JP2009032683A - Light emitting apparatus - Google Patents

Light emitting apparatus Download PDF

Info

Publication number
JP2009032683A
JP2009032683A JP2008165394A JP2008165394A JP2009032683A JP 2009032683 A JP2009032683 A JP 2009032683A JP 2008165394 A JP2008165394 A JP 2008165394A JP 2008165394 A JP2008165394 A JP 2008165394A JP 2009032683 A JP2009032683 A JP 2009032683A
Authority
JP
Japan
Prior art keywords
light
emitter
yellow
blue
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008165394A
Other languages
Japanese (ja)
Inventor
Atsushi Nanba
篤史 難波
Toshiya Arakawa
俊也 荒川
Kunio Nakazato
邦雄 中里
Hisaya Takahashi
久也 高橋
Tadashi Endo
忠 遠藤
Goro Yamaguchi
五郎 山口
Mineto Iwasaki
峰人 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc , Fuji Heavy Industries Ltd filed Critical Shoei Chemical Inc
Priority to JP2008165394A priority Critical patent/JP2009032683A/en
Priority to EP08159468A priority patent/EP2012343A3/en
Priority to KR1020080063566A priority patent/KR20090004657A/en
Priority to US12/167,830 priority patent/US20090009056A1/en
Priority to TW97125016A priority patent/TW200913000A/en
Publication of JP2009032683A publication Critical patent/JP2009032683A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting apparatus which can efficiently generate white color light of high luminance. <P>SOLUTION: An emitter layer 16 is formed by using a blue color emitter and a yellow color emitter of a high light emitting efficiency to generate a white color light. At this time, by exposing blue color emitter particles 17 and yellow color emitter particles 81 on a surface of the emitter layer 16, electrons are directly irradiated both of the emitter particles 17, 18 and an excellent electron exciting can be realized. Moreover, by using a YAG or the like, as a yellow color emitter, which emits a yellow color not only by the electron exciting but also by an optical exciting by a blue light color, the blue light color can contribute for emitting the yellow light color even if a part of the blue color light emitted by the blue color emitter particles 18 is shielded by the yellow color emitter particles 18 when passing through the emitter layer 16, and an energy loss can be reduced to generate the white color light efficiently. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷陰極電子放出源から電界放出された電子によって発光体(蛍光体)を励起発光させることにより白色光を発生させる発光装置に関する。   The present invention relates to a light emitting device that generates white light by exciting and emitting a light emitter (phosphor) with electrons emitted from a cold cathode electron emission source.

近年、白熱電球や蛍光灯といった従来の発光装置に対し、真空中で冷陰極電子放出源から電界放出された電子を高速で発光体(蛍光体)に衝突させることにより、発光体を励起発光させる冷陰極電界放出型の発光装置が開発されており、電界放出型照明ランプ(Field Emission Lamp:FEL)や電界放出型表示装置(Field Emission Display:FED)としての用途が見込まれている。   In recent years, in comparison with conventional light emitting devices such as incandescent bulbs and fluorescent lamps, electrons emitted from a cold cathode electron emission source in a vacuum are caused to collide with a light emitter (phosphor) at high speed, thereby causing the light emitter to emit light. Cold cathode field emission type light emitting devices have been developed, and are expected to be used as field emission lamps (FEL) and field emission display devices (FED).

これらの発光装置のうち、FEDの製造工程では、一般に、ピクセルサイズ等に応じたミクロンオーダーの各種マイクロプロセスが多用される。例えば、FEDの製造工程では、スパッタリング法やCVD法など半導体チップなどに用いられる周知のマイクロプロセスにより、ガラスやセラミック類等の絶縁性基板上に陰極(カソード電極)が形成される。また、絶縁性基板上に直接に、または絶縁性基板表面に形成された配線層に接続して柱状溶融材を形成し、この柱状溶融材に、直径10〜100μmの開口部が複数開口された板厚30〜60μmの金属薄板を固定することにより、ゲート電極が形成される。   Among these light emitting devices, in the FED manufacturing process, various microprocesses of micron order according to the pixel size are generally used. For example, in the FED manufacturing process, a cathode (cathode electrode) is formed on an insulating substrate such as glass or ceramics by a well-known microprocess used for semiconductor chips such as sputtering and CVD. Further, a columnar molten material was formed directly on the insulating substrate or connected to a wiring layer formed on the surface of the insulating substrate, and a plurality of openings having a diameter of 10 to 100 μm were formed in the columnar molten material. A gate electrode is formed by fixing a thin metal plate having a thickness of 30 to 60 μm.

その一方で、ランプ用光源等に用途が特化させるFELでは、カソード電極等に対してFEDのようなミクロンオーダーの微細加工を施す必要がなく、ゲート電極に開口される開口部についても直径がミリメートルオーダーの比較的大径のもので足りる(例えば、特許文献1参照)。   On the other hand, in FEL specialized for lamp light sources and the like, it is not necessary to perform micron-order microfabrication such as FED on the cathode electrode and the like, and the diameter of the opening formed in the gate electrode is also small. A relatively large diameter on the order of millimeters is sufficient (for example, see Patent Document 1).

従って、FELの製造では、設備に多大な費用等が必要なマイクロプロセスを排除し、大気中のプロセスのみで大量生産可能な部品を組み合わせて目的の各機能部品を製造することにより、大幅なコストダウンを期待できる。例えば、カソード電極及びゲート電極を、板厚が0.数mm程度の金属板を基材とする個別の機能部品でそれぞれ構成し、これらを真空容器内に組み付けることにより、FELを安価に製造することが考えられる。
特開2006−339012号公報
Therefore, in the manufacture of FEL, it is possible to eliminate the micro process that requires a large amount of equipment cost, and to manufacture each functional component by combining the components that can be mass-produced only by the process in the atmosphere. Can expect down. For example, the cathode electrode and the gate electrode have a thickness of 0. It is conceivable that the FEL is manufactured at low cost by constituting individual functional parts each having a metal plate of about several mm as a base material and assembling them in a vacuum vessel.
JP 2006-339012 A

ところで、この種のFELは、各種照明用の光源として用いる等の多くの場合に、白色発光させることが要求される。   By the way, this type of FEL is required to emit white light in many cases such as when used as a light source for various illuminations.

しかしながら、蛍光管に広く一般に用いられる発光体等のように、紫外線によって白色光を励起発光する発光体については高輝度に発光するものが多く開発されているものの、電子によって白色光を励起発光する発光体については、十分な高輝度に発光するものが開発されていないのが現状である。   However, many light emitters that emit white light by ultraviolet rays, such as light emitters that are widely used in fluorescent tubes, have been developed to emit light with high luminance, but white light is excited by electrons. As for the illuminant, a substance that emits light with sufficiently high luminance has not been developed.

従って、FELにおいて、例えば、白色光を励起発光する発光体をアノード電極に設けて白色光を得ようとした場合、発光体層におけるエネルギーロスが大きくなり、高輝度の白色光を効率よく発生させることが困難となる虞がある。   Therefore, in FEL, for example, when white light is excited by providing a light emitter that excites white light on the anode electrode, energy loss in the light emitter layer increases, and high-intensity white light is efficiently generated. May be difficult.

本発明は上記事情に鑑みてなされたもので、高輝度の白色光を効率よく発生させることができる発光装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a light-emitting device capable of efficiently generating high-intensity white light.

本発明は、冷陰極電子放出源が表面に形成されたカソード電極と、前記冷陰極電子放出源から電界放出された電子により励起発光する複数種類の発光体が混合された発光体層が前記カソード電極に対向する面に形成されたアノード電極と、を真空容器内に備え、前記各種類の発光体は、各発光の混光によって白色光を生成する関係を有し、前記発光体層の表面にそれぞれが前記電界放出された電子に直接曝されるように分布されるとともに、少なくとも何れか1種類の前記発光体は他の種類の前記発光体からの光によっても励起発光する特性を有することを特徴とする。   The present invention provides a cathode layer having a cold cathode electron emission source formed on a surface thereof, and a phosphor layer in which a plurality of types of phosphors that emit excitation light by electrons emitted from the cold cathode electron emission source are mixed. An anode electrode formed on a surface facing the electrode, and a vacuum vessel, wherein each type of light emitter has a relationship of generating white light by mixing light emission, and the surface of the light emitter layer Are distributed so as to be directly exposed to the field-emitted electrons, and at least one of the light emitters has a characteristic of being excited and emitted by light from other types of the light emitters. It is characterized by.

本発明の発光装置によれば、高輝度の白色光を効率よく発生させることができる。   According to the light-emitting device of the present invention, high-intensity white light can be generated efficiently.

以下、図面を参照して本発明の形態を説明する。図面は本発明の一実施形態に係わり、図1は発光装置の基本構成図、図2は発光体層を拡大して示す模式図、図3は青色発光体及び黄色発光体の励起発光についての説明図、図4は青色発光体単体、黄色発光体単体、及び、これらを混合した各発光体層で発する光の輝度分布を示す図表、図5は発光体層における青色発光体と黄色発光体との重量比と輝度との関係を示す図表である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The drawings relate to an embodiment of the present invention, FIG. 1 is a basic configuration diagram of a light emitting device, FIG. 2 is a schematic diagram showing an enlarged luminescent layer, and FIG. 3 is an illustration of excited luminescence of a blue luminescent material and a yellow luminescent material. FIG. 4 is a diagram showing a luminance distribution of light emitted from a single blue light emitter, a single yellow light emitter, and a mixture of these light emitter layers, and FIG. 5 is a blue light emitter and a yellow light emitter in the light emitter layer. It is a graph which shows the relationship between the weight ratio and brightness | luminance.

図1に示すように、本実施形態における発光装置1は、例えば、平面状の電界放出型白色照明ランプとして用いられる発光装置であり、ガラス基板2,3が所定間隔で対向配置された真空容器4内に、カソード電極5、ゲート電極10、アノード電極15が基底面側から投光面側に向かって順に配置された基本構成を有している。   As shown in FIG. 1, a light emitting device 1 in the present embodiment is a light emitting device used as, for example, a planar field emission type white illumination lamp, and a vacuum container in which glass substrates 2 and 3 are arranged to face each other at a predetermined interval. 4 has a basic configuration in which a cathode electrode 5, a gate electrode 10, and an anode electrode 15 are arranged in order from the base surface side to the light projecting surface side.

カソード電極5は、基底面となるガラス基板2上に形成された導電材からなり、例えば、アルミニウムやニッケル等の金属を蒸着やスパッタ法等によって堆積したり、銀ペースト材を塗布して乾燥・焼成する等して形成される。このカソード電極5の表面には、カーボンナノチューブ、カーボンナノウォール、スピント型マイクロコーン、金属酸化物ウィスカー等のエミッタ材料が膜状に塗布され、冷陰極電子放出源6が形成されている。   The cathode electrode 5 is made of a conductive material formed on the glass substrate 2 serving as the base surface. For example, a metal such as aluminum or nickel is deposited by vapor deposition or sputtering, or a silver paste material is applied and dried. It is formed by firing. On the surface of the cathode electrode 5, emitter materials such as carbon nanotubes, carbon nanowalls, spint-type microcones, and metal oxide whiskers are applied in a film shape to form a cold cathode electron emission source 6.

本形態においては、冷陰極電子放出源6は、所定の領域毎にパターン化され、パターン化された領域(電子放出領域)の周囲に、カソード電極5を覆うカソードマスク7が配置されている。   In this embodiment, the cold cathode electron emission source 6 is patterned for each predetermined region, and a cathode mask 7 covering the cathode electrode 5 is arranged around the patterned region (electron emission region).

ゲート電極10は、冷陰極電子放出源6から放出された電子を通過させる開口部11を有する平板部材で構成されている。具体的には、ゲート電極10は、例えば、ニッケル材、ステンレス材、アンバー材等の導電性金属板に、冷陰極電子放出源6のパターン領域に対応する複数の開口部11が、単純な機械加工等によって形成されて要部が構成されている。ゲート電極10の開口部11は、例えば、ランド状に形成された冷陰極電子放出源6のパターン領域と同じか若干大きく形成された円孔として形成されている。これにより、冷陰極電子放出源6から放出される略全ての電子を通過させて発光に寄与する有効電子とすることができ、ゲート電極10での電力損失を低減し、無損失ゲートの実現を可能としている。   The gate electrode 10 is composed of a flat plate member having an opening 11 through which electrons emitted from the cold cathode electron emission source 6 pass. Specifically, the gate electrode 10 has a simple mechanical structure in which a plurality of openings 11 corresponding to the pattern region of the cold cathode electron emission source 6 are formed on a conductive metal plate such as a nickel material, a stainless material, or an amber material. The main part is formed by processing or the like. The opening 11 of the gate electrode 10 is formed as a circular hole formed, for example, the same as or slightly larger than the pattern region of the cold cathode electron emission source 6 formed in a land shape. As a result, almost all electrons emitted from the cold cathode electron emission source 6 can be passed to be effective electrons contributing to light emission, reducing power loss at the gate electrode 10 and realizing a lossless gate. It is possible.

アノード電極15は、投光面となるガラス基板3の裏面側に配置された透明導電膜(例えば、ITO膜)からなり、ゲート電極10(カソード電極5)に対向する面に、冷陰極電子放出源6から放出された電子によって励起発光される発光体層16が形成されている。   The anode electrode 15 is made of a transparent conductive film (for example, ITO film) disposed on the back side of the glass substrate 3 serving as a light projecting surface, and cold cathode electron emission is performed on the surface facing the gate electrode 10 (cathode electrode 5). A light emitter layer 16 is formed that is excited and emitted by electrons emitted from the source 6.

発光体層16は、励起発光する光の波長帯域が異なる複数種類の発光体(蛍光体)が混合されてなり、これら各発光体からの光の混光によって白色光を生成する。本実施形態において、発光体層16は、例えば、青色光を励起発光する青色発光体(第1の発光体)と、この青色光と補色関係にある黄色光を励起発光する黄色発光体(第2の発光体)とが混合されている。この場合、青色発光体には、例えば、数ppmの活性剤が添加された硫化亜鉛(ZnS)系の青色発光体が好適に用いられ、この青色発光体は、例えば、図4に破線で示すように、電子による励起発光により、主として波長帯域が400〜600nmの青色光を高い発光効率で発光する。一方、黄色発光体には、イットリウム・アルミニウム・ガーネット(YAG)系の黄色発光体が好適に用いられ、この黄色発光体は、例えば、図4に一転鎖線で示すように、電子による励起発光により、主として波長帯域が450〜650nmの黄色光を高い発光効率で発光する。さらに、本実施形態で用いられるYAG系の黄色発光体は、青色光によっても黄色光を励起発光する特性を有する。   The light emitter layer 16 is formed by mixing a plurality of types of light emitters (phosphors) having different wavelength bands of light that is excited to emit light, and generates white light by mixing light from these light emitters. In the present embodiment, the light emitter layer 16 includes, for example, a blue light emitter (first light emitter) that excites blue light and a yellow light emitter (first light emitter) that emits yellow light that is complementary to the blue light. 2 light emitters). In this case, for example, a zinc sulfide (ZnS) -based blue light emitter to which an activator of several ppm is added is preferably used as the blue light emitter. As described above, blue light mainly having a wavelength band of 400 to 600 nm is emitted with high luminous efficiency by excitation light emission by electrons. On the other hand, an yttrium-aluminum-garnet (YAG) yellow illuminant is preferably used as the yellow illuminant. Primarily emits yellow light having a wavelength band of 450 to 650 nm with high luminous efficiency. Furthermore, the YAG-based yellow light emitter used in the present embodiment has a characteristic of exciting and emitting yellow light even with blue light.

図2に示すように、発光体層16は、具体的には、青色発光体粒子17と、黄色発光体粒子18との混合によって形成されている。この発光体層16の表面には、各種類の発光体粒子17,18がそれぞれ露出して分布されており、これら露出された発光体粒子17,18は、真空容器4内において、冷陰極電子放出源6から放出される電子にそれぞれ直接的に曝されるようになっている。   As shown in FIG. 2, the luminescent layer 16 is specifically formed by mixing blue luminescent particles 17 and yellow luminescent particles 18. Various types of phosphor particles 17 and 18 are exposed and distributed on the surface of the phosphor layer 16, and the exposed phosphor particles 17 and 18 are cold cathode electrons in the vacuum vessel 4. Each of the electrons emitted from the emission source 6 is directly exposed.

このような発光体層16は、例えば、黄色発光体粒子を含む分散液と青色発光体粒子を含む分散液とをスクリーン印刷等によってアノード電極15上に順次塗布し、熱処理工程を経て各分散液の溶剤等を除去することにより形成される。その際、各発光体粒子を含む分散液の濃度や塗布量、熱処理工程の条件等を適値に設定し、各発光体粒子17,18を所定の密度でアノード電極15上に配置することにより、両発光体粒子17,18を発光体層16の表面に露出するように分布させることができる。具体的には、例えば、黄色発光体粒子を含む分散液と青色発光体粒子を含む分散液とをアノード電極15上に順次塗布する場合において、特に、青色発光体粒子を含む分散液に占める溶剤の割合を増加させる等して、青色発光体粒子17を所定に疎な密度で分布させることにより、発光体層16の表面において、青色発光体粒子17の隙間から、一部の黄色発光体粒子18を露出させることができる。   Such a phosphor layer 16 is formed by, for example, sequentially applying a dispersion liquid containing yellow phosphor particles and a dispersion liquid containing blue phosphor particles on the anode electrode 15 by screen printing or the like, and performing each heat treatment step through each dispersion liquid. It is formed by removing the solvent. At that time, by setting the concentration and coating amount of the dispersion containing each phosphor particle, conditions of the heat treatment step, etc. to appropriate values, the phosphor particles 17 and 18 are arranged on the anode electrode 15 at a predetermined density. Both phosphor particles 17 and 18 can be distributed so as to be exposed on the surface of the phosphor layer 16. Specifically, for example, in the case where a dispersion liquid containing yellow luminescent particles and a dispersion liquid containing blue luminescent particles are sequentially applied on the anode electrode 15, in particular, a solvent occupying the dispersion containing blue luminescent particles. By distributing the blue phosphor particles 17 at a predetermined sparse density, for example, by increasing the ratio of the yellow phosphor particles, some of the yellow phosphor particles from the gaps of the blue phosphor particles 17 on the surface of the phosphor layer 16. 18 can be exposed.

そして、例えば、図3に示すように、青色発光体粒子17は、冷陰極電子放出源6から電界放出された電子に直接的に曝されることによって電子励起され、青色光Beを発光する。同様に、黄色発光体粒子18は、冷陰極電子放出源6から電界放出される電子に直接的に曝されることによって電子励起され、黄色光Yeを発光する。さらに、黄色発光体粒子18は、近隣の青色発光体粒子17で発光される青色光Beによって光励起され、黄色光Ylを発光する。これら青色光Beと黄色光Ye,Ylはガラス基板3の投光面側で混光され、これにより、発光装置1は高輝度の白色光Wを効率よく発生する。   For example, as shown in FIG. 3, the blue phosphor particles 17 are excited by being directly exposed to the electrons emitted from the cold cathode electron emission source 6 and emit blue light Be. Similarly, the yellow phosphor particles 18 are excited by being directly exposed to the electrons emitted from the cold cathode electron emission source 6 and emit yellow light Ye. Further, the yellow luminescent particles 18 are photoexcited by the blue light Be emitted from the neighboring blue luminescent particles 17 and emit yellow light Yl. The blue light Be and the yellow light Ye, Yl are mixed on the light projecting surface side of the glass substrate 3, whereby the light emitting device 1 efficiently generates the high-intensity white light W.

すなわち、発光体層16の表面に青色発光体粒子17及び黄色発光体粒子18を露出させたことにより、各発光体粒子17,18を電子に直接的に曝すことができ、例えば青色発光体粒子17と黄色発光体粒子18とを個別の層状に重畳させて発光体層を形成した場合等に比べ、青色光及び黄色光の両方を電子励起によって効率よく発光させることができる。また、各発光体粒子17、18の少なくとも一部が発光体層の表面に完全に露出してなくてもよく、発光体層の表面や各粒子間に、例えばガラスやシリカ等、他の物質が存在する場合であっても、当該物質が電界放出された電子を透過する性質を有するものであれば、各発光体粒子17、18は電子に対して直接曝され、同様の効果が得られる。   That is, by exposing the blue luminescent particles 17 and the yellow luminescent particles 18 on the surface of the luminescent layer 16, each of the luminescent particles 17, 18 can be directly exposed to electrons, for example, blue luminescent particles. Compared with the case where a light emitter layer is formed by superimposing 17 and yellow light emitter particles 18 in separate layers, both blue light and yellow light can be efficiently emitted by electronic excitation. Further, at least a part of each of the phosphor particles 17 and 18 may not be completely exposed on the surface of the phosphor layer, and other substances such as glass and silica may be interposed between the surface of the phosphor layer and each particle. Even if the substance is present, if the substance has a property of transmitting field-emitted electrons, the phosphor particles 17 and 18 are directly exposed to electrons, and the same effect can be obtained. .

しかも、本実施形態の黄色発光体粒子18は、電子のみならず、青色光によっても励起発光する特性を有するので、電子励起された青色光の一部が発光体層16を通過する際に黄色発光体粒子18によって遮られた場合にも、当該青色光を有効利用して黄色光の輝度向上を図ることができる。   In addition, since the yellow phosphor particles 18 of the present embodiment have the property of being excited and emitted not only by electrons but also by blue light, yellow light is emitted when a part of the electronically excited blue light passes through the phosphor layer 16. Even when blocked by the luminescent particles 18, the blue light can be used effectively to improve the luminance of yellow light.

すなわち、電子励起による青色発光体単色発光輝度をLb、電子励起による黄色発光体単色輝度をLyとし、青色発光体と黄色発光体の混合割合をA:B(A+B=1)とすると、一般的に、各発光体で電子励起された青色光と黄色光との混光によって生成される白色光Wの輝度Lwは、各輝度の加重平均となり、
Lw=A×Lb+B×Lyの関係を有する。これらに加え、本実施形態の発光体層16では、黄色発光体粒子18が青色光によっても励起発光するので、その分、白色光の輝度を向上することができる。例えば、図5に実線で示すように、本実施形態の発光体層16で得られる白色光の輝度は、電子励起による青色光及び黄色光の各輝度の加重平均値よりも高くなる。
That is, if the blue light emitter monochromatic luminance by electronic excitation is Lb, the yellow light emitter monochromatic luminance by electronic excitation is Ly, and the mixing ratio of the blue light emitter and the yellow light emitter is A: B (A + B = 1), In addition, the luminance Lw of the white light W generated by the mixed light of the blue light and the yellow light electronically excited by each light emitter is a weighted average of the respective luminances,
Lw = A × Lb + B × Ly. In addition to these, in the phosphor layer 16 of the present embodiment, the yellow phosphor particles 18 are excited to emit light even by blue light, and accordingly, the brightness of white light can be improved. For example, as indicated by a solid line in FIG. 5, the luminance of white light obtained by the light emitter layer 16 of the present embodiment is higher than the weighted average value of each luminance of blue light and yellow light by electronic excitation.

ここで、発光体層16における青色発光体粒子17と黄色発光体粒子18との混合比は、青色光によって光励起される黄色光の輝度を考慮した上で設定される。この場合、青色光によって光励起される黄色光が白色光の輝度Lwに及ぼす影響は、青色発光体と黄色発光体との重量比によって変化する。すなわち、単位量当たりの黄色発光体が光励起によって発光する黄色光Ylの輝度は、青色発光体の割合が多くなる程増加する。その一方で、青色発光体の割合が所定以上となると、黄色発光体の絶対量が減少するため、光励起による黄色光Ylの輝度が白色光の輝度Lw全体に占める割合が減少する。このような光励起による黄色光Ylの影響を考慮すると、例えば、図5に示すように、青色発光体と黄色発光体との重量比が、例えば、3:1〜1:1の範囲内で、好適な白色光を得ることが可能となる。   Here, the mixing ratio of the blue luminescent particles 17 and the yellow luminescent particles 18 in the luminescent layer 16 is set in consideration of the luminance of yellow light photoexcited by blue light. In this case, the influence of yellow light photoexcited by blue light on the luminance Lw of white light varies depending on the weight ratio of the blue light emitter and the yellow light emitter. That is, the luminance of the yellow light Yl emitted from the yellow light emitter per unit amount by light excitation increases as the ratio of the blue light emitter increases. On the other hand, when the ratio of the blue light emitters exceeds a predetermined value, the absolute amount of the yellow light emitters decreases, so the ratio of the luminance of the yellow light Yl due to photoexcitation to the entire luminance Lw of the white light decreases. Considering the influence of the yellow light Yl due to such photoexcitation, for example, as shown in FIG. It is possible to obtain suitable white light.

このような実施形態によれば、発光効率の高い青色発光体と黄色発光体とを用いて発光体層16を形成することにより、発光効率の低い白色の発光体を用いることなく、白色光を生成することができる。その際、発光体層16の表面に青色発光体粒子17と黄色発光体粒子18とをそれぞれ露出するように分布させることにより、何れの発光体粒子17,18にも電子を直接的に照射して効率の良い電子励起を実現することができる。しかも、電子励起のみならず青色光による光励起によっても黄色光を発光するYAG等を黄色発光体として用いることにより、青色発光体粒子17で発光された青色光の一部が発光体層16を通過する際に黄色発光体粒子18によって遮られた場合にも、当該青色光は黄色光の発光に寄与させることができ、エネルギーロスを低減して効率よく白色光を生成することができる。   According to such an embodiment, by forming the light emitter layer 16 using a blue light emitter and a yellow light emitter with high light emission efficiency, white light can be emitted without using a white light emitter with low light emission efficiency. Can be generated. At that time, by distributing the blue phosphor particles 17 and the yellow phosphor particles 18 so as to be exposed on the surface of the phosphor layer 16, electrons are directly irradiated to any of the phosphor particles 17 and 18. And efficient electronic excitation can be realized. In addition, by using YAG or the like that emits yellow light not only by electronic excitation but also by light excitation by blue light as a yellow light emitter, a part of the blue light emitted from the blue light emitter particles 17 passes through the light emitter layer 16. Even when the light is blocked by the yellow luminescent particles 18, the blue light can contribute to the emission of yellow light, and the white light can be efficiently generated with reduced energy loss.

なお、上述の実施形態においては、青色発光体と黄色発光体との2種類の発光体を用いて発光体層を形成した一例について説明したが、本発明はこれに限定されるものではなく、2種類、或いは、3種類以上の他の発光色の発光体を混合して発光体層を形成することも可能である。   In the above-described embodiment, an example in which the light emitter layer is formed using two kinds of light emitters of a blue light emitter and a yellow light emitter has been described, but the present invention is not limited thereto, It is also possible to form a light emitter layer by mixing light emitters of two or more kinds of other emission colors.

発光装置の基本構成図Basic configuration diagram of light emitting device 発光体層を拡大して示す模式図Schematic diagram showing enlarged luminescent layer 青色発光体及び黄色発光体の励起発光についての説明図Explanatory drawing about excitation light emission of blue light emitter and yellow light emitter 青色発光体単体、黄色発光体単体、及び、これらを混合した各発光体層が発する光の輝度分布を示す図表A chart showing the luminance distribution of light emitted by each of the blue light emitter, the yellow light emitter, and a mixture of the light emitter layers. 発光体層における青色発光体と黄色発光体との重量比と輝度との関係を示す図表Chart showing the relationship between the weight ratio of the blue and yellow emitters and the luminance in the phosphor layer

符号の説明Explanation of symbols

1 … 発光装置
2,3 … ガラス基板
4 … 真空容器
5 … カソード電極
6 … 冷陰極電子放出源
7 … カソードマスク
10 … ゲート電極
11 … 開口部
15 … アノード電極
16 … 発光体層
17 … 青色発光体粒子
18 … 黄色発光体粒子
DESCRIPTION OF SYMBOLS 1 ... Light-emitting device 2, 3 ... Glass substrate 4 ... Vacuum container 5 ... Cathode electrode 6 ... Cold-cathode electron emission source 7 ... Cathode mask 10 ... Gate electrode 11 ... Opening part 15 ... Anode electrode 16 ... Light-emitting body layer 17 ... Blue light emission Body particles 18 ... Yellow phosphor particles

Claims (4)

冷陰極電子放出源が表面に形成されたカソード電極と、
前記冷陰極電子放出源から電界放出された電子により励起発光する複数種類の発光体が混合された発光体層が前記カソード電極に対向する面に形成されたアノード電極と、を真空容器内に備え、
前記各種類の発光体は、各発光の混光によって白色光を生成する関係を有し、前記発光体層の表面にそれぞれが前記電界放出された電子に直接曝されるように分布されるとともに、
少なくとも何れか1種類の前記発光体は他の種類の前記発光体からの光によっても励起発光する特性を有することを特徴とする発光装置。
A cathode electrode having a cold cathode electron emission source formed on the surface;
An anode electrode in which a phosphor layer in which a plurality of types of phosphors excited by light emitted from a field emission electron from the cold cathode electron emission source are mixed is formed on a surface facing the cathode electrode, and is provided in a vacuum container. ,
Each type of illuminant has a relationship of generating white light by mixing of each luminescence, and is distributed on the surface of the illuminant layer so that each is directly exposed to the field-emitted electrons. ,
At least one of the light emitters has a characteristic of being excited and emitted by light from other types of the light emitters.
冷陰極電子放出源が表面に形成されたカソード電極と、
前記冷陰極電子放出源から電界放出された電子により励起発光する複数種類の発光体が混合された発光体層が前記カソード電極に対向する面に形成されたアノード電極と、を真空容器内に備え、
前記各種類の発光体は、各発光の混光によって白色光を生成する関係を有し、前記発光体層の表面にそれぞれが露出されているとともに、
少なくとも何れか1種類の前記発光体は他の種類の前記発光体からの光によっても励起発光する特性を有することを特徴とする発光装置。
A cathode electrode having a cold cathode electron emission source formed on the surface;
An anode electrode in which a phosphor layer in which a plurality of types of phosphors excited by light emitted from a field emission electron from the cold cathode electron emission source are mixed is formed on a surface facing the cathode electrode, and is provided in a vacuum container. ,
Each type of illuminant has a relationship of generating white light by mixing light emission, and each is exposed on the surface of the illuminant layer,
At least one of the light emitters has a characteristic of being excited and emitted by light from other types of the light emitters.
前記発光体層は、青色光を励起発光する第1の発光体と、黄色光を励起発光する第2の発光体とが混合されてなり、
前記第2の発光体は、前記第1の発光体で励起発光された青色光によって黄色光を励起発光することを特徴とする請求項1または2記載の発光装置。
The luminous body layer is formed by mixing a first luminous body that excites blue light and a second luminous body that emits yellow light.
3. The light emitting device according to claim 1, wherein the second light emitter emits yellow light by blue light excited by the first light emitter. 4.
前記第1の発光体と前記第2の発光体との重量比は、3:1〜1:1の範囲内に設定されていることを特徴とする請求項3記載の発光装置。   4. The light emitting device according to claim 3, wherein a weight ratio between the first light emitter and the second light emitter is set in a range of 3: 1 to 1: 1. 5.
JP2008165394A 2007-07-03 2008-06-25 Light emitting apparatus Pending JP2009032683A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008165394A JP2009032683A (en) 2007-07-03 2008-06-25 Light emitting apparatus
EP08159468A EP2012343A3 (en) 2007-07-03 2008-07-01 Light-emitting apparatus
KR1020080063566A KR20090004657A (en) 2007-07-03 2008-07-01 Light-emitting apparatus
US12/167,830 US20090009056A1 (en) 2007-07-03 2008-07-03 Light-emitting appartus
TW97125016A TW200913000A (en) 2007-07-03 2008-07-03 Light-emitting appartus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007175650 2007-07-03
JP2008165394A JP2009032683A (en) 2007-07-03 2008-06-25 Light emitting apparatus

Publications (1)

Publication Number Publication Date
JP2009032683A true JP2009032683A (en) 2009-02-12

Family

ID=40213919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165394A Pending JP2009032683A (en) 2007-07-03 2008-06-25 Light emitting apparatus

Country Status (3)

Country Link
JP (1) JP2009032683A (en)
CN (1) CN101339891A (en)
TW (1) TW200913000A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2408024A1 (en) * 2009-03-10 2012-01-18 Ocean's King Lighting Science&Technology Co., Ltd. Method for generating white light and lihgting device
EP2521160A1 (en) * 2009-12-29 2012-11-07 Ocean's King Lighting Science&Technology Co., Ltd. Field emission device for emitting white light

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894729B (en) * 2009-05-18 2013-03-20 海洋王照明科技股份有限公司 Method and device for emitting white light by field emission

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140001A (en) * 2004-11-11 2006-06-01 Futaba Corp Fluorescent display tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140001A (en) * 2004-11-11 2006-06-01 Futaba Corp Fluorescent display tube

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2408024A1 (en) * 2009-03-10 2012-01-18 Ocean's King Lighting Science&Technology Co., Ltd. Method for generating white light and lihgting device
JP2012519943A (en) * 2009-03-10 2012-08-30 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド White light emitting method and light emitting device
EP2408024A4 (en) * 2009-03-10 2012-09-05 Oceans King Lighting Science Method for generating white light and lighting device
EP2521160A1 (en) * 2009-12-29 2012-11-07 Ocean's King Lighting Science&Technology Co., Ltd. Field emission device for emitting white light
JP2013516040A (en) * 2009-12-29 2013-05-09 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Field emission white light emitting device
EP2521160A4 (en) * 2009-12-29 2013-07-10 Oceans King Lighting Science Field emission device for emitting white light

Also Published As

Publication number Publication date
TW200913000A (en) 2009-03-16
CN101339891A (en) 2009-01-07

Similar Documents

Publication Publication Date Title
US7569984B2 (en) White-light fluorescent lamp having luminescence layer with silicon quantum dots
US20090001869A1 (en) Led with Phosphor Layer Having Different Thickness or Different Phosphor Concentration
JP2002324673A5 (en)
JP2005108700A (en) Light source
US7336023B2 (en) Cold cathode field emission devices having selective wavelength radiation
JP2008541422A (en) Method for manufacturing white light-emitting diode using phosphor
JP2008010556A (en) Led light source device and led backlight using the same
JP2009032683A (en) Light emitting apparatus
JP2009016268A (en) Plane light source
US20100255747A1 (en) Method for making a silicon quantum dot fluorescent lamp
KR20080061393A (en) Uv activated electronic window
JP4925110B2 (en) Surface light source device using color conversion filter
US20090009056A1 (en) Light-emitting appartus
JP2002289927A (en) Light-emitting element
JP5085766B2 (en) Surface light source device that emits light on both sides
EP3524035B1 (en) Illumination light source and fabricating method thereof
US20060138935A1 (en) Field emission lamp and backlight module using same
KR20090004657A (en) Light-emitting apparatus
JP4660522B2 (en) Light emitting device
JP2011108563A (en) Lighting system
JP4330475B2 (en) Method for producing electroluminescent phosphor
KR20040048307A (en) Phosphor of warm luminous colors and fluorescent display device
JP4431600B2 (en) Light emitting device
JP2002289114A (en) Light emission element
JP2006140001A (en) Fluorescent display tube

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20110601

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Effective date: 20110603

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110601

A977 Report on retrieval

Effective date: 20121023

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20121030

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130312

Free format text: JAPANESE INTERMEDIATE CODE: A02