磁気増幅器、マグネットスイッチ、安定器、磁気シールド、その外などの製造に用いられるものであって、平面または曲面状に形成されたものとすることができ、この発明の特徴が最大限に得られるよう、既に実用化されていた板厚0.3mmのものより薄く、しかも珪素含有量が4.0重量%よりも高い高珪素電磁鋼板として、従来型に比較して格段の性能アップを図ることができるものとすべきであり、後述する実施例に示すように0.1mm未満の厚さと、4.0重量%ないし7.0重量%、望ましくは6.5重量%の珪素含有量に規制したものとするのが望ましい。
In implementing the present invention having the configuration as described above, the best or desirable mode will be described.
Electrical steel sheets are steel sheets that efficiently exchange electrical and magnetic energy. In other words, large or small rotating machines, general-purpose motors, small precision motors, motors for electric vehicles, various generators, and various power transformers. It is used for the manufacture of distribution transformers, magnetic amplifiers, magnet switches, ballasts, magnetic shields, etc., and can be formed in a flat or curved shape, and features of the present invention As a high silicon electrical steel sheet, which is thinner than the plate thickness of 0.3 mm, which has already been put to practical use, and has a silicon content higher than 4.0% by weight, it is much higher than the conventional type. The thickness should be less than 0.1 mm, 4.0 wt% to 7.0 wt%, preferably 6.5 wt. It is desirable to those regulating the silicon content amounts%.

電気的絶縁層は、各電磁鋼板の互いに接合する面間にあって、接合面間に電流が通じないよう各電磁鋼板間を絶縁可能とするという機能を果たすものであり、重なり合う電磁鋼板同士の接合面間に少なくとも一層形成されたものとしなければならず、電磁鋼板接合面間に独立したシート状絶縁層を介在させたものとすることができる外、後述する実施例に示すように、電磁鋼板の表裏両面か、または表裏何れか一面かの何れかに形成された電気絶縁性の蒸着層や鍍金層、酸化皮膜層などからなるもの、または、絶縁性樹脂皮膜層や塗装コーティング層からなるものなどとすることが可能であって、各電磁鋼板それ自体の電気絶縁性結晶粒界を電気的絶縁層とすることが可能である。     The electrical insulation layer is located between the surfaces of the electrical steel sheets to be joined to each other, and serves to insulate the electrical steel sheets from each other so that no current flows between the joint surfaces. At least one layer must be formed between them, and an independent sheet-like insulating layer can be interposed between the magnetic steel sheet joint surfaces, as shown in the examples described later, Those consisting of an electrically insulating vapor-deposited layer, plating layer, oxide film layer, etc. formed on either the front or back both sides or either one of the front and back sides, or those consisting of an insulating resin film layer or paint coating layer, etc. The electrical insulating crystal grain boundary of each electromagnetic steel sheet itself can be used as an electrical insulating layer.

電磁鋼板集合体は、複数枚の電磁鋼板を、互いの電気的絶縁層同士で接合するよう積層仮固定してなるものであり、複数枚の電磁鋼板同士が容易にズレ動いたり脱落したりしないよう、レーザー裁断を行う間に渡って確りと挟み付け、または保持されたものとしなければならず、後述する実施例に示すように、専用のクランプ治具や各種万力、クリップなどの挟着状保持具を用いて仮固定したものとするのが望ましい。     The electrical steel sheet assembly is formed by stacking and temporarily fixing a plurality of electromagnetic steel sheets so that the respective electrical insulating layers are joined to each other, and the plurality of electromagnetic steel sheets do not easily shift or drop off. As shown in the examples described later, special clamping jigs, various vises, clips, etc., must be clamped or held securely during laser cutting. It is desirable that it is temporarily fixed by using a shaped holder.

積層電磁鋼板ブロックは、電磁鋼板集合体の要所々々をレーザー裁断すると同時に各裁断面を溶融結合させてブロック状に一体化したものであり、より具体的には、積層仮固定した電磁鋼板集合体の、各電磁鋼板の積み重なり面に交叉する少なくともコア輪郭の一部をなす対峙木口面、および同コア輪郭の他の一部をなす対峙木口面相当箇所を、夫々任意形状にレーザー裁断すると同時に各裁断面を溶融結合させたものである。     A laminated electrical steel sheet block is obtained by laser-cutting important portions of an electrical steel sheet assembly and at the same time melt-bonding each cut surface and integrating them into a block shape. Simultaneously laser-cutting the opposite side of the body, which is at least a part of the core contour crossing the stacking surface of each electromagnetic steel sheet, and the part of the body corresponding to the opposite side of the core, which is another part of the core contour, respectively. Each cut surface is melt-bonded.

レーザー裁断は、電磁鋼板集合体から電磁鋼積層コアの素材となる積層電磁鋼板ブロックを、プレス加工を要さずに高精度でカットする加工であって、しかも切断面に露出状となる各電磁鋼板の積層状に隣接する端部同士を溶融結合させて一体化可能とする機能を果たすものであり、積層状に重ね合わせられた複数枚の電磁鋼板を、積層方向縦断状に切断可能とするに十分な出力が得られるレーザー加工装置を用い、レーザー加工する電磁鋼板集合体は、各電磁鋼板同士を適宜治具や締め付け工具類などによって密接に接合させたものとして切断ならびに溶融結合させるよう加工しなければならず、後述する実施例に示すように、積層電磁鋼板ブロックの対峙木口面の中の少なくとも一面またはその一部を、各電磁鋼板の積み重なり面に対して90度未満の所定角度か、もしくは90度を超えた所定角度かの何れかの角度に傾斜した面形状に裁断する三次元的加工が可能である外、積層電磁鋼板ブロックの積層状木口面の中の少なくとも一面あるいはその一部を、折れ曲げ直線状および/または曲線状に裁断する三次元的加工を施すことが可能である。     Laser cutting is a process that cuts a laminated electrical steel sheet block, which is a material of an electrical steel laminated core, from an assembly of electrical steel sheets with high precision without the need for pressing, and each electromagnetic that is exposed on the cut surface. It serves to make it possible to fuse and integrate ends adjacent to each other in the form of lamination of steel sheets, and to cut a plurality of electromagnetic steel sheets stacked in a lamination form in a longitudinal direction in the lamination direction. Using a laser processing device that can provide a sufficient output, the electrical steel sheet assembly to be laser processed is cut and melt-bonded as the electrical steel sheets are intimately joined together with appropriate jigs or fastening tools. As shown in the embodiments to be described later, at least one surface or a part of the laminated electrical steel sheet block facing the wooden floor is attached to the stacking surface of the electrical steel sheets. It is possible to perform three-dimensional processing by cutting into a surface shape inclined at either a predetermined angle of less than 90 degrees or a predetermined angle exceeding 90 degrees. It is possible to perform a three-dimensional process that cuts at least one surface or a part thereof into a bent straight line and / or a curved line.

研磨加工は、レーザー裁断すると同時に溶融結合させた各裁断面の少なくとも四つの木口面の中、一方の対峙木口面を研磨処理することにより、各電磁鋼板の対応する端縁を夫々分離させると同時に所望の端縁形状に研磨仕上げする工程であって、積層電磁鋼板ブロックの少なくとも四つの木口面の中、一方の対峙木口面を研磨した後、カシメ部品を装着し、残された対峙木口面およびその他の要研磨木口面を研磨するという手順を踏まなければならず、シリコンポイントやシリコンホイール、砥石、グラインダーなどの各種研磨材、研削材、および各種コンパウンドや砥粒液などの適宜研磨剤、研削剤を用いる研磨装置または研削装置などにより、電磁鋼板に欠けや亀裂、割れなどを生じないよう必要精度まで丁寧に仕上げるのが肝要である。     In the polishing process, the corresponding edge of each electrical steel sheet is separated at the same time by polishing one of the cut end surfaces of at least four ends of the cut surfaces that are melt-bonded simultaneously with laser cutting. A step of polishing and finishing to a desired edge shape, and after polishing one of the opposite end surfaces of at least four ends of the laminated electromagnetic steel sheet block, the caulking parts are mounted, and the remaining opposite end surface and Other polishing must be followed by the procedure of polishing the surface of the end, various abrasives such as silicon points, silicon wheels, grindstones and grinders, abrasives, and various abrasives and abrasives such as various compounds and abrasive liquids. It is important to carefully finish to the required accuracy so as not to cause chipping, cracking, cracking, etc. in the magnetic steel sheet with a polishing machine or grinding machine that uses an agent. .

カシメ部品は、完成された電磁鋼積層コアの一体状態を強固且つ確実に維持可能とすると共に、特に製造過程にあって、積層電磁鋼板ブロックの溶融結合済みの少なくとも四つの木口面の中、一方の対峙木口面を研磨加工した後、次工程までの搬送や取り扱いの最中に不用意に各電磁鋼板が脱落または分離してしまうのを阻止可能とし、正確な位置関係を保持したまま一体ブロック状態に補強および維持可能とする機能を果たし、一方の対峙木口面を研磨加工した後、残された対峙木口面およびその他の要研磨木口面の研磨を終了するまで、積層電磁鋼板ブロックを強固に一体化保持可能とするものとしなければならず、電気絶縁性を有すると共に磁性を持たない金属製または合成樹脂製のものなどとするのが望ましく、絶縁や防錆を目的としたコーティングを施したものとすることができる。
以下では、図面に示すこの発明を代表する実施例と共に、その構造について詳述することとする。
The caulking part can firmly and surely maintain the integrated state of the completed electromagnetic steel laminated core, and in the manufacturing process, in one of at least four end surfaces of the laminated electromagnetic steel sheet block that are fusion bonded. After polishing the surface of the wood head, it is possible to prevent the magnetic steel sheets from being inadvertently dropped or separated during transportation and handling until the next process, and an integrated block that maintains the exact positional relationship. A function to enable reinforcement and maintenance of the state is achieved, and after polishing one of the opposite wood head surfaces, the laminated electrical steel sheet block is strengthened until polishing of the remaining anti-wood surface and other necessary wood surfaces is completed. It should be able to be held in an integrated manner, and is preferably made of a metal or synthetic resin that has electrical insulation and no magnetism, and is intended for insulation and rust prevention. The coating can be made which has been subjected to was.
In the following, the structure of the present invention will be described in detail together with an embodiment representative of the present invention shown in the drawings.

図1の電磁鋼積層コアの製造方法のフローチャート、図2の積層する複数枚の電磁鋼板の斜視図、図3のレーザー裁断する電磁鋼板集合体の斜視図、図4の積層面に垂直なレーザー裁断を行う電磁鋼板の側面図、図5の積層面に所定角度をもってレーザー裁断を行う電磁鋼板の側面図、図6の曲面形の電磁鋼板からなり曲率中心に向かう角度でレーザー裁断を行う電磁鋼板集合体の側面図、図7の積層面に垂直な方向に三次元的レーザー裁断を行う電磁鋼板集合体の側面図、図8の積層面に所定角度をもった方向に三次元的レーザー裁断を行う電磁鋼板集合体の側面図、図9の三次元的レーザー裁断を受ける曲面形電磁鋼板集合体の側面図、図10の一方の対峙木口面に研磨を行う積層電磁鋼板ブロックの斜視図、図11の一方の対峙木口面の研磨を終えた積層電磁鋼板ブロックの斜視図、図12のカシメ部品を装着した積層電磁鋼板ブロックの斜視図、および、図13の残りの対峙木口面を研磨して完成した電磁鋼積層コアの斜視図には、この発明に包含される代表的な積層電磁鋼板に係わるものを示してある。     1 is a flowchart of a method of manufacturing the electromagnetic steel laminate core, FIG. 2 is a perspective view of a plurality of electromagnetic steel plates to be laminated, FIG. 3 is a perspective view of an electromagnetic steel plate assembly to be laser-cut, and a laser perpendicular to the laminate surface of FIG. 5 is a side view of an electromagnetic steel plate to be cut, a side view of an electromagnetic steel plate to be laser-cut at a predetermined angle on the laminated surface of FIG. 5, and an electromagnetic steel plate which is made of a curved-shape electromagnetic steel plate of FIG. A side view of the assembly, a side view of an electromagnetic steel sheet assembly that performs three-dimensional laser cutting in a direction perpendicular to the laminated surface in FIG. 7, and a three-dimensional laser cutting in a direction having a predetermined angle on the laminated surface in FIG. FIG. 9 is a side view of a magnetic steel sheet assembly to be performed, a side view of a curved surface magnetic steel sheet assembly subjected to three-dimensional laser cutting in FIG. One side of 11 12 is a perspective view of the laminated electromagnetic steel sheet block after polishing, a perspective view of the laminated electromagnetic steel sheet block having the caulking parts shown in FIG. 12 mounted thereon, and a perspective view of the electromagnetic steel laminated core completed by polishing the remaining face of the opposite wood in FIG. FIG. 1 shows a typical laminated electrical steel sheet included in the present invention.

ここに示した事例は、平面または曲面を持つ所定厚さに設定した複数枚の電磁鋼板1,1,……が、互いの電気的絶縁層11同士を接合するよう積層仮固定Aした電磁鋼板集合体2の、各電磁鋼板1,1,……の積み重なり面に交叉する少なくともコア輪郭の一部をなす対峙木口面21,21、および同コア輪郭の他の一部をなす対峙木口面22,22相当箇所を、夫々任意形状にレーザー裁断すると同時に、それら各裁断面21,21,22,22を溶融結合Bして積層電磁鋼板ブロック3とされ、これら溶融結合済みの四つの木口面21,21,22,22の中、一方の対峙木口面21,21を研磨加工Cした後、この研磨したがわの対峙木口面21,21中央付近にカシメ部品4を通過させるよう巻き掛けて強固に一体化Dさせ、残された対峙木口面,22,22およびその他の要研磨木口面を研磨Eするようにした、この発明の電磁鋼積層コアの製造方法における代表的な一実施例である。     In the example shown here, a plurality of electrical steel sheets 1, 1,... Set to a predetermined thickness having a flat or curved surface are laminated and temporarily fixed A so as to join the electrical insulating layers 11 to each other. In the assembly 2, the opposite wood mouth surfaces 21, 21 forming at least a part of the core contour intersecting the stacked surfaces of the electromagnetic steel plates 1, 1,..., And the opposite wood mouth surface 22 constituting the other part of the core contour. , 22 are respectively laser-cut into arbitrary shapes, and at the same time, the respective cut sections 21, 21, 22, 22 are melt-bonded B to form a laminated electrical steel sheet block 3, and these four melt-bonded end surfaces 21 are obtained. , 21, 22, 22, one of the opposite wood mouth surfaces 21, 21 is polished C, and then wound around the center of the polished bamboo opposite wood mouth surfaces 21, 21 so as to pass the caulking part 4 firmly D integrated into the residue It was opposed end grain surface, and the 22, 22 and other relevant polished cut end surface of such polishing E, an embodiment representative of the manufacturing method of the electromagnetic steel laminated core of the present invention.

当該電磁鋼積層コアの製造方法は、図1に示す作業手順に従って行うものであり、図2中に示すように、厚さ0.1mm未満の平面板状であって表裏面または表裏面何れか接合するがわとなる一方に、蒸着、吹き付け塗装、鍍金、酸化被膜など何れかによる電気的絶縁被膜層からなる電気的絶縁層11を形成するか、もしくは電気絶縁性結晶粒界12とするかの何れかとなるものとした珪素含有量6.5重量%の電磁鋼板1,1,……の複数枚を、同図2中の実線矢印に示すよう、互いの電気的絶縁層11または電気絶縁性結晶粒界12を介して重ね合わせ、図1中のAに示すよう電磁鋼板集合体2を形成する。     The electromagnetic steel laminated core manufacturing method is performed in accordance with the work procedure shown in FIG. 1, and as shown in FIG. 2, it is a flat plate having a thickness of less than 0.1 mm, and is either front or back or front and back. Whether to form an electrically insulating layer 11 consisting of an electrically insulating coating layer by vapor deposition, spray coating, plating, oxide coating, or the like, or to form an electrically insulating grain boundary 12 As shown by the solid arrows in FIG. 2, a plurality of sheets of electromagnetic steel sheets 1, 1,... The magnetic steel sheet aggregate 2 is formed as shown by A in FIG.

図1中のBおよび図3中に示すように、当該電磁鋼板集合体2の各電磁鋼板1,1,……の積み重なり面に直交状に交叉する矩形箱型コア輪郭の対峙木口面21,21および同コア輪郭の他の対峙木口面22,22相当箇所となる周囲側面合計四面に相当する箇所に、図3中に示す一点鎖線に従うようレーザー光Lを連続照射して裁断すると同時に、各裁断面21,21,22,22に露出状となる各電磁鋼板1,1,……の積層状に隣接する端縁同士を溶融結合させ、図10中に示すような積層電磁鋼板ブロック3に一体化するものである。     As shown in FIG. 1B and FIG. 3, a rectangular box-shaped core face 21 having a rectangular box-shaped core crossing perpendicularly to the stacking surfaces of the electromagnetic steel sheets 1, 1,. At the same time, the laser beam L is continuously irradiated and cut so as to follow the alternate long and short dash lines shown in FIG. The adjacent edges of the laminated steel sheets 1, 1,... Exposed in the cut surfaces 21, 21, 22, 22 are melt-bonded to each other, and the laminated electromagnetic steel sheet block 3 as shown in FIG. To be integrated.

レーザー光Lによる裁断は、図4中に示すように、積層電磁鋼板ブロック3の対峙木口面21,21,22,22の中の少なくとも一面またはその一部を、各電磁鋼板1,1,……の積み重なり面に対して直交状となるよう加工する外、図5中に示すように、各電磁鋼板1,1,……の積み重なり面に対し、90度未満の所定角度か、または90度を超えた所定角度かの何れかの角度に傾斜した面形状に裁断する三次元的加工によるものとすることが可能である。
また、図6中にあるとおり、曲面板状の電磁鋼板1,1,……からなる積層電磁鋼板ブロック3の対峙木口面21,21,22,22の中の少なくとも一面またはその一部を、その曲率中心を通る直線状に裁断したものとしてもよい。
さらにまた、図7ないし図9中に示すように、積層電磁鋼板ブロック3の積層状木口面21,21,22,22の中の少なくとも一面あるいはその一部を、折れ曲げ直線状および/または曲線状など様々な形状に裁断する三次元的加工とすることもできる。
As shown in FIG. 4, the cutting with the laser beam L is performed on at least one surface or a part of each of the facing wooden face surfaces 21, 22, 22, 22 of the laminated electromagnetic steel plate block 3. In addition to processing so as to be orthogonal to the stacking surface of ..., as shown in FIG. 5, the predetermined angle of less than 90 degrees or 90 degrees with respect to the stacking surface of each electromagnetic steel sheet 1, 1, ... It is possible to use three-dimensional processing that cuts into a surface shape that is inclined at any one of the predetermined angles that exceeds.
Further, as shown in FIG. 6, at least one surface or a part of the facing wooden front surfaces 21, 21, 22, 22 of the laminated electromagnetic steel plate block 3 made of curved plate-shaped electromagnetic steel plates 1, 1,. It may be cut into a straight line passing through the center of curvature.
Furthermore, as shown in FIG. 7 to FIG. 9, at least one or a part of the laminated front end surfaces 21, 21, 22, 22 of the laminated electromagnetic steel sheet block 3 is bent linearly and / or curved. It can also be a three-dimensional process of cutting into various shapes such as a shape.

図3中に示したように、各対峙木口面21,21,22,22をレーザー裁断および溶融結合して矩形箱型に形成した積層電磁鋼板ブロック3は、図1中のCならびに図10に示すように、高精度に位置決め仮固定可能な専用治具G、またはその他の精密クランプ工具類などを用いて確りと保持し、溶融結合済みの四つの木口面21,21,22,22中の一方の対峙木口面21,21を、順次シリコンポイントやシリコンホイールその他の研磨材または研削材などを用いた研磨装置に装着して精密研磨加工を施す。     As shown in FIG. 3, the laminated electrical steel sheet block 3 formed into a rectangular box shape by laser cutting and melt-bonding each of the opposite wood face surfaces 21, 22, 22, 22 is shown in C in FIG. 1 and FIG. 10. As shown, it is securely held using a dedicated jig G that can be positioned and fixed with high precision, or other precision clamping tools, etc. One of the opposite wood facets 21 and 21 is sequentially attached to a polishing apparatus using a silicon point, a silicon wheel, or other abrasives or abrasives to perform precision polishing.

図11に示すように、一方の対峙木口面21,21を研磨し、溶融結合されていた各電磁鋼板1,1,……の対応端縁同士を電気的に独立させるよう、露出させた積層電磁鋼板ブロック3は、図1中のDおよび図12のとおり、電気絶縁性の非磁性体からなる、例えば電気的絶縁被膜を被着したアルミニウム合金、銅合金、非磁性ステンレス合金、チタン合金、マグネシウム合金などの非磁性金属製のカシメ部品4を、この研磨済み対峙木口面21,21中央付近に通過させるよう巻き掛けて強固に一体化させ、さらに、図1中のEおよび図13中に示すとおり、残された対峙木口面22,22を同様に研磨加工することにより、所望の形状寸法に設定した電磁鋼積層コア5を得ることが可能となる。     As shown in FIG. 11, the laminated layers exposed so as to polish one of the opposite wood end surfaces 21, 21 and electrically separate the corresponding edges of the electromagnetic steel plates 1, 1,. As shown in FIG. 1D and FIG. 12, the electromagnetic steel sheet block 3 is made of an electrically insulating nonmagnetic material, for example, an aluminum alloy, a copper alloy, a nonmagnetic stainless alloy, a titanium alloy coated with an electrically insulating film, A caulking part 4 made of a non-magnetic metal such as a magnesium alloy is wound so as to pass near the center of the ground surfaces 21 and 21 of the polished wood, and is firmly integrated. Further, in E in FIG. 1 and FIG. As shown, it is possible to obtain the electromagnetic steel laminated core 5 set to have a desired shape and size by grinding the remaining anti-wood face 22 and 22 in the same manner.

(実施例の作用)
以上のとおりの構成からなるこの発明の電磁鋼積層コアの製造方法は、図1中のAおよび図2中に示すように、珪素含有量を6.5重量%に規制し、厚さ0.1mm未満に設定した複数枚の平板状電磁鋼板1,1,……を、互いの電気的絶縁層11または電気絶縁性結晶粒界12同士を接合するよう積層状に仮固定し、図3中に示す電磁鋼板集合体2を形成し、各電磁鋼板1,1,……同士の接着作業を省略し、図1中のBおよび図3中に示すように、電磁鋼板集合体2の各電磁鋼板1,1,……の積み重なり面に直交する矩形箱型コア輪郭の対峙木口面21,21、および同コア輪郭の他の一部をなす対峙木口面22,22相当箇所を、夫々任意形状にレーザー裁断すると同時に各裁断面21,21,22,22を溶融結合させて積層電磁鋼板ブロック3とする。
また、レーザーによる裁断は、図4ないし図6に示すとおり、様々な角度の対峙木口面21,21,……,22,22,……の形成を可能とし、さらに、図7ないし図9のように、複雑な角度形状の三次元的加工も可能にする。
(Operation of Example)
In the method for manufacturing an electromagnetic steel laminated core of the present invention having the above-described configuration, the silicon content is regulated to 6.5% by weight as shown in A of FIG. 1 and FIG. A plurality of flat magnetic steel sheets 1, 1,... Set to be less than 1 mm are temporarily fixed in a stacked manner so as to join the electrical insulating layers 11 or the electrically insulating crystal grain boundaries 12 to each other in FIG. 1 is formed, the bonding work between the electromagnetic steel sheets 1, 1,... Is omitted, and as shown in FIG. 1B and FIG. The rectangular box-shaped core contour facing surfaces 21 and 21 orthogonal to the stacking surfaces of the steel plates 1, 1,... And the portions corresponding to the facing wooden front surfaces 22 and 22 forming the other part of the core contour are arbitrarily shaped. The laminated electromagnetics are made by melting and bonding the respective cut surfaces 21, 21, 22, 22 at the same time as laser cutting. A plate block 3.
Further, as shown in FIGS. 4 to 6, the cutting with the laser enables the formation of the opposite side surfaces 21, 21,..., 22, 22,. Thus, three-dimensional processing of complicated angular shapes is also possible.

図1中のCおよび図10ならびに図11に示すとおり、溶融結合済みの四つの木口面21,21,22,2の中、カシメ部品4の装着に最も適する一方の対峙木口面21,21をシリコンポイント等の研磨材や研削材によって研磨加工し、図1中のDならびに図12のように、この研磨したがわの対峙木口面21,21中央にカシメ部品4を通過させるよう巻き掛けて強固に一体化すると、積層電磁鋼板ブロック3の箱型形状および各電磁鋼板1,1,……の配置関係を崩すことなく、図1中のEと図13とに示すように、残された対峙木口面22,22を研磨して電磁鋼積層コア5として完成させることができる。     As shown in FIG. 1C and FIG. 10 and FIG. 11, among the four melt-bonded lug surfaces 21, 21, 22, and 2, one of the lug surfaces 21 and 21 that are most suitable for mounting the caulking part 4 is provided. Polishing is performed with an abrasive such as a silicon point or an abrasive, and the caulking part 4 is wound around the center of the polished wood 21 and 21 as shown in D and FIG. When firmly integrated, the box-shaped shape of the laminated electrical steel sheet block 3 and the positional relationship between the electrical steel sheets 1, 1,... Are not lost, as shown in E in FIG. The opposite lug surfaces 22 and 22 can be polished to complete the electromagnetic steel laminated core 5.

(実施例の効果)
以上のような構成からなる実施例の電磁鋼積層コアの製造方法は、前記この発明の効果の項で記載の特徴に加え、図1中のCおよび図10中に示したように、レーザー裁断ならびに溶融結合によって矩形箱型に形成した積層電磁鋼板ブロック3を、高精度に位置決め仮固定可能な専用治具Gに確りと装着して研磨加工するようにしてあり、積層した電磁鋼板1,1,……のズレや亀裂、割れ、欠け、脱落などの発生を確実に阻止すると共に、先に研磨を終えた対峙木口面21,21の中の一面(木口面21)を加工基準面にして、それとは反対がわの他面(木口面21)を研磨加工することによって効率的に精密研磨を行うことができることから、各電磁鋼板1,1,……毎のプレス加工による打ち抜き成型作業や、組み合わせ接着作業など従前までの複雑で電磁鋼板1,1,……が損傷し易い工程を一切不要として、平板素材状態の電磁鋼板1,1,……から所望矩形箱型コア輪郭を有する積層電磁鋼板ブロック3まで一気に加工を進めることが可能となり、しかも最も欠けや亀裂の発生が懸念される対峙木口面21,21,22,22を溶融結合によって面一壁面状に連続一体化した構造とし、この積層電磁鋼板ブロック3を工場内で運搬したり、工作機械へ装着したりする作業中、万が一他物に接触した場合であっても、強固に一体化してなる各電磁鋼板1,1,……に破損を生じるのを防止するといった効果が期待できるものとなる。
(Effect of Example)
In addition to the features described in the section of the effect of the present invention, the manufacturing method of the electromagnetic steel laminated core of the embodiment having the above-described configuration includes laser cutting as shown in FIG. 1C and FIG. In addition, the laminated electrical steel sheet block 3 formed into a rectangular box shape by fusion bonding is firmly attached to a dedicated jig G that can be positioned and fixed with high accuracy and polished. , ... are surely prevented from occurring, cracks, cracks, chips, dropouts, etc., and one of the opposite surfaces 21, 21 (polishing surface 21) that has been polished first is used as the processing reference surface. On the other hand, it is possible to efficiently perform precision polishing by polishing the other side of the opposite side (the end face 21). , Combination bonding work etc. From the complex steel sheets 1, 1,..., Which are easily damaged, to the previous steps, from the electromagnetic steel sheets 1, 1,. This laminated electrical steel sheet has a structure in which the opposite lug surfaces 21, 21, 22, and 22 that are most likely to be chipped and cracked are continuously integrated into a single wall surface by fusion bonding. Even if the block 3 is transported in the factory or mounted on a machine tool, even if it comes into contact with other objects, the magnetic steel sheets 1, 1,. The effect of preventing the occurrence can be expected.

また、図10中に示した専用治具G挟着面の、図12中に示したカシメ部品4対応箇所に、同カシメ部品4との干渉を回避可能とする逃げ溝(図示せず)を刻設した治具を用いて、図1中のDおよび図12に示したとおり、カシメ部品4装着後の積層電磁鋼板ブロック3を正確に位置決め、仮固定可能とし、残された対峙木口面22,22を効率的且つ高精度に研磨できるという利点が得られるものとなる。     In addition, a clearance groove (not shown) that can avoid interference with the caulking part 4 is provided at a position corresponding to the caulking part 4 shown in FIG. 12 on the clamping surface of the dedicated jig G shown in FIG. As shown in FIG. 1 D and FIG. 12, the laminated electrical steel sheet block 3 after the caulking component 4 is mounted can be accurately positioned and temporarily fixed using the engraved jig. , 22 can be efficiently and accurately polished.

(結 び)
叙述の如く、この発明の電磁鋼積層コアの製造方法は、その新規な構成によって所期の目的を遍く達成可能とするものであり、しかも製造工程が簡潔で、従前からのプレス加工によって裁断した電磁鋼板の複数枚を積層状に接着固定する製造方法に比較し、使用する電磁鋼板を薄型化および高珪素含有量化することが可能となり、コアの小型軽量化を格段に促進することができ、しかも経済的負担の大きな金型を不要として遥かに経済的なものとすることができる上、レーザー裁断によって様々な形状のコアを自由且つ高精度に製造可能とすることができ、小規模な施設であっても複雑な形状のコアを効率的且つ低廉に生産することができるようになることから、高額な投資が難しい中小の電気部品工場は勿論のこと、高性能なコアの経済的な生産を望む自動車業界、電子部品業界、家電業界などにとっても、また、それを利用した高効率な工業製品を希望する一般企業や一般家庭においても高く評価され、広範に渡って利用、普及していくものになると予想される。
(Conclusion)
As described above, the method for manufacturing an electromagnetic steel laminated core according to the present invention makes it possible to achieve the intended purpose uniformly by its novel configuration, and the manufacturing process is simple and cut by conventional press working. Compared to a manufacturing method in which a plurality of electromagnetic steel sheets are bonded and fixed in a laminated form, it is possible to reduce the thickness and increase the silicon content of the used electromagnetic steel sheet, and can greatly promote the reduction in size and weight of the core. Moreover, it is possible to make the core of various shapes freely and with high precision by laser cutting, and it is possible to make a much more economical by eliminating the need for a mold with a large economic burden. However, since complex cores can be produced efficiently and inexpensively, not only small and medium-sized electrical component factories that are difficult to invest at high cost, but also the economics of high-performance cores. It is highly appreciated by the automobile industry, electronic parts industry, consumer electronics industry, etc. that want to produce, and also by general companies and ordinary households who want high-efficiency industrial products using it. It is expected to go.

図面は、この発明の電磁鋼積層コアの製造方法の技術的思想を具現化した代表的な実施例を示すものである。
電磁鋼積層コアの製造方法を示すフローチャートである。 電磁鋼板集合体の組み合わせ工程を示す斜視図である。 レーザー裁断工程を示す斜視図である。 積層面に直交する直線的レーザー裁断を示す側面図である。 積層面に所定角度で交叉する直線的レーザー裁断を示す側面図である。 曲面状電磁鋼板集合体の直線的レーザー裁断を示す側面図である。 積層面に直交する三次元的レーザー裁断を示す側面図である。 積層面に所定角度で交叉する三次元的レーザー裁断を示す側面図である。 曲面状電磁鋼板集合体の三次元的レーザー裁断を示す側面図である。 治具に装着した積層電磁鋼板ブロックを示す斜視図である。 一方の対峙木口面を研磨した積層電磁鋼板ブロックを示す斜視図である。 カシメ部品を装着した積層電磁鋼板ブロックを示す斜視図である。 完成した電磁鋼積層コアを示す斜視図である。
The drawings show typical embodiments embodying the technical idea of the method for manufacturing an electromagnetic steel laminated core according to the present invention.
It is a flowchart which shows the manufacturing method of an electromagnetic steel laminated core. It is a perspective view which shows the combination process of an electromagnetic steel plate assembly. It is a perspective view which shows a laser cutting process. It is a side view which shows the linear laser cutting orthogonal to a lamination surface. It is a side view which shows the linear laser cutting which cross | intersects a laminated surface at a predetermined angle. It is a side view which shows the linear laser cutting of a curved-surface-shaped electromagnetic steel plate aggregate. It is a side view which shows the three-dimensional laser cutting orthogonal to a lamination surface. It is a side view which shows the three-dimensional laser cutting which cross | intersects a laminated surface at a predetermined angle. It is a side view which shows the three-dimensional laser cutting of a curved-surface-shaped electromagnetic steel plate aggregate. It is a perspective view which shows the laminated electromagnetic steel plate block with which the jig | tool was mounted | worn. It is a perspective view which shows the lamination | stacking electromagnetic steel plate block which grind | polished one antique wooden mouth surface. It is a perspective view which shows the lamination | stacking electromagnetic steel plate block which mounted | wore with the crimping | crimped part. It is a perspective view which shows the completed electromagnetic steel laminated core.

符号の説明Explanation of symbols

A 電磁鋼板集合体の組み合わせ工程
B 積層電磁鋼板ブロックの裁断および溶融結合工程
C 対峙木口面の研磨工程
D カシメ部品の装着工程
E 残された対峙木口面の研磨工程
L レーザー光
G 専用治具
1 電磁鋼板
11 同 電気的絶縁層
12 同 電気絶縁性結晶粒界
2 電磁鋼板集合体
21 同 対峙木口面
22 同 他の対峙木口面
3 積層電磁鋼板ブロック
4 カシメ部品
5 電磁鋼積層コア
A Assembly process of magnetic steel sheet assembly B Cutting and fusion bonding process of laminated magnetic steel sheet block C Polishing process of the face of the lumber end D Mounting process of caulking parts E Polishing process of the remaining face of the lumber end face L Laser light G Dedicated jig 1 Electrical steel sheet
11 Same electrical insulation layer
12 Electrically insulating grain boundaries 2 Electrical steel sheet aggregate
21 Same side
22 Others Anti-Wood Faucet 3 Laminated Electrical Steel Sheet Block 4 Caulking Parts 5 Electrical Steel Laminated Core

Claims (6)

平面または曲面を持つ所定厚さに設定した複数枚の電磁鋼板を、互いの電気的絶縁層同士で接合するよう積層仮固定した電磁鋼板集合体の、各電磁鋼板の積み重なり面に交叉する少なくともコア輪郭の一部をなす対峙木口面、および同コア輪郭の他の一部をなす対峙木口面相当箇所を、夫々任意形状にレーザー裁断すると同時に各裁断面を溶融結合させ積層電磁鋼板ブロックとし、これら溶融結合済みの四つの木口面の中、一方の対峙木口面を研磨加工した後、該研磨したがわの対峙木口面中央付近にカシメ部品を通過させるよう巻き掛けて強固に一体化させ、残された対峙木口面およびその他の要研磨木口面を研磨するようにしたことを特徴とする電磁鋼積層コアの製造方法。     At least a core that intersects a stacking surface of each electromagnetic steel plate of a magnetic steel plate assembly in which a plurality of electromagnetic steel plates set to a predetermined thickness having a flat surface or a curved surface are laminated and temporarily fixed so as to be joined to each other by electrical insulation layers. Laser-cutting the anti-cutting lumber face that forms part of the contour and the anti-fogging lumber face that forms the other part of the core outline, respectively, at the same time laser cutting into an arbitrary shape, and simultaneously melting and bonding the cut sections to form a laminated electrical steel sheet block. After polishing one of the four melt-bonded lumber surfaces, the caulking part is passed around the center of the ground surface of the opposite side of the polished glue so that it is firmly integrated. A method for producing an electromagnetic steel laminated core, characterized in that the anti-glazed face and other surfaces requiring polishing are polished. 平面または曲面を持つ厚さ0.1mm未満に設定した複数枚の電磁鋼板を、互いの電気的絶縁層同士で接合するよう積層仮固定した電磁鋼板集合体の、各電磁鋼板の積み重なり面に交叉する少なくともコア輪郭の一部をなす対峙木口面、および同コア輪郭の他の一部をなす対峙木口面相当箇所を、夫々任意形状にレーザー裁断すると同時に各裁断面を溶融結合させ積層電磁鋼板ブロックとし、これら溶融結合済みの四つの木口面の中、一方の対峙木口面を研磨加工した後、該研磨したがわの対峙木口面中央付近にカシメ部品を通過させるよう巻き掛けて強固に一体化させ、残された対峙木口面およびその他の要研磨木口面を研磨するようにしたことを特徴とする電磁鋼積層コアの製造方法。     Crossing on the stacking surface of each electromagnetic steel plate of a set of electromagnetic steel plates that are laminated and temporarily fixed so that a plurality of electromagnetic steel plates having a thickness of less than 0.1 mm having a flat surface or curved surface are joined to each other by electrical insulation layers. Laminated electrical steel sheet block that cuts at least a part of the core profile corresponding to the core contour and a portion corresponding to the counter part of the core profile corresponding to the opposite side of the core by laser cutting into arbitrary shapes at the same time. After polishing one of the four melt-bonded lumber surfaces, it is tightly integrated by winding the caulking part around the center of the ground surface of the grapple A method for producing an electromagnetic steel laminated core, characterized in that the remaining anti-waist face and other polished face surfaces are polished. 珪素含有量を4.0重量%ないし7.0重量%、望ましくは6.5重量%に規制し、平面または曲面を持つ厚さ0.1mm未満に設定した複数枚の電磁鋼板を、互いの電気的絶縁層同士で接合するよう積層仮固定した電磁鋼板集合体の、各電磁鋼板の積み重なり面に交叉する少なくともコア輪郭の一部をなす対峙木口面、および同コア輪郭の他の一部をなす対峙木口面相当箇所を、夫々任意形状にレーザー裁断すると同時に各裁断面を溶融結合させ積層電磁鋼板ブロックとし、これら溶融結合済みの四つの木口面の中、一方の対峙木口面を研磨加工した後、該研磨したがわの対峙木口面中央付近にカシメ部品を通過させるよう巻き掛けて強固に一体化させ、残された対峙木口面およびその他の要研磨木口面を研磨するようにしたことを特徴とする電磁鋼積層コアの製造方法。     A plurality of electrical steel sheets, each having a silicon content of 4.0% to 7.0% by weight, preferably 6.5% by weight and having a flat or curved surface and a thickness of less than 0.1 mm, are connected to each other. An assembly of electrical steel sheets laminated and temporarily fixed so as to be joined together by electrically insulating layers, at least a part of the core contour crossing the stacking surface of each electrical steel sheet, and another part of the core contour Each part corresponding to the opposite wood mouth is made by laser cutting into an arbitrary shape, and at the same time, each cut surface is melt-bonded to form a laminated electrical steel steel block, and one of these four heat-bonded wood ends is polished. After that, the caulking part is wound around the center of the ground side of the polished bamboo so that the caulking part is passed and firmly integrated, and the remaining surface of the opposite side and other necessary ground surfaces are polished. Features and Method for manufacturing electrical steel laminated core that. 複数枚の電磁鋼板は、互いの電気絶縁性結晶粒界を介して積層仮固定した電磁鋼板集合体とした後にレーザーによる裁断を行うようにした、請求項1ないし3何れか一項記載の電磁鋼積層コアの製造方法。     The electromagnetic sheet according to any one of claims 1 to 3, wherein the plurality of electromagnetic steel sheets are made of an electromagnetic steel sheet aggregate that is laminated and fixed temporarily via electrical insulating crystal grain boundaries and then cut by laser. Manufacturing method of steel laminated core. 積層電磁鋼板ブロックは、その対峙木口面相当箇所の中の少なくとも一面またはその一部を、各電磁鋼板の積み重なり面に対して90度未満の所定角度か、もしくは90度を超えた所定角度かの何れかの角度に傾斜した面形状に裁断する三次元的加工によるものとした、請求項1ないし4何れか一項記載の電磁鋼積層コアの製造方法。     The laminated electromagnetic steel sheet block has at least one surface or a part thereof in the portion corresponding to the surface of the opposite wood mouth, whether it is a predetermined angle of less than 90 degrees or a predetermined angle exceeding 90 degrees with respect to the stacking surface of each electromagnetic steel sheet. The manufacturing method of the electromagnetic steel laminated core as described in any one of Claims 1 thru | or 4 which was based on the three-dimensional process cut | judged to the surface shape inclined in any angle. 積層電磁鋼板ブロックは、その積層状木口面相当箇所の中の少なくとも一面あるいはその一部を、折れ曲げ直線状および/または曲線状に裁断する三次元的加工によるものとした、請求項1ないし5何れか一項記載の電磁鋼積層コアの製造方法。     The laminated electromagnetic steel sheet block is formed by three-dimensional processing in which at least one surface or a part thereof in the portion corresponding to the laminated mouth end surface is bent into a straight line and / or a curved line. The manufacturing method of the electromagnetic steel laminated core as described in any one of Claims.
JP2007192680A 2007-07-24 2007-07-24 Manufacturing method for electromagnetic steel laminated core Pending JP2009032753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192680A JP2009032753A (en) 2007-07-24 2007-07-24 Manufacturing method for electromagnetic steel laminated core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192680A JP2009032753A (en) 2007-07-24 2007-07-24 Manufacturing method for electromagnetic steel laminated core

Publications (1)

Publication Number Publication Date
JP2009032753A true JP2009032753A (en) 2009-02-12

Family

ID=40402998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192680A Pending JP2009032753A (en) 2007-07-24 2007-07-24 Manufacturing method for electromagnetic steel laminated core

Country Status (1)

Country Link
JP (1) JP2009032753A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337050A (en) * 1991-05-10 1992-11-25 Nkk Corp High tensile strength magnetic material excellent in magnetic property and its production
JPH06248348A (en) * 1993-02-26 1994-09-06 Nkk Corp Method for heat-treating high silicon steel sheet in magnetic field
JPH10256066A (en) * 1997-03-13 1998-09-25 Nkk Corp Winding core with improved iron loss characteristic and its manufacturing method
JP2004356468A (en) * 2003-05-30 2004-12-16 Mitsui Chemicals Inc Laminated magnetic core and magnetic component
JP2005118997A (en) * 2003-08-27 2005-05-12 National Institute Of Advanced Industrial & Technology Method of manufacturing three-dimensional shaped article
JP2005278322A (en) * 2004-03-25 2005-10-06 Nissan Motor Co Ltd Manufacturing method of core

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337050A (en) * 1991-05-10 1992-11-25 Nkk Corp High tensile strength magnetic material excellent in magnetic property and its production
JPH06248348A (en) * 1993-02-26 1994-09-06 Nkk Corp Method for heat-treating high silicon steel sheet in magnetic field
JPH10256066A (en) * 1997-03-13 1998-09-25 Nkk Corp Winding core with improved iron loss characteristic and its manufacturing method
JP2004356468A (en) * 2003-05-30 2004-12-16 Mitsui Chemicals Inc Laminated magnetic core and magnetic component
JP2005118997A (en) * 2003-08-27 2005-05-12 National Institute Of Advanced Industrial & Technology Method of manufacturing three-dimensional shaped article
JP2005278322A (en) * 2004-03-25 2005-10-06 Nissan Motor Co Ltd Manufacturing method of core

Similar Documents

Publication Publication Date Title
JP6176181B2 (en) Laminated electrical steel sheet and manufacturing method thereof
CN101438358A (en) Method for lamination of an electrical strip for transformer cores
JP6141151B2 (en) Yoke and manufacturing method thereof
CN109642265B (en) Thin strip component, method for manufacturing the same, and motor using the thin strip component
KR20120017015A (en) Laminated core having a soft magnetic material and method for joining core sheets in a bonded manner to form a soft-magnetic laminated core
JP2011193725A (en) Electric motor with bulk amorphous metal magnetic component
CN105703569A (en) Fabrication method for amorphous alloy motor stator iron core
JP2002529929A (en) Bulk amorphous metal magnetic components
US5628861A (en) Method for adhesively bonded laminate for use in an electrical apparatus such as a transformer, generator, or motor
JP2011067027A (en) Steel plate pair, laminated steel plate, and method of manufacturing core of rotary electric machine
WO2016059130A1 (en) Welding of steel blanks
JPS58148419A (en) Manufacture of amorphous core
CA1158145A (en) Electrical steel lamination
CN110815052A (en) Preparation method of iron-based amorphous alloy stator core based on water jet cutting and product thereof
US7268460B2 (en) Different materials-laminate metal plate and different materials-laminate core, and method of producing the same
JP2009032753A (en) Manufacturing method for electromagnetic steel laminated core
CN105490400B (en) Axial magnetic field amorphous, nanocrystalline motor stator core and its manufacturing method
KR20230144583A (en) Non-oriented electrical steel sheet, iron core, iron core manufacturing method, motor, and motor manufacturing method
CN116917521A (en) Non-oriented electromagnetic steel sheet, iron core, method for manufacturing iron core, motor, and method for manufacturing motor
JPH07298570A (en) Manufacture of spiral core
JP2005332976A (en) Manufacturing method of laminated body
JP2018049921A (en) Layered magnetic core and method of producing the same
CN105743296A (en) Preparation method for nanocrystalline alloy stator iron core used for high-speed motor
He et al. Magnetically Oriented Core Lamination Manufactured from Non-Oriented Electrical Steel Sheets
JPH09117082A (en) Laminated rotor and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315