JP2009030872A - Manufacturing method of stack-type flow channel element, and stack-type flow channel element - Google Patents

Manufacturing method of stack-type flow channel element, and stack-type flow channel element Download PDF

Info

Publication number
JP2009030872A
JP2009030872A JP2007194685A JP2007194685A JP2009030872A JP 2009030872 A JP2009030872 A JP 2009030872A JP 2007194685 A JP2007194685 A JP 2007194685A JP 2007194685 A JP2007194685 A JP 2007194685A JP 2009030872 A JP2009030872 A JP 2009030872A
Authority
JP
Japan
Prior art keywords
flow path
path forming
forming members
joined
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007194685A
Other languages
Japanese (ja)
Other versions
JP5221070B2 (en
Inventor
Takashi Shimazu
孝 志満津
Takatoshi Masui
孝年 増井
Satoshi Shiokawa
諭 塩川
Tomohiro Yonemoto
朋弘 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinzoku Giken Co Ltd
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Kinzoku Giken Co Ltd
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinzoku Giken Co Ltd, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Kinzoku Giken Co Ltd
Priority to JP2007194685A priority Critical patent/JP5221070B2/en
Publication of JP2009030872A publication Critical patent/JP2009030872A/en
Application granted granted Critical
Publication of JP5221070B2 publication Critical patent/JP5221070B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a stack-type flow channel element, and the stack-type flow channel element capable of efficiently joining a joined member to an end face facing a direction orthogonal to the stacking direction of a plurality of stacked flow channel forming members. <P>SOLUTION: In this manufacturing method of a heat exchanging device 10 as a manufacturing method of a plate stack-type heat exchanger 12 formed by joining the members adjacent to each other in the stacking direction among stacked first heat transfer plates 24 and second heat transfer plates 28, a load added to the plate stack-type heat exchanger 12 is made to act in the stacking direction and a direction orthogonal to the stacking direction of the plate stack-type heat exchanger 12, thus the first heat transfer plate 24 and the second heat transfer plate 28 adjacent to each other in the stacking direction are joined, and a first fluid inlet 12A to a second fluid outlet 12D as end faces facing the direction orthogonal to the stacking direction of the plate stack-type heat exchanger 12 are joined to a first fluid inlet header 14 to a second fluid outlet header 20, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の流路形成部材を積層して成る積層型流路要素の製造方法、及び積層型流路要素に関する。   The present invention relates to a method for manufacturing a laminated flow path element formed by laminating a plurality of flow path forming members, and a laminated flow path element.

複数の伝熱プレートを層間に隙間が形成されるように積層してプレート式熱交換器を構成する技術が知られている(例えば、特許文献1参照)。
特開2003−262489号公報
A technique for configuring a plate heat exchanger by stacking a plurality of heat transfer plates so that gaps are formed between layers is known (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2003-262489

しかしながら、上記の如き従来の技術では、直交流方熱交換器を成す上記プレート式熱交換器の各流路に対し流体を導入、排出するためのマニホルドの取り付け構造について考慮されていなかった。   However, in the conventional technology as described above, a manifold mounting structure for introducing and discharging fluid to and from each flow path of the plate heat exchanger constituting the cross flow heat exchanger has not been considered.

本発明は、上記事実を考慮して、積層された複数の流路形成部材の積層方向との直交方向を向く端面に被接合部材を効率良く接合することができる積層型流路要素の製造方法、及び積層型流路要素を得ることが目的である。   In consideration of the above-described facts, the present invention provides a method for manufacturing a laminated flow path element capable of efficiently joining a member to be joined to an end surface facing a direction orthogonal to the lamination direction of a plurality of laminated flow path forming members. And to obtain a laminated flow path element.

請求項1記載の発明に係る積層型流路要素の製造方法は、積層された複数の流路形成部材における積層方向に隣り合う前記流路形成部材間をそれぞれ接合して一体化された積層型流路要素の製造方法であって、積層された前記複数の流路形成部材に付与した荷重を、該積層された複数の流路形成部材によって積層方向及び該積層方向との直交方向に作用させることで、前記積層された複数の流路形成部材を積層方向に接合すると共に、該積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を被接合部材に接合する。   The manufacturing method of the laminated flow path element according to the invention of claim 1 is a laminated type in which the flow path forming members adjacent to each other in the stacking direction in the plurality of laminated flow path forming members are joined and integrated. A flow path element manufacturing method, wherein a load applied to the plurality of stacked flow path forming members is caused to act in a stacking direction and a direction orthogonal to the stacking direction by the stacked plurality of flow path forming members. Thus, the plurality of laminated flow path forming members are joined in the laminating direction, and the end faces of the laminated plurality of flow path forming members facing the direction perpendicular to the laminating direction are joined to the member to be joined.

請求項1記載の積層型流路要素の製造方法では、積層された流路形成部材に荷重を作用させると、この荷重は、該積層された流路形成部材によって、積層方向及び該積層方向との直交方向に作用される。これら積層方向及び該積層方向との直交方向に作用する荷重を接合荷重として、複数の流路形成部材が積層方向に接合されると共に、複数の接合部材における積層方途の直交方向を向く端面が被接合部材に接合される。   In the method of manufacturing a laminated flow path element according to claim 1, when a load is applied to the laminated flow path forming member, the load is applied to the lamination direction and the lamination direction by the laminated flow path forming member. Acting in the orthogonal direction. A plurality of flow path forming members are joined in the laminating direction with the load acting in the laminating direction and the direction orthogonal to the laminating direction as the joining load, and the end faces of the plural joining members facing the orthogonal direction of the laminating direction are covered. It is joined to the joining member.

このように、請求項1記載の積層型流路要素の製造方法では、積層された複数の流路形成部材の積層方向との直交方向を向く端面に被接合部材を効率良く接合することができる。   Thus, in the method for manufacturing a laminated flow path element according to claim 1, the member to be joined can be efficiently joined to the end face of the plurality of laminated flow path forming members facing the direction perpendicular to the stacking direction. .

請求項2記載の発明に係る積層型流路要素の製造方法は、請求項1記載の積層型流路要素の製造方法において、前記積層方向における前記複数の流路形成部材の接合、及び積層方向との直交方向における前記流路形成部材と前記被接合部材の接合の少なくとも一方は、ロウ材によるロウ付けである。   The manufacturing method of the laminated flow path element according to the invention of claim 2 is the manufacturing method of the laminated flow path element of claim 1, wherein the plurality of flow path forming members are joined in the laminating direction and the laminating direction. At least one of the joining of the flow path forming member and the member to be joined in the direction orthogonal to is brazing with a brazing material.

請求項2記載の積層型流路要素の製造方法では、積層方向における複数の流路形成部材の接合、及び積層方向との直交方向における積層された流路形成部材と被接合部材の接合の少なくとも一方がロウ付けであるため、積層された流路形成部材に付与する荷重を軽減することができる。すなわち、比較的小さい荷重を付与しつつ接合部の接合安定性を確保することができる。   In the method of manufacturing a laminated flow path element according to claim 2, at least bonding of a plurality of flow path forming members in the stacking direction, and bonding of the stacked flow path forming member and the bonded member in a direction orthogonal to the stacking direction. Since one side is brazing, the load applied to the laminated flow path forming members can be reduced. That is, it is possible to ensure the bonding stability of the bonded portion while applying a relatively small load.

請求項3記載の発明に係る積層型流路要素の製造方法は、請求項1又は請求項2記載の積層型流路要素の製造方法において、前記積層方向における前記複数の流路形成部材の接合、及び積層方向との直交方向における前記流路形成部材と前記被接合部材の接合の少なくとも一方は、拡散接合である。   A method of manufacturing a laminated flow path element according to a third aspect of the invention is the method of manufacturing a laminated flow path element according to claim 1 or 2, wherein the plurality of flow path forming members are joined in the stacking direction. At least one of the joining of the flow path forming member and the joined member in the direction orthogonal to the stacking direction is diffusion joining.

請求項3記載の積層型流路要素の製造方法では、積層方向における複数の流路形成部材の接合、及び積層方向との直交方向における積層された流路形成部材と被接合部材の接合の少なくとも一方が拡散接合であるため、比較的大きな荷重を付与して接合部の接合安定性を確保することができる。   In the manufacturing method of the laminated flow path element according to claim 3, at least joining of the plurality of flow path forming members in the laminating direction and joining of the laminated flow path forming member and the member to be joined in a direction orthogonal to the laminating direction. Since one side is diffusion bonding, a relatively large load can be applied to ensure the bonding stability of the bonded portion.

請求項4記載の発明に係る積層型流路要素の製造方法は、請求項1〜請求項3の何れか1項記載の積層型流路要素の製造方法において、前記積層された複数の流路形成部材に積層方向に荷重を付加して該積層された複数の流路形成部材を積層方向に接合すると共に、該荷重付与に伴い前記積層された複数の流路形成部材が積層方向との直交方向に変形しようとする力を利用して、該積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を前記被接合部材に接合する。   A method for manufacturing a laminated flow path element according to a fourth aspect of the present invention is the method for manufacturing a laminated flow path element according to any one of the first to third aspects, wherein the plurality of laminated flow paths are arranged. A load is applied to the forming member in the laminating direction to join the plurality of laminated flow path forming members in the laminating direction, and the laminated plural flow path forming members are orthogonal to the laminating direction along with the load application. Using the force to deform in the direction, the end surfaces of the plurality of laminated flow path forming members facing the direction perpendicular to the lamination direction are joined to the member to be joined.

請求項4記載の積層型流路要素の製造方法では、積層された流路形成部材に対し積層方向に荷重を付与する。この荷重により、積層された流路形成部材は、積層方向との交差方向に位置ずれ等することなく該積層方向に接合される。この際、積層された流路形成部材は、積層方向に圧縮されながら、該積層方向との直交方向に変形(膨張)しようとする。この膨張しようとする力を積層された流路形成部材と被接合部材との間に作用させることで、この荷重により積層された流路形成部材と被接合部材とが接合される。これにより、積層された流路形成部材に作用させた荷重を、縦ひずみと横ひずみとの変換により積層方向及びその直交方向に効率的に作用させることができ、接合安定性が確保される。   In the manufacturing method of the lamination type flow path element of Claim 4, a load is given to the lamination direction with respect to the laminated | stacked flow path formation member. Due to this load, the laminated flow path forming members are joined in the laminating direction without being displaced in the direction intersecting the laminating direction. At this time, the laminated flow path forming member tends to deform (expand) in a direction perpendicular to the lamination direction while being compressed in the lamination direction. By applying the force to expand between the laminated flow path forming member and the member to be joined, the laminated flow path forming member and the member to be joined are joined by this load. As a result, the load applied to the stacked flow path forming members can be efficiently applied in the stacking direction and the orthogonal direction by converting the longitudinal strain and the lateral strain, and the joining stability is ensured.

請求項5記載の発明に係る積層型流路要素の製造方法は、請求項4記載の積層型流路要素の製造方法において、前記積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を接合後の寸法形状で拘束して、該積層された複数の流路形成部材に積層方向に荷重を付加することで、該積層された複数の流路形成部材を積層方向に接合すると共に、該積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を前記被接合部材に接合する。   The method for manufacturing a laminated flow path element according to the invention described in claim 5 is the method for manufacturing a laminated flow path element according to claim 4, wherein the plurality of laminated flow path forming members are orthogonal to the stacking direction. The end surfaces facing in the direction are constrained by the dimension and shape after joining, and a load is applied to the stacked plurality of flow path forming members in the stacking direction so that the plurality of stacked flow path forming members are aligned in the stacking direction. While joining, the end surface which faces the orthogonal | vertical direction with the said lamination direction in these laminated | stacked several flow-path formation members is joined to the said to-be-joined member.

請求項5記載の積層型流路要素の製造方法では、積層された流路形成部材の積層方向との直交方向の端面を接合後の寸法で拘束する。この拘束状態から、積層された流路形成部材に対し積層方向に荷重を付与すると、積層された流路形成部材が積層方向との直交方向に変形(膨張)しようとする力が、積層された流路形成部材と被接合部材との間で積層方向との直交方向に作用し、該積層された流路形成部材と被接合部材とが効率的に接合される。   In the manufacturing method of the laminated flow path element according to claim 5, the end face in the direction orthogonal to the lamination direction of the laminated flow path forming members is constrained by the dimension after joining. From this constrained state, when a load is applied to the laminated flow path forming member in the laminating direction, a force that causes the laminated flow path forming member to deform (expand) in a direction orthogonal to the laminating direction is laminated. It acts in the direction orthogonal to the stacking direction between the flow path forming member and the member to be bonded, and the stacked flow path forming member and the member to be bonded are efficiently bonded.

請求項6記載の発明に係る積層型流路要素の製造方法は、請求項5記載の積層型流路要素の製造方法において、前記積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を接合後の寸法形状で拘束する拘束条件として、前記積層された複数の流路形成部材における前記積層方向との直交方向の位置規制を行うと共に、前記積層方向の荷重付与前の拘束力を0とした。   A method for manufacturing a laminated flow path element according to a sixth aspect of the present invention is the method for manufacturing a laminated flow path element according to the fifth aspect, wherein the plurality of laminated flow path forming members are orthogonal to the stacking direction. As a constraint condition for constraining the end face facing the direction with the dimension shape after joining, position regulation in a direction orthogonal to the stacking direction in the plurality of stacked flow path forming members is performed, and before applying a load in the stacking direction The binding force was set to zero.

請求項6記載の積層型流路要素の製造方法では、積層された流路形成部材の積層方向に直交する方向を向く端面を位置拘束する際の拘束力が、積層方向の荷重を付与する前に0であるため、該積層された流路形成部材の積層方向への荷重付与による積層方向の変形、変位が担保される。これにより、積層方向の接合安定性を確保しつつ積層された流路形成部材と被接合部材とを効率的に接合することができる。特に、本方法は、積層方向の流路形成部材間の接合をロウ付けにて行う場合に有効である。   7. The method of manufacturing a laminated flow path element according to claim 6, wherein the restraining force for restraining the position of the end face of the laminated flow path forming member that faces in the direction orthogonal to the laminating direction before applying a load in the laminating direction. Therefore, deformation and displacement in the stacking direction due to load application in the stacking direction of the stacked flow path forming members are ensured. Thereby, the laminated | stacked flow-path formation member and to-be-joined member can be efficiently joined, ensuring the joining stability of a lamination direction. In particular, this method is effective when joining the flow path forming members in the stacking direction by brazing.

請求項7記載の発明に係る積層型流路要素の製造方法は、請求項5記載の積層型流路要素の製造方法において、前記積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を接合後の寸法形状で拘束する拘束条件として、前記積層された複数の流路形成部材における前記積層方向との直交方向の端面に、前記積層方向に付与される荷重の80%以下の荷重を付与する。   The manufacturing method of the laminated flow path element according to the invention of claim 7 is the manufacturing method of the laminated flow path element of claim 5, wherein the plurality of laminated flow path forming members are orthogonal to the stacking direction. 80% of the load applied in the stacking direction to the end surfaces in the direction orthogonal to the stacking direction of the plurality of flow path forming members stacked as a constraint condition for binding the end surface facing the direction with the dimension and shape after bonding The following loads are applied.

請求項7記載の積層型流路要素の製造方法では、積層された流路形成部材の積層方向に直交する方向を向く端面を位置拘束する際の拘束力が、積層方向の荷重の80%を上限として付与されている。これにより、積層された流路形成部材と被接合部材との間に作用する荷重を補助することができ、該積層された流路形成部材と被接合部材とを確実に接合することができる。例えば、積層された流路形成部材と被接合部材とを拡散接合等の十分な初期加圧が要求される方法で接合する場合に有効である。一方、上記の拘束力によって、積層された流路形成部材の積層方向の変位、変形を規制する方向の力が作用するが、この初期拘束力の上限を積層方向荷重の80%としているため、複数の流路形成部材を積層方向に接合する際の接合安定性が確保される。   In the manufacturing method of the laminated flow path element according to claim 7, the restraining force when restraining the end face of the laminated flow path forming member facing the direction orthogonal to the laminating direction is 80% of the load in the laminating direction. It is given as an upper limit. Thereby, the load which acts between the laminated | stacked flow-path formation member and to-be-joined member can be assisted, and this laminated | stacked flow-path forming member and to-be-joined member can be joined reliably. For example, it is effective when the laminated flow path forming member and the member to be joined are joined by a method that requires sufficient initial pressurization such as diffusion bonding. On the other hand, due to the restraining force, a force in the direction of regulating the displacement and deformation of the laminated flow path forming member acts, but since the upper limit of the initial restraining force is 80% of the stacking direction load, Bonding stability when bonding a plurality of flow path forming members in the stacking direction is ensured.

請求項8記載の発明に係る積層型流路要素の製造方法は、請求項5記載の積層型流路要素の製造方法において、前記積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を接合後の寸法形状で拘束する拘束条件として、前記積層された複数の流路形成部材における前記積層方向との直交方向の端面に、前記積層方向に付与される荷重の50%以下の荷重を付与する。   The manufacturing method of the laminated flow path element according to the invention of claim 8 is the manufacturing method of the laminated flow path element according to claim 5, wherein the plurality of laminated flow path forming members are orthogonal to the stacking direction. 50% of the load applied in the stacking direction to the end surfaces in the direction perpendicular to the stacking direction of the plurality of stacked flow path forming members as a constraint condition for binding the end surface facing the direction with the dimension and shape after joining The following loads are applied.

請求項8記載の積層型流路要素の製造方法では、積層された流路形成部材の積層方向に直交する方向を向く端面を位置拘束する際の拘束力が、積層方向の荷重の50%を上限として付与されている。これにより、積層された流路形成部材と被接合部材との間に作用する荷重を補助することができ、該積層された流路形成部材と被接合部材とを確実に接合することができる。一方、上記の拘束力によって、積層された流路形成部材の積層方向の変位、変形を規制する方向の力が作用するが、この初期拘束力の上限を積層方向荷重の50%としているため、複数の流路形成部材を積層方向に接合する際の接合安定性が良好に確保される。   In the method for manufacturing a laminated flow path element according to claim 8, the restraining force when restraining the position of the end face of the laminated flow path forming member that faces in the direction orthogonal to the stacking direction is 50% of the load in the stacking direction. It is given as an upper limit. Thereby, the load which acts between the laminated | stacked flow-path formation member and to-be-joined member can be assisted, and this laminated | stacked flow-path forming member and to-be-joined member can be joined reliably. On the other hand, due to the restraining force, a force in the direction of regulating the displacement and deformation of the laminated flow path forming member acts, but the upper limit of the initial restraining force is 50% of the stacking direction load. Good joining stability is secured when joining a plurality of flow path forming members in the stacking direction.

請求項9記載の発明に係る積層型流路要素の製造方法は、請求項5記載の積層型流路要素の製造方法において、前記積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を接合後の寸法形状で拘束する拘束条件として、前記積層された複数の流路形成部材における前記積層方向との直交方向の端面に、前記積層方向に付与される荷重の10%以下の荷重を付与する。   A method for manufacturing a laminated flow path element according to a ninth aspect of the invention is the method for manufacturing a laminated flow path element according to the fifth aspect, wherein the laminated flow path forming member is orthogonal to the stacking direction. 10% of the load applied in the stacking direction to the end surfaces in the direction perpendicular to the stacking direction of the plurality of stacked flow path forming members as a constraint condition for binding the end surfaces facing the direction with the dimension and shape after bonding The following loads are applied.

請求項9記載の積層型流路要素の製造方法では、積層された流路形成部材の積層方向に直交する方向を向く端面を位置拘束する際の拘束力が、積層方向の荷重の10%を上限として付与されている。これにより、積層された流路形成部材と被接合部材との間に作用する荷重を補助することができ、該積層された流路形成部材と被接合部材とを確実に接合することができる。一方、上記の拘束力によって、積層された流路形成部材の積層方向の変位、変形を規制する方向の力が作用するが、この初期拘束力の上限を積層方向荷重の10%としているため、複数の流路形成部材を積層方向に接合する際の接合安定性が一層良好に確保される。   In the manufacturing method of the laminated flow path element according to claim 9, the restraining force when restraining the position of the end face of the laminated flow path forming member facing the direction orthogonal to the laminating direction is 10% of the load in the laminating direction. It is given as an upper limit. Thereby, the load which acts between the laminated | stacked flow-path formation member and to-be-joined member can be assisted, and this laminated | stacked flow-path forming member and to-be-joined member can be joined reliably. On the other hand, due to the restraining force, a force in the direction of regulating the displacement and deformation of the laminated flow path forming member acts, but since the upper limit of this initial restraining force is 10% of the stacking direction load, Bonding stability when bonding a plurality of flow path forming members in the stacking direction is further ensured.

請求項10記載の発明に係る積層型流路要素は、積層された複数の流路形成部材における積層方向に隣り合う前記流路形成部材間をそれぞれ接合して一体化された積層型流路要素であって、積層された前記複数の流路形成部材に付与した荷重を、該積層された複数の流路形成部材によって積層方向及び該積層方向との直交方向に作用させることで、前記積層された複数の流路形成部材を積層方向に接合すると共に、該積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を被接合部材に接合させて構成された。   The laminated flow path element according to the invention of claim 10 is a laminated flow path element in which the flow path forming members adjacent to each other in the laminating direction in the plurality of laminated flow path forming members are joined together. The stacks are formed by applying a load applied to the plurality of laminated flow path forming members in a laminating direction and a direction orthogonal to the laminating direction by the laminated plural flow path forming members. The plurality of flow path forming members are bonded in the stacking direction, and the end surfaces of the stacked plurality of flow path forming members facing the direction perpendicular to the stacking direction are bonded to the members to be bonded.

請求項10記載の積層型流路要素では、積層された流路形成部材に付与した荷重を、該積層された流路形成部材によって積層方向及び該積層方向との直交方向のそれぞれに作用させることで、複数の流路形成部材が積層方向に接合されると共に、複数の接合部材における積層方途の直交方向を向く端面が被接合部材に接合されて構成されている。これにより、複数回の接合工程を経た場合と比較して母材や接合材等に与える影響を減らしながら、積層された流路形成部材の積層方向の接合部、積層された接合部材における積層方途の直交方向を向く端面と被接合部材との接合部が得られる。   In the laminated flow path element according to claim 10, the load applied to the laminated flow path forming member is caused to act on each of the laminating direction and the direction orthogonal to the laminating direction by the laminated flow path forming member. Thus, the plurality of flow path forming members are joined in the stacking direction, and the end faces of the plurality of joining members facing the orthogonal direction of the stacking direction are joined to the members to be joined. As a result, it is possible to reduce the influence on the base material, the bonding material, and the like as compared with the case where the bonding process has been performed multiple times. A joined portion between the end surface facing the orthogonal direction and the member to be joined is obtained.

このように、請求項10記載の積層型流路要素では、積層された複数の流路形成部材の積層方向との直交方向を向く端面に被接合部材を効率良く接合することができる。   Thus, in the laminated flow path element according to the tenth aspect, the member to be joined can be efficiently joined to the end face of the plurality of laminated flow passage forming members facing the direction orthogonal to the laminating direction.

請求項11記載の発明に係る積層型流路要素は、請求項10記載の積層型流路要素において、前記積層方向における前記複数の流路形成部材の接合部位、及び積層方向との直交方向における前記流路形成部材と前記被接合部材の接合部位の少なくとも一方は、ロウ材によるロウ付けにより接合されている。   The laminated flow path element according to the invention of claim 11 is the laminated flow path element according to claim 10, wherein the plurality of flow path forming members in the laminating direction are joined to each other in a direction orthogonal to the laminating direction. At least one of the joined portions of the flow path forming member and the joined member is joined by brazing with a brazing material.

請求項11記載の積層型流路要素では、積層方向における複数の流路形成部材間の接合部、及び積層方向との直交方向における積層された流路形成部材と被接合部材との接合部の少なくとも一方がロウ付けによる接合部である。例えば、これら2つの接合部を別個にロウ付けにて形成する場合、2度の熱履歴を経ることになるが、本積層型流路要素では、1度の熱履歴で2つの接合部が得られるので、各接合部が熱履歴の影響を受けることが抑制される。   In the laminated flow path element according to claim 11, a joint portion between the plurality of flow passage forming members in the stacking direction, and a joint portion between the stacked flow path forming member and the joined member in a direction orthogonal to the stacking direction. At least one is a joint by brazing. For example, when these two joints are separately formed by brazing, two thermal histories pass, but with this laminated channel element, two joints can be obtained with one thermal history. Therefore, it is suppressed that each joined part is affected by the thermal history.

請求項12記載の発明に係る積層型流路要素は、請求項10又は請求項11記載の積層型流路要素において、前記積層方向における前記複数の流路形成部材の接合部位、及び積層方向との直交方向における前記流路形成部材と前記被接合部材の接合部位の少なくとも一方は、拡散接合により接合されている。   The laminated flow path element according to the invention of claim 12 is the laminated flow path element according to claim 10 or claim 11, wherein the plurality of flow path forming members are joined in the laminating direction, and the laminating direction. At least one of the joined portions of the flow path forming member and the joined member in the orthogonal direction is joined by diffusion joining.

請求項12記載の積層型流路要素では、積層方向における複数の流路形成部材間の接合部、及び積層方向との直交方向における積層された流路形成部材と被接合部材との接合部の少なくとも一方が拡散接合による接合部である。例えば、これら2つの接合部を別個に拡散接合にて形成する場合、2度の熱履歴を経ることになるが、本積層型流路要素では、1度の熱履歴で2つの接合部が得られるので、各接合部が熱履歴の影響を受けることが抑制される。   In the laminated flow path element according to claim 12, the joint portion between the plurality of flow passage forming members in the lamination direction and the joint portion between the laminated flow passage formation member and the member to be joined in the direction orthogonal to the lamination direction. At least one is a junction by diffusion bonding. For example, when these two joints are separately formed by diffusion bonding, two thermal histories pass, but with this laminated channel element, two joints can be obtained with one thermal history. Therefore, it is suppressed that each joined part is affected by the thermal history.

請求項13記載の発明に係る積層型流路要素は、請求項10〜請求項12の何れか1項記載の積層型流路要素において、前記積層された複数の流路形成部材に積層方向に荷重を付加して該積層された複数の流路形成部材を積層方向に接合すると共に、該荷重付与に伴い前記積層された複数の流路形成部材が積層方向との直交方向に変形しようとする力を利用して、該積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を前記被接合部材に接合して構成された。   A laminated flow path element according to a thirteenth aspect of the present invention is the laminated flow path element according to any one of the tenth to twelfth aspects of the present invention, wherein the laminated flow path forming members are arranged in the stacking direction. The load is applied to join the plurality of stacked flow path forming members in the stacking direction, and the plurality of stacked flow path forming members try to deform in a direction orthogonal to the stacking direction in accordance with the load application. Utilizing force, the end faces of the plurality of laminated flow path forming members facing the direction perpendicular to the lamination direction are joined to the member to be joined.

請求項13記載の積層型流路要素では、積層方向に付与された荷重により積層された流路形成部材間が接合されるので、複数の流路形成部材に積層方向との交差方向の位置ずれが生じていない構成が得られる。また、この積層方向の荷重により積層された流路形成部材が積層方向との直交方向に変形(膨張)しようとする力を用いて、換言すれば、積層方向の荷重を縦ひずみと横ひずみとの変換により該積層方向の直交方向に効率的に作用させることで、積層された流路形成部材と被接合部材とが良好に接合されている。   In the laminated flow path element according to claim 13, since the laminated flow path forming members are joined by the load applied in the laminating direction, the positional deviation in the direction intersecting with the laminating direction is made to the plurality of flow path forming members. A configuration in which no occurs is obtained. In addition, by using the force that the flow path forming member laminated by the load in the lamination direction tries to deform (expand) in a direction orthogonal to the lamination direction, in other words, the load in the lamination direction is expressed as longitudinal strain and lateral strain. By efficiently acting in the direction orthogonal to the laminating direction by this conversion, the laminated flow path forming member and the member to be joined are favorably joined.

請求項14記載の発明に係る積層型流路要素は、請求項13記載の積層型流路要素において、前記積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を、接合後の寸法形状で拘束して、該積層された複数の流路形成部材に積層方向に荷重を付加することで、該積層された複数の流路形成部材を積層方向に接合すると共に、該積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を前記被接合部材に接合して構成された。   The laminated flow path element according to the invention of claim 14 is the laminated flow path element according to claim 13, wherein the plurality of laminated flow path forming members have end faces facing in a direction orthogonal to the lamination direction. By constraining with the dimension shape after joining and applying a load in the stacking direction to the plurality of stacked flow path forming members, the stacked plurality of flow path forming members are bonded in the stacking direction, and the In the plurality of laminated flow path forming members, end faces facing in a direction orthogonal to the lamination direction are joined to the member to be joined.

請求項14記載の積層型流路要素では、積層された流路形成部材の積層方向との直交方向の端面を接合後の寸法で拘束した状態から、積層された流路形成部材に積層方向に荷重を付与するので、積層方向の接合部及び積層方向との直交方向の接合部が一層良好に接合されている。   The laminated flow path element according to claim 14, wherein the end face in the direction orthogonal to the laminating direction of the laminated flow path forming member is constrained by the dimension after joining, and the laminated flow path forming member is moved in the laminating direction. Since the load is applied, the bonding portion in the stacking direction and the bonding portion in the direction orthogonal to the stacking direction are bonded more satisfactorily.

以上説明したように本発明に係る積層型流路要素の製造方法、及び積層型流路要素は、積層された複数の流路形成部材の積層方向との直交方向を向く端面に被接合部材を効率良く接合することができるという優れた効果を有する。   As described above, the method for manufacturing a laminated flow path element and the laminated flow path element according to the present invention include a member to be bonded on an end surface facing a direction orthogonal to the stacking direction of a plurality of stacked flow path forming members. It has the outstanding effect that it can join efficiently.

本発明の第1の実施形態に係る積層型流路要素としての熱交換装置10及びその製造方法について、図1〜図4に基づいて説明する。先ず熱交換装置10の概略全体構成を説明し、次いで、熱交換装置10の製造方法を説明することとする。   A heat exchange device 10 as a laminated flow path element according to a first embodiment of the present invention and a manufacturing method thereof will be described with reference to FIGS. First, a schematic overall configuration of the heat exchange device 10 will be described, and then a method for manufacturing the heat exchange device 10 will be described.

(熱交換装置の概略構成)
図3には、熱交換装置10の概略全体構成が一部分解した斜視図にて模式的に示されている。この図3に示される如く、熱交換装置10は、第1流体と第2流体との熱交換を行うプレート積層型熱交換器12と、プレート積層型熱交換器12に第1流体を導くための第1流体入口ヘッダ14と、プレート積層型熱交換器12から第1流体を排出するための第1流体出口ヘッダ16と、プレート積層型熱交換器12に第2流体を導くための第2流体入口ヘッダ18と、プレート積層型熱交換器12から第2流体を排出するための第2流体出口ヘッダ20とを有して構成されている。
(Schematic configuration of heat exchange device)
FIG. 3 schematically shows the schematic overall configuration of the heat exchange device 10 in a partially exploded perspective view. As shown in FIG. 3, the heat exchange device 10 is configured to introduce a plate stacked heat exchanger 12 that performs heat exchange between the first fluid and the second fluid, and to guide the first fluid to the plate stacked heat exchanger 12. The first fluid inlet header 14, the first fluid outlet header 16 for discharging the first fluid from the plate laminated heat exchanger 12, and the second for guiding the second fluid to the plate laminated heat exchanger 12. A fluid inlet header 18 and a second fluid outlet header 20 for discharging the second fluid from the plate stacking type heat exchanger 12 are configured.

また、図1に示される如く、熱交換装置10のプレート積層型熱交換器12は、第1流体が流通する第1流路22を形成するための複数の第1伝熱プレート24と、第2流体が流通する第2流路26を形成する複数の第2伝熱プレート28とがそれぞれ厚み方向に積層して構成されている。これにより、プレート積層型熱交換器12は、第1流路22と第2流路26とが、それぞれ積層方向(矢印L方向参照)に離間して複数形成されている。   In addition, as shown in FIG. 1, the plate stacked heat exchanger 12 of the heat exchange device 10 includes a plurality of first heat transfer plates 24 for forming a first flow path 22 through which a first fluid flows, A plurality of second heat transfer plates 28 forming a second flow path 26 through which two fluids flow are laminated in the thickness direction. Thereby, the plate lamination type heat exchanger 12 is formed with a plurality of first flow paths 22 and second flow paths 26 which are separated from each other in the stacking direction (refer to the arrow L direction).

具体的には、図4に一部分解して示される如く、複数の第1伝熱プレート24は、それぞれ略矩形平板状の平板部30と、平板部30における第1流体の流れ方向(矢印F1参照)に沿う縁部から立設された一対の流路外壁32と、一対の流路外壁32間で該流路外壁32と平行を成すように平板部30から立設され立設された流路隔壁34とを主要部として構成されている。流路隔壁34は、複数並列して設けられ、第1流路22を複数の分割流路(マイクロチャンネル)に分割している。   Specifically, as shown in a partially exploded view in FIG. 4, the plurality of first heat transfer plates 24 include a substantially rectangular flat plate portion 30 and a flow direction of the first fluid in the flat plate portion 30 (arrow F <b> 1). A pair of flow passage outer walls 32 standing from the edge along the reference line), and a flow standing and standing from the flat plate portion 30 so as to be parallel to the flow passage outer wall 32 between the pair of flow passage outer walls 32. The road partition 34 is used as a main part. A plurality of channel partitions 34 are provided in parallel, and divide the first channel 22 into a plurality of divided channels (microchannels).

複数の第2伝熱プレート28は、それぞれ第1伝熱プレート24を平板部30の片方向に沿って90°回転させた如く構成されている。すなわち、各第2伝熱プレート28は、それぞれ略矩形平板状の平板部35と、平板部35における第2流体の流れ方向(矢印F2参照)に沿う縁部から立設された一対の流路外壁36と、一対の流路外壁36間で該流路外壁36と平行を成すように平板部35から立設され立設された流路隔壁38とを主要部として構成されている。流路隔壁38は、複数並列して設けられ、第2流路26を複数の分割流路(マイクロチャンネル)に分割している。   The plurality of second heat transfer plates 28 are configured such that the first heat transfer plate 24 is rotated 90 ° along one direction of the flat plate portion 30. That is, each of the second heat transfer plates 28 has a substantially rectangular flat plate portion 35 and a pair of flow paths provided upright from an edge portion of the flat plate portion 35 along the flow direction of the second fluid (see arrow F2). The main part is composed of an outer wall 36 and a flow path partition wall 38 which is erected from the flat plate portion 35 so as to be parallel to the flow path outer wall 36 between the pair of flow path outer walls 36. A plurality of channel partitions 38 are provided in parallel, and divide the second channel 26 into a plurality of divided channels (microchannels).

プレート積層型熱交換器12は、流路外壁32と流路外壁36とが平面視で直角を成すように、第1伝熱プレート24と第2伝熱プレート28とが交互に積層されて構成されており、第1流路22と第2流路26とが積層方向に交互に設けられている。したがって、この実施形態では、プレート積層型熱交換器12は、第1流体と第2流体とが平面視で直交方向に流れながら熱交換を行う直交流型の熱交換器とされている。なお、図3に示される如く、最上層に配置された第1伝熱プレート24には、平板状のカバープレート40が接合されている。   The plate laminated heat exchanger 12 is configured by alternately laminating the first heat transfer plate 24 and the second heat transfer plate 28 so that the flow path outer wall 32 and the flow path outer wall 36 form a right angle in plan view. The first flow path 22 and the second flow path 26 are alternately provided in the stacking direction. Therefore, in this embodiment, the plate laminated heat exchanger 12 is a cross flow type heat exchanger that performs heat exchange while the first fluid and the second fluid flow in the orthogonal direction in a plan view. As shown in FIG. 3, a flat cover plate 40 is joined to the first heat transfer plate 24 arranged in the uppermost layer.

これにより、プレート積層型熱交換器12は、第1流体入口ヘッダ14が連通される第1流体入口12Aと、第1流体出口ヘッダ16が連通される第1流体出口12Bと、第2流体入口ヘッダ18が連通される第2流体入口12Cと、第2流体出口ヘッダ20が連通される第2流体出口12Dとが平面視で四角形の異なる辺に形成されている。換言すれば、第1流体入口12A、第1流体出口12B、第2流体入口12C、第2流体出口12Dは、それぞれ第1伝熱プレート24、第2伝熱プレート28の積層方向Lとの直交面に沿って該直交方向を向いて配置されている。   Thus, the plate stack type heat exchanger 12 includes a first fluid inlet 12A that communicates with the first fluid inlet header 14, a first fluid outlet 12B that communicates with the first fluid outlet header 16, and a second fluid inlet. The second fluid inlet 12C that communicates with the header 18 and the second fluid outlet 12D that communicates with the second fluid outlet header 20 are formed on different sides of the quadrangle in plan view. In other words, the first fluid inlet 12A, the first fluid outlet 12B, the second fluid inlet 12C, and the second fluid outlet 12D are orthogonal to the stacking direction L of the first heat transfer plate 24 and the second heat transfer plate 28, respectively. They are arranged along the plane in the orthogonal direction.

そして、図3に示される如く、第1流体入口ヘッダ14は、略矩形筒状に形成されており、プレート積層型熱交換器12の第1流体入口12Aに下流端面14Aを突き当てて接合されるようになっている。すなわち、プレート積層型熱交換器12は、第1流体入口12Aの周縁を成す最下層の第2伝熱プレート28の平板部35と、最上層のカバープレート40と、一対の流路外壁32及びこれらの間を埋める一対の流路外壁36の両端部とで、第1流体入口ヘッダ14の下流端面14Aが突き当てられる略矩形枠状部分が、上記積層方向Lとの直交方向を向いて形成されている。   As shown in FIG. 3, the first fluid inlet header 14 is formed in a substantially rectangular cylindrical shape, and is joined to the first fluid inlet 12 </ b> A of the plate stacked heat exchanger 12 with the downstream end surface 14 </ b> A abutting against the first fluid inlet 12 </ b> A. It has become so. That is, the plate stacked heat exchanger 12 includes the flat plate portion 35 of the lowermost second heat transfer plate 28 that forms the periphery of the first fluid inlet 12A, the uppermost cover plate 40, the pair of flow path outer walls 32, A substantially rectangular frame-like portion against which the downstream end surface 14A of the first fluid inlet header 14 is abutted is formed so as to face the direction perpendicular to the stacking direction L at both ends of the pair of flow path outer walls 36 filling between these. Has been.

同様に、第1流体出口ヘッダ16、第2流体入口ヘッダ18、第2流体出口ヘッダ20は、第1流体入口ヘッダ14と同じ略矩形状に形成されている。第1流体出口ヘッダ16は、その上流端面16Aをプレート積層型熱交換器12の第1流体出口12Bに突き当てて接合され、第2流体入口ヘッダ18は、その下流端面18Aを第2流体入口12Cに突き当てて接合され、第2流体出口ヘッダ20は、その上流端面20Aを第2流体出口12Dに突き当てて接合されるようになっている。   Similarly, the first fluid outlet header 16, the second fluid inlet header 18, and the second fluid outlet header 20 are formed in the same substantially rectangular shape as the first fluid inlet header 14. The first fluid outlet header 16 is joined with its upstream end face 16A abutting against the first fluid outlet 12B of the plate stack type heat exchanger 12, and the second fluid inlet header 18 has its downstream end face 18A connected to the second fluid inlet. The second fluid outlet header 20 is abutted against the second fluid outlet 12D and joined to the second fluid outlet 12D.

そして、熱交換装置10は、交互に積層された第1伝熱プレート24、第2伝熱プレート28が接合されてプレート積層型熱交換器12を構成するのに伴って、該プレート積層型熱交換器12に対し、それぞれ本発明における被接合部材としての第1流体入口ヘッダ14、第1流体出口ヘッダ16、第2流体入口ヘッダ18、第2流体出口ヘッダ20が接合されて構成されている。以下、この接合方法について説明する。   Then, the heat exchanger 10 is configured so that the first heat transfer plate 24 and the second heat transfer plate 28 that are alternately stacked are joined to form the plate stacked heat exchanger 12. A first fluid inlet header 14, a first fluid outlet header 16, a second fluid inlet header 18, and a second fluid outlet header 20 as members to be joined in the present invention are joined to the exchanger 12. . Hereinafter, this joining method will be described.

(熱交換装置の製造方法)
図2及び図4に示される如く、各第1伝熱プレート24は、最上層のものを除き流路外壁32、流路隔壁34が第2伝熱プレート28の平板部35に接合されている。最上層の第1伝熱プレート24は、流路外壁32、流路隔壁34が平板状のカバープレート40に接合されている。一方、各第2伝熱プレート28は、流路外壁36、流路隔壁38が第1伝熱プレート24の30に接合されている。これらの接合は、図示しないロウ材によるロウ付けとされている。
(Manufacturing method of heat exchange device)
As shown in FIGS. 2 and 4, each first heat transfer plate 24, except for the uppermost layer, has a flow channel outer wall 32 and a flow channel partition 34 joined to a flat plate portion 35 of the second heat transfer plate 28. . The uppermost first heat transfer plate 24 has a flow path outer wall 32 and a flow path partition wall 34 joined to a flat cover plate 40. On the other hand, each second heat transfer plate 28 has a flow path outer wall 36 and a flow path partition wall 38 joined to 30 of the first heat transfer plate 24. These joints are brazed with a brazing material (not shown).

また、プレート積層型熱交換器12の第1流体入口12A、第1流体出口12B、第2流体入口12C、第2流体出口12Dの各矩形枠状の周縁部と、第1流体入口ヘッダ14、第1流体出口ヘッダ16、第2流体入口ヘッダ18、第2流体出口ヘッダ20との接合は、図示しないロウ材によるロウ付けとされている。   In addition, the peripheral edge of each rectangular frame of the first fluid inlet 12A, the first fluid outlet 12B, the second fluid inlet 12C, and the second fluid outlet 12D of the plate stacked heat exchanger 12, the first fluid inlet header 14, The first fluid outlet header 16, the second fluid inlet header 18, and the second fluid outlet header 20 are joined by brazing using a brazing material (not shown).

そして、本実施形態に係る製造方法では、上記した積層方向Lの第1伝熱プレート24と第2伝熱プレート28とのロウ付けと、積層方向Lとの直交方向における第1流体入口12A〜第2流体出口12Dと第1流体入口ヘッダ14〜第2流体出口ヘッダ20とのロウ付けとが1工程で行われるようになっている。   In the manufacturing method according to the present embodiment, the brazing of the first heat transfer plate 24 and the second heat transfer plate 28 in the stacking direction L and the first fluid inlets 12A to 12A in the direction orthogonal to the stacking direction L are described. The brazing of the second fluid outlet 12D and the first fluid inlet header 14 to the second fluid outlet header 20 is performed in one step.

具体的には、図1(A)に模式的に示される如く、先ず、第1伝熱プレート24と第2伝熱プレート28とが図示しないロウ材を介在させつつ交互に積層されたプレート積層型熱交換器12の第1流体入口12A、第1流体出口12B、第2流体入口12C、第2流体出口12Dに対し、第1流体入口ヘッダ14、第1流体出口ヘッダ16、第2流体入口ヘッダ18、第2流体出口ヘッダ20を接合後の寸法形状で位置規制(拘束)しておく。この実施形態では、プレート積層型熱交換器12への積層方向L方向の荷重付与前に、該積層方向Lとの直交方向(図1(A)の矢印C参照)の拘束力が0となる設定とされている。   Specifically, as schematically shown in FIG. 1A, first, a plate stack in which first heat transfer plates 24 and second heat transfer plates 28 are alternately stacked with a brazing material (not shown) interposed therebetween. The first fluid inlet header 14, the first fluid outlet header 16, the second fluid inlet with respect to the first fluid inlet 12A, the first fluid outlet 12B, the second fluid inlet 12C, and the second fluid outlet 12D of the mold heat exchanger 12. The position of the header 18 and the second fluid outlet header 20 is regulated (restrained) in the dimension and shape after joining. In this embodiment, before the load in the stacking direction L direction is applied to the plate stacking type heat exchanger 12, the binding force in the direction orthogonal to the stacking direction L (see arrow C in FIG. 1A) becomes zero. It is set.

次いで、ロウ材を融点以上に加熱しつつ、図1(A)及び図2(A)に示される如く、プレート積層型熱交換器12に積層方向Lの荷重Flを付与する。すると、プレート積層型熱交換器12は、図2(B)に示される如く、主にロウ材の沈み込みに起因して積層方向Lに圧縮されつつ、同図に想像線にて示される如く矢印C方向に略樽状に膨張しようとする。   Next, while heating the brazing material to the melting point or higher, as shown in FIGS. 1A and 2A, a load Fl in the stacking direction L is applied to the plate stacking type heat exchanger 12. Then, as shown in FIG. 2 (B), the plate stacking type heat exchanger 12 is compressed in the stacking direction L mainly due to the sinking of the brazing material, and as indicated by an imaginary line in FIG. It tries to expand in a substantially barrel shape in the direction of arrow C.

ところが、第1流体入口ヘッダ14、第1流体出口ヘッダ16が図1(A)に示される如く位置規制されているので、プレート積層型熱交換器12の膨張させようとする力が、矢印C方向の接合荷重Fcとしてプレート積層型熱交換器12の第1流体入口12A、第1流体出口12Bと第1流体入口ヘッダ14、第1流体出口ヘッダ16との間に作用する。図示は省略するが、同様に、第2流体入口ヘッダ18、第2流体出口ヘッダ20が位置規制により拘束されているので、プレート積層型熱交換器12の膨張させようとする力が、矢印C方向の接合荷重Fcとしてプレート積層型熱交換器12の第2流体入口12C、第2流体出口12Dと第2流体入口ヘッダ18、第2流体出口ヘッダ20との間に作用する。その後、ロウ材を冷却して固化させる。   However, since the position of the first fluid inlet header 14 and the first fluid outlet header 16 is regulated as shown in FIG. 1A, the force to expand the plate stacked heat exchanger 12 is increased by the arrow C. A directional joint load Fc acts between the first fluid inlet 12A, the first fluid outlet 12B and the first fluid inlet header 14 and the first fluid outlet header 16 of the plate laminated heat exchanger 12. Although illustration is omitted, similarly, since the second fluid inlet header 18 and the second fluid outlet header 20 are constrained by position restriction, the force to expand the plate stacked heat exchanger 12 is increased by the arrow C. As a directional joint load Fc, it acts between the second fluid inlet 12C, the second fluid outlet 12D and the second fluid inlet header 18 and the second fluid outlet header 20 of the plate stacked heat exchanger 12. Thereafter, the brazing material is cooled and solidified.

以上により、熱交換装置10では、積層された第1伝熱プレート24、第2伝熱プレート28が積層方向の荷重Flを受けて接合されるのに伴って、第1流体入口12A〜第2流体出口12Dがそれぞれ矢印C方向の荷重を受けて第1流体入口ヘッダ14〜第2流体出口ヘッダ20に接合される。これにより、プレート積層型熱交換器12に第1流体入口ヘッダ14、第1流体出口ヘッダ16、第2流体入口ヘッダ18、第2流体出口ヘッダ20が1工程で固定された熱交換装置10の製造が終了する。   As described above, in the heat exchanging device 10, the first fluid inlet plate 12A to the second fluid inlet plate 12A to the second fluid plate 12 are joined as the stacked first heat transfer plate 24 and second heat transfer plate 28 are joined by receiving the load Fl in the stacking direction. Each of the fluid outlets 12D receives a load in the direction of arrow C and is joined to the first fluid inlet header 14 to the second fluid outlet header 20. As a result, the first fluid inlet header 14, the first fluid outlet header 16, the second fluid inlet header 18, and the second fluid outlet header 20 are fixed to the plate stacked heat exchanger 12 in one step. Production ends.

次に、本実施形態の作用を説明する。   Next, the operation of this embodiment will be described.

上記構成の熱交換装置10では、第1流体入口ヘッダ14に導入された第1流体が第1流体入口部12Aから各層の第1流路22に導入され第1流体出口12Bを経由して第1流体出口ヘッダ16に排出されると共に、第2流体入口ヘッダ18に導入された第2流体が第2流体入口12Cから各層の第2流路26に導入され第2流体出口12Dを経由して第2流体出口ヘッダ20に排出される。第1流路22を流れる第1流体と、第2流路26を流れる第2流体とは、平板部30を介して熱交換を行う。   In the heat exchange device 10 configured as described above, the first fluid introduced into the first fluid inlet header 14 is introduced into the first flow path 22 of each layer from the first fluid inlet portion 12A and passes through the first fluid outlet 12B. The second fluid discharged into the first fluid outlet header 16 and introduced into the second fluid inlet header 18 is introduced from the second fluid inlet 12C into the second flow path 26 of each layer and passes through the second fluid outlet 12D. It is discharged to the second fluid outlet header 20. The first fluid flowing through the first flow path 22 and the second fluid flowing through the second flow path 26 exchange heat via the flat plate portion 30.

ここで、熱交換装置10及びその製造方法では、プレート積層型熱交換器12に積層方向の荷重Flを作用させることで、積層された第1伝熱プレート24、第2伝熱プレート28が積層方向の荷重Flを受けて接合されるのに伴って、第1流体入口12A〜第2流体出口12Dがそれぞれ矢印C方向の荷重を受けて第1流体入口ヘッダ14〜第2流体出口ヘッダ20に接合されるので、第1伝熱プレート24と第2伝熱プレート28との積層方向の接合と、第1流体入口12A〜第2流体出口12Dと第1流体入口ヘッダ14〜第2流体出口ヘッダ20との矢印C方向の接合とを、1工程で行うことができる。   Here, in the heat exchange device 10 and the manufacturing method thereof, the stacked first heat transfer plate 24 and the second heat transfer plate 28 are stacked by applying a load Fl in the stacking direction to the plate stacking type heat exchanger 12. The first fluid inlet 12 </ b> A to the second fluid outlet 12 </ b> D receive the load in the direction of the arrow C, respectively, and are connected to the first fluid inlet header 14 to the second fluid outlet header 20 as they are joined by receiving the direction load Fl. Since the first heat transfer plate 24 and the second heat transfer plate 28 are joined in the stacking direction, the first fluid inlet 12A to the second fluid outlet 12D and the first fluid inlet header 14 to the second fluid outlet header. The joining in the direction of arrow C with 20 can be performed in one step.

そして、熱交換装置10及びその製造方法では、1工程で積層方向L及びその直交方向Cの接合が成されるため、ロウ材の溶融、固化のために熱履歴を伴うロウ付けを1回行うだけで、熱交換装置10を製造することができる。これにより、熱履歴の影響が少ない高品質の熱交換装置10を効率的に得ることができる。   In the heat exchanging device 10 and the manufacturing method thereof, since the joining in the stacking direction L and the orthogonal direction C is performed in one step, brazing with a heat history is performed once for melting and solidifying the brazing material. Only by this, the heat exchange device 10 can be manufactured. Thereby, the high quality heat exchange apparatus 10 with little influence of a heat history can be obtained efficiently.

また、熱交換装置10及びその製造方法では、プレート積層型熱交換器12に積層方向Lの荷重Flを作用させるのに伴うプレート積層型熱交換器12の矢印C方向への変形力を接合荷重Fcとして用いるため、すなわちプレート積層型熱交換器12の荷重Flによる縦ひずみが横ひずみに変換させることを拘束することで矢印C方向の接合荷重Fcを得るため、付与荷重を多方向に分力として作用させる場合と比較して大きな接合荷重Fcを得ることができる。これにより、ロウ付けに要求される接合荷重が得られるので、良好な接合安定性が確保される。   Further, in the heat exchange device 10 and the manufacturing method thereof, the deformation force in the direction of arrow C of the plate lamination type heat exchanger 12 when the load Fl in the lamination direction L is applied to the plate lamination type heat exchanger 12 is applied to the bonding load. In order to obtain a joint load Fc in the direction of arrow C for use as Fc, that is, by constraining that the longitudinal strain due to the load Fl of the plate laminated heat exchanger 12 is converted into lateral strain, the applied load is divided in multiple directions. As compared with the case of acting as, it is possible to obtain a large bonding load Fc. Thereby, since the joining load required for brazing is obtained, good joining stability is ensured.

さらに、この実施形態では、積層方向の荷重Flを付与する前にプレート積層型熱交換器12に作用する矢印C方向の拘束力(初期拘束力)が0となるように、該プレート積層型熱交換器12の第1流体入口12A〜第2流体出口12Dを位置拘束したため、該プレート積層型熱交換器12の積層方向Lの沈み込みが阻害されるがなく、該積層方向Lにおいても良好な接合安定性が確保される。   Furthermore, in this embodiment, the plate stacking type heat is applied so that the restraining force (initial restraining force) in the direction of arrow C acting on the plate stacking type heat exchanger 12 before applying the load Fl in the stacking direction becomes zero. Since the position of the first fluid inlet 12A to the second fluid outlet 12D of the exchanger 12 is restricted, the subsidence in the stacking direction L of the plate stacking type heat exchanger 12 is not hindered, and is favorable in the stacking direction L. Bonding stability is ensured.

(第2の実施形態)
次に、第2の実施形態に係る熱交換装置10の製造方法を説明する。
(Second Embodiment)
Next, a method for manufacturing the heat exchange device 10 according to the second embodiment will be described.

図5に示される如く、第2の実施形態に係る熱交換装置10の製造方法は、積層方向Lの荷重Flと共に、該積層方向Lとの直交方向Cの補助荷重(初期拘束力)Fc0(≠0)を付与する点で、初期拘束力が0となるようにプレート積層型熱交換器12の第1流体入口12A〜第2流体出口12D(第1流体入口ヘッダ14〜第2流体出口ヘッダ20)の位置規制のみ行う第1の実施形態に係る熱交換装置10の製造方法とは異なる。   As shown in FIG. 5, the manufacturing method of the heat exchange device 10 according to the second embodiment includes the load Fl in the stacking direction L and the auxiliary load (initial binding force) Fc0 in the direction C perpendicular to the stacking direction L. ≠ 0), the first fluid inlet 12A to the second fluid outlet 12D (the first fluid inlet header 14 to the second fluid outlet header) of the plate laminated heat exchanger 12 so that the initial restraining force becomes zero. This is different from the method for manufacturing the heat exchanging device 10 according to the first embodiment in which only the position restriction of 20) is performed.

そして、補助荷重Fc0の大きさは、プレート積層型熱交換器12に積層方に付与する荷重Flの大きさを基準に設定されている。補助荷重Fc0の大きさは、積層方向の荷重Flの大きさの80%以下に設定されており、荷重Flの大きさの50%以下とすることが好ましく、荷重Flの大きさの10%以下とすることがより好ましい。この実施形態では、補助荷重Fc0の大きさは、0<Fc0≦0.1×Flの範囲に設定されている。   The magnitude of the auxiliary load Fc0 is set on the basis of the magnitude of the load Fl applied to the plate lamination type heat exchanger 12 in the lamination method. The magnitude of the auxiliary load Fc0 is set to 80% or less of the magnitude of the load Fl in the stacking direction, preferably 50% or less of the magnitude of the load Fl, and 10% or less of the magnitude of the load Fl. More preferably. In this embodiment, the magnitude of the auxiliary load Fc0 is set in a range of 0 <Fc0 ≦ 0.1 × F1.

以上説明した熱交換装置10の製造方法では、補助荷重Fc0を矢印C方向に付与しながら荷重Flを積層方向Lに付与することで、1工程で積層方向L及びその直交方向Cの接合が成される。すなわち、第1の実施形態と同様に荷重Flによってプレート積層型熱交換器12における積層方向に隣り合う第1伝熱プレート24と第2伝熱プレート28とが良好に接合されると共に、この実施形態では、接合荷重Fc及びFc0によって第1流体入口12A〜第2流体出口12Dが第1流体入口ヘッダ14〜第2流体出口ヘッダ20に接合される。   In the manufacturing method of the heat exchange device 10 described above, the load Fl is applied in the stacking direction L while the auxiliary load Fc0 is applied in the direction of the arrow C, thereby joining the stacking direction L and the orthogonal direction C in one step. Is done. That is, as in the first embodiment, the first heat transfer plate 24 and the second heat transfer plate 28 adjacent to each other in the stacking direction in the plate stack type heat exchanger 12 are satisfactorily joined by the load Fl. In the embodiment, the first fluid inlet 12A to the second fluid outlet 12D are joined to the first fluid inlet header 14 to the second fluid outlet header 20 by the joining loads Fc and Fc0.

これにより、積層方向Lとの直交方向Cに十分な荷重を付与してプレート積層型熱交換器12の第1流体入口12A、第1流体出口12B、第2流体入口12C、第2流体出口12Dに、第1流体入口ヘッダ14、第1流体出口ヘッダ16、第2流体入口ヘッダ18、第2流体出口ヘッダ20を接合することができる。換言すれば、これら第1流体入口12A〜第2流体出口12Dを第1流体入口ヘッダ14〜第2流体出口ヘッダ20に接合する適正な荷重を得るために積層方向Lの荷重Flを調整する必要がなくなり、積層方向L及びその直交方向Cをそれぞれより適正な荷重で接合することが可能になる。   Accordingly, a sufficient load is applied in the direction C orthogonal to the stacking direction L, and the first fluid inlet 12A, the first fluid outlet 12B, the second fluid inlet 12C, and the second fluid outlet 12D of the plate stacked heat exchanger 12 are provided. The first fluid inlet header 14, the first fluid outlet header 16, the second fluid inlet header 18, and the second fluid outlet header 20 can be joined to each other. In other words, it is necessary to adjust the load Fl in the stacking direction L in order to obtain an appropriate load for joining the first fluid inlet 12A to the second fluid outlet 12D to the first fluid inlet header 14 to the second fluid outlet header 20. It becomes possible to join the laminating direction L and the orthogonal direction C with a more appropriate load.

また、この実施形態では、補助荷重Fc0の大きさが積層方向Lの荷重Flの大きさの80%以下とされているため、荷重Flによるプレート積層型熱交換器12の圧縮(沈み込み)が阻害されることがない。すなわち、出願人は、過大な補助荷重Fc0を付与した場合、プレート積層型熱交換器12の積層方向Lの圧縮(積層方向Lの接合安定性の確保)が阻害され、このようなプレート積層型熱交換器12の圧縮を阻害しない補助荷重Fc0の大きさの上限が荷重Flの大きさの80%であるとの知見を得、この知見に基づいて補助荷重Fc0の大きさを積層方向Lの荷重Flの大きさの80%以下としている。   In this embodiment, since the magnitude of the auxiliary load Fc0 is 80% or less of the magnitude of the load Fl in the laminating direction L, the compression (sinking) of the plate laminated heat exchanger 12 by the load Fl is suppressed. There is no hindrance. That is, when the applicant applies an excessive auxiliary load Fc0, the compression in the stacking direction L of the plate stacking type heat exchanger 12 (ensures the bonding stability in the stacking direction L) is hindered. The knowledge that the upper limit of the magnitude of the auxiliary load Fc0 that does not inhibit the compression of the heat exchanger 12 is 80% of the magnitude of the load Fl is obtained, and the magnitude of the auxiliary load Fc0 is determined in the stacking direction L based on this knowledge. It is set to 80% or less of the magnitude | size of the load Fl.

このため、第2の実施形態に係る熱交換装置10の製造方法において、積層方向L及びその直交方向Cの接合安定性をそれぞれ確保することができる。特に、この実施形態では、補助荷重Fc0の大きさを積層方向Lの荷重Flの大きさの50%以下としているため、積層方向L方向の接合安定性を一層良好に確保することができ、さらに補助荷重Fc0の大きさを積層方向Lの荷重Flの大きさの10%以下としているため積層方向L方向の接合安定性を一層良好に確保することができる。なお、補助荷重Fc0の大きさを積層方向Lの荷重Flの大きさの10%以下とすることが、プレート積層型熱交換器12の積層方向L方向の接合安定性(熱交換装置10の寸法精度、リーク性能の確保)に最も良好な条件であることは実験的に確かめられている。   For this reason, in the manufacturing method of the heat exchange apparatus 10 which concerns on 2nd Embodiment, the joining stability of the lamination direction L and its orthogonal direction C can be ensured, respectively. In particular, in this embodiment, since the magnitude of the auxiliary load Fc0 is set to 50% or less of the magnitude of the load Fl in the stacking direction L, it is possible to secure better bonding stability in the stacking direction L. Since the magnitude of the auxiliary load Fc0 is set to 10% or less of the magnitude of the load Fl in the stacking direction L, it is possible to further ensure the bonding stability in the stacking direction L direction. Note that the auxiliary load Fc0 is set to 10% or less of the load Fl in the stacking direction L, so that the bonding stability in the stacking direction L direction of the plate stacking type heat exchanger 12 (dimensions of the heat exchange device 10). It has been experimentally confirmed that this is the best condition for ensuring accuracy and leakage performance.

なお、上記の各実施形態では、プレート積層型熱交換器12を構成する第1伝熱プレート24と第2伝熱プレート28との接合部、及びプレート積層型熱交換器12の第1流体入口12A〜第2流体出口12Dとが第1流体入口ヘッダ14〜第2流体出口ヘッダ20との接合部がそれぞれロウ付けにより接合された例を示したが、本発明はこれに限定されず、上企画接合部の一方又は双方を拡散接合等の他の接合方法で接合しても良い。拡散接合を用いる場合、比較的大きな加圧力が要求されることから、補助荷重Fc0を付与することが望ましい。   In each of the above-described embodiments, the joint between the first heat transfer plate 24 and the second heat transfer plate 28 constituting the plate laminated heat exchanger 12 and the first fluid inlet of the plate laminated heat exchanger 12 are used. Although the example in which the joined portions of the first fluid inlet header 14 to the second fluid outlet header 20 are joined to each other by brazing is shown in FIG. One or both of the planned joining portions may be joined by other joining methods such as diffusion joining. When diffusion bonding is used, since a relatively large pressure is required, it is desirable to apply the auxiliary load Fc0.

また、上記の各実施形態では、直交流型のプレート積層型熱交換器12を備えた熱交換装置10及びその製造方法を例示したが、本発明はこれに限定されず、例えば、並行流型や対向流型のプレート積層型熱交換器に本発明を適用しても良い。   Further, in each of the above embodiments, the heat exchange device 10 including the cross flow type plate laminated heat exchanger 12 and the manufacturing method thereof are exemplified, but the present invention is not limited to this, and for example, a parallel flow type Alternatively, the present invention may be applied to a counter flow type plate laminated heat exchanger.

さらに、上記した実施形態では、本発明に係る積層型流路要素がプレート積層型熱交換器12を備えた熱交換装置10に適用された例を示したが、本発明はこれに限定されず、例えば、炭化水素原料を改質する改質流路と該改質流路に熱を供給するための燃焼流路とを含む熱交換型改質装置、アノード流路とカソード流路とを有する燃料電池等の反応器に本発明に係る積層型流路要素を適用しても良く、また例えば、第1流体の熱で液状の第2流体を気化させるための蒸発器に本発明に係る積層型流路要素を適用しても良く、さらに例えば、2種類以上の流体を混合する混合器(の整流部分)に本発明に係る積層型流路要素を適用しても良い。混合器に適用する構成では、例えば第1伝熱プレート54、第2伝熱プレート56の下流端が共通の混合用ヘッダに連通されるように、全体として略Y字状に構成することができる。さらにまた例えば、単一の流体流路を多数の分割する用途に本発明に係る積層型流路要素を適用しても良い。このような用途として、例えば排気ガスを浄化するための触媒コンバータ等を挙げることができる。   Further, in the above-described embodiment, the example in which the laminated flow path element according to the present invention is applied to the heat exchange device 10 including the plate laminated heat exchanger 12 is shown, but the present invention is not limited to this. For example, a heat exchange type reformer including a reforming channel for reforming a hydrocarbon raw material and a combustion channel for supplying heat to the reforming channel, and an anode channel and a cathode channel The laminated flow path element according to the present invention may be applied to a reactor such as a fuel cell. For example, the evaporator according to the present invention may be used in an evaporator for vaporizing a liquid second fluid with the heat of the first fluid. For example, the laminated flow path element according to the present invention may be applied to a mixer (a rectifying portion thereof) that mixes two or more kinds of fluids. In the configuration applied to the mixer, for example, the first heat transfer plate 54 and the second heat transfer plate 56 can be configured in a substantially Y shape as a whole so that the downstream ends of the first heat transfer plate 54 and the second heat transfer plate 56 are communicated with a common mixing header. . Furthermore, for example, the laminated flow path element according to the present invention may be applied to an application in which a single fluid flow path is divided into a large number. Examples of such applications include a catalytic converter for purifying exhaust gas.

本発明の第1の実施形態に係る熱交換装置の製造方法を説明するための図であって、(A)は製造過程の正面図、(B)は完成状態の正面図である。It is a figure for demonstrating the manufacturing method of the heat exchange apparatus which concerns on the 1st Embodiment of this invention, Comprising: (A) is a front view of a manufacture process, (B) is a front view of a completion state. 本発明の第1の実施形態に係る熱交換装置を構成するプレート積層型熱交換器を示す図であって、(A)は積層方向の荷重付加初期の正面図、(B)は積層方向の荷重による圧縮状態の正面図である。It is a figure which shows the plate lamination type heat exchanger which comprises the heat exchange apparatus which concerns on the 1st Embodiment of this invention, Comprising: (A) is a front view of the load addition initial stage of a lamination direction, (B) is a lamination direction It is a front view of the compression state by a load. 本発明の第1の実施形態に係る熱交換装置を一部分解して示す斜視図である。1 is a partially exploded perspective view showing a heat exchange device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る熱交換装置を構成するプレート積層型熱交換器を一部分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows partially the plate lamination type heat exchanger which comprises the heat exchange apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る熱交換装置の製造方法を説明するための正面図である。It is a front view for demonstrating the manufacturing method of the heat exchange apparatus which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10 熱交換装置(積層された流路形成部材)
12 プレート積層型熱交換器(積層された流路形成部材)
14 流体入口ヘッダ(被接合部材)
16 流体出口ヘッダ(被接合部材)
18 流体入口ヘッダ(被接合部材)
20 流体出口ヘッダ(被接合部材)
24 第1伝熱プレート
28 第2伝熱プレート
50 熱交換装置(積層された流路形成部材)
52 プレート積層型熱交換器(積層された流路形成部材)
10 Heat exchange device (stacked channel forming member)
12 Plate Laminate Type Heat Exchanger (Laminated channel forming member)
14 Fluid inlet header (joined member)
16 Fluid outlet header (joined member)
18 Fluid inlet header (joined member)
20 Fluid outlet header (member to be joined)
24 1st heat transfer plate 28 2nd heat transfer plate 50 Heat exchange device (stacked channel formation member)
52 Plate Stack Type Heat Exchanger (Stacked Channel Forming Member)

Claims (14)

積層された複数の流路形成部材における積層方向に隣り合う前記流路形成部材間をそれぞれ接合して一体化された積層型流路要素の製造方法であって、
積層された前記複数の流路形成部材に付与した荷重を、該積層された複数の流路形成部材によって積層方向及び該積層方向との直交方向に作用させることで、前記積層された複数の流路形成部材を積層方向に接合すると共に、該積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を被接合部材に接合する積層型流路要素の製造方法。
A method for manufacturing a laminated flow path element in which the flow path forming members adjacent to each other in the stacking direction in the plurality of flow path forming members stacked are joined and integrated,
The load applied to the plurality of laminated flow path forming members is caused to act in the laminating direction and the direction orthogonal to the laminating direction by the plurality of laminated flow path forming members. A method for manufacturing a laminated flow path element, wherein a path forming member is joined in a laminating direction, and end faces of the plurality of laminated flow passage forming members facing a direction orthogonal to the laminating direction are joined to a member to be joined.
前記積層方向における前記複数の流路形成部材の接合、及び積層方向との直交方向における前記流路形成部材と前記被接合部材の接合の少なくとも一方は、ロウ材によるロウ付けである請求項1記載の積層型流路要素の製造方法。   2. At least one of joining of the plurality of flow path forming members in the laminating direction and joining of the flow path forming member and the joined member in a direction orthogonal to the laminating direction is brazing with a brazing material. The manufacturing method of the laminated flow path element of. 前記積層方向における前記複数の流路形成部材の接合、及び積層方向との直交方向における前記流路形成部材と前記被接合部材の接合の少なくとも一方は、拡散接合である請求項1又は請求項2記載の積層型流路要素の製造方法。   3. At least one of the bonding of the plurality of flow path forming members in the stacking direction and the bonding of the flow path forming member and the bonded members in a direction orthogonal to the stacking direction is diffusion bonding. The manufacturing method of the lamination type flow path element of description. 前記積層された複数の流路形成部材に積層方向に荷重を付加して該積層された複数の流路形成部材を積層方向に接合すると共に、該荷重付与に伴い前記積層された複数の流路形成部材が積層方向との直交方向に変形しようとする力を利用して、該積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を前記被接合部材に接合する請求項1〜請求項3の何れか1項記載の積層型流路要素の製造方法。   A load is applied to the stacked flow path forming members in the stacking direction to join the stacked flow path forming members in the stacking direction, and the plurality of stacked flow paths with the load applied. The forming member is joined to the member to be joined by using the force that the forming member tries to deform in a direction orthogonal to the laminating direction, and the end surfaces of the plurality of laminated flow path forming members facing the direction orthogonal to the laminating direction are joined. The manufacturing method of the lamination type flow path element in any one of Claims 1-3. 前記積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を接合後の寸法形状で拘束して、該積層された複数の流路形成部材に積層方向に荷重を付加することで、該積層された複数の流路形成部材を積層方向に接合すると共に、該積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を前記被接合部材に接合する請求項4記載の積層型流路要素の製造方法。   The end faces facing the direction perpendicular to the stacking direction of the plurality of stacked flow path forming members are constrained by the dimension shape after joining, and a load is applied to the stacked plurality of flow path forming members in the stacking direction. Thus, the stacked plurality of flow path forming members are bonded in the stacking direction, and the end surfaces of the stacked plurality of flow path forming members facing the direction perpendicular to the stacking direction are bonded to the bonded members. The manufacturing method of the lamination type flow path element of Claim 4. 前記積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を接合後の寸法形状で拘束する拘束条件として、前記積層された複数の流路形成部材における前記積層方向との直交方向の位置規制を行うと共に、前記積層方向の荷重付与前の拘束力を0とした請求項5記載の積層型流路要素の製造方法。   As a constraint condition for constraining the end surface facing the direction orthogonal to the stacking direction in the stacked plurality of flow path forming members with the dimension shape after joining, the stacking direction in the stacked plurality of flow path forming members The method of manufacturing a laminated flow path element according to claim 5, wherein the position restriction in the orthogonal direction is performed and the restraining force before applying the load in the lamination direction is set to zero. 前記積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を接合後の寸法形状で拘束する拘束条件として、前記積層された複数の流路形成部材における前記積層方向との直交方向の端面に、前記積層方向に付与される荷重の80%以下の荷重を付与する請求項5記載の積層型流路要素の製造方法。   As a constraint condition for constraining the end surface facing the direction orthogonal to the stacking direction in the stacked plurality of flow path forming members with the dimension shape after joining, the stacking direction in the stacked plurality of flow path forming members The manufacturing method of the lamination type flow path element of Claim 5 which gives the load of 80% or less of the load provided to the said lamination direction to the end surface of an orthogonal direction. 前記積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を接合後の寸法形状で拘束する拘束条件として、前記積層された複数の流路形成部材における前記積層方向との直交方向の端面に、前記積層方向に付与される荷重の50%以下の荷重を付与する請求項5記載の積層型流路要素の製造方法。   As a constraint condition for constraining the end surface facing the direction orthogonal to the stacking direction in the stacked plurality of flow path forming members with the dimension shape after joining, the stacking direction in the stacked plurality of flow path forming members The manufacturing method of the lamination type flow path element of Claim 5 which provides the load of 50% or less of the load provided to the said lamination direction to the end surface of an orthogonal direction. 前記積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を接合後の寸法形状で拘束する拘束条件として、前記積層された複数の流路形成部材における前記積層方向との直交方向の端面に、前記積層方向に付与される荷重の10%以下の荷重を付与する請求項5記載の積層型流路要素の製造方法。   As a constraint condition for constraining the end surface facing the direction orthogonal to the stacking direction in the stacked plurality of flow path forming members with the dimension shape after joining, the stacking direction in the stacked plurality of flow path forming members The manufacturing method of the lamination type flow path element of Claim 5 which provides the load of 10% or less of the load provided to the said lamination direction to the end surface of an orthogonal direction. 積層された複数の流路形成部材における積層方向に隣り合う前記流路形成部材間をそれぞれ接合して一体化された積層型流路要素であって、
積層された前記複数の流路形成部材に付与した荷重を、該積層された複数の流路形成部材によって積層方向及び該積層方向との直交方向に作用させることで、前記積層された複数の流路形成部材を積層方向に接合すると共に、該積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を被接合部材に接合させて構成された積層型流路要素。
A laminated flow path element in which the flow path forming members adjacent to each other in the stacking direction in the plurality of stacked flow path forming members are joined and integrated,
The load applied to the plurality of laminated flow path forming members is caused to act in the laminating direction and the direction orthogonal to the laminating direction by the plurality of laminated flow path forming members. A laminated flow path element formed by joining a path forming member in a laminating direction and joining end surfaces facing the direction perpendicular to the laminating direction of the plurality of laminated flow path forming members to a joined member.
前記積層方向における前記複数の流路形成部材の接合部位、及び積層方向との直交方向における前記流路形成部材と前記被接合部材の接合部位の少なくとも一方は、ロウ材によるロウ付けにより接合されている請求項10記載の積層型流路要素。   At least one of the joint part of the plurality of flow path forming members in the stacking direction and the joint part of the flow path forming member and the joined member in a direction orthogonal to the stacking direction is joined by brazing with a brazing material. The laminated flow path element according to claim 10. 前記積層方向における前記複数の流路形成部材の接合部位、及び積層方向との直交方向における前記流路形成部材と前記被接合部材の接合部位の少なくとも一方は、拡散接合により接合されている請求項10又は請求項11記載の積層型流路要素。   The joining part of the plurality of flow path forming members in the laminating direction and at least one of the joining part of the flow path forming member and the joined member in a direction orthogonal to the laminating direction are joined by diffusion bonding. The laminated flow path element according to claim 10 or claim 11. 前記積層された複数の流路形成部材に積層方向に荷重を付加して該積層された複数の流路形成部材を積層方向に接合すると共に、該荷重付与に伴い前記積層された複数の流路形成部材が積層方向との直交方向に変形しようとする力を利用して、該積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を前記被接合部材に接合して構成された請求項10〜請求項12の何れか1項記載の積層型流路要素。   A load is applied to the stacked flow path forming members in the stacking direction to join the stacked flow path forming members in the stacking direction, and the plurality of stacked flow paths with the load applied. Using the force that the forming member tries to deform in a direction orthogonal to the laminating direction, the end surfaces of the plurality of laminated flow path forming members facing the direction orthogonal to the laminating direction are joined to the member to be joined. The laminated flow path element according to any one of claims 10 to 12, which is configured. 前記積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を、接合後の寸法形状で拘束して、該積層された複数の流路形成部材に積層方向に荷重を付加することで、該積層された複数の流路形成部材を積層方向に接合すると共に、該積層された複数の流路形成部材における前記積層方向との直交方向を向く端面を前記被接合部材に接合して構成された請求項13記載の積層型流路要素。   The end faces facing the direction perpendicular to the laminating direction of the plurality of laminated flow path forming members are constrained by the dimension shape after joining, and a load is applied to the laminated plurality of flow path forming members in the laminating direction. Thus, the laminated plurality of flow path forming members are joined in the laminating direction, and the end faces of the laminated flow path forming members facing the direction perpendicular to the laminating direction are joined to the joined members. The laminated flow path element according to claim 13 configured as described above.
JP2007194685A 2007-07-26 2007-07-26 Method for manufacturing laminated channel element and laminated channel element Expired - Fee Related JP5221070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007194685A JP5221070B2 (en) 2007-07-26 2007-07-26 Method for manufacturing laminated channel element and laminated channel element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007194685A JP5221070B2 (en) 2007-07-26 2007-07-26 Method for manufacturing laminated channel element and laminated channel element

Publications (2)

Publication Number Publication Date
JP2009030872A true JP2009030872A (en) 2009-02-12
JP5221070B2 JP5221070B2 (en) 2013-06-26

Family

ID=40401579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007194685A Expired - Fee Related JP5221070B2 (en) 2007-07-26 2007-07-26 Method for manufacturing laminated channel element and laminated channel element

Country Status (1)

Country Link
JP (1) JP5221070B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155971A (en) * 2012-01-31 2013-08-15 Kobe Steel Ltd Laminated type heat exchanger and heat exchange system
CN104990434A (en) * 2015-07-17 2015-10-21 上海科凌能源科技有限公司 Mechanical hollowed-out printed circuit board type heat exchanger achievement method
JP2017120125A (en) * 2015-12-28 2017-07-06 株式会社神戸製鋼所 Intermediate medium type carburetor
JP2018132298A (en) * 2017-01-13 2018-08-23 ダイキン工業株式会社 Water heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038558A (en) * 1989-05-22 1991-01-16 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of plate fin heat exchanger
JPH057957A (en) * 1991-06-27 1993-01-19 Sumitomo Light Metal Ind Ltd Method and device for assembling honeycomb core of brazing honeycomb panel
JPH058707U (en) * 1991-07-20 1993-02-05 テイーデイーケイ株式会社 Magnetic head
JP2005144523A (en) * 2003-11-19 2005-06-09 Mitsubishi Heavy Ind Ltd Restraint tool by gas pressure and soldering method using the restraint tool
WO2005080901A1 (en) * 2004-02-24 2005-09-01 Spec Co., Ltd Micro heat exchanger for fuel cell and manufacturing method thereof
JP2005246472A (en) * 2004-03-08 2005-09-15 Mitsubishi Heavy Ind Ltd Brazing apparatus and brazing method
JP2005288521A (en) * 2004-04-02 2005-10-20 Calsonic Kansei Corp Tool for diffusion bonding, and diffusion bonding method using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038558A (en) * 1989-05-22 1991-01-16 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of plate fin heat exchanger
JPH057957A (en) * 1991-06-27 1993-01-19 Sumitomo Light Metal Ind Ltd Method and device for assembling honeycomb core of brazing honeycomb panel
JPH058707U (en) * 1991-07-20 1993-02-05 テイーデイーケイ株式会社 Magnetic head
JP2005144523A (en) * 2003-11-19 2005-06-09 Mitsubishi Heavy Ind Ltd Restraint tool by gas pressure and soldering method using the restraint tool
WO2005080901A1 (en) * 2004-02-24 2005-09-01 Spec Co., Ltd Micro heat exchanger for fuel cell and manufacturing method thereof
JP2007529707A (en) * 2004-02-24 2007-10-25 スペグ カンパニー リミテッド Micro heat exchanger for fuel cell and manufacturing method
JP2005246472A (en) * 2004-03-08 2005-09-15 Mitsubishi Heavy Ind Ltd Brazing apparatus and brazing method
JP2005288521A (en) * 2004-04-02 2005-10-20 Calsonic Kansei Corp Tool for diffusion bonding, and diffusion bonding method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155971A (en) * 2012-01-31 2013-08-15 Kobe Steel Ltd Laminated type heat exchanger and heat exchange system
CN104990434A (en) * 2015-07-17 2015-10-21 上海科凌能源科技有限公司 Mechanical hollowed-out printed circuit board type heat exchanger achievement method
JP2017120125A (en) * 2015-12-28 2017-07-06 株式会社神戸製鋼所 Intermediate medium type carburetor
JP2018132298A (en) * 2017-01-13 2018-08-23 ダイキン工業株式会社 Water heat exchanger

Also Published As

Publication number Publication date
JP5221070B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
CN108885075B (en) Heat exchanger
US20020106311A1 (en) Enhancing fluid flow in a stacked plate microreactor
JP5221070B2 (en) Method for manufacturing laminated channel element and laminated channel element
EP2384418A1 (en) Heat exchanger and method of making and using the same
CN108885072B (en) Heat exchanger
US20180045469A1 (en) Heat exchanger device
JP7110390B2 (en) Diffusion bonded heat exchanger
JP4667298B2 (en) Heat exchanger and heat exchange type reformer
WO2019043802A1 (en) Heat exchanger
EP2485005A2 (en) Heat exchanger assembly with fin locating structure
JP5944104B2 (en) Heat exchanger
EP3936807B1 (en) Fluid flow path device
US20130081794A1 (en) Layered core heat exchanger
JP6249611B2 (en) Laminated structure
JP2006122735A (en) Channel structure and fluid mixing apparatus
JP2008089223A (en) Header structure of heat exchanger
WO2018198420A1 (en) Plate heat exchanger
WO2019104246A1 (en) Compact heat exchanger with alternating fluid channels
US20200141657A1 (en) Laminated heat exchangers
JP4870041B2 (en) Laminated channel element and method for manufacturing the same
WO2018131597A1 (en) Water heat exchanger
JP2001066078A (en) Heat exchanger
JP2005207725A (en) Heat exchanger
KR100589727B1 (en) The structure of integrated microchannel reactor for hydrogen production
JP5236224B2 (en) Multi-layer flow element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5221070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees