JP2009031459A - Single mode optical fiber for visible light transmission - Google Patents

Single mode optical fiber for visible light transmission Download PDF

Info

Publication number
JP2009031459A
JP2009031459A JP2007194015A JP2007194015A JP2009031459A JP 2009031459 A JP2009031459 A JP 2009031459A JP 2007194015 A JP2007194015 A JP 2007194015A JP 2007194015 A JP2007194015 A JP 2007194015A JP 2009031459 A JP2009031459 A JP 2009031459A
Authority
JP
Japan
Prior art keywords
fiber
visible light
light transmission
single mode
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007194015A
Other languages
Japanese (ja)
Inventor
Hitoshi Fujita
仁 藤田
Hajime Tochitani
元 栃谷
Yuichi Morishita
裕一 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2007194015A priority Critical patent/JP2009031459A/en
Publication of JP2009031459A publication Critical patent/JP2009031459A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a single mode optical fiber for visible light transmission having a low loss and high optical coupling efficiency even in a visible light transmission under single mode. <P>SOLUTION: The single mode fiber 5 for visible light transmission contains GeO<SB>2</SB>in its core, the clad of the fiber is made of pure quartz and has TEC part 3 whose core diameter is expanded in a taper shape toward the input/output end face of light in the vicinity of an input/output end face 6 of light of the single mode optical fiber, and a pure quartz rod 4 is connected to the input/output end face of light. Preferably, the length of the TEC part is 0.2 to 5.0 mm and the length of the pure quartz rod is 0.2 to 5.0 mm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、可視光を伝送させるためのシングルモード光ファイバに係り、特に光源、フォトディテクタ、光デバイス等と効率よく低い挿入損失で光結合できる可視光伝送用シングルモード光ファイバに関する。   The present invention relates to a single-mode optical fiber for transmitting visible light, and more particularly to a single-mode optical fiber for visible light transmission that can be optically coupled with a light source, a photodetector, an optical device, and the like with low insertion loss efficiently.

従来からレーザやLEDなどの光源、あるいはフォトディテクタなどの検出器とシングルモード光ファイバ(以下、SMファイバ)との間における光結合には種々の方法が用いられている。   Conventionally, various methods are used for optical coupling between a light source such as a laser or LED or a detector such as a photodetector and a single mode optical fiber (hereinafter referred to as SM fiber).

例えば、図7(a)に示す方法は光源74からの光をレンズ75により集光してコア71、クラッド72を有するSMファイバ73に入射させるものである。このような方法ではレンズだけで光軸のずれや角度のずれを調整することは極めて困難である。   For example, in the method shown in FIG. 7A, the light from the light source 74 is collected by the lens 75 and is incident on the SM fiber 73 having the core 71 and the clad 72. In such a method, it is extremely difficult to adjust the deviation of the optical axis and the deviation of the angle only with the lens.

一方、図7(b)に示すように、SMファイバ73の光入出射端面76にGRIN(Graded Index)レンズ77を接続した方法もよく用いられている。このように光入出射端面にGRINレンズを設けると受光面積が大きくなるために光結合効率は高くなるが、SMファイバ73とGRINレンズ77との間の接続損失が大きくなるという欠点があり、またコネクタ加工における端面研磨をする際にGRINレンズ77を研磨することによりGRINレンズの長さを当初の設計時の長さに維持することが難しいという欠点もある。   On the other hand, as shown in FIG. 7B, a method in which a GRIN (Graded Index) lens 77 is connected to the light incident / exit end face 76 of the SM fiber 73 is often used. When the GRIN lens is provided on the light incident / exit end face as described above, the light receiving area is increased, so that the optical coupling efficiency is increased. However, there is a disadvantage that the connection loss between the SM fiber 73 and the GRIN lens 77 is increased. There is also a disadvantage that it is difficult to maintain the length of the GRIN lens at the original design length by polishing the GRIN lens 77 when polishing the end face in the connector processing.

さらに、図7(c)に示すように、SMファイバの光入出射端面76にコア径がテーパ状に光入出射端面に向けて拡大されたコア拡大ファイバを接続して光源74からの光をSMファイバ73に入射させることも行われている。コア径を拡大させる方法はTEC(Thermal Expanded Core)方式と呼ばれているものであり、SMファイバの光入出射端面76の近傍を加熱してコア中のGeOをクラッドまで拡散させてコア領域を拡大させてTECファイバ78としたものである。 Further, as shown in FIG. 7 (c), a core expanding fiber whose core diameter is enlarged toward the light incident / exit end surface is connected to the light incident / exit end surface 76 of the SM fiber, and the light from the light source 74 is transmitted. It is also made to enter the SM fiber 73. The method of expanding the core diameter is called a TEC (Thermal Expanded Core) method, in which the vicinity of the light incident / exit end face 76 of the SM fiber is heated to diffuse GeO 2 in the core to the cladding to thereby diffuse the core region. Is expanded to obtain a TEC fiber 78.

このような方法を用いると受光面積が大きくなるために光結合効率が高くなるとともにSMファイバ73とTECファイバ78との間の接続損失もGRINレンズ方式に比べて低減させることができる。しかし、このTECファイバ方式はやはりコネクタ加工における端面研磨をする際にTECファイバ78を研磨することによりTECファイバの受光面積を当初の設計時の状態に維持することが難しいという欠点がある。   When such a method is used, the light receiving area is increased, so that the optical coupling efficiency is increased, and the connection loss between the SM fiber 73 and the TEC fiber 78 can be reduced as compared with the GRIN lens system. However, this TEC fiber system also has a drawback that it is difficult to maintain the light receiving area of the TEC fiber in the original design state by polishing the TEC fiber 78 when polishing the end face in the connector processing.

そこで、TECファイバの先端にさらにSMファイバを接続する方法も知られている(例えば、特許文献1参照)。この方法はコア径の大きいSMファイバとコア径の小さいSMファイバとを接続した後にコア径の小さいSMファイバの接続部付近のコア径をTEC方式により拡大させたもので、コネクタ加工における端面研磨をする際にTECファイバを研磨することがないために受光面積を設計通り維持することができるという利点を有している。   Therefore, a method of further connecting an SM fiber to the tip of the TEC fiber is also known (for example, see Patent Document 1). In this method, after connecting the SM fiber having a large core diameter and the SM fiber having a small core diameter, the core diameter in the vicinity of the connecting portion of the SM fiber having the small core diameter is expanded by the TEC method. In this case, since the TEC fiber is not polished, the light receiving area can be maintained as designed.

ところで、近年、医療分野やDVDディスクの読み取りなどの分野において可視光伝送用のSMファイバの応用が期待されている。可視光伝送用SMファイバは通常のSMファイバ(1.31μmにおいてゼロ分散波長を有するSMファイバ)に比べてコア径が小さく、また比屈折率差も小さい特性を有している。具体的にはコア径が3.0〜4.5μm(通常のSMファイバでは9.0〜10.0μm)、比屈折率差が0.1〜0.3%(通常のSMファイバでは少なくても0.3%)であり、モードフィールド径(以下、MFD)も4.0μm未満と小さい。   By the way, in recent years, the application of the SM fiber for visible light transmission is expected in the medical field and the field of reading DVD disks. The SM fiber for visible light transmission has characteristics that the core diameter is smaller and the relative refractive index difference is smaller than that of a normal SM fiber (SM fiber having a zero dispersion wavelength at 1.31 μm). Specifically, the core diameter is 3.0 to 4.5 μm (9.0 to 10.0 μm for a normal SM fiber), and the relative refractive index difference is 0.1 to 0.3% (less for a normal SM fiber). Also, the mode field diameter (hereinafter referred to as MFD) is as small as less than 4.0 μm.

特開2004−205654号公報JP 2004-205654 A

上記したように、可視光伝送用SMファイバは通常のSMファイバに比べてコア径や比屈折率差が小さいために光源や検出器との光結合効率が悪いという欠点がある。   As described above, the visible light transmission SM fiber has a disadvantage that its optical coupling efficiency with the light source and the detector is poor because the core diameter and the relative refractive index difference are smaller than those of the normal SM fiber.

そこで受光面積を大きくするためにTECファイバ方式により光入出射端面近傍でコア径を拡大させた構造を有する光ファイバとすることも考えられるが、前記したようにコネクタ加工における端面研磨をする際にコア径拡大部分を研磨することにより受光面積を当初の設計時の状態に維持することが難しいという欠点がある。   In order to increase the light receiving area, an optical fiber having a structure in which the core diameter is enlarged in the vicinity of the light incident / exit end surface by the TEC fiber method may be considered. However, as described above, when polishing the end surface in the connector processing There is a drawback in that it is difficult to maintain the light receiving area in the original design state by polishing the core diameter enlarged portion.

また特許文献1に記載されているようにコア径の小さいSMファイバの光入出射端面近傍のコア径をTECファイバ方式により拡大させ、先端に受光面積を拡大するためにコア径の大きいSMファイバを配置する構造も考えられるが、SMファイバはコアにGeOが添加されているためにレーザにより劣化し易いという欠点を有している。 In addition, as described in Patent Document 1, the core diameter in the vicinity of the light incident / exit end face of the SM fiber with a small core diameter is expanded by the TEC fiber method, and an SM fiber with a large core diameter is used at the tip to increase the light receiving area Although an arrangement structure is conceivable, the SM fiber has a drawback that it is easily deteriorated by a laser because GeO 2 is added to the core.

本発明は上記のような課題を解決するためになされたもので、光源、検出器若しくは光デバイス等と光ファイバとを低損失で効率よく光結合できる可視光伝送用SMファイバを提供するものである。   The present invention has been made to solve the above problems, and provides a visible light transmission SM fiber capable of efficiently optically coupling a light source, a detector, an optical device or the like with an optical fiber with low loss. is there.

この目的を達成するために本発明の可視光伝送用SMファイバの第1の態様は、可視光を伝送させるためのシングルモード光ファイバであって、シングルモード光ファイバは、コアにGeOを含有し、クラッドが純石英からなる光ファイバの光入出射端面の近傍においてコア径が光入出射端面に向けてテーパ状に拡大されたコア拡大部分を有し、かつ光入出射端面に純石英ロッドが接続されていることを特徴とする。 In order to achieve this object, the first aspect of the SM fiber for visible light transmission according to the present invention is a single mode optical fiber for transmitting visible light, and the single mode optical fiber contains GeO 2 in the core. And an optical fiber having a clad made of pure quartz has an enlarged core portion in which the core diameter is tapered toward the light incident / exit end surface near the light incident / exit end surface, and a pure quartz rod on the light incident / exit end surface Are connected.

また本発明の可視光伝送用SMファイバの第2の態様は、第1の態様において、コア拡大部分は0.2mm〜5.0mmの長さを有することを特徴とする。   The second aspect of the SM fiber for visible light transmission according to the present invention is characterized in that, in the first aspect, the core enlarged portion has a length of 0.2 mm to 5.0 mm.

さらに本発明の可視光伝送用SMファイバの第3の態様は、第1または第2の態様において、純石英ロッドは0.2mm〜5.0mmの長さを有することを特徴とする。   Furthermore, the third aspect of the SM fiber for visible light transmission according to the present invention is characterized in that, in the first or second aspect, the pure quartz rod has a length of 0.2 mm to 5.0 mm.

また本発明の可視光伝送用SMファイバの第4の態様は、第1から第3の態様において、純石英ロッドが接続されたシングルモード光ファイバがフェルール内に挿入され、当該フェルールがコネクタ内に配置されていることを特徴とする。   The fourth aspect of the SM fiber for visible light transmission according to the present invention is the first to third aspects, wherein the single mode optical fiber to which the pure silica rod is connected is inserted into the ferrule, and the ferrule is inserted into the connector. It is arranged.

本発明の可視光伝送用SMファイバの第1の態様では、SMファイバの先端に純石英ロッドを接続したので、レーザによる劣化がなく、光源、検出器若しくは光デバイス等と光ファイバとを低損失で効率よく光結合できる可視光伝送用SMファイバを提供することができる。   In the first aspect of the SM fiber for visible light transmission according to the present invention, since a pure quartz rod is connected to the tip of the SM fiber, there is no deterioration due to the laser, and the light source, detector, optical device, etc. and the optical fiber are low loss. It is possible to provide a visible light transmission SM fiber that can be optically coupled efficiently.

本発明の可視光伝送用SMファイバの第2および第3の態様では、TEC部分(コア径が拡大された部分)および純石英ロッドを所定の範囲の長さにしたので、光結合効率がより高い可視光伝送用SMファイバを提供することができる。   In the second and third embodiments of the SM fiber for visible light transmission according to the present invention, the TEC portion (portion in which the core diameter is enlarged) and the pure quartz rod are set to a predetermined length, so that the optical coupling efficiency is further improved. A high visible light transmission SM fiber can be provided.

本発明の可視光伝送用SMファイバの第4の態様では、可視光伝送用SMファイバをコネクタ内に配置したので、TEC部分を維持した状態でコネクタ研磨を行うことができるのでレーザ、LEDなどの光源やフォトディテクタなどの検出器、あるいは光デバイスとの脱着を容易に行うことができる。   In the fourth aspect of the SM fiber for visible light transmission according to the present invention, since the SM fiber for visible light transmission is arranged in the connector, the connector polishing can be performed with the TEC portion maintained, so that the laser, LED, etc. It can be easily attached to or detached from a detector such as a light source or a photodetector or an optical device.

以下、本発明の可視光伝送用SMファイバの好ましい実施の形態について図面を参照して説明する。   Hereinafter, preferred embodiments of the SM fiber for visible light transmission according to the present invention will be described with reference to the drawings.

図1は本発明の可視光伝送用SMファイバの構成を表した図である。図1においては本発明の可視光伝送用SMファイバをフェルール内に挿入し、このフェルールをコネクタ内に配置した構造を示している。   FIG. 1 is a diagram showing the configuration of a visible light transmission SM fiber according to the present invention. FIG. 1 shows a structure in which the SM fiber for visible light transmission according to the present invention is inserted into a ferrule, and the ferrule is arranged in a connector.

図1において、本発明の可視光伝送用SMファイバ5は、GeOが添加されたコア1と純石英のクラッド2からなるSMファイバの光入出射端面6近傍がTEC方式によりコアが拡大され(この部分を「TEC部分3」と称す)、この光入出射端面6に純石英ロッド4が接続されている。 In FIG. 1, the SM fiber 5 for visible light transmission according to the present invention has a core expanded in the vicinity of the light incident / exit end face 6 of the SM fiber composed of the core 1 doped with GeO 2 and the clad 2 made of pure quartz. This portion is referred to as “TEC portion 3”), and the pure quartz rod 4 is connected to the light incident / exit end face 6.

可視光伝送用SMファイバ5の先端付近はプラスチック樹脂被覆7が除去されてフェルール8内に挿入されており、さらにこのフェルール8がコネクタ9内に配置されている。   The plastic resin coating 7 is removed near the tip of the visible light transmission SM fiber 5 and the ferrule 8 is inserted into the ferrule 8.

ここで、TEC部分3の長さは0.2mm〜5.0mmの範囲が好ましい。0.2mm未満ではコア領域がほとんど拡大せず、また5.0mmを超えるとコア領域の拡大が不均一となり、挿入損失が増加するという不都合が生じるからである。   Here, the length of the TEC portion 3 is preferably in the range of 0.2 mm to 5.0 mm. This is because if the thickness is less than 0.2 mm, the core region hardly expands, and if it exceeds 5.0 mm, the expansion of the core region becomes non-uniform and the insertion loss increases.

また、純石英ロッド4の長さは0.2mm〜5.0mmの範囲が好ましい。0.2mm未満ではコネクタ加工における端面研磨が困難となり、また5.0mmを超えると純石英ロッド4内の光拡散により、TEC部分3を有する光ファイバとの挿入損失が増加するという不都合が生じるからである。   The length of the pure quartz rod 4 is preferably in the range of 0.2 mm to 5.0 mm. If it is less than 0.2 mm, it is difficult to polish the end face in the connector processing. If it exceeds 5.0 mm, the light diffusion in the pure quartz rod 4 causes the disadvantage that the insertion loss with the optical fiber having the TEC portion 3 increases. It is.

次に本発明の可視光伝送用SMファイバの適用例を以下に示す。   Next, application examples of the SM fiber for visible light transmission according to the present invention will be described below.

図2は光源から出射された光が本発明の可視光伝送用SMファイバに入射される状況を示した図である。図2(a)は光源10から出射された波線で示す光が直接本発明の可視光伝送用SMファイバ5に入射する状況を示したものであり、光源10から出射され、広がった光が純石英ロッド4に入射し、コア領域の大きいTEC部分3に低損失で結合する。TEC部分3を通過した伝搬光はシングルモード伝搬を維持した状態でコア1に伝搬する。   FIG. 2 is a diagram showing a situation in which light emitted from a light source is incident on the visible light transmission SM fiber of the present invention. FIG. 2A shows a situation in which the light indicated by the wavy line emitted from the light source 10 is directly incident on the visible light transmission SM fiber 5 of the present invention. The light emitted from the light source 10 and spread is pure. The light enters the quartz rod 4 and is coupled to the TEC portion 3 having a large core region with low loss. The propagating light that has passed through the TEC portion 3 propagates to the core 1 while maintaining single mode propagation.

図2(b)は可視光伝送用SMファイバ5と光源10との間にレンズ11を設けた例であり、光源から出射され、広がった光を絞るためにレンズを使用した構成でもTEC部分3の受光面積が当初の設計通り維持されているために高い光結合効率が実現でき、また、光軸のずれがある場合にも容易に調心することができる。   FIG. 2B shows an example in which a lens 11 is provided between the visible light transmission SM fiber 5 and the light source 10. The TEC portion 3 is also used in a configuration in which a lens is used to stop the light emitted from the light source and spread. Since the light receiving area is maintained as originally designed, high optical coupling efficiency can be realized, and alignment can be easily performed even when the optical axis is deviated.

図3は本発明の可視光伝送用SMファイバ5から出射された光がフォトディテクタ12に入射する状況を示した図である。TEC部分3の屈折率がGeOの拡散により低くなっているために可視光伝送用SMファイバ5からの伝搬光はMFDの大きい光として出射する。純石英ロッド4を通過した伝搬光は空間伝搬し、フォトディテクタ12に低損失で光結合する。 FIG. 3 is a view showing a situation where light emitted from the visible light transmission SM fiber 5 of the present invention enters the photodetector 12. Since the refractive index of the TEC portion 3 is lowered by the diffusion of GeO 2 , the propagation light from the visible light transmission SM fiber 5 is emitted as light having a large MFD. The propagating light that has passed through the pure quartz rod 4 propagates in space and is optically coupled to the photodetector 12 with low loss.

図4は光アイソレータ、光減衰器、光スイッチなどの光デバイスに本発明の可視光伝送用SMファイバを適用した例を示した図である。   FIG. 4 is a diagram showing an example in which the visible light transmission SM fiber of the present invention is applied to an optical device such as an optical isolator, an optical attenuator, or an optical switch.

図4(a)は光デバイス13を介して本発明の可視光伝送用SMファイバ5同士を接続した例、図4(b)は光デバイス13を介して本発明の可視光伝送用SMファイバ5同士をコネクタ9内に配置して接続した例を示している。   4A shows an example in which the visible light transmission SM fibers 5 of the present invention are connected to each other via the optical device 13, and FIG. 4B shows the visible light transmission SM fiber 5 of the present invention via the optical device 13. The example which has arrange | positioned and connected in the connector 9 is shown.

図4(a)および(b)において、伝搬する光は一方の可視光伝送用SMファイバ5のTEC部分3において波線で示すように拡大され、シングルモード状態を維持したままで光デバイス13に入射され、次いで他方の可視光伝送用SMファイバ5の純石英ロッド4を通過し、さらにTEC部分3からコア1へ伝搬される。この結果光デバイスを介在させても低損失で高い光結合効率を有するシングルモード伝送を実現することができる。   4 (a) and 4 (b), the propagating light is expanded as indicated by a broken line in the TEC portion 3 of one visible light transmission SM fiber 5, and enters the optical device 13 while maintaining the single mode state. Then, the light passes through the pure quartz rod 4 of the other visible light transmission SM fiber 5 and is further propagated from the TEC portion 3 to the core 1. As a result, single mode transmission having high optical coupling efficiency with low loss can be realized even if an optical device is interposed.

次に、本発明の可視光伝送用SMファイバを用いた実施例について説明する。なお、本実施例ではコア径を拡大していない状態での可視光伝送用SMファイバはいずれもコア径が4.0μm、TEC部分の長さが1.0mmである光ファイバを用いた。   Next, an embodiment using the visible light transmission SM fiber of the present invention will be described. In this embodiment, the visible light transmission SM fiber in the state where the core diameter is not enlarged is an optical fiber having a core diameter of 4.0 μm and a length of the TEC portion of 1.0 mm.

<実施例1>
図2(a)に示す構成により、光源10として波長405nmの青色レーザを用い、本発明の可視光伝送用SMファイバ5に光を入射させた。TEC部分3の最大外径は12.0μm、コア1とクラッド2との間の比屈折率差は0.30%、純石英ロッド4の長さは1.0mmであった。入射した光はシングルモード状態が維持され、可視光伝送用SMファイバ5への挿入損失は1.0dBであった。
<Example 1>
With the configuration shown in FIG. 2A, a blue laser with a wavelength of 405 nm is used as the light source 10 and light is incident on the visible light transmission SM fiber 5 of the present invention. The maximum outer diameter of the TEC portion 3 was 12.0 μm, the relative refractive index difference between the core 1 and the clad 2 was 0.30%, and the length of the pure quartz rod 4 was 1.0 mm. The incident light was maintained in a single mode state, and the insertion loss into the visible light transmission SM fiber 5 was 1.0 dB.

<実施例2>
図2(b)に示す構成により、光源10として波長435nmの青色レーザを用い、本発明の可視光伝送用SMファイバ5に光を入射させた。TEC部分3の最大外径は15.0μm、コア1とクラッド2との間の比屈折率差は0.25%、純石英ロッド4の長さは1.5mmであった。入射した光はシングルモード状態が維持され、可視光伝送用SMファイバ5への挿入損失は0.5dBであった。
<Example 2>
With the configuration shown in FIG. 2B, a blue laser having a wavelength of 435 nm was used as the light source 10, and light was incident on the visible light transmission SM fiber 5 of the present invention. The maximum outer diameter of the TEC portion 3 was 15.0 μm, the relative refractive index difference between the core 1 and the clad 2 was 0.25%, and the length of the pure quartz rod 4 was 1.5 mm. The incident light was maintained in a single mode state, and the insertion loss into the visible light transmission SM fiber 5 was 0.5 dB.

<実施例3>
図3に示す構成により、本発明の可視光伝送用SMファイバ5に波長630nmの赤色レーザ光を伝送させ、フォトディテクタ12にて光を検出させた。TEC部分3の最大外径は9.0μm、コア1とクラッド2との間の比屈折率差は0.28%、純石英ロッド4の長さは1.0mmであった。この時シングルモード状態で出射された光のフォトディテクタ12への挿入損失は0.5dBであった。
<Example 3>
With the configuration shown in FIG. 3, red laser light having a wavelength of 630 nm is transmitted to the visible light transmission SM fiber 5 of the present invention, and the light is detected by the photodetector 12. The maximum outer diameter of the TEC portion 3 was 9.0 μm, the relative refractive index difference between the core 1 and the clad 2 was 0.28%, and the length of the pure quartz rod 4 was 1.0 mm. At this time, the insertion loss of the light emitted in the single mode state into the photodetector 12 was 0.5 dB.

<実施例4>
図5に示すように、コアにGeOを添加したコア径3.9μmの純石英ロッドおよびTEC部分を有さない可視光伝送用SMファイバ14に本発明の可視光伝送用SMファイバ5を接続し、さらに可視光伝送用SMファイバ5を光カプラ15に接続した後、SMファイバ16を介してフォトディテクタ12に波長405nmの青色レーザ光を入射させた。本発明の可視光伝送用SMファイバ5のTEC部分3の最大外径は10.0μm、コア1とクラッド2との間の比屈折率差は0.25%、純石英ロッド4の長さは1.0mmであった。この時の可視光伝送用SMファイバ5から光カプラ15への挿入損失は0.5dBであった。なお、可視光伝送用SMファイバ14と本発明の可視光伝送用SMファイバ5の接続は微調ステージを用いて機械的に調心した。
<Example 4>
As shown in FIG. 5, the visible light transmission SM fiber 5 of the present invention is connected to a pure silica rod having a core diameter of 3.9 μm with GeO 2 added to the core and the visible light transmission SM fiber 14 having no TEC portion. Further, after the visible light transmission SM fiber 5 was connected to the optical coupler 15, blue laser light having a wavelength of 405 nm was incident on the photodetector 12 through the SM fiber 16. The maximum outer diameter of the TEC portion 3 of the SM fiber 5 for visible light transmission according to the present invention is 10.0 μm, the relative refractive index difference between the core 1 and the cladding 2 is 0.25%, and the length of the pure quartz rod 4 is It was 1.0 mm. At this time, the insertion loss from the visible light transmission SM fiber 5 to the optical coupler 15 was 0.5 dB. The visible light transmission SM fiber 14 and the visible light transmission SM fiber 5 of the present invention were mechanically aligned using a fine adjustment stage.

<実施例5>
図6に示すように、コアにGeOを添加したコア径4.1μmの純石英ロッドおよびTEC部分を有さない可視光伝送用SMファイバ14と本発明の可視光伝送用SMファイバ5とをスリーブ17を介してコネクタ接続し、可視光伝送用SMファイバ14から波長375μmの青紫色レーザ光を入射させた。可視光伝送用SMファイバ5のTEC部分3の最大外径は7.0μm、コア1とクラッド2との間の比屈折率差は0.30%、純石英ロッド4の長さは1.5mmであった。この時の可視光伝送用SMファイバ14から本発明の可視光伝送用SMファイバ5への挿入損失は0.7dBであった。
<Example 5>
As shown in FIG. 6, a pure silica rod having a core diameter of 4.1 μm with GeO 2 added to the core and a visible light transmission SM fiber 14 having no TEC portion and the visible light transmission SM fiber 5 of the present invention are provided. A connector was connected via the sleeve 17, and blue-violet laser light having a wavelength of 375 μm was incident from the visible light transmission SM fiber 14. The maximum outer diameter of the TEC portion 3 of the SM fiber 5 for visible light transmission is 7.0 μm, the relative refractive index difference between the core 1 and the cladding 2 is 0.30%, and the length of the pure quartz rod 4 is 1.5 mm. Met. At this time, the insertion loss from the visible light transmission SM fiber 14 to the visible light transmission SM fiber 5 of the present invention was 0.7 dB.

<比較例>
実施例1と同じ構成で可視光伝送用SMファイバ5の代わりに純石英ロッドおよびTEC部分を有さない可視光伝送用SMファイバに光源から光を入射させた。用いられた可視光伝送用SMファイバはコア径が3.8μm、コアとクラッドとの間の比屈折率差は0.28%であった。この時この比較例で用いた可視光伝送用SMファイバへの挿入損失は2.5dBであった。
<Comparative example>
In the same configuration as in Example 1, light was incident from a light source into a visible light transmission SM fiber having no pure quartz rod and TEC portion instead of the visible light transmission SM fiber 5. The visible light transmission SM fiber used had a core diameter of 3.8 μm, and the relative refractive index difference between the core and the clad was 0.28%. At this time, the insertion loss into the visible light transmission SM fiber used in this comparative example was 2.5 dB.

上記実施例および比較例から、本発明の可視光伝送用SMファイバはコア径および比屈折率差が小さいにもかかわらず比較例の挿入損失に比べて極めて低い挿入損失を有し、かつシングルモード状態を維持しながら高い光結合効率を有していることが明らかであった。また、本発明の可視光伝送用SMファイバに各種レーザ光を入射させてもレーザによる損傷は見られなかった。   From the above examples and comparative examples, the visible light transmission SM fiber of the present invention has a very low insertion loss compared to the insertion loss of the comparative example despite the small core diameter and relative refractive index difference, and single mode. It was clear that the optical coupling efficiency was high while maintaining the state. Further, even when various laser beams were made incident on the visible light transmission SM fiber of the present invention, no damage due to the laser was observed.

本発明の可視光伝送用SMファイバの構成の一実施の形態を示す図である。It is a figure which shows one Embodiment of a structure of SM fiber for visible light transmission of this invention. 本発明の可視光伝送用SMファイバの適用例を示す図である。It is a figure which shows the example of application of SM fiber for visible light transmission of this invention. 本発明の可視光伝送用SMファイバの他の適用例を示す図である。It is a figure which shows the other application example of SM fiber for visible light transmission of this invention. 本発明の可視光伝送用SMファイバのさらに他の適用例を示す図である。It is a figure which shows the further another application example of SM fiber for visible light transmission of this invention. 本発明の可視光伝送用SMファイバのさらに他の適用例を示す図である。It is a figure which shows the further another application example of SM fiber for visible light transmission of this invention. 本発明の可視光伝送用SMファイバのさらに他の適用例を示す図である。It is a figure which shows the further another application example of SM fiber for visible light transmission of this invention. 従来のSMファイバの光結合の例を説明する図である。It is a figure explaining the example of the optical coupling of the conventional SM fiber.

符号の説明Explanation of symbols

1 コア
2 クラッド
3 TEC部分
4 純石英ロッド
5 可視光伝送用SMファイバ
6 光入出射端面
7 プラスチック樹脂被覆
8 フェルール
9 コネクタ
DESCRIPTION OF SYMBOLS 1 Core 2 Clad 3 TEC part 4 Pure quartz rod 5 Visible light transmission SM fiber 6 Light incident / exit end face 7 Plastic resin coating 8 Ferrule 9 Connector

Claims (4)

可視光を伝送させるためのシングルモード光ファイバであって、前記シングルモード光ファイバは、コアにGeOを含有し、クラッドが純石英からなる光ファイバの光入出射端面の近傍においてコア径が前記光入出射端面に向けてテーパ状に拡大されたコア拡大部分を有し、かつ前記光入出射端面に純石英ロッドが接続されていることを特徴とする可視光伝送用シングルモード光ファイバ。 A single mode optical fiber for transmitting visible light, wherein the single mode optical fiber contains GeO 2 in a core, and the core diameter is in the vicinity of the light incident / exit end face of the optical fiber whose cladding is made of pure quartz. A single mode optical fiber for visible light transmission, characterized in that it has a core expansion portion that is enlarged in a tapered shape toward a light incident / exit end face, and a pure quartz rod is connected to the light incident / exit end face. 前記コア拡大部分は0.2mm〜5.0mmの長さを有することを特徴とする請求項1記載の可視光伝送用シングルモード光ファイバ。   The single-mode optical fiber for visible light transmission according to claim 1, wherein the enlarged core portion has a length of 0.2 mm to 5.0 mm. 前記純石英ロッドは0.2mm〜5.0mmの長さを有することを特徴とする請求項1または請求項2記載の可視光伝送用シングルモード光ファイバ。   The single mode optical fiber for visible light transmission according to claim 1 or 2, wherein the pure quartz rod has a length of 0.2 mm to 5.0 mm. 前記純石英ロッドが接続されたシングルモード光ファイバがフェルール内に挿入され、当該フェルールがコネクタ内に配置されていることを特徴とする請求項1から請求項3までの何れかの請求項に記載の可視光伝送用シングルモード光ファイバ。   The single-mode optical fiber to which the pure quartz rod is connected is inserted into a ferrule, and the ferrule is disposed in the connector. Single mode optical fiber for visible light transmission.
JP2007194015A 2007-07-26 2007-07-26 Single mode optical fiber for visible light transmission Withdrawn JP2009031459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007194015A JP2009031459A (en) 2007-07-26 2007-07-26 Single mode optical fiber for visible light transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007194015A JP2009031459A (en) 2007-07-26 2007-07-26 Single mode optical fiber for visible light transmission

Publications (1)

Publication Number Publication Date
JP2009031459A true JP2009031459A (en) 2009-02-12

Family

ID=40402037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007194015A Withdrawn JP2009031459A (en) 2007-07-26 2007-07-26 Single mode optical fiber for visible light transmission

Country Status (1)

Country Link
JP (1) JP2009031459A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050504A (en) * 2010-08-31 2012-03-15 Fujifilm Corp Light guide for endoscope, endoscope equipped with the same, and method for manufacturing light guide for endoscope
JP2012230193A (en) * 2011-04-25 2012-11-22 Society Of Japanese Aerospace Co Light rotary joint and rotor strain measuring device
KR101361107B1 (en) * 2012-03-26 2014-02-27 (주)포스텍 MIL-STD-38999 hybrid cable connector with misalignment compensation structure for optical fiber
CN104297860A (en) * 2013-12-05 2015-01-21 中航光电科技股份有限公司 Single-mode fiber connector
CN104297859A (en) * 2013-12-05 2015-01-21 中航光电科技股份有限公司 Single-mode fiber contact and manufacture method thereof
WO2017149844A1 (en) * 2016-03-01 2017-09-08 住友電気工業株式会社 Optical connector-attached fiber and optical coupling structure
CN107167406A (en) * 2017-07-10 2017-09-15 西石(厦门)科技有限公司 A kind of preceding scattering dust instrument optical system based on light cone
WO2017195636A1 (en) * 2016-05-12 2017-11-16 住友電気工業株式会社 Optical connector and optical coupling structure
JP7443968B2 (en) 2020-07-16 2024-03-06 住友電気工業株式会社 Optical fiber fusion splicing method and optical fiber line

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050504A (en) * 2010-08-31 2012-03-15 Fujifilm Corp Light guide for endoscope, endoscope equipped with the same, and method for manufacturing light guide for endoscope
JP2012230193A (en) * 2011-04-25 2012-11-22 Society Of Japanese Aerospace Co Light rotary joint and rotor strain measuring device
KR101361107B1 (en) * 2012-03-26 2014-02-27 (주)포스텍 MIL-STD-38999 hybrid cable connector with misalignment compensation structure for optical fiber
CN104297860A (en) * 2013-12-05 2015-01-21 中航光电科技股份有限公司 Single-mode fiber connector
CN104297859A (en) * 2013-12-05 2015-01-21 中航光电科技股份有限公司 Single-mode fiber contact and manufacture method thereof
WO2017149844A1 (en) * 2016-03-01 2017-09-08 住友電気工業株式会社 Optical connector-attached fiber and optical coupling structure
WO2017195636A1 (en) * 2016-05-12 2017-11-16 住友電気工業株式会社 Optical connector and optical coupling structure
JPWO2017195636A1 (en) * 2016-05-12 2019-03-14 住友電気工業株式会社 Optical connector and optical coupling structure
CN107167406A (en) * 2017-07-10 2017-09-15 西石(厦门)科技有限公司 A kind of preceding scattering dust instrument optical system based on light cone
JP7443968B2 (en) 2020-07-16 2024-03-06 住友電気工業株式会社 Optical fiber fusion splicing method and optical fiber line

Similar Documents

Publication Publication Date Title
JP2009031459A (en) Single mode optical fiber for visible light transmission
US6594419B2 (en) Tapered lensed fiber for focusing and condenser applications
US7308171B2 (en) Method and apparatus for optical isolation in high power fiber-optic systems
EP3525300B1 (en) Optical amplifier and multi-core optical fiber
US7333702B2 (en) Fiber optics transmission line
EP1295155B1 (en) Micro-optic coupler incorporating a tapered fiber
JP2004061830A (en) Optical fiber parts
US20030103724A1 (en) High power optical fiber coupling
JP4690249B2 (en) Highly flexible optical fiber
JP2005300596A (en) Composite optical fiber, optical connector, and optical fiber with optical connector
JP2005284150A (en) Method of manufacturing core-expanded optical fiber, optical fiber, and optical connector
JP2017111173A (en) Fiber fuse suppression fiber and optical connector
JP2005017702A (en) Optical connector and its connecting structure
US20190331868A1 (en) Methods for coupling optical fibers to optical chips with high yield and low-loss
JP6542653B2 (en) Probe fiber and optical fiber side input / output device
JP2005208113A (en) Mode field converter
JP2006208755A (en) Optical transmitter
JP2004077658A (en) Optical connector
US20030108312A1 (en) Fiber optical devices with high power handling capability
JP2004086127A (en) Optical device
JP2004029450A (en) Optical connector
JP2005202136A (en) Optical member
JP2012163802A (en) Fiber fuse stopper, optical connector, optical transmission system and fiber fuse stop method
JP2018097274A (en) Optical coupler
JP2006184343A (en) Optical transmitter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005