JP2009032421A - Discharge lamp lighting device - Google Patents

Discharge lamp lighting device Download PDF

Info

Publication number
JP2009032421A
JP2009032421A JP2007192490A JP2007192490A JP2009032421A JP 2009032421 A JP2009032421 A JP 2009032421A JP 2007192490 A JP2007192490 A JP 2007192490A JP 2007192490 A JP2007192490 A JP 2007192490A JP 2009032421 A JP2009032421 A JP 2009032421A
Authority
JP
Japan
Prior art keywords
voltage
secondary winding
transformer
capacitor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007192490A
Other languages
Japanese (ja)
Inventor
Toru Ashikaga
亨 足利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2007192490A priority Critical patent/JP2009032421A/en
Priority to PCT/JP2008/062262 priority patent/WO2009013995A1/en
Priority to TW97126247A priority patent/TW200908802A/en
Publication of JP2009032421A publication Critical patent/JP2009032421A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a discharge lamp lighting device precisely detecting current flowing into a discharge lamp without increasing the number of substrates for a current detection circuit. <P>SOLUTION: The discharge lamp lighting device has: an inverter having a transformer T1 with a primary winding P1, a first secondary winding S1, and a second secondary winding S2 and boosting high-frequency voltage converted from current voltage to high-frequency voltage by the transformer; a plurality of discharge lamps 1a, 1b connected between one end of the first secondary winding and the second secondary winding of the transformer; first current detection circuits D1, D2, and R1 with one end connected to the other end of the first secondary winding, with the other end connected to the ground and detecting the currents; and a first detection circuit 11a connected with both ends of the first secondary winding of the transformer and detecting the voltage generated in the first secondary winding of the transformer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の冷陰極放電灯(CCFL:Cold Cathode Fluorescent Lamp)、外部電極蛍光灯や蛍光灯等の放電灯を点灯させる放電灯点灯装置に関する。   The present invention relates to a discharge lamp lighting device that lights a plurality of cold cathode discharge lamps (CCFLs), external electrode fluorescent lamps, fluorescent lamps and the like.

冷陰極放電灯は、一般的に、インバータにより、数10kHzの周波数で且つ数百V〜千数百Vの電圧が印加されることにより点灯する。また、外部電極蛍光灯(EEFL:External Electrode Fluorescent Lamp)と呼ばれる蛍光管もある。外部電極蛍光灯と冷陰極放電灯とは電極の構造が相違し、それ以外の相違はほとんどなく、発光原理も冷陰極放電灯と同じである。このため、外部電極蛍光灯や冷陰極放電灯を点灯させるためのインバータは、原理的には同じである。このため、以下、冷陰極放電灯(放電灯と略称する。)を用いて説明する。   In general, a cold cathode discharge lamp is lit when an inverter is applied with a voltage of several hundreds of volts to several hundreds of volts at a frequency of several tens of kHz. There is also a fluorescent tube called an external electrode fluorescent lamp (EEFL). The external electrode fluorescent lamp and the cold cathode discharge lamp have different electrode structures, there is almost no difference, and the light emission principle is the same as that of the cold cathode discharge lamp. For this reason, the inverter for lighting the external electrode fluorescent lamp and the cold cathode discharge lamp is the same in principle. For this reason, the following description will be made using a cold cathode discharge lamp (abbreviated as a discharge lamp).

放電灯とインバータは、液晶TV、液晶モニタ、照明装置、液晶表示装置、看板などに用いられている。インバータはトランスで昇圧するものが多く、このインバータには、いわゆる「片端高圧」と呼ばれるシステムと「両端高圧」と呼ばれるシステムがある。片端高圧システムはトランスの2次巻線(放電灯側)の片側がグランド(GND)に対して低圧になるシステムであり、両端高圧システムはトランスの2次巻線の両端がグランドに対して高圧になるシステムである。   Discharge lamps and inverters are used in liquid crystal TVs, liquid crystal monitors, illumination devices, liquid crystal display devices, signboards, and the like. Inverters are often boosted by a transformer, and there are so-called “single-end high voltage” systems and “end-high voltage” systems. The single-sided high-voltage system is a system in which one side of the secondary winding (discharge lamp side) of the transformer has a low voltage with respect to the ground (GND). It is a system that becomes.

図5は従来の片端高圧システムを用いた放電灯点灯装置の回路図である。この片端高圧システムは、インバータ部20とパネル部30とで構成され、インバータ部20は、直流電圧を高周波電圧に変換し、高周波電圧をトランスT3で昇圧し、トランスT3の2次巻線S1(一端が接地されている。)に高圧の高周波電圧を発生させる。2次巻線S1に発生した高周波電圧によりパネル部30内の放電灯1に電流が流れて放電灯1が点灯する。また、放電灯1に流れる電流は、電流検出抵抗R1とダイオードD1,D2からなる電流検出回路により検出される。制御回路(図示せず)は、検出された電流が所定値になるように制御する。   FIG. 5 is a circuit diagram of a discharge lamp lighting device using a conventional one-end high-pressure system. This one-end high-voltage system includes an inverter unit 20 and a panel unit 30. The inverter unit 20 converts a DC voltage into a high-frequency voltage, boosts the high-frequency voltage with a transformer T3, and a secondary winding S1 ( One end is grounded)) and a high-frequency high-frequency voltage is generated. A high-frequency voltage generated in the secondary winding S1 causes a current to flow through the discharge lamp 1 in the panel unit 30, and the discharge lamp 1 is turned on. The current flowing through the discharge lamp 1 is detected by a current detection circuit including a current detection resistor R1 and diodes D1 and D2. A control circuit (not shown) performs control so that the detected current becomes a predetermined value.

この片端高圧システムでは、放電灯1や回路素子に流れる電流のほかに、寄生容量に流れる電流も存在する。トランスT3の2次巻線S1を流れる電流経路としては、2次巻線S1の電圧を検出するための電圧検出コンデンサC1、C2を流れる電流経路(1)と、配線等、主に高圧部とシャーシ等の間にある寄生容量C5に流れる電流経路(2)と、放電灯1を流れる電流経路(3)がある。   In this one-end high-pressure system, in addition to the current flowing through the discharge lamp 1 and circuit elements, there is also a current flowing through the parasitic capacitance. The current path that flows through the secondary winding S1 of the transformer T3 includes a current path (1) that flows through the voltage detection capacitors C1 and C2 for detecting the voltage of the secondary winding S1, wiring, etc. There are a current path (2) flowing through the parasitic capacitance C5 between the chassis and the like, and a current path (3) flowing through the discharge lamp 1.

一般に、シャーシ等もグランド電位であるので、シャーシ等に対して流れるリーク電流は、直接、トランスT3に戻ってくる。このため、図6の例では、経路(1)と経路(2)の電流は電流検出抵抗R1を流れず、電流検出抵抗R1を流れるのは経路(3)のみであるため、放電灯1に流れる電流のみを検出できる。この電流検出値を用いて精度良くフィードバック制御が行なえる。また、図5の例では、電圧検出コンデンサC2と電流検出抵抗R1はともにグランドに接続されているので、グランド電位を基準とした電流検出が容易に行なえる。図5に示す片端高圧システムをパネル部に実装した構成例を図6に示す。図5に示すように、パネル部30に複数の放電灯1が併設され、各放電灯1はインバータ部20に電線3で接続され、インバータ部20は1枚の基板で構成されている。   In general, since the chassis or the like is also at the ground potential, the leakage current flowing to the chassis or the like returns directly to the transformer T3. For this reason, in the example of FIG. 6, the currents in the path (1) and the path (2) do not flow through the current detection resistor R1, and only the path (3) flows through the current detection resistor R1. Only the flowing current can be detected. Using this detected current value, feedback control can be performed with high accuracy. In the example of FIG. 5, since both the voltage detection capacitor C2 and the current detection resistor R1 are connected to the ground, current detection with reference to the ground potential can be easily performed. FIG. 6 shows a configuration example in which the one-end high-pressure system shown in FIG. 5 is mounted on the panel portion. As shown in FIG. 5, a plurality of discharge lamps 1 are provided in the panel unit 30, and each discharge lamp 1 is connected to the inverter unit 20 by an electric wire 3, and the inverter unit 20 is configured by a single substrate.

一方、両端高圧システムは、トランスの2次巻線のグランド電位が確定できず、2次巻線の両端が高圧であるため、放電灯に流れる電流やトランスの電圧を検出することが困難である。このため、図7に示す両端高圧システムは、トランスT4の2次側を第1の2次巻線S1と第2の2次巻線S2とし、各巻線の一端をグランドに接続することによりトランスT4の2次側のグランド電位を確定し、グランド電位を基準にして各巻線の電流、電圧を検出する。   On the other hand, in the high voltage system at both ends, the ground potential of the secondary winding of the transformer cannot be determined, and both ends of the secondary winding are high voltage, so it is difficult to detect the current flowing through the discharge lamp and the voltage of the transformer. . For this reason, the double-sided high-voltage system shown in FIG. 7 uses the transformer T4 secondary side as the first secondary winding S1 and the second secondary winding S2, and connects one end of each winding to the ground. The ground potential on the secondary side of T4 is determined, and the current and voltage of each winding are detected with reference to the ground potential.

この場合、電流の経路としては、電圧検出コンデンサC1、C2、C3、C4を流れる電流経路(1)と、配線等による寄生容量C5、C6を流れる電流経路(2)と、放電灯1a,1bを流れる電流経路(3)とがある。電流検出抵抗R1、R2に流れる電流は経路(3)のみであるため、放電灯1a,1bに流れる電流のみを検出できる。この電流検出値を用いて精度良くフィードバック制御が行なえる。また、電圧検出コンデンサC2、C4と電流検出抵抗R1、R2はいずれもグランドに接続されているので、グランド電位を基準とした電流検出が行なえる。   In this case, the current path includes a current path (1) that flows through the voltage detection capacitors C1, C2, C3, and C4, a current path (2) that flows through parasitic capacitances C5 and C6 due to wiring and the like, and the discharge lamps 1a and 1b. And a current path (3) flowing therethrough. Since the current flowing through the current detection resistors R1 and R2 is only the path (3), only the current flowing through the discharge lamps 1a and 1b can be detected. Using this detected current value, feedback control can be performed with high accuracy. Further, since the voltage detection capacitors C2 and C4 and the current detection resistors R1 and R2 are all connected to the ground, current detection can be performed with reference to the ground potential.

しかし、各放電灯1a,1bの一端にダイオードD1,D2及び電流検出抵抗R1からなる第1電流検出回路と、ダイオードD3,D4及び電流検出抵抗R2からなる第2電流検出回路とを設置する必要がある。図7に示す両端高圧システムをパネル部に実装した構成例を図8に示す。図8に示すように、インバータ部のための基板20a以外に、第1電流検出回路及び第2電流検出回路のための基板20bが増設されている。また、基板20a,20bに接続するコネクタ、ハーネス等を設けなければならず、コストがアップする。そこで、コストを低減させるために、図9に示すように、電流検出抵抗R1,R2等の電流検出回路をインバータ部に設置して1枚の基板で構成している。   However, it is necessary to install a first current detection circuit including diodes D1 and D2 and a current detection resistor R1 and a second current detection circuit including diodes D3 and D4 and a current detection resistor R2 at one end of each discharge lamp 1a and 1b. There is. A configuration example in which the both-end high-pressure system shown in FIG. 7 is mounted on the panel portion is shown in FIG. As shown in FIG. 8, in addition to the substrate 20a for the inverter unit, a substrate 20b for the first current detection circuit and the second current detection circuit is added. Moreover, a connector, a harness, etc. which connect to the board | substrates 20a and 20b must be provided, and cost increases. Therefore, in order to reduce the cost, as shown in FIG. 9, current detection circuits such as current detection resistors R1 and R2 are installed in the inverter unit and configured by a single substrate.

しかし、図9に示す構成例では、トランスT5の2次巻線S1,S2に流れる電流経路としては、電圧検出コンデンサC1、C2、C3、C4を流れる電流経路(1)と、配線等による寄生容量C5、C6を流れる電流経路(2)と、放電灯1a,1bを流れる電流経路(3)とがある。即ち、経路(1)の電流が電流検出抵抗R1,R2に流れているという問題点がある。   However, in the configuration example shown in FIG. 9, the current path that flows through the secondary windings S1 and S2 of the transformer T5 includes the current path (1) that flows through the voltage detection capacitors C1, C2, C3, and C4, and the parasitic due to wiring and the like. There are a current path (2) flowing through the capacitors C5 and C6 and a current path (3) flowing through the discharge lamps 1a and 1b. That is, there is a problem that the current of the path (1) flows through the current detection resistors R1 and R2.

放電灯の輝度を決定するのは経路(3)の電流値であり、経路(1)の電流値は輝度に寄与しない。このため、経路(1)の電流が混合した検出値でフィードバック制御をかけた場合、放電灯が点灯した後、時間と共に放電灯電流が変化する。また、周囲温度や装置の実装状態によっても、放電灯電流が変化するといった現象が起こる。   It is the current value of the path (3) that determines the brightness of the discharge lamp, and the current value of the path (1) does not contribute to the brightness. For this reason, when feedback control is applied with a detection value obtained by mixing the currents of the path (1), the discharge lamp current changes with time after the discharge lamp is turned on. In addition, a phenomenon occurs in which the discharge lamp current changes depending on the ambient temperature and the mounting state of the apparatus.

具体的には、低温時には放電灯のインピーダンスが上がるため、2次巻線S1,S2には高い電圧を発生させることが必要になる。そのため、経路(1)の電流が増加し、電流検出抵抗R1,R2に流れる電流が増加するため、結果的に放電灯1a,1bに流れる電流が減少する。高温時には経路(1)の電流が減少し、電流検出抵抗R1,R2に流れる電流が減少するため、結果的に放電灯1a,1bに流れる電流が増加する。即ち、放電灯は低温時に暗く、高温時に明るくなり、輝度が変化する。
実開平6−19299
Specifically, since the impedance of the discharge lamp increases at low temperatures, it is necessary to generate a high voltage in the secondary windings S1 and S2. As a result, the current in the path (1) increases and the current flowing through the current detection resistors R1 and R2 increases. As a result, the current flowing through the discharge lamps 1a and 1b decreases. When the temperature is high, the current in the path (1) decreases and the current flowing through the current detection resistors R1 and R2 decreases. As a result, the current flowing through the discharge lamps 1a and 1b increases. That is, the discharge lamp is dark at a low temperature, bright at a high temperature, and the luminance changes.
6-19299

このように、図9に示す回路は、1枚の基板で構成できる利点はあるが、放電灯に流れる電流が温度変化等により変動する。   As described above, the circuit shown in FIG. 9 has an advantage that it can be configured by a single substrate, but the current flowing through the discharge lamp varies due to a temperature change or the like.

本発明は、電流検出回路のための基板の枚数を増やすことなく、且つ精度良く放電灯に流れる電流を検出できる放電灯点灯装置を提供することにある。   An object of the present invention is to provide a discharge lamp lighting device that can accurately detect a current flowing in a discharge lamp without increasing the number of substrates for a current detection circuit.

上記課題を解決するために、請求項1の発明は、1次巻線と第1の2次巻線と第2の2次巻線とを有するトランスを備え、直流電圧を高周波電圧に変換して該高周波電圧を前記トランスにより昇圧するインバータと、前記トランスの前記第1の2次巻線の一端と前記第2の2次巻線の一端との間に接続された1以上の放電灯と、一端が前記トランスの前記第1の2次巻線の他端に接続され、他端が接地に接続され、電流を検出する第1電流検出回路と、前記トランスの前記第1の2次巻線の両端に接続され、前記トランスの前記第1の2次巻線に発生する電圧を検出する第1検出回路とを有することを特徴とする。   In order to solve the above problems, the invention of claim 1 includes a transformer having a primary winding, a first secondary winding, and a second secondary winding, and converts a DC voltage into a high-frequency voltage. An inverter that boosts the high-frequency voltage by the transformer, and one or more discharge lamps connected between one end of the first secondary winding and one end of the second secondary winding of the transformer; One end connected to the other end of the first secondary winding of the transformer, the other end connected to the ground, and a first current detection circuit for detecting a current, and the first secondary winding of the transformer. And a first detection circuit which is connected to both ends of the wire and detects a voltage generated in the first secondary winding of the transformer.

請求項2の発明は、請求項1記載の放電灯点灯装置において、前記第1検出回路は、前記トランスの前記第1の2次巻線の両端に接続され、第1コンデンサと第2コンデンサとが直列に接続された第1直列回路と、前記第1コンデンサ又は前記第2コンデンサの両端電圧を検出する第1電圧検出回路とを有することを特徴とする。   According to a second aspect of the present invention, in the discharge lamp lighting device according to the first aspect, the first detection circuit is connected to both ends of the first secondary winding of the transformer, and a first capacitor, a second capacitor, Are connected in series, and a first voltage detection circuit that detects a voltage across the first capacitor or the second capacitor.

請求項3の発明は、請求項1記載の放電灯点灯装置において、前記第1検出回路は、前記トランスの前記第1の2次巻線の両端に接続され、第1コンデンサと第2コンデンサとが直列に接続された第1直列回路を有し、前記第1コンデンサと前記第2コンデンサとの接続点と前記接地との間の電圧を検出電圧とすることを特徴とする。   According to a third aspect of the present invention, in the discharge lamp lighting device according to the first aspect, the first detection circuit is connected to both ends of the first secondary winding of the transformer, and a first capacitor, a second capacitor, Have a first series circuit connected in series, and a voltage between a connection point between the first capacitor and the second capacitor and the ground is used as a detection voltage.

請求項4の発明は、請求項1乃至請求項3のいずれか1項記載の放電灯点灯装置において、前記トランスの前記第2の2次巻線の両端に接続され、前記トランスの前記第2の2次巻線に発生する電圧を検出する第2検出回路を有することを特徴とする。   According to a fourth aspect of the present invention, in the discharge lamp lighting device according to any one of the first to third aspects, the second secondary winding of the transformer is connected to both ends of the second secondary winding of the transformer. And a second detection circuit for detecting a voltage generated in the secondary winding.

請求項5の発明は、請求項1乃至請求項3のいずれか1項記載の放電灯点灯装置において、一端が前記トランスの前記第2の2次巻線の他端に接続され、他端が接地に接続され、電流を検出する第2電流検出回路と、前記トランスの前記第2の2次巻線の両端に接続され、前記トランスの前記第2の2次巻線に発生する電圧を検出する第2検出回路とを有することを特徴とする。   According to a fifth aspect of the present invention, in the discharge lamp lighting device according to any one of the first to third aspects, one end is connected to the other end of the second secondary winding of the transformer, and the other end is A second current detection circuit that is connected to ground and detects a current, and is connected to both ends of the second secondary winding of the transformer and detects a voltage generated at the second secondary winding of the transformer. And a second detection circuit.

請求項6の発明は、請求項4又は請求項5記載の放電灯点灯装置において、前記第2検出回路は、前記トランスの前記第2の2次巻線の両端に接続され、第3コンデンサと第4コンデンサとが直列に接続された第2直列回路と、前記第3コンデンサ又は前記第4コンデンサの両端電圧を検出する第2電圧検出回路とを有することを特徴とする。   According to a sixth aspect of the present invention, in the discharge lamp lighting device according to the fourth or fifth aspect, the second detection circuit is connected to both ends of the second secondary winding of the transformer, A second series circuit having a fourth capacitor connected in series and a second voltage detection circuit for detecting a voltage across the third capacitor or the fourth capacitor are provided.

請求項7の発明は、請求項5記載の放電灯点灯装置において、前記第2検出回路は、前記トランスの前記第2の2次巻線の両端に接続され、第3コンデンサと第4コンデンサとが直列に接続された第2直列回路を有し、前記第3コンデンサと前記第4コンデンサとの接続点と前記接地との間の電圧を検出電圧とすることを特徴とする。   A seventh aspect of the invention is the discharge lamp lighting device according to the fifth aspect, wherein the second detection circuit is connected to both ends of the second secondary winding of the transformer, and a third capacitor, a fourth capacitor, Has a second series circuit connected in series, and a voltage between a connection point between the third capacitor and the fourth capacitor and the ground is used as a detection voltage.

請求項1の発明によれば、トランスの第1の2次巻線の両端に発生した電圧により第1検出回路に電流が流れるが、この電流は、第1電流検出回路には流れない。即ち、第1電流検出回路はトランスの第1の2次巻線に流れる電流から第1検出回路に流れる電流を除いた電流を検出するので、放電灯のインピーダンス変化によるフィードバック量の変化を抑制できる。従って、電流検出回路のための基板の枚数を増やすことなく、且つ精度良く放電灯に流れる電流を検出できる。   According to the first aspect of the present invention, a current flows through the first detection circuit due to the voltage generated across the first secondary winding of the transformer, but this current does not flow through the first current detection circuit. That is, since the first current detection circuit detects a current obtained by removing the current flowing through the first detection circuit from the current flowing through the first secondary winding of the transformer, it is possible to suppress a change in the feedback amount due to a change in the impedance of the discharge lamp. . Therefore, the current flowing through the discharge lamp can be accurately detected without increasing the number of substrates for the current detection circuit.

請求項2の発明、及び請求項3の発明によれば、第1検出回路がトランスの第1の2次巻線に発生する電圧を検出し、電圧検出値により異常時の保護に用いることができる。   According to the invention of claim 2 and the invention of claim 3, the first detection circuit detects the voltage generated in the first secondary winding of the transformer, and uses the voltage detection value for protection in the event of an abnormality. it can.

請求項4の発明によれば、第2検出回路がトランスの第2の2次巻線に発生する電圧を検出し、電圧検出値により異常時の保護に用いることができる。   According to the invention of claim 4, the second detection circuit can detect the voltage generated in the second secondary winding of the transformer, and can be used for protection at the time of abnormality by the voltage detection value.

請求項5の発明によれば、トランスの第2の2次巻線の両端に発生した電圧により第2検出回路に電流が流れるが、この電流は、第2電流検出回路には流れない。即ち、第2電流検出回路はトランスの第2の2次巻線に流れる電流から第2検出回路に流れる電流を除いた電流を検出するので、放電灯のインピーダンス変化によるフィードバック量の変化を抑制できる。従って、電流検出回路のための基板の枚数を増やすことなく、且つ精度良く放電灯に流れる電流を検出できる。   According to the fifth aspect of the present invention, a current flows through the second detection circuit due to the voltage generated across the second secondary winding of the transformer, but this current does not flow through the second current detection circuit. That is, since the second current detection circuit detects a current obtained by removing the current flowing through the second detection circuit from the current flowing through the second secondary winding of the transformer, it is possible to suppress a change in the feedback amount due to a change in the impedance of the discharge lamp. . Therefore, the current flowing through the discharge lamp can be accurately detected without increasing the number of substrates for the current detection circuit.

請求項6の発明、及び請求項7の発明によれば、第2検出回路がトランスの第2の2次巻線に発生する電圧を検出し、電圧検出値により異常時の保護に用いることができる。   According to the invention of claim 6 and the invention of claim 7, the second detection circuit detects the voltage generated in the second secondary winding of the transformer, and uses the voltage detection value for protection in case of abnormality. it can.

以下、本発明の放電灯点灯装置の実施の形態を図面を参照しながら詳細に説明する。   Hereinafter, embodiments of a discharge lamp lighting device of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施例1の放電灯点灯装置の構成を示す図である。図1において、トランスT1は1次巻線P1と第1の2次巻線S1と第2の2次巻線S2とを有し、インバータを構成する。このインバータは、制御回路(図示せず)によりスイッチング素子(図示せず)をオンオフさせることにより直流電圧を高周波電圧に変換して該高周波電圧をトランスT1により昇圧して第1の2次巻線S1と第2の2次巻線S2に出力する。トランスT1の第1の2次巻線S1の一端と第2の2次巻線S2の一端との間には、放電灯1aと放電灯1bとが直列に接続されている。   FIG. 1 is a diagram showing a configuration of a discharge lamp lighting device according to Embodiment 1 of the present invention. In FIG. 1, a transformer T1 has a primary winding P1, a first secondary winding S1, and a second secondary winding S2, and constitutes an inverter. The inverter converts a DC voltage into a high frequency voltage by turning on and off a switching element (not shown) by a control circuit (not shown), and boosts the high frequency voltage by a transformer T1 to produce a first secondary winding. Output to S1 and the second secondary winding S2. A discharge lamp 1a and a discharge lamp 1b are connected in series between one end of the first secondary winding S1 of the transformer T1 and one end of the second secondary winding S2.

放電灯1a,1bは、例えば、冷陰極放電灯、外部電極蛍光灯や蛍光灯から構成されており、ここでは、冷陰極放電灯を用いるものとする。   The discharge lamps 1a and 1b are composed of, for example, a cold cathode discharge lamp, an external electrode fluorescent lamp, or a fluorescent lamp. Here, a cold cathode discharge lamp is used.

トランスT1の第1の2次巻線S1の一端と放電灯1aとの接続点と接地との間には、寄生容量C5が接続されている。トランスT1の第1の2次巻線S1の両端には、電圧検出コンデンサC1(第1コンデンサ)と電圧検出コンデンサC2(第2コンデンサ)との直列回路が接続されている。   A parasitic capacitance C5 is connected between the connection point between one end of the first secondary winding S1 of the transformer T1 and the discharge lamp 1a and the ground. A series circuit of a voltage detection capacitor C1 (first capacitor) and a voltage detection capacitor C2 (second capacitor) is connected to both ends of the first secondary winding S1 of the transformer T1.

トランスT1の第2の2次巻線S2の一端と放電灯1bとの接続点と接地との間には、寄生容量C6が接続されている。トランスT1の第2の2次巻線S2の両端には、電圧検出コンデンサC3(第3コンデンサ)と電圧検出コンデンサC4(第4コンデンサ)との直列回路が接続されている。   A parasitic capacitance C6 is connected between the connection point between the one end of the second secondary winding S2 of the transformer T1 and the discharge lamp 1b and the ground. A series circuit of a voltage detection capacitor C3 (third capacitor) and a voltage detection capacitor C4 (fourth capacitor) is connected to both ends of the second secondary winding S2 of the transformer T1.

トランスT1の第1の2次巻線S1の他端と接地との間には、ダイオードD2と抵抗R1との直列回路と、この直列回路に並列に接続されたダイオードD1とが接続され、ダイオードD1,D2と抵抗R1とで第1電流検出回路を構成している。   A series circuit of a diode D2 and a resistor R1 and a diode D1 connected in parallel to the series circuit are connected between the other end of the first secondary winding S1 of the transformer T1 and the ground. D1, D2 and resistor R1 constitute a first current detection circuit.

トランスT1の第2の2次巻線S2の他端と接地との間には、ダイオードD3と抵抗R2との直列回路と、この直列回路に並列に接続されたダイオードD4とが接続され、ダイオードD3,D4と抵抗R2とで第2電流検出回路を構成している。   Between the other end of the second secondary winding S2 of the transformer T1 and the ground, a series circuit of a diode D3 and a resistor R2 and a diode D4 connected in parallel to the series circuit are connected. D3, D4 and resistor R2 constitute a second current detection circuit.

制御回路は、第1電流検出回路で検出された第1電流検出値と第2電流検出回路で検出された第2電流検出値との平均値電流を求めてこの平均電流値が所定値になるようにスイッチング素子をオンオフさせるPWM制御を行なう。   The control circuit obtains an average value current between the first current detection value detected by the first current detection circuit and the second current detection value detected by the second current detection circuit, and the average current value becomes a predetermined value. Thus, PWM control for turning on and off the switching element is performed.

電圧検出回路(第1電圧検出回路)11aは、電圧検出コンデンサC2の両端電圧を検出し、検出された電圧を制御回路に出力する。電圧検出回路(第2電圧検出回路)11bは、電圧検出コンデンサC4の両端電圧を検出し、検出された電圧を制御回路に出力する。制御回路は、電圧検出回路11aからの第1電圧検出値と電圧検出回路11bからの第2電圧検出値とを平均した平均値電圧が予め定められた電圧値を超えたかどうかを判定する。即ち、電圧検出回路11a,11bは、2次巻線S1の電圧及び2次巻線S2の電圧が過電圧になったかどうかを判定するのに用いられる。   The voltage detection circuit (first voltage detection circuit) 11a detects the voltage across the voltage detection capacitor C2, and outputs the detected voltage to the control circuit. The voltage detection circuit (second voltage detection circuit) 11b detects the voltage across the voltage detection capacitor C4 and outputs the detected voltage to the control circuit. The control circuit determines whether or not an average voltage obtained by averaging the first voltage detection value from the voltage detection circuit 11a and the second voltage detection value from the voltage detection circuit 11b exceeds a predetermined voltage value. That is, the voltage detection circuits 11a and 11b are used to determine whether or not the voltage of the secondary winding S1 and the voltage of the secondary winding S2 are overvoltage.

このように構成された実施例1の放電灯点灯装置によれば、トランスT1の第1の2次巻線S1の両端に発生した電圧により、S1→C1→C2→S1、S1→C2→C1→S1の電流経路(1)で電流が流れる。この電流経路(1)の電流は、ダイオードD1,D2と抵抗R1からなる第1電流検出回路には流れない。即ち、第1電流検出回路は、トランスT1の第1の2次巻線S1に流れる電流から電圧検出コンデンサC1とコンデンサC2からなる第1電圧検出回路に流れる電流を除いた電流を検出する。   According to the discharge lamp lighting device of the first embodiment configured as described above, S1 → C1 → C2 → S1, S1 → C2 → C1 due to the voltage generated at both ends of the first secondary winding S1 of the transformer T1. → Current flows through the current path (1) of S1. The current in the current path (1) does not flow through the first current detection circuit including the diodes D1 and D2 and the resistor R1. That is, the first current detection circuit detects a current obtained by subtracting the current flowing through the first voltage detection circuit including the voltage detection capacitor C1 and the capacitor C2 from the current flowing through the first secondary winding S1 of the transformer T1.

また、トランスT1の第1の2次巻線S2の両端に発生した電圧により、S2→C4→C3→S2、S2→C3→C4→S2の電流経路(1)で電流が流れる。この電流経路(1)の電流は、ダイオードD3,D4と抵抗R2からなる第2電流検出回路には流れない。即ち、第2電流検出回路は、トランスT1の第2の2次巻線S2に流れる電流から電圧検出コンデンサC3とコンデンサC4からなる第2電圧検出回路に流れる電流を除いた電流を検出する。   Further, due to the voltage generated at both ends of the first secondary winding S2 of the transformer T1, a current flows through a current path (1) of S2-> C4-> C3-> S2 and S2-> C3-> C4-> S2. The current in the current path (1) does not flow through the second current detection circuit including the diodes D3 and D4 and the resistor R2. That is, the second current detection circuit detects a current obtained by subtracting the current flowing through the second voltage detection circuit including the voltage detection capacitor C3 and the capacitor C4 from the current flowing through the second secondary winding S2 of the transformer T1.

このため、放電灯1a,1bのインピーダンス変化によるフィードバック量の変化を抑制できる。従って、電流検出回路のための基板の枚数を増やすことなく、且つ精度良く放電灯1a,1bに流れる電流を検出できる。   For this reason, the change of the feedback amount by the impedance change of discharge lamp 1a, 1b can be suppressed. Therefore, it is possible to detect the current flowing through the discharge lamps 1a and 1b with high accuracy without increasing the number of substrates for the current detection circuit.

また、電圧検出回路11aは、電圧検出コンデンサC2の両端電圧を検出し、電圧検出回路11bは、電圧検出コンデンサC4の両端電圧を検出する。制御回路は、電圧検出回路11aからの第1電圧検出値と電圧検出回路11bからの第2電圧検出値とを平均した平均値電圧が予め定められた電圧値を超えた場合に2次巻線S1の電圧が過電圧になった、即ち、異常電圧であると判定することができる。   The voltage detection circuit 11a detects the voltage across the voltage detection capacitor C2, and the voltage detection circuit 11b detects the voltage across the voltage detection capacitor C4. When the average voltage obtained by averaging the first voltage detection value from the voltage detection circuit 11a and the second voltage detection value from the voltage detection circuit 11b exceeds a predetermined voltage value, the control circuit It can be determined that the voltage of S1 has become an overvoltage, that is, an abnormal voltage.

図2は本発明の実施例2の放電灯点灯装置の構成を示す図である。図2に示す実施例2では、図1に示す実施例1に対して、電圧検出コンデンサC1と電圧検出コンデンサC2との接続点と接地との間の電圧を第1電圧検出値として制御回路に出力し、電圧検出コンデンサC3と電圧検出コンデンサC4との接続点と接地との間の電圧を第2電圧検出値として制御回路に出力したものである。要するに、第1検出回路がダイオードD1,D2及び抵抗R1からなる第1電流検出回路を介して第1電圧検出値を検出する。第2検出回路がダイオードD3,D4及び抵抗R2からなる第2電流検出回路を介して第2電圧検出値を検出する。   FIG. 2 is a diagram showing a configuration of a discharge lamp lighting device according to Embodiment 2 of the present invention. In the second embodiment shown in FIG. 2, in contrast to the first embodiment shown in FIG. 1, the voltage between the connection point between the voltage detection capacitor C1 and the voltage detection capacitor C2 and the ground is used as the first voltage detection value in the control circuit. The voltage between the connection point of the voltage detection capacitor C3 and the voltage detection capacitor C4 and the ground is output to the control circuit as the second voltage detection value. In short, the first detection circuit detects the first voltage detection value via the first current detection circuit including the diodes D1 and D2 and the resistor R1. The second detection circuit detects the second voltage detection value via the second current detection circuit including the diodes D3 and D4 and the resistor R2.

このような構成によれば、実施例1の効果と略同様な効果が得られるとともに、電圧検出回路11a,11bを削除できるので、さらに、安価となる。   According to such a configuration, substantially the same effect as the effect of the first embodiment can be obtained, and the voltage detection circuits 11a and 11b can be eliminated, so that the cost is further reduced.

図3は本発明の実施例3の放電灯点灯装置の構成を示す図である。図3に示す実施例3は、図2に示す実施例2の構成に対して、ダイオードD3,D4及び抵抗R2からなる第2電流検出回路を削除したことを特徴とする。   FIG. 3 is a diagram showing a configuration of a discharge lamp lighting device according to Embodiment 3 of the present invention. The third embodiment shown in FIG. 3 is characterized in that the second current detection circuit including the diodes D3 and D4 and the resistor R2 is deleted from the configuration of the second embodiment shown in FIG.

即ち、セット実装状態や用途によっては、ダイオードD1,D2及び抵抗R1からなる第1電流検出回路のみで電流検出を行なっても良い場合もある。従って、実施例3によっても、実施例2の効果と同様な効果が得られる。   That is, depending on the set mounting state and application, current detection may be performed only by the first current detection circuit including the diodes D1 and D2 and the resistor R1. Therefore, the effect similar to the effect of Example 2 is acquired also by Example 3.

図4は本発明の実施例4の放電灯点灯装置の構成を示す図である。図4に示す実施例4は、図3に示す実施例3の構成に対して、電圧検出コンデンサC3と電圧検出コンデンサC4とからなる第2電圧検出回路を削除したことを特徴とする。   FIG. 4 is a diagram showing a configuration of a discharge lamp lighting device according to Embodiment 4 of the present invention. The fourth embodiment shown in FIG. 4 is characterized in that the second voltage detection circuit including the voltage detection capacitor C3 and the voltage detection capacitor C4 is deleted from the configuration of the third embodiment shown in FIG.

即ち、セット実装状態や用途によっては、電圧検出コンデンサC1と電圧検出コンデンサC2とからなる第1電圧検出回路のみで電圧検出を行なっても良い場合もある。従って、実施例4によっても、実施例3の効果と同様な効果が得られる。   That is, depending on the set mounting state and application, voltage detection may be performed only by the first voltage detection circuit including the voltage detection capacitor C1 and the voltage detection capacitor C2. Therefore, the effect similar to the effect of Example 3 is acquired also by Example 4.

なお、本発明は前記実施例1乃至4の放電灯点灯装置に限定されるものではない。図1〜図4の実施例1乃至4では、放電灯が2灯であったが、放電灯は1灯であっても良い。また、実施例1乃至実施例4の各構成を組み合わせても良い。例えば、図3、図4において、電圧検出コンデンサC1又は電圧検出コンデンサC2の両端電圧を検出する電圧検出回路11aを設けても良い。また、例えば、図3において、電圧検出コンデンサC3又は電圧検出コンデンサC4の両端電圧を検出する電圧検出回路11bを設けても良い。   In addition, this invention is not limited to the discharge lamp lighting device of the said Examples 1 thru | or 4. In Examples 1 to 4 of FIGS. 1 to 4, the number of discharge lamps is two, but the number of discharge lamps may be one. Moreover, you may combine each structure of Example 1 thru | or Example 4. FIG. For example, in FIGS. 3 and 4, a voltage detection circuit 11a that detects the voltage across the voltage detection capacitor C1 or the voltage detection capacitor C2 may be provided. Further, for example, in FIG. 3, a voltage detection circuit 11b that detects the voltage across the voltage detection capacitor C3 or the voltage detection capacitor C4 may be provided.

本発明の実施例1の放電灯点灯装置の構成を示す図である。It is a figure which shows the structure of the discharge lamp lighting device of Example 1 of this invention. 本発明の実施例2の放電灯点灯装置の構成を示す図である。It is a figure which shows the structure of the discharge lamp lighting device of Example 2 of this invention. 本発明の実施例3の放電灯点灯装置の構成を示す図である。It is a figure which shows the structure of the discharge lamp lighting device of Example 3 of this invention. 本発明の実施例4の放電灯点灯装置の構成を示す図である。It is a figure which shows the structure of the discharge lamp lighting device of Example 4 of this invention. 従来の片端高圧システムを用いた放電灯点灯装置の回路図である。It is a circuit diagram of the discharge lamp lighting device using the conventional one end high pressure system. 図5に示す片端高圧システムをパネル部に実装した構成例を示す図である。It is a figure which shows the structural example which mounted the one end high voltage | pressure system shown in FIG. 5 in the panel part. 従来の両端高圧システムを用いた放電灯点灯装置の回路図である。It is a circuit diagram of the discharge lamp lighting device using the conventional both-ends high pressure system. 図7に示す両端高圧システムをパネル部に実装した構成例を示す図である。It is a figure which shows the structural example which mounted the both-ends high voltage | pressure system shown in FIG. 7 in the panel part. 電流検出部をインバータ部に設置して1枚の基板で構成した従来の両端高圧システムを用いた放電灯点灯装置の回路図である。It is a circuit diagram of the discharge lamp lighting device using the conventional both-ends high-pressure system which installed the electric current detection part in the inverter part, and comprised with one board | substrate.

符号の説明Explanation of symbols

T1,T3,T4,T5 トランス
P1 1次巻線
S1 第1の2次巻線
S2 第2の2次巻線
C1〜C4 電圧検出コンデンサ
C5,C6 寄生容量
R1,R2 電流検出抵抗
D1〜D4 ダイオード
1,1a,1b 放電灯
3 電線
11a,11b 電圧検出回路
20 インバータ部
20a,20b 基板
30 パネル部
T1, T3, T4, T5 Transformer P1 Primary winding S1 First secondary winding S2 Second secondary winding C1 to C4 Voltage detection capacitors C5 and C6 Parasitic capacitances R1 and R2 Current detection resistors D1 to D4 Diodes 1, 1a, 1b Discharge lamp 3 Electric wires 11a, 11b Voltage detection circuit 20 Inverter portions 20a, 20b Board 30 Panel portion

Claims (7)

1次巻線と第1の2次巻線と第2の2次巻線とを有するトランスを備え、直流電圧を高周波電圧に変換して該高周波電圧を前記トランスにより昇圧するインバータと、
前記トランスの前記第1の2次巻線の一端と前記第2の2次巻線の一端との間に接続された1以上の放電灯と、
一端が前記トランスの前記第1の2次巻線の他端に接続され、他端が接地に接続され、電流を検出する第1電流検出回路と、
前記トランスの前記第1の2次巻線の両端に接続され、前記トランスの前記第1の2次巻線に発生する電圧を検出する第1検出回路と、
を有することを特徴とする放電灯点灯装置。
An inverter comprising a transformer having a primary winding, a first secondary winding, and a second secondary winding, converting a DC voltage into a high-frequency voltage and boosting the high-frequency voltage by the transformer;
One or more discharge lamps connected between one end of the first secondary winding of the transformer and one end of the second secondary winding;
One end connected to the other end of the first secondary winding of the transformer, the other end connected to the ground, and a first current detection circuit for detecting a current;
A first detection circuit connected to both ends of the first secondary winding of the transformer and detecting a voltage generated in the first secondary winding of the transformer;
A discharge lamp lighting device comprising:
前記第1検出回路は、前記トランスの前記第1の2次巻線の両端に接続され、第1コンデンサと第2コンデンサとが直列に接続された第1直列回路と、
前記第1コンデンサ又は前記第2コンデンサの両端電圧を検出する第1電圧検出回路と、
を有することを特徴とする請求項1記載の放電灯点灯装置。
The first detection circuit is connected to both ends of the first secondary winding of the transformer, and a first series circuit in which a first capacitor and a second capacitor are connected in series;
A first voltage detection circuit for detecting a voltage across the first capacitor or the second capacitor;
The discharge lamp lighting device according to claim 1, comprising:
前記第1検出回路は、前記トランスの前記第1の2次巻線の両端に接続され、第1コンデンサと第2コンデンサとが直列に接続された第1直列回路を有し、前記第1コンデンサと前記第2コンデンサとの接続点と前記接地との間の電圧を検出電圧とすることを特徴とする請求項1記載の放電灯点灯装置。   The first detection circuit includes a first series circuit that is connected to both ends of the first secondary winding of the transformer and in which a first capacitor and a second capacitor are connected in series, and the first capacitor The discharge lamp lighting device according to claim 1, wherein a voltage between a connection point between the first capacitor and the second capacitor and the ground is used as a detection voltage. 前記トランスの前記第2の2次巻線の両端に接続され、前記トランスの前記第2の2次巻線に発生する電圧を検出する第2検出回路を有することを特徴とする請求項1乃至請求項3のいずれか1項記載の放電灯点灯装置。   2. A second detection circuit that is connected to both ends of the second secondary winding of the transformer and detects a voltage generated in the second secondary winding of the transformer. The discharge lamp lighting device according to claim 3. 一端が前記トランスの前記第2の2次巻線の他端に接続され、他端が接地に接続され、電流を検出する第2電流検出回路と、
前記トランスの前記第2の2次巻線の両端に接続され、前記トランスの前記第2の2次巻線に発生する電圧を検出する第2検出回路と、
を有することを特徴とする請求項1乃至請求項3のいずれか1項記載の放電灯点灯装置。
One end connected to the other end of the second secondary winding of the transformer, the other end connected to the ground, a second current detection circuit for detecting current;
A second detection circuit that is connected to both ends of the second secondary winding of the transformer and detects a voltage generated in the second secondary winding of the transformer;
The discharge lamp lighting device according to any one of claims 1 to 3, wherein the discharge lamp lighting device includes:
前記第2検出回路は、前記トランスの前記第2の2次巻線の両端に接続され、第3コンデンサと第4コンデンサとが直列に接続された第2直列回路と、
前記第3コンデンサ又は前記第4コンデンサの両端電圧を検出する第2電圧検出回路と、
を有することを特徴とする請求項4又は請求項5記載の放電灯点灯装置。
The second detection circuit is connected to both ends of the second secondary winding of the transformer, and a second series circuit in which a third capacitor and a fourth capacitor are connected in series;
A second voltage detection circuit for detecting a voltage across the third capacitor or the fourth capacitor;
The discharge lamp lighting device according to claim 4 or 5, characterized by comprising:
前記第2検出回路は、前記トランスの前記第2の2次巻線の両端に接続され、第3コンデンサと第4コンデンサとが直列に接続された第2直列回路を有し、前記第3コンデンサと前記第4コンデンサとの接続点と前記接地との間の電圧を検出電圧とすることを特徴とする請求項5記載の放電灯点灯装置。   The second detection circuit includes a second series circuit that is connected to both ends of the second secondary winding of the transformer and in which a third capacitor and a fourth capacitor are connected in series, and the third capacitor 6. The discharge lamp lighting device according to claim 5, wherein a voltage between a connection point between the first capacitor and the fourth capacitor and the ground is used as a detection voltage.
JP2007192490A 2007-07-24 2007-07-24 Discharge lamp lighting device Pending JP2009032421A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007192490A JP2009032421A (en) 2007-07-24 2007-07-24 Discharge lamp lighting device
PCT/JP2008/062262 WO2009013995A1 (en) 2007-07-24 2008-07-07 Discharge lamp lighting apparatus
TW97126247A TW200908802A (en) 2007-07-24 2008-07-11 Discharge lamp lighting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192490A JP2009032421A (en) 2007-07-24 2007-07-24 Discharge lamp lighting device

Publications (1)

Publication Number Publication Date
JP2009032421A true JP2009032421A (en) 2009-02-12

Family

ID=40281253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192490A Pending JP2009032421A (en) 2007-07-24 2007-07-24 Discharge lamp lighting device

Country Status (3)

Country Link
JP (1) JP2009032421A (en)
TW (1) TW200908802A (en)
WO (1) WO2009013995A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4446476B2 (en) * 2004-10-18 2010-04-07 スミダコーポレーション株式会社 Cold cathode tube drive
JP4560680B2 (en) * 2004-11-12 2010-10-13 ミネベア株式会社 Backlight inverter and driving method thereof
JP3846806B2 (en) * 2005-02-10 2006-11-15 Tdk株式会社 Discharge lamp driving device and liquid crystal display device
TWI330346B (en) * 2005-06-15 2010-09-11 Chi Mei Optoelectronics Corp Liquid crystal display, backlight module and lamp driving apparatus thereof

Also Published As

Publication number Publication date
WO2009013995A1 (en) 2009-01-29
TW200908802A (en) 2009-02-16

Similar Documents

Publication Publication Date Title
US7227315B2 (en) Discharge lamp drive apparatus and liquid crystal display apparatus
US8264162B2 (en) Inverter apparatus
WO2007086241A1 (en) Power supply device and light-emitting device and electronic equipment using such power supply device
US7830102B2 (en) Light source driving device
US7579789B2 (en) Device for driving light sources
JP2009009721A (en) Discharge lamp lighting device
US7656101B2 (en) Cold cathode tube drive device
JPWO2009034798A1 (en) Discharge lamp lighting device
JP2009032421A (en) Discharge lamp lighting device
US7586269B2 (en) Device for driving light source module
US7626343B2 (en) Driving device for discharge lamps and voltage detection circuit used therein
JP4966055B2 (en) Discharge lamp lighting device, illumination device using the same, and liquid crystal display device
JP5074087B2 (en) Discharge lamp driving device
US7781989B2 (en) Discharge lamp drive control circuit
JP4049270B2 (en) Discharge lamp driving device and liquid crystal display device
JP4125687B2 (en) Discharge tube lighting control circuit and abnormality detection circuit thereof
US8749144B2 (en) Method for driving a light source, driving apparatus for driving the light source and liquid crystal display apparatus having the driving apparatus
JP4479918B2 (en) Discharge lamp lighting device
JP4107600B2 (en) Discharge lamp driving device and liquid crystal display device
KR20080000781A (en) Protection circuit for inverter of driving lamps
JP2006134779A (en) Discharge lamp driving device and liquid crystal display
WO2013002098A1 (en) Led drive circuit
WO2007049420A1 (en) Discharge lamp lighting device, illuminator, liquid crystal display and method for detecting fault in discharge lamp lighting device
KR20110083823A (en) Detecting circuit of arc noise, light source driving apparatus having the same and method of driving a light source using the same
JP2010207072A (en) Asymmetric protective detection circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217