JP2009030117A - Method for forming compression-molded block of magnesium chips - Google Patents

Method for forming compression-molded block of magnesium chips Download PDF

Info

Publication number
JP2009030117A
JP2009030117A JP2007195733A JP2007195733A JP2009030117A JP 2009030117 A JP2009030117 A JP 2009030117A JP 2007195733 A JP2007195733 A JP 2007195733A JP 2007195733 A JP2007195733 A JP 2007195733A JP 2009030117 A JP2009030117 A JP 2009030117A
Authority
JP
Japan
Prior art keywords
magnesium chips
compression
compression molding
chips
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007195733A
Other languages
Japanese (ja)
Inventor
Taketoshi Ishida
武敏 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ahresty Corp
Original Assignee
Ahresty Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ahresty Corp filed Critical Ahresty Corp
Priority to JP2007195733A priority Critical patent/JP2009030117A/en
Publication of JP2009030117A publication Critical patent/JP2009030117A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a compression-molded block of magnesium chips, which can compression-mold the magnesium chips into the block having a flat and cylindrical shape or the like, by compressing and solidifying the chips at room temperature. <P>SOLUTION: The method for forming the compression-molded block of the magnesium chips, by accommodating the chips (M) in a compression molding chamber 4 which is formed by a pressurization cylinder 1, a pressurization piston 2 and a bottom face base 3, and by compressing and solidifying the magnesium chips includes: preparing such a level of a clearance (L) as to discharge a cutting oil adhering to the magnesium chips but not as to leak the magnesium chips that is being compressed in the compression molding chamber 4, in between the top face of the bottom face base 3 and a bottom end face 11 of the pressurization cylinder 1, which compose the compression-molded chamber 4, and compacting and solidifying the chips by pressurizing and compressing them at room temperature. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、切削加工等により生じたマグネシウム切粉を、一旦溶解炉で溶解し二次地金として再生利用することを目的として、扁平な円柱形状等をした塊に圧縮成形するための成形方法に関するものである。   The present invention relates to a molding method for compression-molding magnesium chips produced by cutting or the like into a lump having a flat cylindrical shape or the like for the purpose of reusing and reusing as a secondary ingot in a melting furnace. It is about.

切削加工により生じたマグネシウム切粉には通常切削油が付着しているため、これをそのまま溶解炉に投入するとマグネシウム切粉が一瞬のうちに燃焼してしまい二次地金にすることができない。
かといって、マグネシウム切粉に付着している切削油は洗浄除去するのが難しく、しかも、切削油の洗浄除去には洗浄廃液の処理に要するコストが加わるため、実際にはマグネシウム切粉に付着している切削油は除去されることなく再生利用に回されているのが現状である。
Since cutting oil is usually attached to the magnesium chips produced by the cutting process, if this is put into a melting furnace as it is, the magnesium chips are burned in an instant and cannot be used as a secondary metal.
However, the cutting oil adhering to the magnesium chips is difficult to wash and remove, and the cleaning oil removal costs in addition to the cleaning waste liquid treatment, so it actually adheres to the magnesium chips. The current cutting oil is recycled without being removed.

一方、マグネシウム及びその合金は、その結晶構造上、圧縮した場合に常温においては底面すべりが起こりやすく、比較的高温でないと柱面すべり及び錐面すべりが起こりにくいといった性質がある。その為、常温での塑性加工(プレス加工や鍛造加工等)が難しく、一般的に200℃〜400℃程度に加熱しながら塑性加工している(例えば、特許文献1参照。)。
この様に、マグネシウム切粉は鉄やアルミニウムと同様な条件で常温において圧縮固化しようとしても固化できず、圧縮圧力を大きくするとマグネシウム切粉が流動して傷付け合いマグネシウム切粉が粉々になり、加圧シリンダ等で画成されている圧縮成形室の隙間から外部へ押し出されてしまう現象が生じる。
On the other hand, magnesium and its alloys have the property that, when compressed, the bottom surface slip is likely to occur at room temperature when compressed and the column surface slip and the cone surface slip are unlikely to occur unless the temperature is relatively high. Therefore, it is difficult to perform plastic processing (press processing, forging processing, etc.) at room temperature, and plastic processing is generally performed while heating to about 200 ° C. to 400 ° C. (see, for example, Patent Document 1).
In this way, magnesium chips cannot be solidified even if they are compressed and solidified at room temperature under the same conditions as iron or aluminum, and when the compression pressure is increased, the magnesium chips flow and scratch each other, and the magnesium chips become shattered. A phenomenon occurs in which the material is pushed out through a gap in a compression molding chamber defined by a pressure cylinder or the like.

その為に現状では、マグネシウム切粉を常温で圧縮固化することは行われておらず、アルミニウム又はアルミニウム合金の切粉においてその嵩高さを減らす程度の試みがなされているに止まっている(例えば、特許文献2参照。)。   Therefore, at present, compression and solidification of magnesium chips at room temperature has not been performed, and attempts have been made to reduce the bulk of aluminum or aluminum alloy chips (for example, (See Patent Document 2).

このような理由から、従来では常温での圧縮固化は不可能であると言われ実際に行われておらず、切削油が付着したままのマグネシウム切粉を300℃程度に加熱しながら圧縮固化して扁平な円柱形状等をした塊に成形しているのが現状である。
しかしながら、切削油が付着したままのマグネシウム切粉を加熱しながら圧縮固化する方法では、圧縮固化中に切削油による油煙が発生するだけでなく、切削油及びマグネシウム切粉が燃え出す危険性があるため好ましくはない。
For these reasons, it is said that compression solidification at room temperature is impossible in the past, and it has not been actually carried out, and magnesium powder with cutting oil attached is compressed and solidified while heating to about 300 ° C. At present, it is formed into a block having a flat cylindrical shape.
However, in the method of compressing and solidifying while heating the magnesium chips with the cutting oil adhered, not only does the smoke generated by the cutting oil occur during the compression solidification, but there is a risk that the cutting oil and magnesium chips may burn out. Therefore, it is not preferable.

特許第3221064号公報Japanese Patent No. 3221064 特開2006−9067公報Japanese Patent Laid-Open No. 2006-9067

本発明はこのような現状に鑑みてなされたものであり、マグネシウム切粉を常温でもって圧縮固化して扁平な円柱形状等をした塊に圧縮成形することが可能なマグネシウム切粉の圧縮成形塊成形方法を提供することを目的とする。   The present invention has been made in view of such a current situation, and a compression-molded mass of magnesium chips that can be compression-molded into a mass having a flat cylindrical shape by compressing and solidifying magnesium chips at room temperature. An object is to provide a forming method.

上記の目的を達成する本発明のマグネシウム切粉の圧縮成形塊成形方法は、マグネシウム切粉を加圧シリンダと加圧ピストン及び底面台とで画成された圧縮成形室内に収容して圧縮固化することにより成形されるマグネシウム切粉の圧縮成形塊成形方法であって、前記圧縮成形室を構成する底面台の上面と前記加圧シリンダ底端面との間に、前記圧縮成形室内で圧縮されているマグネシウム切粉は漏出しないがマグネシウム切粉に付着した切削油を排出し得る程度のクリアランスを設け、常温で加圧圧縮することにより成形固化させることを特徴としたものである(請求項1)。   The magnesium chip compression molding lump molding method of the present invention that achieves the above object is to compress and solidify magnesium chips in a compression molding chamber defined by a pressure cylinder, a pressure piston, and a bottom base. A compression molding lump molding method for magnesium chips formed by the process, wherein the compression molding chamber is compressed between an upper surface of a bottom base constituting the compression molding chamber and a bottom end surface of the pressure cylinder. Magnesium chips do not leak out, but are provided with a clearance that allows the cutting oil adhering to the magnesium chips to be discharged, and are molded and solidified by pressure compression at room temperature (claim 1).

この際、圧縮成形室を構成する底面台の上面と加圧シリンダ底端面との間のクリアランスは、0.2mm以下に設定されていることが好ましい(請求項2)。
このクリアランスがないとマグネシウム切粉に付着している切削油を搾っても圧縮成形室外へ排出できなくなってしまう。かといって、このクリアランスを0.2mmより大きくすると、圧縮固化の加圧力が所定圧力以上に上昇した場合にマグネシウム切粉が粉々になった際、粉々になったマグネシウム切粉がこのクリアランスから切削油と一緒に外部に漏出してしまう恐れが生じる。
At this time, the clearance between the upper surface of the bottom base constituting the compression molding chamber and the pressure cylinder bottom end surface is preferably set to 0.2 mm or less (Claim 2).
Without this clearance, even if the cutting oil adhering to the magnesium chips is squeezed, it cannot be discharged out of the compression molding chamber. However, if this clearance is greater than 0.2 mm, when the compression force of the solidification is increased to a predetermined pressure or higher, the magnesium chips that have been shattered are cut from this clearance. There is a risk of leaking out together with the oil.

また、圧縮成形室内に収容されたマグネシウム切粉を常温で圧縮固化する際の圧力としては、120MPa〜300MPaの範囲に設定されていることが好ましい(請求項3)。
マグネシウム切粉を常温で圧縮固化する際の圧力が120MPaより低いと、マグネシウム切粉が十分に圧縮固化されないと同時に、マグネシウム切粉に付着している切削油を十分に搾りきれずに圧縮成形塊の中に残留する切削油の割合が多くなってしまう。
そして、圧縮加圧力を300MPaより高くすると、圧縮成形室内でマグネシウム切粉が流動して傷つけ合い、その結果マグネシウム切粉が粉々になってしまい固化することが出来なくなってしまう。
Moreover, it is preferable that the pressure for compressing and solidifying the magnesium chips contained in the compression molding chamber at room temperature is set in a range of 120 MPa to 300 MPa (Claim 3).
If the pressure at which the magnesium chips are compressed and solidified at room temperature is lower than 120 MPa, the magnesium chips are not sufficiently compressed and solidified, and at the same time, the cutting oil adhering to the magnesium chips cannot be fully squeezed and the compression molding lump The ratio of the cutting oil remaining in will increase.
When the compression pressure is higher than 300 MPa, the magnesium chips flow and damage each other in the compression molding chamber. As a result, the magnesium chips are shattered and cannot be solidified.

本発明に係るマグネシウム切粉の圧縮成形塊の成形方法によれば、マグネシウム切粉を圧縮固化して成形塊を成形する際に加熱する必要が全くなく、常温でもって圧縮固化して扁平な円柱形状等をした塊に圧縮成形することが可能となる。
従って、切削油が付着したマグネシウム切粉をそのまま圧縮固化しても、圧縮固化中に切削油による油煙が発生したり、切削油及びマグネシウム切粉が燃え出すような危険性が全くなくなる。
According to the method for forming a compression-molded mass of magnesium chips according to the present invention, there is no need to heat at the time of compression-solidifying the magnesium chips and forming the molded ingot, and a flat cylinder that is compressed and solidified at room temperature. It becomes possible to compression-mold into a lump having a shape or the like.
Therefore, even if the magnesium chips to which the cutting oil adheres are compressed and solidified as they are, there is no risk of generating smoke from the cutting oil during the compression solidification or burning out of the cutting oil and magnesium chips.

しかも、マグネシウム切粉を圧縮固化して成形塊を成形するのに格別複雑で高価な装置は必要とせず、ありふれた加圧シリンダと加圧ピストン及び底面台を組み合わせてなる圧縮成形装置を使用することが出来る。   Moreover, it does not require a particularly complicated and expensive device to compress and solidify magnesium chips to form a molded lump, and uses a compression molding device that combines a common pressure cylinder, pressure piston, and bottom base. I can do it.

また、請求項2に記載のマグネシウム切粉の圧縮成形塊成形方法によれば、圧縮成形室を構成する底面台の上面と加圧シリンダ底端面との間のクリアランスが、0.2mm以下に設定されているので、マグネシウム切粉に付着した切削油は圧縮固化時に搾られて加圧シリンダ底端面と底面台との間に形成されたクリアランスから容易に排出され、且つ圧縮圧力を大きくした場合に、マグネシウム切粉が多少粉々になっても加圧シリンダ等で画成されている圧縮成形室の隙間から外部へ押し出されてしまうようなことがなく、所要の塊に圧縮成形することが可能となる。   Moreover, according to the compression molding lump molding method for magnesium chips according to claim 2, the clearance between the upper surface of the bottom base constituting the compression molding chamber and the bottom end surface of the pressure cylinder is set to 0.2 mm or less. Therefore, the cutting oil adhering to the magnesium chips is squeezed at the time of compression solidification and easily discharged from the clearance formed between the bottom end face of the pressure cylinder and the bottom base, and when the compression pressure is increased. , Even if the magnesium swarf is slightly shattered, it will not be pushed out from the gap of the compression molding chamber defined by the pressure cylinder etc., and it can be compression molded into the required lump Become.

更に、請求項3に記載のマグネシウム切粉の圧縮成形塊成形方法によれば、マグネシウム切粉を常温で圧縮固化する際の圧力を、120MPa〜300MPaの範囲に設定してなるので、マグネシウム切粉を最適な嵩密度に圧縮固化することが可能となる。   Furthermore, according to the compression molding lump molding method of the magnesium chip according to claim 3, the pressure when the magnesium chip is compressed and solidified at room temperature is set in a range of 120 MPa to 300 MPa. Can be compressed and solidified to an optimum bulk density.

すなわち、マグネシウム切粉を圧縮固化する場合に、嵩密度を高くすると圧縮固化されて成形塊となった切粉同士の隙間が極端に小さくなるために溶解に時間を要するようになり、逆に嵩密度を低くすると、圧縮固化された塊が溶湯中に沈まないうちに燃焼してしまったり、或いはマグネシウム切粉に付着した切削油が搾り取りきれずに圧縮固化した成形塊の中に残留して溶湯中で水蒸気爆発を起こす危険がある。
しかし、マグネシウム切粉を常温で圧縮固化する際の圧力を、120MPa〜300MPaの範囲に設定することにより、嵩密度(g/cm)を概ね1.3〜1.5の良好な範囲に収めることが可能となる。ちなみに、嵩密度が1.3より小さいと、マグネシウム切粉に付着した切削油が搾り取りきれずに圧縮固化した成形塊の中に残留する割合が多くなり、嵩密度が1.5より大きくなると、圧縮固化されて成形塊となった切粉同士の隙間が極端に小さくなって溶解に時間を要するようになる。
That is, when compressing and solidifying magnesium chips, if the bulk density is increased, the gap between the chips that have been compacted and formed into a compacted mass becomes extremely small, so that it takes time to dissolve. If the density is lowered, the compressed and solidified mass burns before sinking into the molten metal, or the cutting oil adhering to the magnesium chips remains in the compacted and solidified mass without being squeezed out. Risk of steam explosion in molten metal.
However, the bulk density (g / cm 3 ) is generally within a good range of 1.3 to 1.5 by setting the pressure when compressing and solidifying magnesium chips at room temperature to a range of 120 MPa to 300 MPa. It becomes possible. By the way, if the bulk density is less than 1.3, the ratio of the cutting oil adhering to the magnesium chips remaining in the compacted ingot that is compressed and solidified without being squeezed out increases, and the bulk density is greater than 1.5. The gap between the chips that have been compressed and solidified into a formed lump becomes extremely small, and it takes time to dissolve.

以下、本発明の好適実施例を、模式的に現した図面を参照しながら詳細に説明するが、本発明は図示した実施例のものに限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings schematically shown, but the present invention is not limited to the illustrated embodiments.

図中の符号1は加圧シリンダを、符号2は加圧ピストンを、符号3は底面台を、そして符号Mはマグネシウム切粉を、符号M’はその圧縮成形塊を、それぞれ示す。   In the figure, reference numeral 1 denotes a pressure cylinder, reference numeral 2 denotes a pressure piston, reference numeral 3 denotes a bottom table, reference numeral M denotes magnesium chips, and reference numeral M 'denotes a compression-molded mass.

加圧シリンダ1は両端が開放された円筒形状に形成され、その内部に加圧ピストン2が軸方向に沿って摺動自在に設置され、加圧ピストン2の反ロッド側面21並びに加圧シリンダ1の底端面11と対応する位置に底面台3が配置され、これら加圧シリンダ1の内周面12と加圧ピストン2の反ロッド側面21及び底面台3の上面31とで1つの圧縮成形室4が画成される。   The pressurizing cylinder 1 is formed in a cylindrical shape with both ends open, and the pressurizing piston 2 is slidably installed along the axial direction in the inside thereof. The bottom base 3 is disposed at a position corresponding to the bottom end surface 11 of the pressure cylinder 1, and one compression molding chamber is formed by the inner peripheral surface 12 of the pressure cylinder 1, the anti-rod side surface 21 of the pressure piston 2, and the top surface 31 of the bottom base 3. 4 is defined.

かくして、図1に詳しく示すとおり、加圧シリンダ1と加圧ピストン2及び底面台3とで画成された圧縮成形室4内に所要量のマグネシウム切粉Mを収容せしめ(第1工程)、常温の状態で加圧ピストン2を底面台3方へ移動させて圧縮成形室4内のマグネシウム切粉Mに所要の圧力を加えて圧縮固化することにより、圧縮成形室4内に収容されたマグネシウム切粉が扁平な円柱形状等をした塊M’に圧縮成形される(第2工程)。   Thus, as shown in detail in FIG. 1, a required amount of magnesium chips M is accommodated in the compression molding chamber 4 defined by the pressure cylinder 1, the pressure piston 2 and the bottom base 3 (first step), Magnesium contained in the compression molding chamber 4 by moving the pressurizing piston 2 toward the bottom base 3 in a state of normal temperature and compressing and solidifying the magnesium chips M in the compression molding chamber 4 by applying a required pressure. The chips are compression molded into a lump M ′ having a flat cylindrical shape or the like (second step).

次に、圧縮成形室4内で扁平な円柱形状等に圧縮固化された成形塊M’は、底面台3を加圧シリンダ1の底端面11から横方向(図面上では左右方向)に移動させて加圧シリンダ1の底端を開放する(第3工程)と共に、加圧ピストン2で押し出すことにより圧縮成形室4の外に排出される(第4工程)。
そして、圧縮成形室4の外に排出された成形塊M’は、底面台3の側面等を使って所定の場所(例えば移送用缶等)に押し出され、同時に、底面台3は初期位置に復帰して第1工程と同じ待機状態となる(第5工程)。
Next, the molded mass M ′ compressed and solidified into a flat cylindrical shape or the like in the compression molding chamber 4 moves the bottom base 3 from the bottom end surface 11 of the pressure cylinder 1 in the horizontal direction (left and right in the drawing). Then, the bottom end of the pressurizing cylinder 1 is opened (third step), and the pressure cylinder 2 is discharged out of the compression molding chamber 4 by being pushed out (fourth step).
Then, the molded mass M ′ discharged out of the compression molding chamber 4 is pushed out to a predetermined place (for example, a transfer can) using the side surface of the bottom base 3 and the bottom base 3 is simultaneously brought to the initial position. Return to the same standby state as the first step (fifth step).

この際、圧縮成形室4を構成する底面台3の上面31と加圧シリンダ1の底端面11との間には、圧縮成形室4内で圧縮されているマグネシウム切粉は漏出しないがマグネシウム切粉に付着した切削油を排出し得る程度のクリアランスLを設ける。   At this time, magnesium chips compressed in the compression molding chamber 4 are not leaked between the upper surface 31 of the bottom base 3 constituting the compression molding chamber 4 and the bottom end surface 11 of the pressure cylinder 1, but the magnesium cutting is not performed. A clearance L is provided so that the cutting oil adhering to the powder can be discharged.

このクリアランスLとしては、0.2mm以下とすることが好ましい。クリアランスLを0.2mmより大きくすると、マグネシウム切粉を圧縮固化する際の加圧力を高くした場合にマグネシウム切粉が粉々になったとき、粉々になったマグネシウム切粉がこのクリアランスLから切削油と一緒に外部に漏出してしまう恐れが生じるからである。   The clearance L is preferably 0.2 mm or less. When the clearance L is larger than 0.2 mm, when the pressurizing force when compressing and solidifying the magnesium chips is increased, the magnesium chips that have been shattered are separated from the clearance L by the cutting oil. This is because there is a risk of leakage to the outside.

しかし、このクリアランスLがないと、圧縮成形室4内から切削油を排出できなくなるだけでなく、第3工程〜第5工程において底面台3を横方向(図面上では左右方向)に移動せる際に、底面台3の上面31と加圧シリンダ1の底端面11との間でカジリが発生しやすくなる。   However, without this clearance L, not only the cutting oil cannot be discharged from the compression molding chamber 4, but also when the bottom base 3 is moved in the lateral direction (left and right in the drawing) in the third to fifth steps. Furthermore, galling is likely to occur between the upper surface 31 of the bottom base 3 and the bottom end surface 11 of the pressure cylinder 1.

なお、加圧シリンダ1の底端面11を底面台3の上面31に突き合わせる形態としては、図1に示すごとく底面台3の上面31全体を平坦にして突き合わせても良いし、図2に示すごとく加圧シリンダ1の底端面11と対応する部分に上面31より低い段部32を設けて、その段部32に突き合わせるようにしても良い。   The bottom end surface 11 of the pressure cylinder 1 may be abutted against the upper surface 31 of the bottom base 3 as shown in FIG. 1, and the entire top surface 31 of the bottom base 3 may be abutted flat, as shown in FIG. As described above, a step portion 32 lower than the upper surface 31 may be provided at a portion corresponding to the bottom end surface 11 of the pressure cylinder 1 so as to abut on the step portion 32.

また、圧縮成形室4内に収容されたマグネシウム切粉を常温で圧縮固化する際の加圧力としては、120MPa〜300MPaの範囲とすることが好ましい。
何故ならば、マグネシウム切粉を常温で圧縮固化する際の圧力が120MPaより低いと、マグネシウム切粉が十分に圧縮固化されないだけでなく、マグネシウム切粉に付着している切削油を十分に搾りきれずに、圧縮成形塊M’の内部に残留する切削油の割合が多くなってしまうからである。しかし、圧縮加圧力を300MPaより高くすると、圧縮成形室4内でマグネシウム切粉が流動するため互いに傷つけ合い、その結果マグネシウム切粉が粉々になってしまい固化することが出来なくなってしまうからである。
Moreover, it is preferable to set it as the range of 120 MPa-300 MPa as a pressurizing force at the time of compressing and solidifying the magnesium chip accommodated in the compression molding chamber 4 at normal temperature.
This is because if the pressure when compressing and solidifying the magnesium chips at room temperature is lower than 120 MPa, the magnesium chips are not sufficiently compressed and solidified, and the cutting oil adhering to the magnesium chips can be fully squeezed. This is because the ratio of the cutting oil remaining inside the compression-molded mass M ′ increases. However, if the compression pressure is higher than 300 MPa, the magnesium chips flow in the compression molding chamber 4 and are damaged each other. As a result, the magnesium chips are shattered and cannot be solidified. .

ちなみに、120MPa〜300MPaの範囲の加圧力で圧縮固化された成形塊M’の嵩密度(g/cm)は、概ね1.3〜1.5の範囲になる。圧縮成形塊M’の嵩密度が1.3〜1.5の範囲にあれば、図3のグラフに示すとおり、圧縮成形塊M’の内部に残留する切削油が、当該圧縮成形塊を溶湯中に投入した際に水蒸気爆発する確率が0%になる程度にまで絞られ、且つ、圧縮成形塊となった切粉同士の隙間が極端に小さくならずに比較的短時間に効率よく再溶解することが可能となる。 Incidentally, the bulk density (g / cm 3 ) of the molded ingot M ′ that has been compressed and solidified with a pressure in the range of 120 MPa to 300 MPa is generally in the range of 1.3 to 1.5. If the bulk density of the compression-molded mass M ′ is in the range of 1.3 to 1.5, as shown in the graph of FIG. 3, the cutting oil remaining inside the compression-molded mass M ′ melts the compression-molded mass. When it is put in, the probability of steam explosion is reduced to 0%, and the gap between chips that have become compression-molded lumps is not extremely reduced, but it is efficiently re-dissolved in a relatively short time. It becomes possible to do.

本発明に係るマグネシウム切粉の圧縮成形塊成形方法の工程を説明する模式断面図。The schematic sectional drawing explaining the process of the compression molding lump molding method of the magnesium chip concerning this invention. 同他の実記例を示す模式断面図。The schematic cross section which shows the other actual example. マグネシウム切粉の圧縮密度に対する水蒸気爆発発生率及び圧縮成形塊溶解時間の関係を説明するグラフ図。The graph figure explaining the relationship between the steam explosion incidence and the compression molding lump dissolution time with respect to the compression density of magnesium chips.

符号の説明Explanation of symbols

1:加圧シリンダ 2:加圧ピストン
3:底面台 4:圧縮成形室
M:マグネシウム切粉 M’:圧縮成形塊
L:クリアランス
11:加圧シリンダの底端面 12:内周面
21:加圧ピストンの反ロッド側面
31:底面台の上面 32:段部
1: Pressurizing cylinder 2: Pressurizing piston 3: Bottom base 4: Compression molding chamber M: Magnesium chips M ′: Compression molding l: Clearance 11: Bottom end surface of the pressing cylinder 12: Inner peripheral surface 21: Pressurizing Anti-rod side surface of piston 31: Upper surface of bottom base 32: Stepped portion

Claims (3)

マグネシウム切粉を加圧シリンダと加圧ピストン及び底面台とで画成された圧縮成形室内に収容して圧縮固化することにより成形されるマグネシウム切粉の圧縮成形塊成形方法であって、
前記圧縮成形室を構成する底面台の上面と前記加圧シリンダ底端面との間に、前記圧縮成形室内で圧縮されているマグネシウム切粉は漏出しないがマグネシウム切粉に付着した切削油を排出し得る程度のクリアランスを設け、常温で加圧圧縮することにより固化させることを特徴とするマグネシウム切粉の圧縮成形塊成形方法。
A compression molding lump molding method of magnesium chips formed by storing magnesium chips in a compression molding chamber defined by a pressure cylinder, a pressure piston and a bottom base and compressing and solidifying.
Magnesium chips compressed in the compression molding chamber are not leaked between the upper surface of the bottom base constituting the compression molding chamber and the bottom end surface of the pressure cylinder, but the cutting oil adhering to the magnesium chips is discharged. A magnesium chip compression molding lump molding method, characterized by providing a clearance to an extent to be obtained and solidifying by pressure compression at room temperature.
前記圧縮成形室を構成する底面台の上面と前記加圧シリンダ底端面との間のクリアランスが、0.2mm以下に設定されていることを特徴とする請求項1記載のマグネシウム切粉の圧縮成形塊成形方法。   2. The compression molding of magnesium chips according to claim 1, wherein a clearance between an upper surface of a bottom base constituting the compression molding chamber and a bottom end surface of the pressure cylinder is set to 0.2 mm or less. Lump molding method. 前記常温で圧縮固化する際の圧力が、120MPa〜300MPaの範囲に設定されていることを特徴とする請求項1記載のマグネシウム切粉の圧縮成形塊成形方法。   The method for compression molding ingot of magnesium chips according to claim 1, wherein the pressure at the time of compression and solidification at normal temperature is set in a range of 120 MPa to 300 MPa.
JP2007195733A 2007-07-27 2007-07-27 Method for forming compression-molded block of magnesium chips Pending JP2009030117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195733A JP2009030117A (en) 2007-07-27 2007-07-27 Method for forming compression-molded block of magnesium chips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195733A JP2009030117A (en) 2007-07-27 2007-07-27 Method for forming compression-molded block of magnesium chips

Publications (1)

Publication Number Publication Date
JP2009030117A true JP2009030117A (en) 2009-02-12

Family

ID=40400937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195733A Pending JP2009030117A (en) 2007-07-27 2007-07-27 Method for forming compression-molded block of magnesium chips

Country Status (1)

Country Link
JP (1) JP2009030117A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354109A (en) * 1976-10-27 1978-05-17 Teledyne Ind Method and apparatus for regenerating magnesium
JPH04128325A (en) * 1990-09-20 1992-04-28 Hiitec Service Kk Molded briquette consisting of chip of magnesium or magnesium alloy and molding device therefor
JP2002224892A (en) * 2001-02-07 2002-08-13 Nicotec Co Ltd Solid metal manufacturing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354109A (en) * 1976-10-27 1978-05-17 Teledyne Ind Method and apparatus for regenerating magnesium
JPH04128325A (en) * 1990-09-20 1992-04-28 Hiitec Service Kk Molded briquette consisting of chip of magnesium or magnesium alloy and molding device therefor
JP2002224892A (en) * 2001-02-07 2002-08-13 Nicotec Co Ltd Solid metal manufacturing device

Similar Documents

Publication Publication Date Title
RU2449035C2 (en) Modified method of producing composite material with metal matrix
NO156157B (en) PROCEDURE FOR THE REMOVAL OF THE CONTAINER MATERIAL FROM A HEAT PRESSURE COMPACT BODY OF METAL AND / OR NON-METAL COMPOSITION POWDER.
FR2552352A1 (en) METHOD FOR COMPACTING AN OBJECT USING PARTICULATE MATTER COMPRISING GRAPHITE AND PRODUCT SO OBTAINED
CN102725083A (en) Method for manufacturing monolithic bodies by means of a casting or injection molding process
KR20160094435A (en) Method and plant for producing extrusion billets
JP2009030117A (en) Method for forming compression-molded block of magnesium chips
EP3007843B1 (en) Method and unit for producing a mechanical part by sintering a powder metal material
CN109127850A (en) Profiled-cross-section thin-wall pipe solid-liquid double-phase medium inside high-pressure forming method
GB1537534A (en) Method and apparatus for compacting fines of magnesium or magnesium alloy
EP2654988B1 (en) Process for manufacturing a salt core by isostatic compaction for parts implementing successive foundry and forging operations
US2964400A (en) Method of and apparatus for making articles from powdered metal briquets
JP2002126826A (en) High-temperature bulge forming method and high- temperature bulge forming apparatus
JP5695461B2 (en) Al scrap refining method
KR20100014078A (en) Method and device for producing binderless briquettes and briquettes made up of metal chips and metal dusts
CN104972076A (en) Vacuum casting electric heating sand box and double-metal thermal compounding casting method using vacuum casting electric heating sand box
JP5308255B2 (en) Reuse of casting material
US6060017A (en) Method for sintering a metallic powder
RU2370342C1 (en) Method of compaction of magnesium alloys granules
US20020192102A1 (en) Method of producing powder compacts and foil or film-like mold members for use in the method
US4123210A (en) Briquette forming apparatus
JP2007083265A (en) Casting method
US6279365B1 (en) Cold forging forming method for three-dimensional hollow article
RU2116163C1 (en) Method of manufacturing graphite frames for diamond crown bits
JP2007009252A (en) Method for producing expensive metal-containing steel
RU2507616C1 (en) Method to manufacture fuel rods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522