JP2009030150A - Treatment reining method for copper-containing raw material - Google Patents

Treatment reining method for copper-containing raw material Download PDF

Info

Publication number
JP2009030150A
JP2009030150A JP2007281234A JP2007281234A JP2009030150A JP 2009030150 A JP2009030150 A JP 2009030150A JP 2007281234 A JP2007281234 A JP 2007281234A JP 2007281234 A JP2007281234 A JP 2007281234A JP 2009030150 A JP2009030150 A JP 2009030150A
Authority
JP
Japan
Prior art keywords
copper
raw material
molten metal
mass
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007281234A
Other languages
Japanese (ja)
Other versions
JP4426613B2 (en
Inventor
Hidenori Okamoto
秀則 岡本
Yasukatsu Sasaki
康勝 佐々木
Koji Soe
浩二 副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2007281234A priority Critical patent/JP4426613B2/en
Priority to CN2007103057177A priority patent/CN101333603B/en
Priority to TW97116446A priority patent/TWI386489B/en
Publication of JP2009030150A publication Critical patent/JP2009030150A/en
Application granted granted Critical
Publication of JP4426613B2 publication Critical patent/JP4426613B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment refining method for a copper-containing raw material by which copper can be efficiently recovered at high grade from industrial waste and waste containing valuables such as copper. <P>SOLUTION: The treatment refining method for a copper-containing raw material comprises at least: a first step where valuable raw materials containing copper, noble metals, nickel, iron, antimony or the like are subjected to molten reduction by a shaft furnace in a coke bed system together with a solvent and cokes to be separated into a molten metal mainly made up of copper and iron and molten slag mainly made up of calcium oxide, silicon dioxide, alumina and iron oxide; and a second step where, after the extraction of the molten metal produced in the first step to an oxidizing furnace in the following step, calcium carbonate is added to the molten metal in the oxidizing furnace, an oxygen-containing gas is blown into the molten metal, and the main impurities such as iron are formed into slag, and are extracted from the furnace. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、産業廃棄物、銅等の有価物を含有する廃棄物、可燃性の銅、貴金属、ニッケル、鉄、アンチモン等を含有する有価原料を焼却し得られた焼却灰や、銅、貴金属、ニッケル、鉄、アンチモン等を含有する有価原料、非鉄製錬工程から産出する銅含有中間物原料の一種以上から銅を回収精製する処理方法に関する。 The present invention relates to industrial waste, waste containing copper and other valuable materials, incinerated ash obtained by incineration of valuable raw materials containing flammable copper, noble metals, nickel, iron, antimony, etc., copper, noble metals The present invention relates to a processing method for recovering and purifying copper from valuable raw materials containing nickel, iron, antimony, and the like and one or more of copper-containing intermediate raw materials produced from non-ferrous smelting processes.

従来、産業廃棄物、銅等の有価物を含有する廃棄物、及び可燃性の銅、貴金属、ニッケル、鉄、アンチモン等を含有する有価原料を焼却し得られた焼却灰や、銅、貴金属、鉄、ニッケル、アンチモン等を含有する有価原料は、反射炉タイプの溶融炉内に硫化鉄とともに溶融処理し、銅を硫化物(以下、銅マットと記す)として回収し、酸化物は水砕スラグとしていた。
ここで、得られる銅マットは銅製錬の転炉工程にて処理を行っているが、この銅マット中の銅品位が30〜40mass-%と低いため、銅製錬所への輸送コストが高く、また銅製錬工程においては低品位銅原料であるため、銅の生産性を阻害していた。
特開2003-231924「ごみ焼却物から溶融メタルを製造する方法とその適用」(特許文献1)では、ガス化溶融炉にてごみ焼却物を処理した例等が載っており、銅品位が、7.7から30.6mass%となっている。
Conventionally, incineration ash obtained from incineration of industrial waste, waste containing valuable materials such as copper, and valuable raw materials containing flammable copper, noble metals, nickel, iron, antimony, etc., copper, noble metals, Valuable raw materials containing iron, nickel, antimony, etc. are melted together with iron sulfide in a reflection furnace type melting furnace, and copper is recovered as sulfide (hereinafter referred to as copper matte), and the oxide is granulated slag. I was trying.
Here, the obtained copper mat is processed in the converter process of copper smelting, but since the copper quality in this copper mat is as low as 30 to 40 mass-%, the transportation cost to the copper smelter is high, Moreover, in the copper smelting process, since it is a low grade copper raw material, copper productivity was inhibited.
In JP2003-231924 "Method for manufacturing molten metal from waste incineration product and its application" (Patent Document 1), an example of processing a waste incineration product in a gasification melting furnace is described, and the copper grade is It is 30.6mass% from 7.7.

具体的には、一般に銅製錬においては銅品位が高い原料と低い原料を用いた場合、単位原料当りの製錬コストは大差なく、従って銅地金の回収量によって収益が大きく左右され、銅品位の高い原料を処理するほうが有利である。   Specifically, generally in copper smelting, when raw materials with high and low copper grades are used, the smelting cost per unit raw material is not much different, so profits are greatly influenced by the amount of copper bullion recovered, and copper grades It is more advantageous to process a raw material with a high content.

:特開2003-231924: JP 2003-231924

また、前述した銅マットには鉄などの不純物含有量が多いため、銅マットを処理する転炉工程においてはスラグ性状を悪化させ、かつスラグ量を増加させるなどの悪影響がある。 In addition, since the copper mat described above has a large content of impurities such as iron, there are adverse effects such as worsening the slag properties and increasing the slag amount in the converter process for treating the copper mat.

更に、銅や金、銀などの貴金属、ニッケル以外に鉄、アンチモンなどを含有しているため、これらの不純物を効率よく除去し、粗銅なみの品質の銅を回収する技術の開発が求められている。
原料中の銅、貴金属、ニッケル以外の不純物のうち鉄、亜鉛、鉛などは酸素を含有する空気などにより比較的容易に除去できるが、アンチモンの除去が難しく、銅アノード品位なみの粗銅を得ようとすると、ニッケルや貴金属等の有価金属がスラグへ移行率が高くなり、効率的に不純物を除去することが困難であった。
In addition to noble metals such as copper, gold, and silver, and iron, antimony, etc. in addition to nickel, there is a need for the development of technology that efficiently removes these impurities and recovers copper with the quality of crude copper. Yes.
Of the impurities other than copper, noble metals and nickel in the raw material, iron, zinc, lead, etc. can be removed relatively easily with oxygen-containing air, etc., but antimony is difficult to remove. Then, the rate of transfer of valuable metals such as nickel and noble metals to slag increased, and it was difficult to efficiently remove impurities.

本発明は、このような事情に鑑みなされたものであり、産業廃棄物、銅等の有価物を含有する廃棄物、及び可燃性の銅、貴金属、ニッケル、鉄、アンチモン等を含有する有価原料を焼却し得られた焼却灰や、銅、貴金属、ニッケル、鉄、アンチモン等を含有する有価原料、及び非鉄製錬工程から産出する銅含有中間物原料から銅を高品位で、しかも効率的に回収することができる銅含有原料の処理精製する方法を提供する。   The present invention has been made in view of such circumstances, industrial waste, waste containing valuable materials such as copper, and valuable raw materials containing combustible copper, noble metals, nickel, iron, antimony, etc. High quality and efficient copper from incineration ash obtained by incineration, valuable raw materials containing copper, noble metals, nickel, iron, antimony, etc., and copper-containing intermediate materials produced from non-ferrous smelting processes A method for treating and purifying a copper-containing raw material that can be recovered is provided.

本発明は、上記課題を解決するものであって、
(1)銅、貴金属、ニッケル、鉄、アンチモン等を含有する有価原料を
溶剤、及びコークスとともに、
竪型炉のコークスベット方式の炉にて溶融還元を行い、
銅、鉄を主体とする溶融メタルと、酸化カルシウム、二酸化珪素、アルミナ、酸化鉄を主成分とする溶融スラグとを分離する第一工程と、
第一工程にて生成した溶融メタルは次工程の酸化炉へ抜き出した後、酸化炉内の溶融メタルに炭酸カルシウムを添加して、酸素含有ガスを溶融メタル内に吹き込み、鉄などの主要不純物をスラグ化して炉内から抜き出す第二工程を少なくとも有する銅含有原料の処理精製方法。
(2)上記(1)の工程に加えて、前記第二工程にて生成した溶融メタルにナトリウム含有剤を添加して、酸素含有ガスを溶融メタル内に吹き込むことにより、溶融メタル中のニッケルや貴金属などの有価金属のロスが少なく、効率的にアンチモンをソーダスラグにして酸化炉内から抜き出す第三工程を少なくとも有する銅含有原料の処理精製方法。
(3)上記(2)の工程に加えて、前記第三工程にて生成した溶融メタル中に溶存する酸素を還元除去するために、溶融メタル中に還元ガスを吹き込んだ後、銅アノードを鋳造する第四工程を有する銅含有原料の処理精製方法。
(4)上記(1)から(3)の何れかに記載の有価原料であって、非鉄製錬工程や産業廃棄物処理工程から産出する銅含有中間物を篩分け、篩下の原料は団鉱し、篩上は直接竪型炉にて処理するに際して、
上記団鉱工程において、原料水分が6〜13mass-%、バインダーを原料重量に対して3〜8mass-%添加して混合し、団鉱機にて団鉱する銅含有原料の処理精製方法。
(5)上記(1)から(4)の何れかに記載の溶融還元工程において、コークス比を20mass-%以上にて溶融還元する銅含有原料の処理精製方法。
The present invention solves the above problems,
(1) A valuable raw material containing copper, noble metal, nickel, iron, antimony, etc., together with a solvent and coke,
Smelting reduction is performed in a coke bed type furnace of vertical type furnace,
A first step of separating a molten metal mainly composed of copper and iron and a molten slag mainly composed of calcium oxide, silicon dioxide, alumina, and iron oxide;
After the molten metal produced in the first step is extracted to the oxidation furnace in the next step, calcium carbonate is added to the molten metal in the oxidation furnace, and an oxygen-containing gas is blown into the molten metal to remove major impurities such as iron. A method for treating and purifying a copper-containing raw material having at least a second step of slag formation and extraction from the furnace.
(2) In addition to the step (1), a sodium-containing agent is added to the molten metal generated in the second step, and an oxygen-containing gas is blown into the molten metal, so that nickel in the molten metal A method for treating and purifying a copper-containing raw material having at least a third step of efficiently extracting antimony from soda slag and extracting it from the oxidation furnace with little loss of valuable metals such as precious metals.
(3) In addition to the above step (2), in order to reduce and remove oxygen dissolved in the molten metal produced in the third step, a reducing gas is blown into the molten metal, and then a copper anode is cast. The processing refinement | purification method of the copper containing raw material which has a 4th process to do.
(4) The valuable raw material according to any one of (1) to (3) above, wherein a copper-containing intermediate produced from a non-ferrous smelting process or an industrial waste treatment process is screened, and the raw material under the sieve is a group Mining and processing the sieve directly in a vertical furnace,
In the briquetting process, the raw material moisture is 6 to 13 mass-%, the binder is added and mixed with 3 to 8 mass-% based on the weight of the raw material, and the copper-containing raw material is refined by the briquetting machine.
(5) A method for treating and purifying a copper-containing raw material, in which the coke ratio is melt-reduced at a mass ratio of 20 mass-% or more in the melt-reduction step according to any of (1) to (4).

(6)上記(1)から(5)の何れかに記載の第一工程において、スラグの主要成分であるCaO−SiO−Al3元系を100mass-%とした場合、
酸化カルシウム:30〜50mass-%、
二酸化珪素:27〜40mass-%、
アルミナ:12〜38mass-%の範囲にて、原料に溶剤(炭酸カルシム、珪酸鉱など)を添加し、溶融還元する銅含有原料の処理精製方法。
(7)上記(1)から(6)の何れかに記載の第二工程において、
スラグ組成が酸化鉄:55〜80mass-%、
酸化カルシウム:15〜40mass-%、
酸化銅:0〜20mass-%となるように炭酸カルシムを添加することを特徴とする銅含有原料の処理精製方法。
(8)上記(1)から(7)の何れかに記載の第二工程において、
溶融メタル相中の鉄品位が0.1重量%以下になるまで、温度1200〜1450℃の範囲にて、空気を0.5〜1L/min/kg-メタルになるように、溶湯内に吹き込む銅含有原料の処理精製方法。
(6) above (1) from the first step according to any one of (5), if the slag of CaO-SiO 2 -Al 2 O 3 3 -way system, which is the main component was 100Mass-%,
Calcium oxide: 30-50 mass-%,
Silicon dioxide: 27-40 mass-%,
Alumina: A method for treating and purifying a copper-containing raw material by adding a solvent (calcium carbonate, silicate ore, etc.) to the raw material in the range of 12 to 38 mass-%, and melting and reducing it.
(7) In the second step according to any one of (1) to (6) above,
Slag composition is iron oxide: 55-80 mass-%,
Calcium oxide: 15-40 mass-%,
Copper oxide: A method for treating and purifying a copper-containing raw material, wherein calcium carbonate is added so as to be 0 to 20 mass-%.
(8) In the second step according to any one of (1) to (7) above,
Air is blown into the molten metal at a temperature in the range of 1200 to 1450 ° C. until the iron grade in the molten metal phase is 0.1 wt% or less, so that the metal becomes 0.5 to 1 L / min / kg-metal. Processing and purification method for copper-containing raw materials.

(9)上記(1)から(8)の何れかに記載の第二工程により産出する酸化鉄主体のスラグには銅などの有価金属を含有しているため、第一工程の溶融還元炉に繰返し処理することで銅などの有価金属を回収する銅含有原料の処理精製方法。
(10)上記(2)から(9)の何れかに記載の第三工程において、溶融メタル中のアンチモン量に対して、水酸化ナトリウムをモル比で7倍以上添加し、温度1,150〜1,250℃の範囲にて、空気または酸素を溶湯内に吹き込むことにより溶融メタル相中のアンチモン品位を0.02mass-%以下になる銅含有原料の処理精製方法。
(9) Since the iron oxide-based slag produced by the second step according to any one of (1) to (8) above contains a valuable metal such as copper, the slag in the first step A method for treating and purifying copper-containing raw materials by recovering valuable metals such as copper by repeated treatment.
(10) In the third step described in any one of (2) to (9) above, sodium hydroxide is added in a molar ratio of 7 times or more with respect to the amount of antimony in the molten metal, and the temperature is from 1,150 to A method for treating and purifying a copper-containing raw material in which the antimony quality in the molten metal phase is 0.02 mass-% or less by blowing air or oxygen into the molten metal at a temperature of 1,250 ° C.

本発明は、以下の効果を有する。
(1)産業廃棄物、銅等の有価物を含有する廃棄物、及び可燃性の銅、貴金属、ニッケル、鉄、アンチモン等を含有する有価原料を焼却し得られた焼却灰や、銅、貴金属、ニッケル、鉄、アンチモン等を含有する有価原料、及び非鉄製錬工程から産出する銅含有中間物を溶融還元することで、溶融メタル中の銅品位を60mass-%以上に濃縮することができる。
(2)第二工程にて、溶融メタル中の鉄を効率的に酸化除去することができ、
溶融メタル中のニッケルや貴金属等の有価金属をスラグへのロスを少なく
して、鉄品位を0.1mass-%以下まで下げることができる。
(3)第二工程より産出する酸化スラグを第一工程に繰り返すことで、第二工程産出の酸化スラグ中にロスした銅等の有価金属の回収率を高めることができる。
(4)第三工程にて、溶融メタル中のアンチモンを過酸化せずに、効率的に除去することができるとともに、アンチモンを含有するソーダスラグはアンチモン回収原料にすることができる。
(5)産業廃棄物や低品位銅含有スクラップから直接、銅アノード品位まで銅品位を高めることができるようになるため、従来、溶融炉から産出していた銅マットを処理する必要が無くなり、銅鉱石出の銅アノード生産能力を高めることができる。
(6)銅製錬所までの銅マットを輸送することが無くなり、輸送コストを低減できる。
The present invention has the following effects.
(1) Incineration ash obtained by incineration of industrial waste, waste containing valuable materials such as copper, and valuable raw materials containing flammable copper, noble metals, nickel, iron, antimony, etc., copper, noble metals By melting and reducing the valuable raw materials containing nickel, iron, antimony, and the like and the copper-containing intermediate produced from the non-ferrous smelting process, the copper grade in the molten metal can be concentrated to 60 mass-% or more.
(2) In the second step, iron in the molten metal can be efficiently oxidized and removed,
It is possible to reduce the loss of slag to valuable metals such as nickel and noble metals in the molten metal, and to lower the iron quality to 0.1 mass-% or less.
(3) The recovery rate of valuable metals such as copper lost in the oxidized slag produced in the second process can be increased by repeating the oxidized slag produced from the second process in the first process.
(4) In the third step, antimony in the molten metal can be efficiently removed without peroxidation, and soda slag containing antimony can be used as an antimony recovery raw material.
(5) Since it becomes possible to improve the copper quality directly from industrial waste and low-grade copper-containing scrap to the copper anode quality, it is no longer necessary to treat the copper mat that was conventionally produced from the melting furnace. It is possible to increase the copper anode production capacity from ore.
(6) There is no need to transport the copper mat to the copper smelter, and the transportation cost can be reduced.

次に、本発明の銅含有原料の処理精製方法を図1のフローシートを用いて、より具体的に説明する。
本発明の処理対象物は、産業廃棄物、銅等の有価物を含有する廃棄物、可燃性の銅、貴金属、ニッケル、鉄、アンチモン等を含有する有価原料を焼却し得られた焼却灰や、銅、貴金属、ニッケル、鉄、アンチモン等を含有する有価原料、非鉄製錬工程から産出する銅含有中間物の一種以上から成る物である。
Next, the method for treating and purifying the copper-containing raw material of the present invention will be described more specifically with reference to the flow sheet of FIG.
The treatment object of the present invention includes industrial waste, waste containing valuable materials such as copper, incineration ash obtained by incineration of valuable raw materials containing combustible copper, noble metals, nickel, iron, antimony, etc. , A valuable raw material containing copper, noble metal, nickel, iron, antimony, and the like, and one or more of copper-containing intermediates produced from the non-ferrous smelting process.

これら原料の内、産業廃棄物、可燃性の銅等有価物含有原料、銅等の有価物含有廃棄物は事前に焼却炉にて焼却した焼却灰と、電子部品材料など銅、貴金属等有価物を含有する原料、産業廃棄物の煤塵、燃え殻、及び非鉄製錬工程にて銅を含有する中間物を篩分けして、篩下の原料にはバインダーを篩下原料重量に対して3〜8mass-%、原料中の水分が6〜13mass-%の範囲になるように水分を補給して混合した後、団鉱機にて団鉱物を製造する。
この際に、バインダーの添加率、及び水添加率がこの範囲を外れると、団鉱物の成型率が低下し、かつ団鉱物の強度が低下するなどの問題が生じるため、この範囲に調整することが好ましい。
Of these raw materials, industrial waste, raw materials containing combustible copper and other valuable materials, and waste containing valuable materials such as copper are incinerated ash incinerated in advance in an incinerator and valuable materials such as copper and precious metals such as electronic parts materials Sieving materials, industrial waste soot, burning husks, and intermediates containing copper in non-ferrous smelting process, 3-8 mass for the sieving raw material binder to the sieving raw material weight After adding water and mixing so that the moisture in the raw material is in the range of 6 to 13 mass-%, the mineral mineral is produced with the briquetting machine.
At this time, if the addition rate of the binder and the water addition rate are out of this range, problems such as a decrease in the formation rate of the group mineral and a decrease in the strength of the group mineral occur. Is preferred.

この団鉱物と、前述の篩上原料、及び炭酸カルシウム、珪酸鉱の両者あるいはいずれかの一方を、コークスとともに竪型炉のコークスベット方式の溶融還元炉にて溶融還元する。溶融還元炉内にてスラグ相とメタル相とを分相し、炉内の溶融スラグは水砕しながら抜き出し、溶融メタルは次工程の酸化炉に抜き出す。 This group mineral and the above-mentioned raw material on the sieve and / or calcium carbonate and silicate ore are smelted and reduced together with coke in a coke bed type smelting reduction furnace of a vertical furnace. The slag phase and the metal phase are separated in a smelting reduction furnace, the molten slag in the furnace is extracted while being granulated, and the molten metal is extracted in an oxidation furnace in the next step.

第二の脱鉄工程においては、酸化炉内に抜き出した溶融メタルは0〜40mass-%の範囲で鉄を高濃度に含有しているため、溶融メタルの融点は1,430℃を越えることがある。また、この溶融メタル中の鉄を酸化する第二工程にて、過酸化すると難溶融性のマグネタイトが生成し、スラグの粘性を高めるため、スラグ中の酸化カルシウム品位を15〜40mass-%になるように炭酸カルシウムを添加する。酸化カルシムの品位がこの範囲を外れると、スラグの融点が高くなるため、この範囲に調整することが好ましい。その後、溶融メタル中の鉄品位が0.1mass-%以下まで、1,200〜1,450℃の温度範囲にて、空気を0.5〜1L/min/kg-メタルになるように溶湯内に吹き込んだ後、スラグを酸化炉内より抜き出す。 In the second deironing process, the molten metal extracted into the oxidation furnace contains iron in a high concentration in the range of 0 to 40 mass-%, so the melting point of the molten metal may exceed 1,430 ° C. is there. Further, in the second step of oxidizing iron in the molten metal, when it is over-oxidized, a hardly meltable magnetite is generated and the viscosity of the slag is increased, so that the calcium oxide quality in the slag becomes 15 to 40 mass-%. Calcium carbonate is added. If the quality of calcium oxide is out of this range, the melting point of the slag becomes high, so it is preferable to adjust to this range. Then, in the molten metal so that the air quality becomes 0.5-1L / min / kg-metal in the temperature range of 1,200-1,450 ° C until the iron grade in the molten metal is 0.1 mass-% or less. Slag is extracted from the oxidation furnace.

第三の脱アンチモン工程においては、第二工程の酸化スラグを抜き出した後、溶融メタル中のアンチモン量に対して、水酸化ナトリウムをモル比で7倍以上添加した後、空気、あるいは酸素を溶湯内に吹き込み、ニッケルや貴金属等の有価金属をスラグへの移行率を高めることなく、溶融メタルからアンチモンを効率的に酸化除去することができ、銅電解用アノード相当の品質を得ることができる。溶融メタル中のアンチモン品位を0.02mass-%以下まで酸化精製した後、溶融メタルと溶融ソーダスラグとを分離する。 In the third deantimony step, after extracting the oxidized slag of the second step, sodium hydroxide is added in a molar ratio of 7 times or more with respect to the amount of antimony in the molten metal, and then the air or oxygen is melted. It is possible to efficiently oxidize and remove antimony from the molten metal without increasing the rate of transfer of valuable metals such as nickel and noble metals to slag, and quality equivalent to the anode for copper electrolysis can be obtained. After oxidizing and purifying the antimony grade in the molten metal to 0.02 mass-% or less, the molten metal and molten soda slag are separated.

第四工程においては、第三工程より得られたメタル中の酸素品位が0.15mass-%以下になるまでLPGと空気とを混合して、溶融メタル中に吹き込んで酸素を還元除去した後、銅電解用の銅アノードを鋳造する。   In the fourth step, LPG and air are mixed until the oxygen grade in the metal obtained from the third step is 0.15 mass-% or less, and blown into the molten metal to reduce and remove oxygen, A copper anode for copper electrolysis is cast.

前述の第二工程にて得られた酸化スラグには溶銅の一部が酸化した酸化銅と、酸化鉄、酸化カルシウムが含まれているため、スラグ中から銅を回収することと、第一工程における溶剤として有効利用するために、溶融還元炉に繰返す。   Since the oxidized slag obtained in the second step described above contains copper oxide in which a part of the molten copper is oxidized, iron oxide, and calcium oxide, the copper is recovered from the slag, In order to effectively use as a solvent in the process, it is repeated in a smelting reduction furnace.

次に、実施例を用いて本発明をさらに説明する。
(実施例1−5、比較例1−2)
産業廃棄物の焼却灰180kgにバインダーを原料重量に対して5mass-%添加して混合し、次に、水分が5.2mass-%から14.1mass−%の範囲になるよう水を添加して混合した後、団鉱した。団鉱機より排出される団鉱物は10mmの篩に通して篩い分けし、篩上10mm以上の成型品と、篩下10mm未満の未成型品の重量をそれぞれ秤量し、(1)式を用いて、団鉱時の成型率を求めた。
成型率(mass-%)=[成型品重量]÷[成型品重量+未成型品重量]×100 (1)
また団鉱物の強度を評価するために、団鉱物の落下強度、及び圧壊強度を測定した。落下強度は、落下高さ1mからコンクリート床上に落下させ、落下後のサンプルを10mm目篩で篩い分けし、篩上残分を再度落下高さ1mからコンクリート床上に落下させる操作を3回繰り返し、3回落下したときまでの重量割合(mass-%)で評価した。更に圧壊強度は圧縮試験機を用いての強度測定値を用いた。この結果を表1に示す。
Next, the present invention will be further described using examples.
(Example 1-5, Comparative Example 1-2)
Add 5mass-% binder to 180kg of industrial waste incineration ash, mix, and then add water so that the water content is in the range of 5.2 mass-% to 14.1 mass-%. After mixing, ore was formed. The group mineral discharged from the grouping machine is passed through a 10 mm sieve and sieved, and the weight of the molded product of 10 mm or more on the sieve and the unmolded product of less than 10 mm under the sieve are weighed, and the formula (1) is used. The molding rate at the time of mining was calculated.
Molding rate (mass-%) = [Molded product weight] ÷ [Molded product weight + Unmolded product weight] x 100 (1)
Moreover, in order to evaluate the strength of the group mineral, the drop strength and the crushing strength of the group mineral were measured. The drop strength is dropped 3 times from a drop height of 1 m onto a concrete floor, the sample after dropping is screened with a 10 mm sieve, and the residue on the sieve is dropped again onto the concrete floor from a drop height of 1 m. It evaluated by the weight ratio (mass-%) until it falls three times. Furthermore, the crushing strength used the strength measured value using a compression tester. The results are shown in Table 1.


表1に示すように、比較例1の水分5.2mass-%の条件では、成型率は84%とかなり低い結果であった。落下強度は団鉱物を繰返し落下させるとともに破損していき、残存率は31%まで低下した。また圧壊強度も309Nと低く、水分5.2mass-%では強度のある団鉱物は得られなかった。
実施例1〜実施例5に示すように、団鉱時の水分を6〜13mass-%の条件では、いずれも成型率は90%以上の高い成型率が得られた。また、団鉱物の強度も落下試験では残存率が99%以上あり、かつ圧壊強度も500N以上の高強度のものが得られた。
比較例2の水分14.1mass-%の条件では、成型率が86.2mass-%と90mass-%以下となり、圧壊強度は556Nとあるものの、落下強度は90mass-%より低い結果となった。
As shown in Table 1, under the condition of moisture 5.2 mass-% in Comparative Example 1, the molding rate was 84%, which was a considerably low result. The drop strength repeatedly dropped the briquette mineral and was damaged, and the residual rate decreased to 31%. Also, the crushing strength was as low as 309 N, and no strong mineral mineral was obtained at a moisture of 5.2 mass-%.
As shown in Examples 1 to 5, a high molding rate of 90% or more was obtained in all cases where the moisture during briquetting was 6 to 13 mass-%. Further, the strength of the group mineral was 99% or more in the drop test, and the crushing strength was 500N or more.
Under the condition of moisture 14.1 mass-% in Comparative Example 2, the molding rate was 86.2 mass-% and 90 mass-% or less, and the crushing strength was 556 N, but the drop strength was lower than 90 mass-%.

(実施例6−7、比較例3−4)
次に、団鉱時の適正なバインダー添加率を把握するために、団鉱時のバインダー添加率の影響について試験した。なお、団鉱時の原料水分は10mass-%となるように混合した後、団鉱した。その結果を表2に示す。
(Example 6-7, Comparative Example 3-4)
Next, in order to grasp an appropriate binder addition rate at the time of briquetting, the influence of the binder addition rate at the time of briquetting was tested. In addition, after mixing so that the raw material water | moisture content at the time of a mine might be 10 mass-%, the mine was carried out. The results are shown in Table 2.

比較例3に示すように、バインダー添加率が2mass-%の場合、成型率は85.2%と低く、かつ落下強度及び圧壊強度とも低い結果となった。また比較例4のバインダー添加率10mass-%の場合、バインダー量が多く団鉱機のロールタイヤに原料が付着し、成型率は78mass-%と低い結果になった。
実施例6、実施例7におけるバインダー添加率3mass-%、8mass-%の条件では成型率は90mass-%以上、かつ落下強度及び圧壊強度とも高強度の結果が得られた。
以上の実施例1から実施例7の結果より、原料の団鉱条件は、水分6〜13mass-%、バインダー添加率は3〜8mass-%の範囲が良いことが判明した。
As shown in Comparative Example 3, when the binder addition rate was 2 mass-%, the molding rate was as low as 85.2%, and both the drop strength and the crush strength were low. Moreover, when the binder addition rate of Comparative Example 4 was 10 mass-%, the amount of the binder was large and the raw material adhered to the roll tire of the briquetting machine, and the molding rate was as low as 78 mass-%.
Under the conditions of the binder addition rates of 3 mass-% and 8 mass-% in Example 6 and Example 7, the molding rate was 90 mass-% or more, and high strength results were obtained for both drop strength and crush strength.
From the results of Examples 1 to 7 described above, it was found that the raw briquette conditions were good in the range of 6 to 13 mass-% moisture and 3 to 8 mass-% binder addition rate.

(実施例8、9)
次に、縦型のコークスベット方式の溶融還元炉に、原料37.5kg(団鉱物26.5kg、篩上原料11kg)と炭酸カルシウム12.5kgを同時に投入した後、コークス10kg(団鉱物、篩上原料と炭酸カルシウム合計量に対して、コークス比20mass-%)、及び12.5kg(コークス比25mass-%)のそれぞれの条件にて溶融還元を実施した。第一工程の溶融還元炉内より出湯するスラグの温度は1400℃以上となり、溶融還元炉内においてメタルとスラグとの分離性は良好であった。
なお、コークス比は下式に示す式にて定義する。
コークス比=[コークス投入量]÷[原料量+溶剤量]×100(%)
(Examples 8 and 9)
Next, 37.5 kg of raw material (26.5 kg briquette, 11 kg of sieve material) and 12.5 kg of calcium carbonate were simultaneously charged into a vertical coke bed type smelting reduction furnace, and then 10 kg of coke (crude mineral, sieve) Smelting reduction was carried out under the respective conditions of a coke ratio of 20 mass-%) and 12.5 kg (coke ratio of 25 mass-%) with respect to the total amount of the upper raw material and calcium carbonate. The temperature of the slag discharged from the smelting reduction furnace in the first step was 1400 ° C. or higher, and the separability between metal and slag was good in the smelting reduction furnace.
The coke ratio is defined by the formula shown below.
Coke ratio = [coke input amount] ÷ [raw material amount + solvent amount] x 100 (%)

(比較例5)
実施例8,9において、コークス9kg(コークス比18mass-%)に下げた条件にて溶融還元した結果、スラグ温度は1320℃以下となり、スラグの流動性が悪化し、スラグ中へのメタルの懸濁量が多くなった。
以上の結果より、コークス比は第一工程の溶融還元炉では、コークス比20mass-%以上が良いことが判明した。
(Comparative Example 5)
In Examples 8 and 9, the slag temperature was 1320 ° C. or lower as a result of smelting reduction under the condition that the coke was reduced to 9 kg (coke ratio 18 mass-%), the slag fluidity deteriorated, and the metal suspended in the slag. The amount of turbidity increased.
From the above results, it was found that a coke ratio of 20 mass-% or more is good in the smelting reduction furnace in the first step.

(実施例10)
コークスベット方式の溶融還元炉に、原料と溶剤(炭酸カルシウム)とを適当な混合比率で、両者を合せて1回当りに50kgを投入した後、コークス10kg/回(コークス比20mass-%)を投入して、溶融還元処理を3時間以上継続した。
なお、溶剤の混合比率は原料組成によって異なり、スラグの塩基度(=[CaOmass-%]/[SiOmass-%])を調整しながら実施した。
その結果、スラグの主要成分であるCaO−SiO−Al3元系の合計を100mass-%とした場合、酸化カルシウム:30〜50mass-%、二酸化珪素:27〜40mass-%、アルミナ:12〜38mass-%の範囲が良く、好ましくはCaO/SiO=0.85〜1.2のスラグ組成のとき、流動性の良いスラグが得られた。
(Example 10)
In a coke bed type smelting reduction furnace, the raw material and the solvent (calcium carbonate) are mixed at an appropriate mixing ratio, and after adding 50 kg per time, coke 10 kg / time (coke ratio 20 mass-%) The melt reduction treatment was continued for 3 hours or more.
In addition, the mixing ratio of the solvent differs depending on the raw material composition, and was performed while adjusting the basicity of slag (= [CaOmass-%] / [SiO 2 mass-%]).
As a result, when the sum of CaO-SiO 2 -Al 2 O 3 3 -way system which is a major component of the slag and 100Mass-%, calcium oxide: 30~50mass-%, silicon dioxide: 27~40mass-%, alumina The range of from 12 to 38 mass-% was good, and when the slag composition was preferably CaO / SiO 2 = 0.85 to 1.2, slag having good fluidity was obtained.

(実施例11)
次に、溶融還元炉より産出した溶融メタル約300kgを酸化炉に抜出した後、酸化炉内の溶融メタルに適当なスラグ組成になるように、炭酸カルシウムを添加して、酸化炉の羽口より空気を吹き込んだ。炭酸カルシムの添加量は、溶融還元炉より得られるメタル組成によって異なるが、メタル中の鉄品位が0.1mass-%以下になった際の生成スラグの組成は、酸化鉄55〜80mass-%、酸化カルシウム17〜40mass-%、酸化銅0〜20mass-%の範囲であり、この範囲のスラグ組成では流動性の良いスラグが得られた。
(Example 11)
Next, after extracting about 300 kg of molten metal produced from the smelting reduction furnace into the oxidation furnace, calcium carbonate was added so that the molten metal in the oxidation furnace had an appropriate slag composition, and from the tuyere of the oxidation furnace Air was blown in. The amount of calcium carbonate added varies depending on the metal composition obtained from the smelting reduction furnace, but the composition of the produced slag when the iron grade in the metal is 0.1 mass-% or less is 55-80 mass-% iron oxide, The range of calcium oxide 17 to 40 mass-% and copper oxide 0 to 20 mass-% was obtained. With this range of slag composition, slag having good fluidity was obtained.

(比較例6)
実施例11において、炭酸カルシムの添加量を少なくした条件で、スラグ中の酸化カルシウム品位が17mass-%以下、酸化鉄品位80mass-%以上のスラグ組成では、スラグの融点が1350℃以上になるとともに、スラグの流動性が悪化した。
また、スラグ中の酸化カルシウム品位を高めると、スラグの融点が高くなり、炉内に半溶融物が生成して、メタルとスラグとの分離が悪化した。
以上の結果より、第二工程のスラグ組成は、酸化鉄55〜80mass-%、酸化カルシウム17〜40mass-%、酸化銅0〜20mass-%の範囲にすることで、スラグへのメタルの懸濁ロスが抑制された。
(Comparative Example 6)
In Example 11, the slag having a calcium oxide grade of 17 mass-% or less and an iron oxide grade of 80 mass-% or more in the slag under the condition where the amount of calcium carbonate added is reduced, the melting point of the slag becomes 1350 ° C. or more. The slag fluidity deteriorated.
Moreover, when the quality of calcium oxide in the slag was increased, the melting point of the slag was increased, a semi-melt was generated in the furnace, and the separation between the metal and the slag deteriorated.
From the above results, the slag composition in the second step is in the range of iron oxide 55-80 mass-%, calcium oxide 17-40 mass-%, copper oxide 0-20 mass-%, so that the metal is suspended in the slag. Loss was suppressed.

(実施例12)
実施例11において、炉内温度を1200から1450℃の範囲になるように制御しながら、溶湯内に空気を0.5〜1L/min/kg-メタルの流量で吹き込み、各時間に溶湯メタルをサンプリングし、メタル中の鉄、銅、ニッケルを分析した。その結果を図3に示す。
Example 12
In Example 11, while controlling the furnace temperature to be in the range of 1200 to 1450 ° C., air was blown into the molten metal at a flow rate of 0.5 to 1 L / min / kg-metal, and the molten metal was poured at each time. Sampling was performed, and iron, copper, and nickel in the metal were analyzed. The result is shown in FIG.

図3より、酸化時間とともにメタル中の鉄品位は低下し、銅品位が約80mass-%から95mass-%以上まで銅品位が高くなった。酸化処理を60分間経過し継続すると、メタル中の鉄品位が0.1mass-%以下になり、メタル中のニッケルが酸化され出し、スラグへのニッケルロスが高くなる。
従って、酸化処理は、60分経過する前に止めることが望ましい。
また、その際の溶湯温度は1200℃より低い温度では、溶融スラグの流動性が低下し、また1450℃を超えると、銅の酸化が急激に進み、かつ羽口レンガの溶損が著しくなった。
従って、第二の酸化工程においては、処理温度が1200℃から1450℃の範囲が良く、またメタル中の鉄品位が0.1mass-%以下になった時点で酸化を終了されせることで、スラグへのニッケルのロスは低減される。酸化後スラグは酸化鉄(Fe換算)品位57mass-%、酸化カルシウム品位19mass-%、銅品位7.5mass-%であった。
From FIG. 3, the iron quality in the metal decreased with the oxidation time, and the copper quality increased from about 80 mass-% to over 95 mass-%. When the oxidation treatment is continued for 60 minutes, the iron quality in the metal becomes 0.1 mass-% or less, nickel in the metal begins to be oxidized, and the nickel loss to the slag increases.
Therefore, it is desirable to stop the oxidation treatment before 60 minutes have elapsed.
In addition, when the molten metal temperature is lower than 1200 ° C., the fluidity of the molten slag decreases, and when it exceeds 1450 ° C., the oxidation of copper proceeds rapidly and the melting damage of the tuyere bricks becomes remarkable. .
Therefore, in the second oxidation step, the processing temperature is preferably in the range of 1200 ° C. to 1450 ° C., and the oxidation is terminated when the iron quality in the metal becomes 0.1 mass-% or less, thereby reducing the slag. The nickel loss to the is reduced. The slag after oxidation was iron oxide (Fe 2 O 3 conversion) grade 57 mass-%, calcium oxide grade 19 mass-%, and copper grade 7.5 mass-%.

(実施例13)
次に、第一工程における竪型炉のコークスベット方式の溶融還元炉に、第二の酸化工程から産出した銅品位3.8mass-%の酸化スラグ5kg/回、平均銅品位16mass-%の原料34kg(=団鉱物24kg、篩上原料10kg)/回と炭酸カルシウム11kg/回を同時に投入した後、コークス10kg/回を投入する条件にて、1時間に5〜7回の投入頻度にて連続3時間以上溶融還元処理を継続した。その際の銅の物量バランスを表3に示す。
(Example 13)
Next, in the coke bed smelting reduction furnace of the vertical furnace in the first step, the raw material of the copper grade 3.8 mass-% oxidized slag produced from the second oxidation step 5 kg / time, the average copper grade 16 mass-% 34 kg (= group mineral 24 kg, raw material on the sieve 10 kg) / time and calcium carbonate 11 kg / time at the same time, then coke 10 kg / time continuously, at a frequency of 5-7 times per hour The smelting reduction treatment was continued for 3 hours or more. The amount balance of copper at that time is shown in Table 3.

表3より、原料816kg、酸化スラグ120kg(銅量4.6kg)を溶融還元炉にて処理した結果、産出スラグ中の銅品位は0.4mass-%、銅量は3.4kgであり、酸化スラグ中の銅量より少なくなっている。
従って、溶融還元炉に酸化スラグを繰り返すことで、酸化スラグから銅を回収できる。
From Table 3, as a result of processing 816 kg of raw material and 120 kg of oxidized slag (copper amount 4.6 kg) in a smelting reduction furnace, the copper quality in the produced slag was 0.4 mass-%, the copper amount was 3.4 kg, Less than the amount of copper in the slag.
Therefore, copper can be recovered from the oxidized slag by repeating the oxidized slag in the smelting reduction furnace.

(実施例14−15)
最後に、第二の酸化工程より産出した酸化メタルからアンチモンを効率的に除去するために、溶融した酸化メタル(アンチモン品位0.12mass-%,ニッケル品位0.82mass-%、銀品位0.19mass-%)約250kgに、酸化メタル中のアンチモン量に対して、水酸化ナトリウムをモル比で7倍、8倍添加した。温度は1150〜1250℃の範囲にて、溶湯内に空気を0.8L/min/metal-kgの流量にて30分吹き込んで酸化精製を行った。その結果を表4に示す。
(Examples 14-15)
Finally, in order to efficiently remove antimony from the metal oxide produced from the second oxidation step, molten metal oxide (antimony grade 0.12 mass-%, nickel grade 0.82 mass-%, silver grade 0.19 mass) -%) Sodium hydroxide was added 7 to 8 times in molar ratio to about 250 kg of antimony in the metal oxide. The temperature was in the range of 1150 to 1250 ° C., and oxidation purification was performed by blowing air into the molten metal at a flow rate of 0.8 L / min / metal-kg for 30 minutes. The results are shown in Table 4.

表4に示す実施例14、15に示すように、水酸化ナトリウムをアンチモン量に対して、モル比で7倍以上添加すれば、銅電解用アノード相当のアンチモン品位(0.02mass-%以下)の粗銅を得ることができた。 As shown in Examples 14 and 15 shown in Table 4, when sodium hydroxide is added 7 times or more in molar ratio with respect to the amount of antimony, antimony quality equivalent to an anode for copper electrolysis (0.02 mass-% or less) Of crude copper was obtained.

(比較例7−8)
比較例7では、水酸化ナトリウム添加量をアンチモン量に対して、モル比で6倍にした以外は、実施例14と同一の条件にて酸化精製したが、粗銅中のアンチモン品位は0.04mass-%までしか低下しなかった。
比較例8では、水酸化ナトリウムを添加しないことと、溶湯内への空気吹き込み時間を72分にした以外は、実施例14と同一の条件にて酸化精製した。その結果、粗銅中のアンチモン品位は0.08mass-%までしか低下せず、逆にニッケル品位が0.14mass-%、銀品位が0.14mass-%まで低下し、ニッケル、銀など有価物のスラグロスが高くなった。
(Comparative Example 7-8)
In Comparative Example 7, it was oxidized and purified under the same conditions as in Example 14 except that the amount of sodium hydroxide added was 6 times the molar ratio of antimony, but the antimony quality in the crude copper was 0.04 mass. It only dropped to-%.
In Comparative Example 8, oxidation purification was performed under the same conditions as in Example 14 except that sodium hydroxide was not added and the air blowing time into the molten metal was 72 minutes. As a result, the quality of antimony in crude copper is reduced only to 0.08 mass-%, conversely the nickel quality is reduced to 0.14 mass-% and the silver quality is reduced to 0.14 mass-%. The slag loss was high.

以上の結果より、粗銅中からニッケルや貴金属等有価金属のロスを抑えて、粗銅中のアンチモン品位を銅電解用アノード品位まで下げるため、アンチモン量に対して、水酸化ナトリウムをモル比で7倍以上添加し、1150〜1250℃の温度範囲にて酸化精製すれば、良いことが判明した。 From the above results, in order to reduce the loss of valuable metals such as nickel and noble metals from the crude copper and to lower the antimony grade in the crude copper to the anode grade for copper electrolysis, sodium hydroxide is 7 times the molar ratio of antimony. It has been found that it is sufficient to add the above and oxidize and purify in the temperature range of 1150 to 1250 ° C.

図1は、本発明の処理フローの一態様を示す。FIG. 1 shows one aspect of the processing flow of the present invention. 図2は、従来法の処理フローの一態様を示す。FIG. 2 shows one aspect of the processing flow of the conventional method. 図3は、実施例12の第二工程における酸化時間とメタル中の銅、鉄、及びニッケル品位との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the oxidation time in the second step of Example 12 and the quality of copper, iron, and nickel in the metal.

Claims (10)

銅、貴金属、ニッケル、鉄、アンチモン等を含有する有価原料を
溶剤、及びコークスとともに、
竪型炉のコークスベット方式の炉にて溶融還元を行い、
銅、鉄を主体とする溶融メタルと、酸化カルシウム、二酸化珪素、アルミナ、酸化鉄を主成分とする溶融スラグとを分離する第一工程と、
第一工程にて生成した溶融メタルは次工程の酸化炉へ抜き出した後、酸化炉内の溶融メタルに炭酸カルシウムを添加して、酸素含有ガスを溶融メタル内に吹き込み、鉄などの主要不純物をスラグ化して炉内から抜き出す第二工程を少なくとも有することを特徴とする銅含有原料の処理精製方法。
A valuable raw material containing copper, noble metal, nickel, iron, antimony, etc., together with solvent and coke,
Smelting reduction is performed in a coke bed type furnace of vertical type furnace,
A first step of separating a molten metal mainly composed of copper and iron and a molten slag mainly composed of calcium oxide, silicon dioxide, alumina, and iron oxide;
After the molten metal produced in the first step is extracted to the oxidation furnace in the next step, calcium carbonate is added to the molten metal in the oxidation furnace, and an oxygen-containing gas is blown into the molten metal to remove major impurities such as iron. A method for treating and purifying a copper-containing raw material, comprising at least a second step of slag formation and extraction from a furnace.
請求項1の工程に加えて、前記第二工程にて生成した溶融メタルにナトリウム含有剤を添加して、酸素含有ガスを溶融メタル内に吹き込むことにより、溶融メタル中のニッケルや貴金属などの有価金属のロスが少なく、効率的にアンチモンをソーダスラグにして酸化炉内から抜き出す第三工程を少なくとも有することを特徴とする銅含有原料の処理精製方法。 In addition to the step of claim 1, by adding a sodium-containing agent to the molten metal produced in the second step and blowing an oxygen-containing gas into the molten metal, valuables such as nickel and noble metals in the molten metal A method for treating and purifying a copper-containing raw material, characterized by having at least a third step in which metal loss is small and antimony is efficiently converted into soda slag and extracted from the oxidation furnace. 請求項2の工程に加えて、前記第三工程にて生成した溶融メタル中に溶存する酸素を還元除去するために、溶融メタル中に還元ガスを吹き込んだ後、銅アノードを鋳造する第四工程を有することを特徴とする銅含有原料の処理精製方法。 In addition to the process of claim 2, in order to reduce and remove oxygen dissolved in the molten metal generated in the third process, a fourth process of casting a copper anode after blowing a reducing gas into the molten metal. A process for purifying a copper-containing raw material, characterized by comprising: 請求項1から請求項3の何れかに記載の有価原料であって、非鉄製錬工程や産業廃棄物処理工程から産出する銅含有中間物を篩分け、篩下の原料は団鉱し、篩上は直接竪型炉にて処理するに際して、
上記団鉱工程において、原料水分が6〜13mass-%、バインダーを原料重量に対して3〜8mass-%添加して混合し、団鉱機にて団鉱することを特徴とする銅含有原料の処理精製方法。
The valuable raw material according to any one of claims 1 to 3, wherein a copper-containing intermediate produced from a non-ferrous smelting process or an industrial waste treatment process is sieved, and the raw material under the sieve is briquetted, The above is when processing directly in the vertical furnace.
In the above briquetting process, the raw material moisture is 6 to 13 mass-%, and the binder is added and mixed with 3 to 8 mass-% based on the weight of the raw material. Treatment purification method.
請求項1から請求項4の何れかに記載の溶融還元工程において、コークス比を20mass-%以上にて溶融還元することを特徴とする銅含有原料の処理精製方法。 5. A method for treating and purifying a copper-containing raw material according to claim 1, wherein in the smelting reduction step according to claim 1, smelting reduction is performed at a coke ratio of 20 mass-% or more. 請求項1から請求項5の何れかに記載の第一工程において、スラグの主要成分であるCaO−SiO−Al3元系を100mass-%とした場合、
酸化カルシウム:30〜50mass-%、
二酸化珪素:27〜40mass-%、
アルミナ:12〜38mass-%の範囲にて、原料に溶剤(炭酸カルシム、珪酸鉱など)を添加し、溶融還元することを特徴とする銅含有原料の処理精製方法。
If in the first step according to claims 1 to claim 5, and the slag of CaO-SiO 2 -Al 2 O 3 3 -way system which is a major component and 100Mass-%,
Calcium oxide: 30-50 mass-%,
Silicon dioxide: 27-40 mass-%,
Alumina: A method for treating and purifying a copper-containing raw material, wherein a solvent (calcium carbonate, silicate ore, etc.) is added to the raw material in the range of 12 to 38 mass-%, and then melt-reduced.
請求項1から請求項6の何れかに記載の第二工程において、
スラグ組成が酸化鉄:55〜80mass-%、
酸化カルシウム:15〜40mass-%、
酸化銅:0〜20mass-%となるように炭酸カルシムを添加することを特徴とする銅含有原料の処理精製方法。
In the second step according to any one of claims 1 to 6,
Slag composition is iron oxide: 55-80 mass-%,
Calcium oxide: 15-40 mass-%,
Copper oxide: A method for treating and purifying a copper-containing raw material, wherein calcium carbonate is added so as to be 0 to 20 mass-%.
請求項1から請求項7の何れかに記載の第二工程において、
溶融メタル相中の鉄品位が0.1重量%以下になるまで、温度1200〜1450℃の範囲にて、空気を0.5〜1L/min/kg-メタルになるように、溶湯内に吹き込むことを特徴とする銅含有原料の処理精製方法。
In the second step according to any one of claims 1 to 7,
Air is blown into the molten metal at a temperature in the range of 1200 to 1450 ° C. until the iron grade in the molten metal phase is 0.1 wt% or less, so that the metal becomes 0.5 to 1 L / min / kg-metal. A method for treating and purifying a copper-containing raw material.
請求項1から請求項8の何れかに記載の第二工程により産出する酸化鉄主体のスラグには銅などの有価金属を含有しているため、第一工程の溶融還元炉に繰返し処理することで銅などの有価金属を回収することを特徴とする銅含有原料の処理精製方法。 Since the iron oxide-based slag produced by the second step according to any one of claims 1 to 8 contains valuable metals such as copper, it is repeatedly processed in the smelting reduction furnace of the first step. A method for treating and purifying a copper-containing raw material, characterized in that valuable metals such as copper are recovered at the same time. 請求項2から請求項9の何れかに記載の第三工程において、溶融メタル中のアンチモン量に対して、水酸化ナトリウムをモル比で7倍以上添加し、温度1,150〜1,250℃の範囲にて、空気または酸素を溶湯内に吹き込むことにより溶融メタル相中のアンチモン品位を0.02mass-%以下になることを特徴とする銅含有原料の処理精製方法。 In the third step according to any one of claims 2 to 9, sodium hydroxide is added in a molar ratio of 7 times or more with respect to the amount of antimony in the molten metal, and the temperature is 1,150 to 1,250 ° C. In this range, an antimony grade in the molten metal phase is 0.02 mass-% or less by blowing air or oxygen into the molten metal.
JP2007281234A 2007-06-25 2007-10-30 Method for processing raw materials containing copper Expired - Fee Related JP4426613B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007281234A JP4426613B2 (en) 2007-06-25 2007-10-30 Method for processing raw materials containing copper
CN2007103057177A CN101333603B (en) 2007-06-25 2007-12-28 Processing and refining method of copper-containing raw material
TW97116446A TWI386489B (en) 2007-06-25 2008-05-05 Processing and purification of copper - containing raw materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007166553 2007-06-25
JP2007281234A JP4426613B2 (en) 2007-06-25 2007-10-30 Method for processing raw materials containing copper

Publications (2)

Publication Number Publication Date
JP2009030150A true JP2009030150A (en) 2009-02-12
JP4426613B2 JP4426613B2 (en) 2010-03-03

Family

ID=40196483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007281234A Expired - Fee Related JP4426613B2 (en) 2007-06-25 2007-10-30 Method for processing raw materials containing copper

Country Status (3)

Country Link
JP (1) JP4426613B2 (en)
CN (1) CN101333603B (en)
TW (1) TWI386489B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298650A (en) * 2008-06-13 2009-12-24 Disco Abrasive Syst Ltd Silicon recycle system
CN109881000A (en) * 2019-04-10 2019-06-14 华北理工大学 A kind of processing copper ashes two-layer compound pelletizing and preparation method thereof
CN115198104A (en) * 2022-07-08 2022-10-18 江西铜业(清远)有限公司 Coarse impure copper smelting production process
CN115404344A (en) * 2022-09-06 2022-11-29 中国恩菲工程技术有限公司 Smelting method and system for enhancing reduction effect of lead-rich antimony-zinc slag

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481966B2 (en) * 2009-06-26 2014-04-23 新日鐵住金株式会社 Methods for separating and recovering elements that coexist in iron scrap
TWI613281B (en) * 2014-09-10 2018-02-01 林素玉 A modifier applied to waste containing copper
CN107723470A (en) * 2017-10-10 2018-02-23 东北大学 A kind of method of mixing slag production by cupric and iron
CN113718109B (en) * 2021-09-01 2022-10-18 兰州有色冶金设计研究院有限公司 Method for determining slag form of electronic waste smelted in molten pool and slag form

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210805A (en) * 1975-07-15 1977-01-27 Musashi Koki Kk A process of recovering metals in treatment residue such as incinerati on ashes and industrial waste liquids
JPS56238A (en) * 1979-06-11 1981-01-06 Sumitomo Metal Mining Co Ltd Method of recovering copper and zinc from copper slag at vertical blast furnace
JPS57145942A (en) * 1980-08-13 1982-09-09 Sumitomo Metal Mining Co Ltd Recovering method for copper, lead and zinc from copper converter dust with vertical type blast furnace
JPS5959844A (en) * 1982-09-29 1984-04-05 Mitsui Mining & Smelting Co Ltd Method for removing impurity in refining furnace of copper
JP2000105549A (en) * 1998-07-31 2000-04-11 Toshiba Corp Flat display device
JP2000249470A (en) * 1999-02-25 2000-09-14 Nippon Steel Corp Treating method of composite waste
JP2002053914A (en) * 2000-08-03 2002-02-19 Nippon Steel Corp Method and apparatus for treating molten slag of waste material
JP2003313619A (en) * 2002-04-24 2003-11-06 Mitsui Mining & Smelting Co Ltd Method for recovering copper from low-grade copper raw material
JP2006002193A (en) * 2004-06-16 2006-01-05 Mettsu Corporation:Kk Method for treating metal oxide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231924A (en) * 2002-02-08 2003-08-19 Mitsubishi Materials Corp Method for manufacturing molten metal from incinerated refuse, and application thereof
JP4323477B2 (en) * 2005-09-29 2009-09-02 日鉱金属株式会社 Method of processing scrap and / or sludge containing copper and noble metals

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210805A (en) * 1975-07-15 1977-01-27 Musashi Koki Kk A process of recovering metals in treatment residue such as incinerati on ashes and industrial waste liquids
JPS56238A (en) * 1979-06-11 1981-01-06 Sumitomo Metal Mining Co Ltd Method of recovering copper and zinc from copper slag at vertical blast furnace
JPS57145942A (en) * 1980-08-13 1982-09-09 Sumitomo Metal Mining Co Ltd Recovering method for copper, lead and zinc from copper converter dust with vertical type blast furnace
JPS5959844A (en) * 1982-09-29 1984-04-05 Mitsui Mining & Smelting Co Ltd Method for removing impurity in refining furnace of copper
JP2000105549A (en) * 1998-07-31 2000-04-11 Toshiba Corp Flat display device
JP2000249470A (en) * 1999-02-25 2000-09-14 Nippon Steel Corp Treating method of composite waste
JP2002053914A (en) * 2000-08-03 2002-02-19 Nippon Steel Corp Method and apparatus for treating molten slag of waste material
JP2003313619A (en) * 2002-04-24 2003-11-06 Mitsui Mining & Smelting Co Ltd Method for recovering copper from low-grade copper raw material
JP2006002193A (en) * 2004-06-16 2006-01-05 Mettsu Corporation:Kk Method for treating metal oxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298650A (en) * 2008-06-13 2009-12-24 Disco Abrasive Syst Ltd Silicon recycle system
CN109881000A (en) * 2019-04-10 2019-06-14 华北理工大学 A kind of processing copper ashes two-layer compound pelletizing and preparation method thereof
CN109881000B (en) * 2019-04-10 2021-06-01 华北理工大学 Double-layer composite pellet for treating copper slag and preparation method thereof
CN115198104A (en) * 2022-07-08 2022-10-18 江西铜业(清远)有限公司 Coarse impure copper smelting production process
CN115404344A (en) * 2022-09-06 2022-11-29 中国恩菲工程技术有限公司 Smelting method and system for enhancing reduction effect of lead-rich antimony-zinc slag

Also Published As

Publication number Publication date
CN101333603B (en) 2010-12-01
CN101333603A (en) 2008-12-31
TWI386489B (en) 2013-02-21
JP4426613B2 (en) 2010-03-03
TW200900510A (en) 2009-01-01

Similar Documents

Publication Publication Date Title
JP4426613B2 (en) Method for processing raw materials containing copper
JP6691680B2 (en) Arsenic immobilization method
US10697041B2 (en) Manufacturing method of crude copper from low-grade copper sludge
CN108359814B (en) Antimony sulfide gold ore oxygen-enriched molten pool smelting method
JP2018145479A (en) Recovery method of platinum group metals
US20220226939A1 (en) Process for the production of crude solder
JP2004068071A (en) Dry recovery process for platinum-group element
US8500845B2 (en) Process for refining lead bullion
US20090217785A1 (en) Method for separating impurities out of feed stock in copper melts
JP4355334B2 (en) Operation method of copper smelting
CN111020206A (en) Method for comprehensively recovering lead-antimony-bismuth-containing materials such as Kaldo furnace smelting slag
JP4751100B2 (en) Copper recovery method by flotation
CN112143908B (en) Smelting process for treating complex gold ore
CN112176202B (en) Antimony smelting method adopting oxygen-enriched side-blown column smelting
JP4271196B2 (en) Method for recovering slag of quality suitable for valuable metals and cement raw materials
KR100877090B1 (en) Operation method of copper smelting
JP5614056B2 (en) Method of operating copper smelting furnace and copper smelting furnace
JP4274069B2 (en) Reuse method of copper alloy and mat obtained by slag fuming method
RU2755136C1 (en) Method for uninterrupted melting of quartz low-sulfide gold-containing ore in a vanyukov furnace
RU2096506C1 (en) Method of recovering silver from materials containing silver chloride, gold and platinum group metal admixtures
CN105734295A (en) Flux special for refining of carbonation lead plaster of secondary lead
JP2020183577A (en) Valuable metal melting method
SU572084A1 (en) Method for processing dusts from copper production
JP2003231925A (en) Method for collecting valuable metal
SK283221B6 (en) Process for processing waste or fractions thereof, especially light car shredder fractions

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees