JP2009031257A - Apparatus and method for detecting state of metal - Google Patents

Apparatus and method for detecting state of metal Download PDF

Info

Publication number
JP2009031257A
JP2009031257A JP2008088922A JP2008088922A JP2009031257A JP 2009031257 A JP2009031257 A JP 2009031257A JP 2008088922 A JP2008088922 A JP 2008088922A JP 2008088922 A JP2008088922 A JP 2008088922A JP 2009031257 A JP2009031257 A JP 2009031257A
Authority
JP
Japan
Prior art keywords
oscillation
oscillation circuit
detection
phase shift
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008088922A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamakawa
和廣 山川
Tetsuo Kanda
哲男 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AZUMA SYSTEMS KK
Azuma Systems Co Ltd
Original Assignee
AZUMA SYSTEMS KK
Azuma Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AZUMA SYSTEMS KK, Azuma Systems Co Ltd filed Critical AZUMA SYSTEMS KK
Priority to JP2008088922A priority Critical patent/JP2009031257A/en
Publication of JP2009031257A publication Critical patent/JP2009031257A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To avoid reductions in detection accuracy due to mutual interference and shorten a response period when the state of metal is to be highly accurately detected through the use of a first oscillation circuit (a first detection coil) and a second oscillation circuit (a second detection coil). <P>SOLUTION: An apparatus for detecting the state of a metal is provided with the first oscillation circuit 2 for generating a phase shift in oscillation waves according to an inductance change of the first detection coil L1 and the second oscillation circuit 3 for generating a phase shift in oscillation waves according to an inductance change of the second detection coil L2. When the state of metal is to be detected on the basis of the phase shifts of oscillation waves outputted from both oscillation circuits 2 and 3, the first oscillation circuit 2 and the second oscillation circuit 3 are alternately driven in order to avoid mutual interference. At the time of the termination of the driving of the first oscillation circuit 2 and at the time of the termination of the driving of the second oscillation circuit 3, the difference between the newest measured time (phase shift) on the first oscillation circuit 2 and the newest measured time (phase shift) on the second oscillation circuit 3 is determined and outputted. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属の状態を検出する金属状態検出装置及び金属状態検出方法に関し、特に、金属の応力、疲労、損傷、欠陥、材質などの状態検出に適した金属状態検出装置及び金属状態検出方法に関する。   The present invention relates to a metal state detection device and a metal state detection method for detecting a metal state, and in particular, a metal state detection device and a metal state detection method suitable for detecting a state of metal stress, fatigue, damage, defect, material, and the like. About.

金属の状態を、その金属の磁気的な特性変化(透磁率変化など)に基づいて検出する金属状態検出装置や金属状態検出方法が知られている。例えば、回転軸のトルク(捻り応力)を、磁歪の逆効果を利用して検出する磁歪式トルクセンサは、電動アシスト自転車のトルクアシストシステムなどにおいて既に実用化されている。   There are known a metal state detection device and a metal state detection method for detecting a metal state based on a magnetic property change (such as a magnetic permeability change) of the metal. For example, a magnetostrictive torque sensor that detects torque (torsional stress) of a rotating shaft by utilizing the inverse effect of magnetostriction has already been put into practical use in a torque assist system of an electrically assisted bicycle.

従来の磁歪式トルクセンサは、回転軸の二つの外周領域に、それぞれ+45°と−45°の磁気異方性を付与すると共に、各外周領域に対向して一対の検出コイルを配置し、これらの検出コイル間に生じる差動電圧を出力するように構成される。つまり、回転軸にトルクを加えると、磁歪の逆効果により各外周領域の透磁率が背反的に変化するため、検出コイル間に差動電圧が生じ、トルクに比例した出力が得られる(例えば、特許文献1、2参照)。
特開平7−83769号公報 特開平11−37863号公報
A conventional magnetostrictive torque sensor imparts magnetic anisotropy of + 45 ° and −45 ° to two outer peripheral regions of a rotating shaft, and arranges a pair of detection coils facing each outer peripheral region. The differential voltage generated between the two detection coils is output. That is, when torque is applied to the rotating shaft, the permeability of each outer peripheral region changes inversely due to the inverse effect of magnetostriction, so that a differential voltage is generated between the detection coils, and an output proportional to the torque is obtained (for example, (See Patent Documents 1 and 2).
JP 7-83769 A Japanese Patent Laid-Open No. 11-37863

しかしながら、従来の金属状態検出装置では、ブリッジ回路などを用いて、検出コイル間に生じる僅かな差動電圧を検出し、この差動電圧を増幅回路で増幅しているため、ノイズの影響を受けやすく、高精度な検出が困難であった。   However, in the conventional metal state detection device, a slight differential voltage generated between the detection coils is detected using a bridge circuit or the like, and this differential voltage is amplified by the amplifier circuit. It was easy and high-precision detection was difficult.

上記の如き実情に鑑み、これらの課題を解決することを目的として創作された本発明の金属状態検出装置は、金属の状態を検出する金属状態検出装置であって、金属の状態変化に応じてインダクタンスが変化するように配置される第一検出コイル及び第二検出コイルと、所定の基準周波数で自律的に発振すると共に、第一検出コイルのインダクタンス変化に応じて発振波に位相ズレを生じさせる第一発振回路と、所定の基準周波数で自律的に発振すると共に、第二検出コイルのインダクタンス変化に応じて発振波に位相ズレを生じさせる第二発振回路と、第一発振回路から出力される複数の発振波をカウントし、該カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間測定にもとづいて、蓄積された発振波の位相ズレを検出する第一位相ズレ検出手段と、第二発振回路から出力される複数の発振波をカウントし、該カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間測定にもとづいて、蓄積された発振波の位相ズレを検出する第二位相ズレ検出手段と、第一発振回路に係る測定時間と第二発振回路に係る測定時間との差分を求めて出力する差分検出手段とを備え、第一発振回路と第二発振回路は、相互干渉を避けるために、交互に駆動され、差分検出手段は、第一発振回路の駆動終了時及び第二発振回路の駆動終了時に、それぞれ、第一発振回路に係る最新の測定時間と第二発振回路に係る最新の測定時間との差分を求めて出力することを特徴とする。
このような金属状態検出装置によれば、金属の状態を高精度に検出することができる。すなわち、上記のような発振回路から出力される発振波においては、金属の状態(透磁率変化など)が位相ズレとなって明確に現れ、しかも、発振波における位相ズレは、発振波の数だけ蓄積されるので、金属の状態に応じて変化する位相ズレを高精度に検出できる。また、発振波の位相ズレを、発振波カウント処理に要した時間として測定するので、安価なデジタル回路を用いて高分解能測定を行うことができる。つまり、本発明における金属状態検出の分解能は、時間測定用のカウンタ速度により決まり、発振回路の基準周波数に依存しないので、検出対象に応じて発振回路の基準周波数を最適化しつつ、高分解能の金属状態検出を行うことができる。また、第一発振回路に係る測定時間(位相ズレ)と第二発振回路に係る測定時間(位相ズレ)との差分を検出するので、温度誤差や変位誤差を容易に排除することができる。また、第一発振回路と第二発振回路は、交互に駆動されるので、相互干渉による検出精度の低下を回避することができる。また、第一検出コイルの検出領域と第二検出コイルの検出領域を、相互干渉を考慮せずに任意に設定することができるので、使用条件に応じた検出領域の最適化が容易となる。また、第一発振回路の駆動終了時及び第二発振回路の駆動終了時に、それぞれ、第一発振回路に係る最新の測定時間と第二発振回路に係る最新の測定時間との差分を求めて出力するので、応答周期を短縮し、良好な応答性が得られる。つまり、第一発振回路及び第二発振回路の駆動が終了した時点で差分を求めるのではなく、各発振回路の駆動が終了する毎に差分を求めるので、前者に比べて応答周期を約1/2に短縮することができる。
また、本発明の金属状態検出方法は、金属の状態を検出する金属状態検出方法であって、金属の状態変化に応じてインダクタンスが変化するように配置される第一検出コイル及び第二検出コイルと、所定の基準周波数で自律的に発振すると共に、第一検出コイルのインダクタンス変化に応じて発振波に位相ズレを生じさせる第一発振回路と、所定の基準周波数で自律的に発振すると共に、第二検出コイルのインダクタンス変化に応じて発振波に位相ズレを生じさせる第二発振回路とが用いられ、第一発振回路から出力される複数の発振波をカウントし、該カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間測定にもとづいて、蓄積された発振波の位相ズレを検出し、第二発振回路から出力される複数の発振波をカウントし、該カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間測定にもとづいて、蓄積された発振波の位相ズレを検出し、第一発振回路に係る測定時間と第二発振回路に係る測定時間との差分を求めて出力するにあたり、第一発振回路と第二発振回路を、相互干渉を避けるために、交互に駆動させ、第一発振回路の駆動終了時及び第二発振回路の駆動終了時に、それぞれ、第一発振回路に係る最新の測定時間と第二発振回路に係る最新の測定時間との差分を求めて出力することを特徴とする。
このような金属状態検出方法によれば、金属の状態を高精度に検出することができる。すなわち、上記のような発振回路から出力される発振波においては、金属の状態(透磁率変化など)が位相ズレとなって明確に現れ、しかも、発振波における位相ズレは、発振波の数だけ蓄積されるので、金属の状態に応じて変化する位相ズレを高精度に検出できる。また、発振波の位相ズレを、発振波カウント処理に要した時間として測定するので、安価なデジタル回路を用いて高分解能測定を行うことができる。つまり、本発明における金属状態検出の分解能は、時間測定用のカウンタ速度により決まり、発振回路の基準周波数に依存しないので、検出対象に応じて発振回路の基準周波数を最適化しつつ、高分解能の金属状態検出を行うことができる。また、第一発振回路に係る測定時間(位相ズレ)と第二発振回路に係る測定時間(位相ズレ)との差分を検出するので、温度誤差や変位誤差を容易に排除することができる。また、第一発振回路と第二発振回路は、交互に駆動されるので、相互干渉による検出精度の低下を回避することができる。また、第一検出コイルの検出領域と第二検出コイルの検出領域を、相互干渉を考慮せずに任意に設定することができるので、使用条件に応じた検出領域の最適化が容易となる。また、第一発振回路の駆動終了時及び第二発振回路の駆動終了時に、それぞれ、第一発振回路に係る最新の測定時間と第二発振回路に係る最新の測定時間との差分を求めて出力するので、応答周期を短縮し、良好な応答性が得られる。つまり、第一発振回路及び第二発振回路の駆動が終了した時点で差分を求めるのではなく、各発振回路の駆動が終了する毎に差分を求めるので、前者に比べて応答周期を約1/2に短縮することができる。
In view of the above circumstances, the metal state detection device of the present invention created for the purpose of solving these problems is a metal state detection device that detects the state of a metal, and according to a change in the state of the metal. The first detection coil and the second detection coil that are arranged so that the inductance changes, and autonomously oscillate at a predetermined reference frequency, and cause a phase shift in the oscillation wave according to the inductance change of the first detection coil Output from the first oscillation circuit, the second oscillation circuit that autonomously oscillates at a predetermined reference frequency and causes a phase shift in the oscillation wave according to the inductance change of the second detection coil, and the first oscillation circuit An oscillation wave count process is performed to count a plurality of oscillation waves and determine whether or not the count number has reached a predetermined number N, and based on the time measurement required for the oscillation wave count process. A first phase deviation detecting means for detecting a phase deviation of the accumulated oscillation wave and a plurality of oscillation waves output from the second oscillation circuit, and whether or not the count number reaches a predetermined number N A second phase shift detecting means for detecting a phase shift of the accumulated oscillation wave based on a time measurement required for the oscillation wave count process, and a measurement related to the first oscillation circuit Difference detection means for obtaining and outputting the difference between the time and the measurement time relating to the second oscillation circuit, and the first oscillation circuit and the second oscillation circuit are driven alternately to detect the difference in order to avoid mutual interference The means obtains a difference between the latest measurement time for the first oscillation circuit and the latest measurement time for the second oscillation circuit at the end of driving the first oscillation circuit and at the end of driving of the second oscillation circuit, respectively. It is characterized by outputting.
According to such a metal state detection device, the state of the metal can be detected with high accuracy. That is, in the oscillation wave output from the oscillation circuit as described above, the metal state (permeability change, etc.) appears clearly as a phase shift, and the phase shift in the oscillation wave is the same as the number of oscillation waves. Since it is accumulated, it is possible to detect a phase shift that changes according to the state of the metal with high accuracy. Further, since the phase shift of the oscillation wave is measured as the time required for the oscillation wave counting process, high-resolution measurement can be performed using an inexpensive digital circuit. In other words, the resolution of the metal state detection in the present invention is determined by the counter speed for time measurement and does not depend on the reference frequency of the oscillation circuit. Therefore, the high-resolution metal is optimized while optimizing the reference frequency of the oscillation circuit according to the detection target. State detection can be performed. Further, since the difference between the measurement time (phase shift) related to the first oscillation circuit and the measurement time (phase shift) related to the second oscillation circuit is detected, the temperature error and the displacement error can be easily eliminated. Further, since the first oscillation circuit and the second oscillation circuit are driven alternately, it is possible to avoid a decrease in detection accuracy due to mutual interference. Moreover, since the detection area of the first detection coil and the detection area of the second detection coil can be arbitrarily set without considering mutual interference, it is easy to optimize the detection area according to the use conditions. Also, at the end of driving the first oscillation circuit and at the end of driving the second oscillation circuit, obtain and output the difference between the latest measurement time for the first oscillation circuit and the latest measurement time for the second oscillation circuit, respectively. As a result, the response cycle is shortened and good responsiveness can be obtained. That is, instead of obtaining the difference at the time when the driving of the first oscillation circuit and the second oscillation circuit is completed, the difference is obtained every time the driving of each oscillation circuit is completed. It can be shortened to 2.
Also, the metal state detection method of the present invention is a metal state detection method for detecting a metal state, wherein the first detection coil and the second detection coil are arranged so that the inductance changes according to the change in the metal state. And a first oscillation circuit that oscillates autonomously at a predetermined reference frequency and causes a phase shift in the oscillation wave according to the inductance change of the first detection coil, and oscillates autonomously at a predetermined reference frequency, A second oscillation circuit that causes a phase shift in the oscillation wave in accordance with an inductance change of the second detection coil, and counts a plurality of oscillation waves output from the first oscillation circuit, and the count number is a predetermined number N Oscillating wave count processing is performed to determine whether or not the oscillation frequency has reached the second oscillation circuit based on the time measurement required for the oscillating wave counting processing. Counts a plurality of oscillation waves output from the output, performs an oscillation wave count process to determine whether or not the count number has reached a predetermined number N, and accumulates based on the time measurement required for the oscillation wave count process In detecting the phase shift of the generated oscillation wave and obtaining and outputting the difference between the measurement time of the first oscillation circuit and the measurement time of the second oscillation circuit, the first oscillation circuit and the second oscillation circuit are connected to each other. In order to avoid interference, drive alternately, at the end of driving the first oscillation circuit and at the end of driving the second oscillation circuit, respectively, the latest measurement time for the first oscillation circuit and the latest for the second oscillation circuit, respectively. It is characterized in that a difference from the measurement time is obtained and output.
According to such a metal state detection method, the metal state can be detected with high accuracy. That is, in the oscillation wave output from the oscillation circuit as described above, the metal state (permeability change, etc.) appears clearly as a phase shift, and the phase shift in the oscillation wave is the same as the number of oscillation waves. Since it is accumulated, it is possible to detect a phase shift that changes according to the state of the metal with high accuracy. Further, since the phase shift of the oscillation wave is measured as the time required for the oscillation wave counting process, high-resolution measurement can be performed using an inexpensive digital circuit. In other words, the resolution of the metal state detection in the present invention is determined by the counter speed for time measurement and does not depend on the reference frequency of the oscillation circuit. Therefore, the high-resolution metal is optimized while optimizing the reference frequency of the oscillation circuit according to the detection target. State detection can be performed. Further, since the difference between the measurement time (phase shift) related to the first oscillation circuit and the measurement time (phase shift) related to the second oscillation circuit is detected, the temperature error and the displacement error can be easily eliminated. Further, since the first oscillation circuit and the second oscillation circuit are driven alternately, it is possible to avoid a decrease in detection accuracy due to mutual interference. In addition, since the detection area of the first detection coil and the detection area of the second detection coil can be arbitrarily set without considering mutual interference, it is easy to optimize the detection area according to use conditions. Also, at the end of driving the first oscillation circuit and at the end of driving the second oscillation circuit, obtain and output the difference between the latest measurement time for the first oscillation circuit and the latest measurement time for the second oscillation circuit, respectively. As a result, the response cycle is shortened and good responsiveness can be obtained. That is, instead of obtaining the difference at the time when the driving of the first oscillation circuit and the second oscillation circuit is completed, the difference is obtained every time the driving of each oscillation circuit is completed. It can be shortened to 2.

次に、本発明の実施形態について、図面に基づいて説明する。ただし、図面に示す波形には、実際の検出波形とシミュレーション波形が含まれる。   Next, embodiments of the present invention will be described with reference to the drawings. However, the waveform shown in the drawing includes an actual detection waveform and a simulation waveform.

[第一実施形態]
図1は、本発明の第一実施形態に係る金属状態検出装置(磁歪式トルクセンサ)の構成を示すブロック図である。この図に示される金属状態検出装置は、軸表面に生じる磁歪の逆効果を利用して回転軸S(又は静止軸)のトルクを検出する磁歪式トルクセンサ1であり、第一検出コイルL1、第二検出コイルL2、第一発振回路2、第二発振回路3及び検出回路4を備えて構成されている。
[First embodiment]
FIG. 1 is a block diagram showing a configuration of a metal state detection device (magnetostrictive torque sensor) according to the first embodiment of the present invention. The metal state detection device shown in this figure is a magnetostrictive torque sensor 1 that detects the torque of a rotating shaft S (or a stationary shaft) using the inverse effect of magnetostriction generated on the shaft surface, and includes a first detection coil L1, A second detection coil L2, a first oscillation circuit 2, a second oscillation circuit 3, and a detection circuit 4 are provided.

第一検出コイルL1は、軸表面において第一方向(例えば、+45°方向)の透磁率変化を検出すべく配置され、当該透磁率変化をインダクタンスの変化として検出する。また、第二検出コイルL2は、軸表面において第二方向(例えば、−45°方向)の透磁率変化を検出すべく配置され、当該透磁率変化をインダクタンスの変化として検出する。   The first detection coil L1 is arranged to detect a magnetic permeability change in the first direction (for example, + 45 ° direction) on the shaft surface, and detects the magnetic permeability change as a change in inductance. The second detection coil L2 is arranged to detect a change in permeability in the second direction (for example, −45 ° direction) on the shaft surface, and detects the change in permeability as a change in inductance.

本実施形態の検出コイルL1、L2は、軸表面における検出領域及び検出方向を限定するために、高透磁率材料を用いて形成されコアと、該コアに巻装されるコイルとを備えて構成されている。具体的には、フェライト、パーマロイ、アモルファスなどの高透磁率材料からなるU字コア2a、3aに、コイルを巻装して構成されており、U字コア2a、3aの両端を軸表面に近接させることにより、軸表面との間で閉磁路を構成するようになっている。これにより、軸表面の限られた領域に第一方向及び第二方向の磁路を形成し、該磁路における透磁率変化を検出することが可能になる。   The detection coils L1 and L2 of this embodiment include a core formed of a high magnetic permeability material and a coil wound around the core in order to limit the detection region and the detection direction on the shaft surface. Has been. Specifically, a coil is wound around U-shaped cores 2a and 3a made of a high permeability material such as ferrite, permalloy, and amorphous, and both ends of U-shaped cores 2a and 3a are close to the shaft surface. By doing so, a closed magnetic circuit is formed with the shaft surface. Thereby, it is possible to form magnetic paths in the first direction and the second direction in a limited region of the shaft surface, and to detect a change in permeability in the magnetic path.

第一発振回路2は、所定の基準周波数で自律的に発振すると共に、第一検出コイルL1のインダクタンス変化に応じて発振波に位相ズレを生じさせるように構成される。また、第二発振回路3は、所定の基準周波数で自律的に発振すると共に、第二検出コイルL2のインダクタンス変化に応じて発振波に位相ズレを生じさせるように構成される。例えば、シュミット発振回路の帰還回路に検出コイルL1、L2を配置すれば、検出コイルL1、L2のインダクタンス変化に応じて発振波に位相ズレが生じる発振回路2、3を構成することができる。   The first oscillation circuit 2 is configured to autonomously oscillate at a predetermined reference frequency and to cause a phase shift in the oscillation wave in accordance with an inductance change of the first detection coil L1. Further, the second oscillation circuit 3 is configured to autonomously oscillate at a predetermined reference frequency and to cause a phase shift in the oscillation wave in accordance with an inductance change of the second detection coil L2. For example, if the detection coils L1 and L2 are arranged in the feedback circuit of the Schmitt oscillation circuit, it is possible to configure the oscillation circuits 2 and 3 in which a phase shift occurs in the oscillation wave according to the inductance change of the detection coils L1 and L2.

シュミット発振回路は、シュミットインバータINVのヒステリシス特性を利用した発振回路であり、シュミットインバータINVと、シュミットインバータINVの入力側に接続されるコンデンサCと、シュミットインバータINVの出力をシュミットインバータINVの入力側に帰還させる帰還回路と、この帰還回路に介在する抵抗要素とを備えて構成されている。   The Schmitt oscillation circuit is an oscillation circuit that uses the hysteresis characteristics of the Schmitt inverter INV. The Schmitt inverter INV, the capacitor C connected to the input side of the Schmitt inverter INV, and the output of the Schmitt inverter INV are input to the Schmitt inverter INV. And a resistance element interposed in the feedback circuit.

初期状態のシュミット発振回路では、コンデンサCに電荷が溜まっていないため、コンデンサCの両端の電圧は0Vとなっている。このとき、シュミットインバータINVは、入力側電圧VinがV以下なので、出力がHレベル(5V)となる。シュミットインバータINVの出力側電圧Voutが5Vのときは、帰還回路2aを介してシュミットインバータINVの入力側に電流が流れるので、コンデンサCに電荷が徐々に溜まり、その両端の電圧が上昇する。そして、シュミットインバータINVの入力側電圧VinがVに達すると、シュミットインバータINVの出力がLレベル(0V)に切換わる。シュミットインバータINVの出力側電圧Voutが0Vになると、コンデンサCが放電し、シュミットインバータINVの入力側電圧Vinが徐々に降下する。そして、シュミットインバータINVの入力側電圧VinがVまで降下すると、シュミットインバータINVの出力がHレベルに切換わる。 In the Schmitt oscillation circuit in the initial state, since no charge is accumulated in the capacitor C, the voltage across the capacitor C is 0V. At this time, the Schmitt inverter INV has an output H level (5 V) because the input side voltage Vin is equal to or lower than VL . When the output side voltage Vout of the Schmitt inverter INV is 5V, a current flows to the input side of the Schmitt inverter INV via the feedback circuit 2a, so that electric charges are gradually accumulated in the capacitor C, and the voltage at both ends thereof increases. When the input side voltage Vin of the Schmitt inverter INV reaches VH , the output of the Schmitt inverter INV is switched to the L level (0 V). When the output side voltage Vout of the Schmitt inverter INV becomes 0V, the capacitor C is discharged, and the input side voltage Vin of the Schmitt inverter INV gradually decreases. When the input voltage Vin of the Schmitt inverter INV drops to VL , the output of the Schmitt inverter INV is switched to the H level.

以上の動作の繰り返しにより、シュミットインバータINVの出力側から所定周波数の矩形波が得られる。そして、シュミット発振回路の発振周波数f(=1/T)は、蓄電期間Tと放電期間Tにより決まり、蓄電期間Tと放電期間Tは、コンデンサC及び抵抗要素の定数により決まる。したがって、抵抗要素として帰還回路に検出コイルL1、L2を配置すれば、検出コイルL1、L2のインダクタンス変化に応じてシュミット発振回路の発振波に位相ズレを生じさせることができる。 By repeating the above operation, a rectangular wave having a predetermined frequency is obtained from the output side of the Schmitt inverter INV. The Schmidt oscillation circuit of the oscillation frequency f (= 1 / T) is determined by the energy storage time period T H discharge period T L, the electric storage period T H and the discharging period T L is determined by the constants of the capacitor C and a resistor element. Therefore, if the detection coils L1 and L2 are arranged in the feedback circuit as resistance elements, it is possible to cause a phase shift in the oscillation wave of the Schmitt oscillation circuit according to the inductance change of the detection coils L1 and L2.

なお、本発明の発振回路がシュミット発振回路に限定されないことは勿論であり、検出コイルL1、L2のインダクタンス変化に応じて発振波に位相ズレを生じさせる発振回路であれば、CR発振回路、LC発振回路、水晶発振回路などを用いてもよい。   Of course, the oscillation circuit of the present invention is not limited to the Schmitt oscillation circuit. If the oscillation circuit generates a phase shift in the oscillation wave according to the inductance change of the detection coils L1, L2, the CR oscillation circuit, LC An oscillation circuit, a crystal oscillation circuit, or the like may be used.

検出回路4は、例えば、CPU、ROM、RAM、I/Oなどが内蔵されたマイコン(1チップマイコン)を用いて構成され、ROMに書き込まれたプログラムに従って後述するトルク検出処理を行う。なお、検出回路4は、複数のマイコンで構成したり、一又は複数のICで構成することもできる。   The detection circuit 4 is configured using, for example, a microcomputer (one-chip microcomputer) including a CPU, a ROM, a RAM, an I / O, and the like, and performs a torque detection process to be described later according to a program written in the ROM. Note that the detection circuit 4 may be configured by a plurality of microcomputers, or may be configured by one or a plurality of ICs.

検出回路4は、第一発振回路2から出力される複数の発振波をカウントし、該カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間にもとづいて、第一方向の透磁率変化を検出する第一方向透磁率検出手段(第一位相ズレ検出手段)と、第二発振回路3から出力される複数の発振波をカウントし、該カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間にもとづいて、第二方向の透磁率変化を検出する第二方向透磁率検出手段(第二位相ズレ検出手段)と、第一方向の透磁率と第二方向の透磁率との差分にもとづいて、回転軸Sのトルクを検出するトルク検出手段(差分検出手段)とを備える。   The detection circuit 4 counts a plurality of oscillation waves output from the first oscillation circuit 2, performs an oscillation wave count process for determining whether or not the count number has reached a predetermined number N, and performs the oscillation wave count process. The first direction permeability detecting means (first phase deviation detecting means) for detecting the change in permeability in the first direction and the plurality of oscillation waves output from the second oscillation circuit 3 are counted based on the time required for Then, an oscillation wave count process for determining whether or not the count number has reached a predetermined number N is performed, and a second change in the permeability in the second direction is detected based on the time required for the oscillation wave count process. Directional permeability detecting means (second phase shift detecting means) and torque detecting means (difference detecting means) for detecting the torque of the rotating shaft S based on the difference between the magnetic permeability in the first direction and the magnetic permeability in the second direction. ).

このようにすると、磁歪式トルクセンサ1のトルク検出精度を向上させることができる。つまり、上記のように構成された第一発振回路2や第二発振回路3から出力される発振波においては、軸表面の透磁率変化が位相ズレとなって明確に現れ、しかも、発振波における位相ズレは、発振波の数だけ蓄積されるので、第一方向及び第二方向の透磁率変化を高精度に検出し、その差分から回転軸Sのトルクを高精度に検出することが可能になる。また、発振回路2、3から出力される発振波の数をカウントし、該カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間にもとづいて蓄積された発振波の位相ズレ(透磁率変化)を測定するので、発振波の位相ズレ成分を安価なデジタル回路を用いて高精度に測定することができる。しかも、その分解能は、時間測定用のカウンタ速度により決まり、発振回路2、3の基準周波数に依存しないので、検出対象に応じて発振回路2、3の基準周波数を最適化しつつ、高分解能の応力検出を行うことができる。   In this way, the torque detection accuracy of the magnetostrictive torque sensor 1 can be improved. That is, in the oscillating wave output from the first oscillating circuit 2 and the second oscillating circuit 3 configured as described above, the change in the magnetic permeability of the shaft surface clearly appears as a phase shift, Since the phase shift is accumulated by the number of oscillation waves, it is possible to detect the change in permeability in the first direction and the second direction with high accuracy, and to detect the torque of the rotating shaft S with high accuracy from the difference. Become. Also, the number of oscillation waves output from the oscillation circuits 2 and 3 is counted, and an oscillation wave count process is performed to determine whether or not the count number has reached a predetermined number N, which is necessary for the oscillation wave count process. Since the phase shift (permeability change) of the oscillation wave accumulated based on time is measured, the phase shift component of the oscillation wave can be measured with high accuracy using an inexpensive digital circuit. Moreover, since the resolution is determined by the counter speed for time measurement and does not depend on the reference frequency of the oscillation circuits 2 and 3, high-resolution stress can be achieved while optimizing the reference frequency of the oscillation circuits 2 and 3 according to the detection target. Detection can be performed.

第一発振回路2と第二発振回路3は、相互干渉を避けるために、交互に駆動される。このようにすると、相互干渉による検出精度の低下を回避することができる。しかも、第一検出コイルL1の検出領域と第二検出コイルL2の検出領域を、相互干渉を考慮することなく、任意に設定することができるので、使用条件に応じた検出領域の最適化が容易となる。   The first oscillation circuit 2 and the second oscillation circuit 3 are driven alternately to avoid mutual interference. In this way, it is possible to avoid a decrease in detection accuracy due to mutual interference. In addition, since the detection area of the first detection coil L1 and the detection area of the second detection coil L2 can be arbitrarily set without considering mutual interference, it is easy to optimize the detection area according to use conditions. It becomes.

また、第一発振回路2と第二発振回路3を交互駆動させるにあたり、検出回路4は、第一発振回路2の駆動終了時及び第二発振回路3の駆動終了時に、それぞれ、第一発振回路2に係る最新の測定時間と第二発振回路3に係る最新の測定時間との差分を求めて出力するように構成される。このようにすると、応答周期を短縮し、良好な応答性が得られる。つまり、第一発振回路2及び第二発振回路3の駆動が終了した時点で差分を求めるのではなく、各発振回路2、3の駆動が終了する毎に差分を求めるので、前者に比べて応答周期を約1/2に短縮することができる。   Further, when the first oscillation circuit 2 and the second oscillation circuit 3 are alternately driven, the detection circuit 4 has the first oscillation circuit at the end of the driving of the first oscillation circuit 2 and at the end of the driving of the second oscillation circuit 3, respectively. The difference between the latest measurement time according to 2 and the latest measurement time according to the second oscillation circuit 3 is obtained and output. In this way, the response cycle is shortened and good responsiveness can be obtained. That is, the difference is not obtained when the driving of the first oscillation circuit 2 and the second oscillation circuit 3 is completed, but is obtained every time the driving of the oscillation circuits 2 and 3 is completed. The period can be shortened to about ½.

第一検出コイルL1及び第二検出コイルL2は、軸表面における検出領域及び検出方向を限定するために、軸表面との間で閉磁路を構成することが好ましい。つまり、本発明の磁歪式トルクセンサ1では、トルクに応じた発振波の位相ズレを、発振波の数だけ蓄積して検出するので、発振波の位相ズレに含まれる誤差成分も蓄積されてしまうことになるが、軸表面における検出領域や検出方向を限定することにより、SN比を高めることができるので、蓄積される誤差成分を抑制し、検出精度を向上させることができる。また、検出コイルL1、L2側で検出方向を限定することができるので、軸表面に、溝、スリット、薄膜などで縞模様を加工する必要がない。その結果、これらの加工が許容されない回転軸Sであっても、本発明によるトルク検出の適用が可能となる。   The first detection coil L1 and the second detection coil L2 preferably form a closed magnetic path with the shaft surface in order to limit the detection region and the detection direction on the shaft surface. That is, in the magnetostrictive torque sensor 1 of the present invention, the phase shift of the oscillating wave corresponding to the torque is accumulated and detected by the number of oscillating waves, so that an error component included in the phase shift of the oscillating wave is also accumulated. However, by limiting the detection region and detection direction on the shaft surface, the SN ratio can be increased, so that accumulated error components can be suppressed and detection accuracy can be improved. Further, since the detection direction can be limited on the detection coils L1 and L2 side, it is not necessary to process a striped pattern with grooves, slits, thin films, or the like on the shaft surface. As a result, the torque detection according to the present invention can be applied even to the rotating shaft S in which these processes are not allowed.

磁歪式トルクセンサ1でトルクを検出する回転軸Sの軸表面は、メッキ法により成膜された磁歪膜5であることが好ましい。例えば、回転軸Sの一部又は全体の領域に、ニッケル合金からなる磁歪膜5を全周に亘ってメッキする。このようにすると、トルクに応じた磁歪膜5における磁歪の逆効果にもとづいて、トルクを高精度に検出できるだけでなく、トルク検出におけるヒステリシスを抑えることができる。しかも、本発明の磁歪式トルクセンサ1では、メッキ法により成膜された磁歪膜5であっても、十分な検出精度が得られるので、接着法、スパッタ法、真空蒸着法などでアモルファスなどの磁歪膜を形成する場合に比べ、大幅なコストダウンが図れるだけでなく、ニッケルメッキなどが施された既存の部材(樹脂を含む)を対象として、高精度なトルク検出を行うことができる。   The shaft surface of the rotating shaft S for detecting torque by the magnetostrictive torque sensor 1 is preferably a magnetostrictive film 5 formed by plating. For example, a magnetostrictive film 5 made of a nickel alloy is plated over the entire circumference of a part or the entire region of the rotating shaft S. In this way, not only can the torque be detected with high accuracy based on the inverse effect of magnetostriction in the magnetostrictive film 5 in accordance with the torque, but also hysteresis in torque detection can be suppressed. Moreover, in the magnetostrictive torque sensor 1 of the present invention, sufficient detection accuracy can be obtained even with the magnetostrictive film 5 formed by the plating method. Compared to the case of forming a magnetostrictive film, not only can the cost be reduced significantly, but also high-accuracy torque detection can be performed for existing members (including resin) that have been plated with nickel.

次に、本発明における発振波の位相ズレ蓄積作用について、図2及び図3を参照して説明する。   Next, the phase shift accumulation action of the oscillation wave in the present invention will be described with reference to FIGS.

図2は、発振波の位相ズレ蓄積作用(検出波形始端部を拡大)を示す説明図、図3は、発振波の位相ズレ蓄積作用(検出波形終端部を拡大)を示す説明図である。これらの図に示す波形は、一回の検出処理における発振回路2、3の出力波形であって、発振回路2、3から出力される発振波の数をカウントし、カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間にもとづいて、蓄積された発振波の位相ズレを測定するにあたり、発振波カウント処理における発振波のカウント数Nを100とした場合の波形であり、上側の波形は、回転軸Sにトルクを加えない場合を示し、下側の波形は、回転軸Sにトルクを加えた場合を示している。これらの図から明らかなように、検出波形の始端部、つまり発振波カウント処理における発振波のカウント数Nが少ない段階では、位相ズレがあまり蓄積されていないため、その差が明確ではないが(図2参照)、カウント数Nが多くなると、発振波の位相ズレが蓄積され、その差が明確になるので、位相ズレの測定が容易になることがわかる(図3参照)。そして、発振波の位相ズレは、回転軸Sに作用するトルクに比例して大きくなるので、発振波の位相ズレにもとづいて、回転軸Sに作用するトルクを高精度に測定することが可能になる。また、各発振回路2、3から出力される発振波の位相ズレは、磁歪の逆効果にもとづいて背反方向に現れるので、その差分にもとづいて回転軸Sのトルク量及びトルク極性を検出できるだけでなく、温度誤差や変位誤差が相殺された検出値を得ることができる。   FIG. 2 is an explanatory diagram showing the phase shift accumulation action of the oscillation wave (enlarged detection waveform start end), and FIG. 3 is an explanatory view showing the phase shift accumulation action of the oscillation wave (enlargement of the detection waveform end section). The waveforms shown in these figures are the output waveforms of the oscillation circuits 2 and 3 in one detection process. The number of oscillation waves output from the oscillation circuits 2 and 3 is counted, and the count number is set to a predetermined number N. Oscillation wave count processing is performed to determine whether or not the oscillation wave has been reached, and when measuring the phase deviation of the accumulated oscillation wave based on the time required for the oscillation wave count processing, the oscillation wave count in the oscillation wave count processing is counted. The waveform when the number N is 100 is shown. The upper waveform indicates a case where no torque is applied to the rotation axis S, and the lower waveform indicates a case where torque is applied to the rotation axis S. As is clear from these figures, since the phase shift is not accumulated so much at the beginning of the detected waveform, that is, at the stage where the number N of oscillation waves in the oscillation wave count processing is small, the difference is not clear ( It can be seen that when the count number N increases, the phase shift of the oscillation wave is accumulated and the difference becomes clear, so that the phase shift can be easily measured (see FIG. 3). Since the phase shift of the oscillation wave increases in proportion to the torque acting on the rotation axis S, the torque acting on the rotation axis S can be measured with high accuracy based on the phase shift of the oscillation wave. Become. Further, since the phase shift of the oscillation wave output from each oscillation circuit 2 and 3 appears in a contradictory direction based on the inverse effect of magnetostriction, it is only possible to detect the torque amount and torque polarity of the rotating shaft S based on the difference. Therefore, it is possible to obtain a detection value in which the temperature error and the displacement error are offset.

次に、検出回路4の具体的な検出処理手順について、図4〜図7を参照して説明する。   Next, a specific detection processing procedure of the detection circuit 4 will be described with reference to FIGS.

図4に示すトルク検出処理では、まず、初期設定(S11:発振波カウント数Nの初期値設定を含む)を行った後、カウント数変更処理(S12)を行い、前回の検出方向を判断する(S13)。ここで、前回の検出方向が第二方向(又は無し)であると判断した場合は、第一方向透磁率検出処理(S14:第一位相ズレ検出手段)を実行し、前回の検出方向が第一方向であると判断した場合は、第二方向透磁率検出処理(S15:第二位相ズレ検出手段)を実行する。その後、透磁率検出処理(S14、S15)で得られた最新の第一方向透磁率検出値(第一発振回路2に係る測定時間)と最新の第二方向透磁率検出値(第二発振回路3に係る測定時間)の差分を演算すると共に(S16:差分検出手段)、演算した差分を所定の検出信号形式に変換して出力することにより(S17)、一回のトルク検出処理が終了する。   In the torque detection process shown in FIG. 4, first, after initial setting (S11: including initial value setting of the oscillation wave count number N), the count number change process (S12) is performed to determine the previous detection direction. (S13). Here, when it is determined that the previous detection direction is the second direction (or none), the first direction permeability detection process (S14: first phase shift detection means) is executed, and the previous detection direction is the first direction. If it is determined that the direction is one direction, a second direction permeability detection process (S15: second phase shift detection means) is executed. Thereafter, the latest first direction permeability detection value (measurement time according to the first oscillation circuit 2) obtained in the permeability detection process (S14, S15) and the latest second direction permeability detection value (second oscillation circuit). 3 is calculated (S16: difference detection means), and the calculated difference is converted into a predetermined detection signal format and output (S17), thereby completing one torque detection process. .

図5に示すカウント数変更処理では、まず、カウント数変更信号の入力を判断し(S21)、該判断結果がYESの場合は、カウント数変更信号に含まれる発振波カウント数Nを読み取り(S22)、これに従って発振波カウント数Nを変更する(S23)。   In the count number changing process shown in FIG. 5, first, the input of the count number change signal is determined (S21). If the determination result is YES, the oscillation wave count number N included in the count number change signal is read (S22). In accordance with this, the oscillation wave count number N is changed (S23).

図6に示す第一方向透磁率検出処理では、第一発振回路2の駆動を開始した後(S31)、カウンタクリア処理(S32)と、発振波カウント処理(S33、S34)と、時間測定処理(S35)を実行し、その後に第一発振回路2の駆動を停止させる(S36)。カウンタクリア処理は、発振波カウンタ及び時間計測カウンタをクリアする処理である(S32)。また、発振波カウント処理は、第一発振回路2から出力される発振波の数をカウントし(S33)、該カウント数が所定数Nに達したか否かを判断する処理である(S34)。また、時間測定処理は、発振波のカウント数がNになったら、時間計測カウンタ値(第一方向透磁率検出値)を読み込む処理である(S35)。   In the first direction magnetic permeability detection process shown in FIG. 6, after the drive of the first oscillation circuit 2 is started (S31), the counter clear process (S32), the oscillation wave count process (S33, S34), and the time measurement process (S35) is executed, and then the driving of the first oscillation circuit 2 is stopped (S36). The counter clear process is a process for clearing the oscillation wave counter and the time measurement counter (S32). The oscillation wave counting process is a process for counting the number of oscillation waves output from the first oscillation circuit 2 (S33) and determining whether the count number has reached a predetermined number N (S34). . The time measurement process is a process of reading a time measurement counter value (first-direction magnetic permeability detection value) when the count number of oscillation waves reaches N (S35).

図7に示す第二方向透磁率検出処理では、第二発振回路3の駆動を開始した後(S41)、カウンタクリア処理(S42)と、発振波カウント処理(S43、S44)と、時間測定処理(S45)を実行し、その後に第二発振回路3の駆動を停止させる(S46)。カウンタクリア処理は、発振波カウンタ及び時間計測カウンタをクリアする処理である(S42)。また、発振波カウント処理は、第二発振回路3から出力される発振波の数をカウントし(S43)、該カウント数が所定数Nに達したか否かを判断する処理である(S44)。また、時間測定処理は、発振波のカウント数がNになったら、時間計測カウンタ値(第二方向透磁率検出値)を読み込む処理である(S45)。   In the second direction magnetic permeability detection process shown in FIG. 7, after the driving of the second oscillation circuit 3 is started (S41), the counter clear process (S42), the oscillation wave count process (S43, S44), and the time measurement process (S45) is executed, and then the driving of the second oscillation circuit 3 is stopped (S46). The counter clear process is a process for clearing the oscillation wave counter and the time measurement counter (S42). The oscillation wave counting process is a process for counting the number of oscillation waves output from the second oscillation circuit 3 (S43) and determining whether or not the count number has reached a predetermined number N (S44). . The time measurement process is a process of reading a time measurement counter value (second-direction magnetic permeability detection value) when the count number of oscillation waves reaches N (S45).

図8は、比較例(A)と本実施例(B)の応答周期を示している。つまり、第一発振回路2と第二発振回路3を交互駆動させるにあたり、第一発振回路2の駆動終了時及び第二発振回路3の駆動終了時に、それぞれ、第一発振回路2に係る最新の測定時間と第二発振回路3に係る最新の測定時間との差分を求めて出力する本実施例の応答周期は、第一発振回路2及び第二発振回路3の駆動が終了した時点で差分を求めて出力する比較例の応答周期に比べ、約1/2に短縮されていることがわかる。なお、一方の発振回路の駆動停止に伴う差分処理開始時に、他方の発振回路の駆動を開始し、差分処理と他方の発振回路に係る位相ズレ検出処理とを並列的に行うようにしてもよい。このようにすると、応答周期をさらに短縮することが可能になる。   FIG. 8 shows the response periods of the comparative example (A) and the present example (B). That is, when the first oscillation circuit 2 and the second oscillation circuit 3 are alternately driven, the latest oscillation circuit 2 related to the first oscillation circuit 2 is respectively obtained when the first oscillation circuit 2 is driven and when the second oscillation circuit 3 is driven. The response period of the present embodiment, which calculates and outputs the difference between the measurement time and the latest measurement time related to the second oscillation circuit 3, is the difference when the driving of the first oscillation circuit 2 and the second oscillation circuit 3 is completed. It can be seen that the response cycle of the comparative example obtained and output is shortened to about ½. Note that when the difference processing is started when the driving of one oscillation circuit is stopped, the other oscillation circuit is started to perform the difference processing and the phase shift detection processing related to the other oscillation circuit in parallel. . In this way, the response cycle can be further shortened.

叙述の如く構成された本実施形態によれば、軸表面に生じる磁歪の逆効果を利用して回転軸Sのトルクを検出する磁歪式トルクセンサ1であって、軸表面において第一方向の透磁率変化を検出すべく配置され、当該透磁率変化をインダクタンスの変化として検出する第一検出コイルL1と、軸表面において第二方向の透磁率変化を検出すべく配置され、当該透磁率変化をインダクタンスの変化として検出する第二検出コイルL2と、所定の基準周波数で自律的に発振すると共に、第一検出コイルL1のインダクタンス変化に応じて発振波に位相ズレを生じさせる第一発振回路2と、所定の基準周波数で自律的に発振すると共に、第二検出コイルL2のインダクタンス変化に応じて発振波に位相ズレを生じさせる第二発振回路3と、第一発振回路2から出力される複数の発振波をカウントし、該カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間にもとづいて、第一方向の透磁率変化を検出し、第二発振回路3から出力される複数の発振波をカウントし、該カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間にもとづいて、第二方向の透磁率変化を検出し、第一方向の透磁率と第二方向の透磁率との差分にもとづいて、回転軸Sのトルクを検出する検出回路4とを備えるので、トルク検出精度を向上させることができる。   According to the present embodiment configured as described above, the magnetostrictive torque sensor 1 detects the torque of the rotating shaft S by utilizing the inverse effect of magnetostriction generated on the shaft surface, and is transparent in the first direction on the shaft surface. A first detection coil L1 that is arranged to detect a change in magnetic permeability and detects the change in permeability as a change in inductance, and is arranged to detect a change in permeability in the second direction on the shaft surface. A second detection coil L2 that detects the change of the first detection circuit, a first oscillation circuit 2 that oscillates autonomously at a predetermined reference frequency, and causes a phase shift in the oscillation wave in accordance with an inductance change of the first detection coil L1, A second oscillation circuit 3 that autonomously oscillates at a predetermined reference frequency and generates a phase shift in the oscillation wave in accordance with a change in inductance of the second detection coil L2, and a first oscillation circuit A plurality of oscillation waves output from 2 are counted, and an oscillation wave count process is performed to determine whether or not the count number has reached a predetermined number N. Based on the time required for the oscillation wave count process, Detecting a change in permeability in one direction, counting a plurality of oscillation waves output from the second oscillation circuit 3, and performing an oscillation wave count process for determining whether or not the count number has reached a predetermined number N; Based on the time required for the oscillation wave counting process, a change in the magnetic permeability in the second direction is detected, and based on the difference between the magnetic permeability in the first direction and the magnetic permeability in the second direction, the torque of the rotating shaft S is calculated. Since the detection circuit 4 for detection is provided, torque detection accuracy can be improved.

つまり、上記のように構成された第一発振回路2や第二発振回路3から出力される発振波においては、軸表面の透磁率変化が位相ズレとなって明確に現れ、しかも、発振波における位相ズレは、発振波の数だけ蓄積されるので、第一方向及び第二方向の透磁率変化を高精度に検出し、その差分から回転軸Sのトルクを高精度に検出することが可能になる。また、発振回路2、3から出力される発振波の数をカウントし、該カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間にもとづいて蓄積された発振波の位相ズレ(透磁率変化)を測定するので、発振波の位相ズレ成分を安価なデジタル回路を用いて高精度に測定することができる。しかも、その分解能は、時間測定用のカウンタ速度により決まり、発振回路2、3の基準周波数に依存しないので、検出対象に応じて発振回路2、3の基準周波数を最適化しつつ、高分解能の応力検出を行うことができる。   That is, in the oscillating wave output from the first oscillating circuit 2 and the second oscillating circuit 3 configured as described above, the change in the magnetic permeability of the shaft surface clearly appears as a phase shift, Since the phase shift is accumulated by the number of oscillation waves, it is possible to detect the change in permeability in the first direction and the second direction with high accuracy, and to detect the torque of the rotating shaft S with high accuracy from the difference. Become. Also, the number of oscillation waves output from the oscillation circuits 2 and 3 is counted, and an oscillation wave count process is performed to determine whether or not the count number has reached a predetermined number N, which is necessary for the oscillation wave count process. Since the phase shift (permeability change) of the oscillation wave accumulated based on time is measured, the phase shift component of the oscillation wave can be measured with high accuracy using an inexpensive digital circuit. Moreover, since the resolution is determined by the counter speed for time measurement and does not depend on the reference frequency of the oscillation circuits 2 and 3, high-resolution stress can be achieved while optimizing the reference frequency of the oscillation circuits 2 and 3 according to the detection target. Detection can be performed.

また、第一発振回路2と第二発振回路3は、相互干渉を避けるために、交互に駆動されるので、相互干渉による検出精度の低下を回避することができる。しかも、第一検出コイルL1の検出領域と第二検出コイルL2の検出領域を、相互干渉を考慮することなく、任意に設定することができるので、使用条件に応じた検出領域の最適化が容易となる。   Further, since the first oscillation circuit 2 and the second oscillation circuit 3 are driven alternately in order to avoid mutual interference, it is possible to avoid a decrease in detection accuracy due to mutual interference. In addition, since the detection area of the first detection coil L1 and the detection area of the second detection coil L2 can be arbitrarily set without considering mutual interference, it is easy to optimize the detection area according to use conditions. It becomes.

また、第一発振回路2と第二発振回路3を交互駆動させるにあたり、検出回路4は、第一発振回路2の駆動終了時及び第二発振回路3の駆動終了時に、それぞれ、第一発振回路2に係る最新の測定時間と第二発振回路3に係る最新の測定時間との差分を求めて出力するので、応答周期を短縮し、良好な応答性が得られる。つまり、第一発振回路2及び第二発振回路3の駆動が終了した時点で差分を求めるのではなく、各発振回路2、3の駆動が終了する毎に差分を求めるので、前者に比べて応答周期を約1/2に短縮することができる。   Further, when the first oscillation circuit 2 and the second oscillation circuit 3 are alternately driven, the detection circuit 4 has the first oscillation circuit at the end of the driving of the first oscillation circuit 2 and at the end of the driving of the second oscillation circuit 3, respectively. Since the difference between the latest measurement time according to 2 and the latest measurement time according to the second oscillation circuit 3 is obtained and output, the response cycle is shortened and good responsiveness is obtained. That is, the difference is not obtained when the driving of the first oscillation circuit 2 and the second oscillation circuit 3 is completed, but is obtained every time the driving of the oscillation circuits 2 and 3 is completed. The period can be shortened to about ½.

[第二実施形態]
つぎに、本発明の第二実施形態に係る金属状態検出装置(磁歪式トルクセンサ)について、図9〜図11を参照して説明する。ただし、第一実施形態と共通の部分については、第一実施形態と同一符号を付し、第一実施形態の説明を援用する。
[Second Embodiment]
Next, a metal state detection device (magnetostrictive torque sensor) according to a second embodiment of the present invention will be described with reference to FIGS. However, about the part which is common with 1st embodiment, the same code | symbol as 1st embodiment is attached | subjected and description of 1st embodiment is used.

図9に示すように、第二実施形態に係る磁歪式トルクセンサ11は、各発振回路2、3がそれぞれ複数の検出コイルL1、L2を備える点が第一実施形態と相違している。具体的に説明すると、第一発振回路2は、直列(又は並列)に接続された複数(例えば、4つ)の第一検出コイルL1を備え、第二発振回路3は、直列(又は並列)に接続された複数(例えば、4つ)の第二検出コイルL2を備える。このようにすると、第一検出コイルL1及び第二検出コイルL2を、軸表面にそれぞれ複数配置することにより、軸表面に存在する温度や材質のばらつき、さらには、検出コイルL1、L2と軸表面との間のギャップ変動などを平均化することができるので、これらの誤差要因による検出精度の低下を回避できる。   As shown in FIG. 9, the magnetostrictive torque sensor 11 according to the second embodiment is different from the first embodiment in that each oscillation circuit 2, 3 includes a plurality of detection coils L1, L2. More specifically, the first oscillation circuit 2 includes a plurality of (for example, four) first detection coils L1 connected in series (or parallel), and the second oscillation circuit 3 is in series (or parallel). A plurality of (for example, four) second detection coils L2 connected to the. In this way, by arranging a plurality of first detection coils L1 and second detection coils L2 on the shaft surface, temperature and material variations existing on the shaft surface, and further, the detection coils L1, L2 and the shaft surface Variation in the gap between the two can be averaged, so that a decrease in detection accuracy due to these error factors can be avoided.

図10及び図11に示すように、複数の第一検出コイルL1と複数の第二検出コイルL2は、回転軸Sの同一円周上に並ぶように配置することが好ましい。このようにすると、軸表面の円周方向に存在する温度や材質のばらつき、さらには、検出コイルL1、L2と軸表面との間のギャップ変動などを平均化することができるのだけでなく、軸方向に存在する温度勾配の影響を最小化し、これらの誤差要因による検出精度の低下を回避できる。なお、複数の第一検出コイルL1及び複数の第二検出コイルL2は、環状のボビンBで所定の位置に保持される。ボビンBは、一体型でも良いし、分割型であっても良い。   As shown in FIGS. 10 and 11, the plurality of first detection coils L <b> 1 and the plurality of second detection coils L <b> 2 are preferably arranged so as to be aligned on the same circumference of the rotation axis S. In this way, not only can the temperature and material variations existing in the circumferential direction of the shaft surface, and also the gap fluctuation between the detection coils L1, L2 and the shaft surface, etc. be averaged, It is possible to minimize the influence of the temperature gradient existing in the axial direction and to avoid a decrease in detection accuracy due to these error factors. The plurality of first detection coils L1 and the plurality of second detection coils L2 are held at predetermined positions by the annular bobbin B. The bobbin B may be an integral type or a divided type.

複数の第一検出コイルL1と複数の第二検出コイルL2を、回転軸Sの同一円周上に並ぶように配置する場合、図9に示すように、第一検出コイルL1の検出領域と第二検出コイルL2の検出領域とが交互になるような配置構成とすることができる。このようにすると、第一検出コイルL1の検出領域と第二検出コイルL2の検出領域とのズレに起因する誤差の発生を抑制できるだけでなく、この誤差を回転軸Sの回転にもとづいて排除することができる。   When the plurality of first detection coils L1 and the plurality of second detection coils L2 are arranged on the same circumference of the rotation axis S, as shown in FIG. An arrangement configuration in which the detection areas of the two detection coils L2 are alternated can be employed. In this way, it is possible not only to suppress the occurrence of an error due to the deviation between the detection region of the first detection coil L1 and the detection region of the second detection coil L2, but also to eliminate this error based on the rotation of the rotating shaft S. be able to.

また、複数の第一検出コイルL1と複数の第二検出コイルL2を、回転軸Sの同一円周上に並ぶように配置する場合、図10に示すように、第一検出コイルL1の検出領域と第二検出コイルL2の検出領域とが重なるような配置構成としてもよい。例えば、第一検出コイルL1と第二検出コイルL2の高さ寸法を相違させ、平面視で交差するように配置する。このようにすると、第一検出コイルL1の検出領域と第二検出コイルL2の検出領域とのズレに起因する誤差の発生を防止することができる。   Further, when the plurality of first detection coils L1 and the plurality of second detection coils L2 are arranged on the same circumference of the rotation axis S, as shown in FIG. 10, the detection region of the first detection coil L1 Further, the arrangement may be such that the detection area of the second detection coil L2 overlaps. For example, the height dimensions of the first detection coil L1 and the second detection coil L2 are made different from each other and arranged so as to intersect in plan view. By doing so, it is possible to prevent the occurrence of an error due to the deviation between the detection region of the first detection coil L1 and the detection region of the second detection coil L2.

[第三実施形態]
つぎに、本発明の第三実施形態に係る金属状態検出装置(引張・圧縮応力センサ)について、図12を参照して説明する。ただし、第一実施形態と共通の部分については、第一実施形態と同一符号を付し、第一実施形態の説明を援用する。
[Third embodiment]
Next, a metal state detection device (tensile / compressive stress sensor) according to a third embodiment of the present invention will be described with reference to FIG. However, about the part which is common with 1st embodiment, the same code | symbol as 1st embodiment is attached | subjected and description of 1st embodiment is used.

図12に示される引張・圧縮応力センサ21は、第一実施形態の磁歪式トルクセンサ1と略同じ構成であるが、第一検出コイルL1及び第二検出コイルL2の配置方向が第二実施形態の磁歪式トルクセンサ1と相違している。具体的に説明すると、引張・圧縮応力センサ21は、軸表面に生じる磁歪の逆効果を利用して静止軸Sの引張応力及び圧縮応力を検出する金属状態検出装置であって、第一検出コイルL1は、軸表面において軸方向の透磁率変化を検出するように配置され、第二検出コイルL2は、軸表面において周方向の透磁率変化を検出するように配置されている。つまり、軸方向の透磁率は、引張応力及び圧縮応力に応じて背反的に変化するため、第一検出コイルL1によって引張応力及び圧縮応力を良好に検出することができる。また、周方向の透磁率は、引張応力及び圧縮応力に応じて殆ど変化しないため、第二検出コイルL2によって温度変化を検出し、第一検出コイル1の温度補償を行うことができる。   The tensile / compressive stress sensor 21 shown in FIG. 12 has substantially the same configuration as the magnetostrictive torque sensor 1 of the first embodiment, but the arrangement direction of the first detection coil L1 and the second detection coil L2 is the second embodiment. This is different from the magnetostrictive torque sensor 1 of FIG. More specifically, the tensile / compressive stress sensor 21 is a metal state detection device that detects the tensile stress and the compressive stress of the stationary shaft S using the inverse effect of magnetostriction generated on the shaft surface. L1 is disposed so as to detect an axial permeability change on the shaft surface, and the second detection coil L2 is disposed so as to detect a circumferential permeability change on the shaft surface. That is, since the magnetic permeability in the axial direction changes inversely according to the tensile stress and the compressive stress, the first detection coil L1 can detect the tensile stress and the compressive stress satisfactorily. Further, since the magnetic permeability in the circumferential direction hardly changes depending on the tensile stress and the compressive stress, the temperature change of the first detection coil 1 can be performed by detecting the temperature change by the second detection coil L2.

なお、本発明は、前記実施形態に限定されないことは勿論であって、金属の状態を検出する金属状態検出装置や金属状態検出方法であれば、磁歪式トルクセンサや引張・圧縮応力センサに限らず、金属の疲労、損傷、欠陥、材質などの状態検出にも適用することができる。   Of course, the present invention is not limited to the above-described embodiment, and any magnetostrictive torque sensor or tensile / compressive stress sensor may be used as long as it is a metal state detection device or a metal state detection method for detecting a metal state. In addition, it can be applied to state detection of metal fatigue, damage, defect, material, and the like.

本発明の第一実施形態に係る金属状態検出装置(磁歪式トルクセンサ)の構成を示すブロック図である。It is a block diagram which shows the structure of the metal state detection apparatus (magnetostrictive torque sensor) which concerns on 1st embodiment of this invention. 発振波の位相ズレ蓄積作用(検出波形始端部を拡大)を示す説明図である。It is explanatory drawing which shows the phase shift accumulation effect | action (enlarged detection waveform start end part) of an oscillation wave. 発振波の位相ズレ蓄積作用(検出波形終端部を拡大)を示す説明図である。It is explanatory drawing which shows the phase shift accumulation effect | action (an enlarged detection waveform termination | terminus part) of an oscillation wave. 検出回路におけるトルク検出処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the torque detection process in a detection circuit. 検出回路におけるカウント数変更処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the count number change process in a detection circuit. 検出回路における第一方向透磁率検出処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the 1st direction magnetic permeability detection process in a detection circuit. 検出回路における第二方向透磁率検出処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the 2nd direction magnetic permeability detection process in a detection circuit. (A)は比較例に係るタイミングチャート、(B)は実施例に係るタイミングチャートである。(A) is a timing chart according to the comparative example, and (B) is a timing chart according to the embodiment. 本発明の第二実施形態に係る金属状態検出装置(磁歪式トルクセンサ)の構成を示すブロック図である。It is a block diagram which shows the structure of the metal state detection apparatus (magnetostrictive torque sensor) which concerns on 2nd embodiment of this invention. (A)は検出コイルの第一の配置例を示す展開平面図、(B)は検出コイルの第一の配置例を示す側面図である。(A) is an expanded plan view showing a first arrangement example of detection coils, and (B) is a side view showing a first arrangement example of detection coils. (A)は検出コイルの第二の配置例を示す展開平面図、(B)は検出コイルの第二の配置例を示す側面図である。(A) is a development top view showing the 2nd example of arrangement of a detection coil, and (B) is a side view showing the 2nd example of arrangement of a detection coil. 本発明の第三実施形態に係る金属状態検出装置(引張・圧縮応力センサ)の構成を示すブロック図である。It is a block diagram which shows the structure of the metal state detection apparatus (tensile / compressive stress sensor) which concerns on 3rd embodiment of this invention.

符号の説明Explanation of symbols

1、11 磁歪式トルクセンサ
2 第一発振回路
3 第二発振回路
4 検出回路
L1 第一検出コイル
L2 第二検出コイル
S 回転軸
21 引張・圧縮応力センサ
1, 11 Magnetostrictive torque sensor 2 First oscillation circuit 3 Second oscillation circuit 4 Detection circuit L1 First detection coil L2 Second detection coil S Rotating shaft 21 Tension / compression stress sensor

Claims (2)

金属の状態を検出する金属状態検出装置であって、
金属の状態変化に応じてインダクタンスが変化するように配置される第一検出コイル及び第二検出コイルと、
所定の基準周波数で自律的に発振すると共に、第一検出コイルのインダクタンス変化に応じて発振波に位相ズレを生じさせる第一発振回路と、
所定の基準周波数で自律的に発振すると共に、第二検出コイルのインダクタンス変化に応じて発振波に位相ズレを生じさせる第二発振回路と、
第一発振回路から出力される複数の発振波をカウントし、該カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間測定にもとづいて、蓄積された発振波の位相ズレを検出する第一位相ズレ検出手段と、
第二発振回路から出力される複数の発振波をカウントし、該カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間測定にもとづいて、蓄積された発振波の位相ズレを検出する第二位相ズレ検出手段と、
第一発振回路に係る測定時間と第二発振回路に係る測定時間との差分を求めて出力する差分検出手段とを備え、
第一発振回路と第二発振回路は、相互干渉を避けるために、交互に駆動され、
差分検出手段は、第一発振回路の駆動終了時及び第二発振回路の駆動終了時に、それぞれ、第一発振回路に係る最新の測定時間と第二発振回路に係る最新の測定時間との差分を求めて出力する
ことを特徴とする金属状態検出装置。
A metal state detection device for detecting a metal state,
A first detection coil and a second detection coil arranged such that the inductance changes in accordance with a change in the state of the metal;
A first oscillation circuit that oscillates autonomously at a predetermined reference frequency and causes a phase shift in an oscillation wave in accordance with an inductance change of the first detection coil;
A second oscillation circuit that oscillates autonomously at a predetermined reference frequency and causes a phase shift in the oscillation wave in accordance with an inductance change of the second detection coil;
Counting a plurality of oscillating waves output from the first oscillating circuit, performing an oscillating wave counting process for determining whether or not the counted number has reached a predetermined number N, and measuring the time required for the oscillating wave counting process First, a first phase shift detecting means for detecting a phase shift of the accumulated oscillation wave,
Counts a plurality of oscillation waves output from the second oscillation circuit, performs an oscillation wave count process for determining whether or not the count number has reached a predetermined number N, and measures the time required for the oscillation wave count process. First, a second phase shift detecting means for detecting a phase shift of the accumulated oscillation wave,
A difference detecting means for obtaining and outputting a difference between the measurement time according to the first oscillation circuit and the measurement time according to the second oscillation circuit;
The first oscillation circuit and the second oscillation circuit are driven alternately in order to avoid mutual interference,
The difference detection means calculates the difference between the latest measurement time related to the first oscillation circuit and the latest measurement time related to the second oscillation circuit at the end of driving of the first oscillation circuit and at the end of driving of the second oscillation circuit, respectively. A metal state detection device characterized by obtaining and outputting.
金属の状態を検出する金属状態検出方法であって、
金属の状態変化に応じてインダクタンスが変化するように配置される第一検出コイル及び第二検出コイルと、
所定の基準周波数で自律的に発振すると共に、第一検出コイルのインダクタンス変化に応じて発振波に位相ズレを生じさせる第一発振回路と、
所定の基準周波数で自律的に発振すると共に、第二検出コイルのインダクタンス変化に応じて発振波に位相ズレを生じさせる第二発振回路とが用いられ、
第一発振回路から出力される複数の発振波をカウントし、該カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間測定にもとづいて、蓄積された発振波の位相ズレを検出し、
第二発振回路から出力される複数の発振波をカウントし、該カウント数が所定数Nに達したか否かを判断する発振波カウント処理を行い、該発振波カウント処理に要した時間測定にもとづいて、蓄積された発振波の位相ズレを検出し、
第一発振回路に係る測定時間と第二発振回路に係る測定時間との差分を求めて出力するにあたり、
第一発振回路と第二発振回路を、相互干渉を避けるために、交互に駆動させ、
第一発振回路の駆動終了時及び第二発振回路の駆動終了時に、それぞれ、第一発振回路に係る最新の測定時間と第二発振回路に係る最新の測定時間との差分を求めて出力する
ことを特徴とする金属状態検出方法。
A metal state detection method for detecting a metal state,
A first detection coil and a second detection coil arranged such that the inductance changes in accordance with a change in the state of the metal;
A first oscillation circuit that oscillates autonomously at a predetermined reference frequency and causes a phase shift in an oscillation wave in accordance with an inductance change of the first detection coil;
A second oscillation circuit that oscillates autonomously at a predetermined reference frequency and generates a phase shift in the oscillation wave in accordance with an inductance change of the second detection coil is used.
Counting a plurality of oscillating waves output from the first oscillating circuit, performing an oscillating wave counting process for determining whether or not the counted number has reached a predetermined number N, and measuring the time required for the oscillating wave counting process First, detect the phase shift of the accumulated oscillation wave,
Counts a plurality of oscillation waves output from the second oscillation circuit, performs an oscillation wave count process for determining whether or not the count number has reached a predetermined number N, and measures the time required for the oscillation wave count process. First, detect the phase shift of the accumulated oscillation wave,
In obtaining and outputting the difference between the measurement time related to the first oscillation circuit and the measurement time related to the second oscillation circuit,
In order to avoid mutual interference, the first oscillation circuit and the second oscillation circuit are driven alternately,
Obtain and output the difference between the latest measurement time for the first oscillation circuit and the latest measurement time for the second oscillation circuit at the end of driving the first oscillation circuit and at the end of driving the second oscillation circuit, respectively. A metal state detection method characterized by the above.
JP2008088922A 2007-05-10 2008-03-29 Apparatus and method for detecting state of metal Pending JP2009031257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088922A JP2009031257A (en) 2007-05-10 2008-03-29 Apparatus and method for detecting state of metal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007125457 2007-05-10
JP2007127473 2007-05-14
JP2007165721 2007-06-24
JP2008088922A JP2009031257A (en) 2007-05-10 2008-03-29 Apparatus and method for detecting state of metal

Publications (1)

Publication Number Publication Date
JP2009031257A true JP2009031257A (en) 2009-02-12

Family

ID=40401896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088922A Pending JP2009031257A (en) 2007-05-10 2008-03-29 Apparatus and method for detecting state of metal

Country Status (1)

Country Link
JP (1) JP2009031257A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569137A (en) * 2013-10-16 2015-04-29 日立金属株式会社 Permeability sensor and permeability detection method
JP2016176913A (en) * 2015-03-19 2016-10-06 日立金属株式会社 Magnetic permeability sensor and magnetic permeability detection method, dielectric constant sensor and dielectric constant detection method, magnetic permeability/dielectric constant sensor and magnetic permeability/dielectric constant detection method
US10295618B2 (en) 2014-09-19 2019-05-21 Hitachi Metals, Ltd. Magnetic permeability sensor and magnetic permeability detecting method, dielectric permittivity sensor and dielectric permittivity detecting method, and magnetic permeability and dielectric permittivity sensor and magnetic permeability and dielectric permittivity detecting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569137A (en) * 2013-10-16 2015-04-29 日立金属株式会社 Permeability sensor and permeability detection method
CN104569137B (en) * 2013-10-16 2018-07-17 日立金属株式会社 Permeability sensor and magnetic conductivity detection method
US10295618B2 (en) 2014-09-19 2019-05-21 Hitachi Metals, Ltd. Magnetic permeability sensor and magnetic permeability detecting method, dielectric permittivity sensor and dielectric permittivity detecting method, and magnetic permeability and dielectric permittivity sensor and magnetic permeability and dielectric permittivity detecting method
JP2016176913A (en) * 2015-03-19 2016-10-06 日立金属株式会社 Magnetic permeability sensor and magnetic permeability detection method, dielectric constant sensor and dielectric constant detection method, magnetic permeability/dielectric constant sensor and magnetic permeability/dielectric constant detection method

Similar Documents

Publication Publication Date Title
JP4222574B2 (en) Magnetostrictive torque sensor and torque detection method
JP4529783B2 (en) Magnet impedance sensor element
US8610331B2 (en) Driving method for piezoelectric vibrator, and dust removing device and ultrasonic motor using the driving method
JP2009031249A (en) Magnetostrictive torque sensor
JP2007052018A (en) Magnetometer for torque sensor
JP2009031257A (en) Apparatus and method for detecting state of metal
JP2012122780A (en) Rotational angle detecting device
JPH0968470A (en) Sensor circuit
JP2009281748A (en) Metal state detection device
JP7160005B2 (en) Temperature detection circuit for magnetostrictive sensor, magnetostrictive sensor, and temperature detection method for magnetostrictive sensor
JP4183201B2 (en) Stress sensor and stress detection method
JP2009244249A (en) Metal state detector
JP2010008296A (en) Magnetostrictive torque sensor
JP2009031246A (en) Metal state detector and metal state detecting method
JP4208206B2 (en) Magnetostrictive torque sensor and torque detection method
JP2009031255A (en) Metal state detector and metal state detection method
CN106225657A (en) Displacement transducer
JP2009033720A (en) Metal state detector
JP2010145099A (en) Magnetostrictive torque sensor
JP2008309772A (en) Metal state detector and metal state detecting method
JP2008211762A (en) Detecting device and detecting method
JP2000352536A (en) Load-measuring apparatus
JP2008292457A (en) Detector and method for detection
JP2540865B2 (en) Torque detector
JP6135924B2 (en) Electromagnetic flow meter