JP2009029041A - Method of producing refractory, and refractory - Google Patents

Method of producing refractory, and refractory Download PDF

Info

Publication number
JP2009029041A
JP2009029041A JP2007196267A JP2007196267A JP2009029041A JP 2009029041 A JP2009029041 A JP 2009029041A JP 2007196267 A JP2007196267 A JP 2007196267A JP 2007196267 A JP2007196267 A JP 2007196267A JP 2009029041 A JP2009029041 A JP 2009029041A
Authority
JP
Japan
Prior art keywords
refractory
binder
molded product
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007196267A
Other languages
Japanese (ja)
Other versions
JP5541761B2 (en
Inventor
Isamu Ide
勇 井出
Masakazu Nishinoue
正和 西埜植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lignyte Co Ltd
Original Assignee
Lignyte Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lignyte Co Ltd filed Critical Lignyte Co Ltd
Priority to JP2007196267A priority Critical patent/JP5541761B2/en
Publication of JP2009029041A publication Critical patent/JP2009029041A/en
Application granted granted Critical
Publication of JP5541761B2 publication Critical patent/JP5541761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing refractory by which the refractory having excellent physical property such as strength is produced in a short period of time by easily heating a formed material up to the inside for a short period of time in a state where the effect of oxygen is eliminated. <P>SOLUTION: A refractory composition prepared by containing refractory aggregate and a binder is formed. The formed material is set in a heating container and heated by blowing steam in the container. The steam has high latent heat and the latent heat is transferred to the formed body when the steam is brought into contact with the surface of the formed body to drastically raise the temperature of the surface of the formed body and then, the inside of the formed material is rapidly heated to produce the refractory with excellent productivity in a short period of time. By blowing the steam into the container, air in the container is discharged by the steam to form an atmosphere where oxygen is not present and to carry out a heat treatment in such a state where the effect of oxygen is eliminated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高炉、混銑車、転炉、取鍋、溶融還元炉等の溶融金属容器の内張りや、連続鋳造設備に具備されるノズル、浸漬ノズル、ロングノズル、スライディングノズル、ストッパー等や、その他非鉄金属用溶解炉などに好適に使用される耐火物及び耐火物の製造方法に関するものである。   The present invention includes linings of molten metal containers such as blast furnaces, kneading cars, converters, ladles, smelting reduction furnaces, nozzles provided in continuous casting equipment, immersion nozzles, long nozzles, sliding nozzles, stoppers, etc. The present invention relates to a refractory suitable for use in a melting furnace for non-ferrous metals and a method for producing the refractory.

上記の用途に使用される耐火物は、一般に次のようにして製造されている。まず耐火骨材に粘結剤を配合し、これを混練装置で混練することによって耐火物組成物を調製する。次にこの耐火物組成物をプレス成形し、未硬化の粘結剤で賦形された成形物を得る。この後に成形物を加熱することによって、成形物中の粘結剤を乾燥して固化させたり、粘結剤を硬化させたり、あるいは粘結剤を硬化から炭化に至らせたりして、耐火物を製造することができるものである(例えば特許文献1等参照)。   Generally, the refractory used in the above application is manufactured as follows. First, a refractory composition is prepared by blending a binder with a refractory aggregate and kneading the mixture with a kneader. Next, this refractory composition is press-molded to obtain a molded product shaped with an uncured binder. After that, by heating the molded product, the binder in the molded product is dried and solidified, the binder is cured, or the binder is changed from curing to carbonization. Can be manufactured (see, for example, Patent Document 1).

ここで、上記のように成形物を加熱処理して、粘結剤を乾燥、硬化、炭化のいずれかの処理をして耐火物を製造するにあたって、加熱の方法としては、成形物を高温の乾燥器中に入れて、バッチ式で長時間を要して加熱する方法、成形物をシャットル炉などに入れてバッチ式で加熱する方法、成形物をトンネル式の加熱炉に通して連続式で加熱する方法などがあり、雰囲気温度の程度に応じて、粘結剤を乾燥させて固化させたり、硬化させたり、さらに炭化させたりしている。
特開2003−89571号公報
Here, when the molded product is heat-treated as described above, and the binder is dried, cured, or carbonized to produce a refractory, the heating method is as follows. Put in a drier and heat it in batch mode for a long time, put the molded product in a shuttle furnace etc. and heat it in batch mode, pass the molded product through a tunnel type heating furnace in continuous mode There are methods such as heating, and the binder is dried and solidified, cured, or carbonized according to the degree of the ambient temperature.
JP 2003-89571 A

このように成形物を加熱処理するにあたって、加熱の雰囲気温度が150℃以下の低温域であれば特に大きな問題はないが、それ以上の高温の雰囲気で加熱処理を行なう場合、雰囲気の酸素によって粘結剤が酸化されて熱分解され、耐火物の強度が大きく劣化するという問題がある。   When the molded product is heat-treated as described above, there is no particular problem if the heating atmosphere temperature is a low temperature range of 150 ° C. or lower. However, when the heat treatment is performed in a higher temperature atmosphere, viscosity is increased by the oxygen in the atmosphere. There is a problem that the binder is oxidized and thermally decomposed, and the strength of the refractory is greatly deteriorated.

そこで、耐火物の周囲をコークス粒やコークス粉で覆い、この状態で加熱処理することによって、酸素がコークスで消費されて、空気中の酸素が耐火物に直接作用しない状態で加熱処理を行なうようにしている。しかしこの方法でも酸素の影響を完全に排除することはできないので、耐火物に角欠けが発生したり耐火物の表面の組織劣化が生じたりするなどの問題が発生するものであった。例えば、粘結剤としてフェノール樹脂を用いる場合、250℃以上の加熱温度でこのような現象が表れやすい。   Therefore, by covering the periphery of the refractory with coke grains and coke powder and performing the heat treatment in this state, the oxygen is consumed by the coke so that the heat treatment is performed in a state where oxygen in the air does not directly act on the refractory. I have to. However, since this method cannot completely eliminate the influence of oxygen, problems such as corner chipping in the refractory and structural deterioration of the surface of the refractory occur. For example, when a phenol resin is used as a binder, such a phenomenon tends to appear at a heating temperature of 250 ° C. or higher.

また、成形物を加熱する雰囲気にアルゴンや窒素ガスなどの不活性ガスを充満させて、酸素による影響を遮断することも行なわれている。この場合は、一定の効果を得ることができるが、不活性ガスを大量に消費するためにコストの上で問題が大きく、実用的ではない。   Moreover, the atmosphere which heats a molded object is filled with inert gas, such as argon and nitrogen gas, and the influence by oxygen is interrupted | blocked. In this case, a certain effect can be obtained. However, since a large amount of inert gas is consumed, there is a great problem in terms of cost, which is not practical.

また、上記のいずれの加熱処理の方法でも、空気などの気体を加熱して、この熱を成形物の表面に対流と輻射により伝え、成形物の内部に熱を伝導させるようにしているが、空気などの気体は熱容量が小さいため、気体から成形物の表面への伝熱速度が小さく、成形物の表面温度の上昇が遅い。このため成形物の内部まで加熱するのに長時間を要することになり、耐火物を製造するのに長時間が必要であるという問題を有するものであった。しかもこのように成形物の内部まで加熱するのに長時間を要する結果、成形物の表面付近の粘結剤の硬化が進行してガスが通過し難い膜が形成され、成形物の内部の揮発成分が内部に封じ込められてガス圧が高くなり、最終的に爆裂を起こして成形物を破壊したり表面に亀裂を生じさせたりするおそれがあった。   In any of the above heat treatment methods, a gas such as air is heated, and this heat is transmitted to the surface of the molded product by convection and radiation so that the heat is conducted inside the molded product. Since a gas such as air has a small heat capacity, the heat transfer rate from the gas to the surface of the molded product is small, and the surface temperature of the molded product increases slowly. For this reason, it takes a long time to heat the inside of the molded product, and there is a problem that it takes a long time to produce a refractory. In addition, it takes a long time to heat the interior of the molded product, and as a result, the binder near the surface of the molded product hardens to form a film through which gas does not easily pass. The components are contained inside and the gas pressure becomes high, and there is a risk that the explosion will eventually occur and the molded product may be destroyed or the surface may be cracked.

また、耐火物組成物の調製を容易にしたり、硬化性を高めたりするために、溶剤や硬化剤を配合することがある。この場合、溶剤は加熱処理をする際に大気中に揮散されることになり、硬化剤、例えばノボラック型フェノール樹脂に用いるヘキサメチレンテトラミンは熱分解してホルムアルデヒドとアンモニアとになって、アンモニアの殆どは大気中に放出されることになる。さらに粘結剤を炭化させる工程においても、大量に発生する熱分解成分が大気に放出される。そしてこれらの揮発物が放出されると、作業環境を悪化させるだけでなく、大気をも汚染することになって、環境に悪い影響を与えることになり、さらには揮発物による引火爆発のおそれもある。   Moreover, in order to make preparation of a refractory composition easy or to improve sclerosis | hardenability, a solvent and a hardening | curing agent may be mix | blended. In this case, the solvent is volatilized in the atmosphere during the heat treatment, and the curing agent, for example, hexamethylenetetramine used for the novolac type phenol resin, is thermally decomposed into formaldehyde and ammonia, and most of the ammonia. Will be released into the atmosphere. Furthermore, also in the process of carbonizing the binder, pyrolytic components generated in large quantities are released to the atmosphere. And if these volatiles are released, not only will the work environment worsen, it will also pollute the atmosphere, which will have a negative impact on the environment, and there is a risk of flammable explosions due to volatiles. is there.

本発明は上記の点に鑑みてなされたものであり、成形物を短時間で容易に内部まで加熱することができ、しかもコークスや不活性ガスなどを用いる必要なく酸素の影響を排除した状態で加熱をすることが可能になり、短時間で強度などの物性に優れた耐火物を製造することができると共に、揮発物の放出を防ぐこともできる、耐火物の製造方法を提供することを目的とするものである。   The present invention has been made in view of the above points, and can easily heat a molded product to the inside in a short time, and eliminates the influence of oxygen without using coke or an inert gas. An object of the present invention is to provide a method for producing a refractory which can be heated and can produce a refractory excellent in physical properties such as strength in a short time and can also prevent the release of volatiles. It is what.

本発明に係る耐火物の製造方法は、耐火骨材と粘結剤を含有して調製される耐火物組成物を成形し、この成形物を熱処理用容器内にセットし、この容器内に水蒸気を吹き込んで、粘結剤を乾燥、硬化、炭化から選ばれる処理をすることを特徴とするものである。   The method for producing a refractory according to the present invention comprises forming a refractory composition prepared by containing a refractory aggregate and a binder, setting the molded product in a heat treatment container, and steaming in the container. And the binder is treated by a process selected from drying, curing, and carbonization.

水蒸気は高い潜熱を有するので、成形物の表面に水蒸気が接触する際にこの潜熱が成形物に伝達され、成形物の表面の温度を急激に上昇させて、成形物の内部も速やかに加熱することができ、短時間で粘結剤を乾燥、硬化、炭化させて生産性良く耐火物を製造することができるものである。しかも容器内に水蒸気を吹き込むことによって、容器内の空気を水蒸気で追い出して酸素が存在しない雰囲気にすることが可能になるものであり、酸素の影響を排除して粘結剤が酸化分解されることを防ぎつつ、粘結剤を乾燥、硬化、炭化させて強度などの物性に優れた耐火物を得ることができるものである。さらに、この加熱処理時に発生する揮発物は、水蒸気に取り込まれるものであり、揮発物が大気に放出されることを防ぐことができるものである。   Since water vapor has a high latent heat, when the water vapor contacts the surface of the molded product, this latent heat is transmitted to the molded product, and the temperature of the surface of the molded product is rapidly increased to heat the interior of the molded product quickly. The binder can be dried, cured and carbonized in a short time to produce a refractory with high productivity. Moreover, by blowing water vapor into the container, it becomes possible to expel the air in the container with water vapor to create an atmosphere in which oxygen does not exist, and the binder is oxidatively decomposed by eliminating the influence of oxygen. While preventing this, the binder can be dried, cured, and carbonized to obtain a refractory having excellent physical properties such as strength. Further, the volatile matter generated during the heat treatment is taken into the water vapor, and the volatile matter can be prevented from being released to the atmosphere.

また本発明は、上記の水蒸気として過熱水蒸気を用いることを特徴とするものである。   The present invention is characterized in that superheated steam is used as the steam.

過熱水蒸気は温度を900℃程度にまで上昇させることができるものであり、高温で粘結剤を加熱して、粘結剤を乾燥や硬化させる他、容易に炭化させることができるものである。   Superheated steam can raise the temperature to about 900 ° C., and can be easily carbonized in addition to heating the binder at a high temperature to dry and cure the binder.

また本発明は、上記の耐火物組成物の粘結剤として熱硬化性粘結剤を用い、粘結剤が硬化される温度以上の温度の水蒸気を吹き込み、粘結剤を硬化させることを特徴とするものである。   Further, the present invention is characterized by using a thermosetting binder as the binder of the refractory composition, blowing steam at a temperature equal to or higher than the temperature at which the binder is cured, and curing the binder. It is what.

この発明によれば、粘結剤が硬化した耐火物を得ることができるものである。   According to this invention, a refractory with a hardened binder can be obtained.

また本発明は、耐火物組成物の粘結剤が炭化する温度以上の温度の水蒸気を吹き込み、粘結剤を炭化させることを特徴とするものである。   In addition, the present invention is characterized by blowing steam at a temperature equal to or higher than the temperature at which the binder of the refractory composition is carbonized to carbonize the binder.

この発明によれば、粘結剤が炭化した耐火物を得ることができるものである。   According to the present invention, a refractory having a carbonized binder can be obtained.

また本発明は、熱処理容器に水蒸気を吹き込んで粘結剤を乾燥、硬化、炭化から選ばれる処理をする際の、熱処理容器内の雰囲気の酸素濃度が、体積百分率比で3%以下であることを特徴とするものである。   In the present invention, the oxygen concentration of the atmosphere in the heat treatment container is 3% or less by volume percentage ratio when the binder is dried, cured, or carbonized by blowing water vapor into the heat treatment container. It is characterized by.

本発明によれば、酸素の影響を排除して粘結剤を加熱することができ、強度などの物性に優れた耐火物を得ることができるものである。   According to the present invention, it is possible to heat the binder while eliminating the influence of oxygen, and to obtain a refractory having excellent physical properties such as strength.

また本発明に係る耐火物は、上記のいずれかの方法で製造されたものであり、強度などの物性に優れているものである。   Moreover, the refractory according to the present invention is manufactured by any one of the methods described above and has excellent physical properties such as strength.

本発明によれば、成形物をセットした熱処理用容器内に水蒸気を吹き込んで、粘結剤を乾燥、硬化、炭化から選ばれる処理をするにあたって、水蒸気は高い潜熱を有するので、成形物の表面に水蒸気が接触する際にこの潜熱が成形物に伝達され、成形物の表面の温度を急激に上昇させて、成形物の内部も速やかに加熱することができ、短時間で粘結剤を乾燥、硬化、炭化させて生産性良く耐火物を製造することができるものである。しかも容器内に水蒸気を吹き込むことによって、容器内の空気を水蒸気で追い出して酸素が存在しない雰囲気にすることが可能になるものであり、酸素の影響を排除して粘結剤が酸化分解されることを防ぎつつ、粘結剤を乾燥、硬化、炭化させて強度などの物性に優れた耐火物を得ることができるものである。さらに、この加熱処理時に発生する揮発物は、水蒸気に取り込まれるものであり、揮発物が大気に放出されることを防ぐことができるものである。   According to the present invention, when steam is blown into a heat treatment container in which a molded product is set and the binder is dried, cured, or carbonized, the steam has a high latent heat. This latent heat is transferred to the molded product when water vapor comes into contact with it, and the surface temperature of the molded product is rapidly increased, so that the interior of the molded product can be heated quickly, and the binder is dried in a short time. It can be cured and carbonized to produce a refractory with good productivity. Moreover, by blowing water vapor into the container, it becomes possible to expel the air in the container with water vapor to create an atmosphere in which oxygen does not exist, and the binder is oxidatively decomposed by eliminating the influence of oxygen. While preventing this, the binder can be dried, cured, and carbonized to obtain a refractory having excellent physical properties such as strength. Further, the volatile matter generated during the heat treatment is taken into the water vapor, and the volatile matter can be prevented from being released to the atmosphere.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明において耐火骨材としては、特に制限されることなく任意のものを用いることができるが、例えば、電融アルミナ、電融マグネシア等の電融品、焼成マグネシア等の焼成品、またボーキサイト、アンダリュサイト、シリマナイト等の天然原料の他、仮焼アルミナ、シリカフラワー等の超微粉原料など、粗粒から微粉まで任意の耐火原料を粒度配合して使用することができる。また耐食性を向上させるために、溶融スラグとの濡れ性が悪い炭素質材料の粉末を耐火骨材として配合するのが好ましい。この炭素質材料としては天然黒鉛、人造黒鉛、コークス、カーボンブラック、キッシュ黒鉛、メソフェースカーボン、木炭など任意の炭素質のものを用いることができるが、できるだけ高純度のものを用いるのが好ましい。耐火骨材としてはさらに、Al,Mg,Ca,Siやこれらの合金の一種あるいは二種以上を配合して用いることもできる。さらに炭素材料の酸化防止剤などとして各種の炭化物、硼化物、窒化物、例えばSiC,BC,BN,Si等を用いることもできる。 In the present invention, as the refractory aggregate, any material can be used without any particular limitation. For example, electrofused products such as fused alumina and fused magnesia, fired products such as fired magnesia, bauxite, In addition to natural raw materials such as andalusite and sillimanite, any refractory raw material from coarse to fine powders such as calcined alumina and silica powder can be used in combination. Moreover, in order to improve corrosion resistance, it is preferable to mix | blend the powder of the carbonaceous material with bad wettability with molten slag as a fireproof aggregate. As the carbonaceous material, any carbonaceous material such as natural graphite, artificial graphite, coke, carbon black, quiche graphite, mesophase carbon, and charcoal can be used, but it is preferable to use a material having as high purity as possible. As the refractory aggregate, Al, Mg, Ca, Si, or one or more of these alloys can be blended and used. Further, various carbides, borides, nitrides such as SiC, B 4 C, BN, Si 3 N 4 and the like can be used as an antioxidant for the carbon material.

これらの耐火骨材に粘結剤を配合し、さらに必要に応じてカップリング剤などの他の成分を配合して混練することによって、耐火物組成物を得ることができる。この粘結剤としては、熱可塑性樹脂や熱硬化性樹脂などを用いることができるが、熱硬化性樹脂としてはフェノール樹脂、フラン樹脂、エポキシ樹脂、メラミン樹脂など任意のものを用いることができ、これらを一種単独で使用したり、複数種を組み合わせたり、さらにタール・ピッチ類を併用することもできる。粘結剤としてはこれらの中でも、熱硬化性のフェノール樹脂を用いるのが好ましい。   A refractory composition can be obtained by blending a binder with these refractory aggregates, and further blending and kneading other components such as a coupling agent as necessary. As the binder, a thermoplastic resin, a thermosetting resin, or the like can be used, but as the thermosetting resin, any of a phenol resin, a furan resin, an epoxy resin, a melamine resin, and the like can be used. These may be used singly or in combination of two or more, and tar / pitch may be used in combination. Among these, it is preferable to use a thermosetting phenol resin as the binder.

ここで、フェノール樹脂はフェノール類とアルデヒド類を反応触媒の存在下で反応させることによって調製したものを用いることができる。フェノール類はフェノール及びフェノールの誘導体を意味するものであり、例えばフェノールの他にm−クレゾール、レゾルシノール、3,5−キシレノールなどの3官能性のもの、ビスフェノールA、ジヒドロキシジフェニルメタンなどの4官能性のもの、o−クレゾール、p−クレゾール、p−ter−ブチルフェノール、p−フェニルフェノール、p−クミルフェノール、p−ノニルフェノール、2,4又は2,6−キシレノールなどの2官能性のo−又はp−置換のフェノール類を挙げることができ、さらに塩素又は臭素で置換されたハロゲン化フェノールなども用いることができる。勿論、これらから一種を選択して用いる他、複数種のものを混合して用いることもできる。   Here, what was prepared by making phenols and aldehydes react in presence of a reaction catalyst can be used for a phenol resin. Phenols mean phenol and derivatives of phenol. For example, in addition to phenol, trifunctional compounds such as m-cresol, resorcinol and 3,5-xylenol, and tetrafunctional compounds such as bisphenol A and dihydroxydiphenylmethane. Bifunctional o- or p such as o-cresol, p-cresol, p-ter-butylphenol, p-phenylphenol, p-cumylphenol, p-nonylphenol, 2,4 or 2,6-xylenol -Substituted phenols can be mentioned, and also halogenated phenols substituted with chlorine or bromine can be used. Of course, in addition to selecting and using one of these, a plurality of types can be mixed and used.

またアルデヒド類としては、水溶液の形態であるホルマリンが最適であるが、パラホルムアルデヒドやアセトアルデヒド、ベンズアルデヒド、トリオキサン、テトラオキサンのような形態のものも用いることもでき、その他、ホルムアルデヒドの一部を2−フルアルデヒドやフルフリルアルコールに置き換えて使用することも可能である。   As the aldehyde, formalin in the form of an aqueous solution is optimal, but forms such as paraformaldehyde, acetaldehyde, benzaldehyde, trioxane, and tetraoxane can also be used. It can be used by replacing with aldehyde or furfuryl alcohol.

上記のフェノール類とアルデヒド類の配合比率は、モル比で1:0.5〜1:3.5の範囲になるように設定するのが好ましい。また反応触媒としては、ノボラック型フェノール樹脂を調製する場合は、塩酸、硫酸、リン酸などの無機酸、あるいはシュウ酸、パラトルエンスルホン酸、ベンゼンスルホン酸、キシレンスルホン酸などの有機酸、さらに酢酸亜鉛などを用いることができる。レゾール型フェノール樹脂を調製する場合は、アルカリ土類金属の酸化物や水酸化物を用いることができ、さらにジメチルアミン、トリエチルアミン、ブチルアミン、ジブチルアミン、トリブチルアミン、ジエチレントリアミン、ジシアンジアミドなどの脂肪族の第一級、第二級、第三級アミン、N,N−ジメチルベンジルアミンなどの芳香環を有する脂肪族アミン、アニリン、1,5−ナフタレンジアミンなどの芳香族アミン、アンモニア、ヘキサメチレンテトラミンなどや、その他二価金属のナフテン酸や二価金属の水酸化物を用いることもできる。   The blending ratio of the above phenols and aldehydes is preferably set so that the molar ratio is in the range of 1: 0.5 to 1: 3.5. As a reaction catalyst, when preparing a novolac-type phenol resin, inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as oxalic acid, paratoluenesulfonic acid, benzenesulfonic acid and xylenesulfonic acid, and acetic acid Zinc or the like can be used. When preparing a resol-type phenolic resin, an alkaline earth metal oxide or hydroxide can be used, and an aliphatic group such as dimethylamine, triethylamine, butylamine, dibutylamine, tributylamine, diethylenetriamine, or dicyandiamide. Primary, secondary, tertiary amine, aliphatic amines having aromatic rings such as N, N-dimethylbenzylamine, aromatic amines such as aniline and 1,5-naphthalenediamine, ammonia, hexamethylenetetramine, etc. Other divalent metal naphthenic acids and divalent metal hydroxides can also be used.

ノボラック型フェノール樹脂とレゾール型フェノール樹脂は、それぞれ単独で使用しても、両者を任意の割合で混合して使用してもいずれでもよい。またシリコン変性、ゴム変性、硼素変性などの各種の変性フェノール樹脂を使用することもできるが、保存安定性の面や、耐火骨材が酸性(例えばケイ石)か塩基性(例えばMgO)を問わず使用可能な点などを考慮すると、ノボラック型フェノール樹脂が最も好ましい。ノボラック型フェノール樹脂の硬化剤としては、レゾール型フェノール樹脂、エポキシ樹脂、イソシアネート化合物、ヘキサメチレンテトラミン、トリオキサン、テトラオキサンなどを用いることができる。またレゾール型フェノール樹脂の硬化剤は100℃以上に加熱することでも硬化するが、硬化剤を使用することもできるものであり、硬化剤としては、ノボラック型フェノール樹脂、エポキシ樹脂、イソシアネート化合物、有機エステル、アルキレンカーボネートなどを用いることができる。またレゾール型フェノール樹脂の硬化触媒としては、塩酸、硫酸等の無機酸や、塩化アルミニウム、塩化亜鉛等の無機化合物や、ベンゼンスルホン酸、フェノールスルホン酸、キシレンスルホン酸等の有機酸などを用いることができる。   The novolac-type phenol resin and the resol-type phenol resin may be used singly or may be used by mixing both in an arbitrary ratio. Various modified phenolic resins such as silicon modified, rubber modified, boron modified, etc. can be used. However, it does not matter whether the storage stability is stable or the refractory aggregate is acidic (for example, silica) or basic (for example, MgO). Considering the points that can be used, novolak type phenol resin is most preferable. As a curing agent for the novolac type phenol resin, a resol type phenol resin, an epoxy resin, an isocyanate compound, hexamethylenetetramine, trioxane, tetraoxane or the like can be used. Moreover, the curing agent of the resol type phenolic resin can be cured by heating to 100 ° C. or higher, but a curing agent can also be used. As the curing agent, novolac type phenolic resin, epoxy resin, isocyanate compound, organic Esters, alkylene carbonates, and the like can be used. In addition, as a curing catalyst for resol-type phenolic resins, inorganic acids such as hydrochloric acid and sulfuric acid, inorganic compounds such as aluminum chloride and zinc chloride, and organic acids such as benzenesulfonic acid, phenolsulfonic acid, and xylenesulfonic acid should be used. Can do.

そして耐火骨材に粘結剤などを配合して混練することによって耐火物組成物を調製することができる。混練は、シンプソンミル、メランジャ、アイリッヒ、スピードマラー、ワールミックスなどの任意の混練装置を用いて行なうことができる。耐火骨材に対する粘結剤の配合量は、特に制限されるものではないが、耐火骨材100質量部に対して、フェノール樹脂などの粘結剤が1〜50質量部の範囲になるように設定するのが好ましい。   And a refractory composition can be prepared by mix | blending and kneading a binder etc. with a refractory aggregate. The kneading can be performed using any kneading apparatus such as a Simpson mill, Melanger, Eirich, Speed Maller, or Whirlmix. The blending amount of the binder with respect to the refractory aggregate is not particularly limited, but the binder such as phenol resin is in the range of 1 to 50 parts by mass with respect to 100 parts by mass of the refractory aggregate. It is preferable to set.

次に、上記のように調製した耐火物組成物を成形することによって、未硬化の粘結剤をバインダーとして賦形した成形物を得ることができる。成形は、オイルプレス、フリクションプレス、真空プレス、静水圧プレスなどの任意のプレス装置を用いて行なうことができる。   Next, by molding the refractory composition prepared as described above, a molded product shaped using an uncured binder as a binder can be obtained. Molding can be performed using an arbitrary press device such as an oil press, a friction press, a vacuum press, or an isostatic press.

上記のように耐火物組成物を成形して調製した成形物を加熱処理して、成形物中の粘結剤を乾燥、あるいは硬化、あるいは炭化させることによって、耐火物を得ることができるものであるが、本発明ではこの加熱手段として水蒸気を用いるものである。   A refractory can be obtained by heat-treating a molded product prepared by molding a refractory composition as described above and drying, curing, or carbonizing the binder in the molded product. In the present invention, water vapor is used as the heating means.

すなわち、成形物を加熱処理容器内に入れてセットし、この加熱処理容器内に水蒸気を吹き込むことによって、水蒸気の熱で成形物を加熱することができるものである。ここで水蒸気としては、水を加熱・沸騰させて得られたものであればよく、その蒸気圧は特に制限されるものではない。また加熱処理容器としては、加熱処理容器内に水蒸気を導入する吹き込み口と、加熱処理容器内の空気や余剰の水蒸気が排出される排気口とを設け、この吹き込み口と排気口以外は密閉されるようにしたものが用いられるものである。   That is, the molded product can be heated with the heat of water vapor by placing the molded product in a heat treatment container and setting it, and blowing steam into the heat treatment container. Here, the water vapor may be obtained by heating and boiling water, and the vapor pressure is not particularly limited. In addition, the heat treatment container is provided with a blow-in port for introducing water vapor into the heat-treatment container and an exhaust port through which air or excess water vapor in the heat-treatment container is discharged, and the portions other than the blow port and the exhaust port are sealed. What was made to use is used.

そしてこのように加熱処理容器に水蒸気を吹き込むと、成形物の表面に水蒸気が接触することによって、水蒸気は潜熱が成形物に奪われて凝縮するが、水蒸気は高い潜熱を有するので、この潜熱で成形物の表面は急速に温度が上昇する。凝縮した凝縮水は水蒸気が有する顕熱によって蒸発され、また水蒸気のこの顕熱によって成形物の温度はさらに上昇する。ここで、加熱された空気などの気体で成形物を加熱する場合、気体の熱容量は小さいので成形物の表面温度を上昇させるのに時間を要するが、水蒸気を用いて加熱する場合、水蒸気が有する大きな潜熱で成形物を加熱することができるので、短時間で成形物の表面温度を上昇させることができるものである。そしてこのように成形物の表面温度が急激に上昇すると、成形物の内部への伝熱も速やかに行なわれ、短時間で成形物の全体を均一な温度で加熱することができるものである。   And when water vapor is blown into the heat treatment container in this way, the water vapor is condensed by the contact of the water vapor with the surface of the molded product, and the latent heat is taken away by the molded product, but the water vapor has high latent heat. The temperature of the surface of the molded product rises rapidly. The condensed condensed water is evaporated by the sensible heat of the water vapor, and the temperature of the molded product is further increased by this sensible heat of the water vapor. Here, when the molded product is heated with a gas such as heated air, since the heat capacity of the gas is small, it takes time to raise the surface temperature of the molded product, but when heated with water vapor, the water vapor has Since the molded product can be heated with a large latent heat, the surface temperature of the molded product can be increased in a short time. When the surface temperature of the molded product rises rapidly in this way, heat transfer to the inside of the molded product is also performed quickly, and the entire molded product can be heated at a uniform temperature in a short time.

従って、短時間の加熱処理で、成形物中の粘結剤を乾燥して固化させたり、粘結剤を硬化させたり、あるいは粘結剤を硬化から炭化に至らせたりすることができ、耐火物を生産性高く製造することができるものである。このとき、粘結剤として熱硬化性樹脂を用い、水蒸気として熱硬化性樹脂の硬化温度以上の温度のものを使用することによって、粘結剤を硬化させることができ、また水蒸気として熱硬化性樹脂の炭化温度以上の温度のものを使用することによって、粘結剤を炭化させることができるものである。そしてまた、成形物の全体を短時間で均一な温度に加熱することができるので、成形物の表面付近の粘結剤の硬化が、成形物の内部の粘結剤よりも早く進行することによって発生する亀裂や爆裂を防ぐことができるものである。   Therefore, with a short heat treatment, the binder in the molded product can be dried and solidified, the binder can be cured, or the binder can be cured to carbonized, and fireproof. Products can be manufactured with high productivity. At this time, the binder can be cured by using a thermosetting resin as the binder and a temperature higher than the curing temperature of the thermosetting resin as the steam, and the thermosetting as the steam. By using a resin having a temperature higher than the carbonization temperature of the resin, the binder can be carbonized. In addition, since the entire molded product can be heated to a uniform temperature in a short time, the curing of the binder near the surface of the molded product proceeds faster than the binder inside the molded product. It can prevent cracks and explosions from occurring.

ここで、高温の水蒸気を用いて加熱処理をする場合、成形物の温度上昇が急激に過ぎて、得られる耐火物にフクレ等が発生することがある。このときには、まず低温の水蒸気を用いて成形物を加熱処理した後、次いで高温の水蒸気を用いて成形物を加熱処理するという、二段階で加熱処理を行なうことによって、このようなフクレ等の発生を防ぐことができるものである。勿論、二段階に限らず、三段階や四段階など、段階ごとに順に水蒸気の温度を上げる複数段階で成形物を加熱処理するようにすればよいものである。また第一段階として、酸化の影響を受け難い150℃程度以下の加熱処理を従来の任意の方法で行なった後に、第二段階以降を本発明の水蒸気による加熱処理で行なうようにしてもよい。   Here, when heat treatment is performed using high-temperature steam, the temperature rise of the molded product may be abrupt, and blistering may occur in the obtained refractory. At this time, after the heat treatment of the molded product using low-temperature steam, the heat treatment is then performed on the molded product using high-temperature steam, such a blister or the like is generated by performing the heat treatment in two stages. Can be prevented. Of course, the molded product may be heat-treated not only in two stages but also in a plurality of stages in which the temperature of the water vapor is increased in each stage, such as three stages or four stages. Further, as the first stage, after the heat treatment at about 150 ° C. or less, which is hardly affected by oxidation, is performed by a conventional arbitrary method, the second and subsequent stages may be performed by the heat treatment with steam according to the present invention.

また、上記のように成形物をセットした加熱処理容器内に吹き込み口から水蒸気を吹き込んで加熱するにあたって、水蒸気を吹き込むことによって加熱処理容器内の酸素を含む空気は排気口から押し出されて排除されるものである。水から生成される水蒸気中には酸素が数ppm程度しか存在しないので、水蒸気を吹き込んで空気を排除すると、加熱処理容器内の雰囲気はほぼ無酸素状態になる。従って、成形物中の粘結剤を加熱処理して乾燥、硬化、炭化させるにあたって、酸素の影響で粘結剤が熱分解することを防ぐことができるものであり、成形物の強度などの物性が低下することを防止することができ、また耐火物に角欠けが発生したり耐火物の表面の組織劣化が生じたりすることを防止することができるものである。このとき、加熱処理容器内の雰囲気の酸素濃度が、体積百分率比で3%以下であることが望ましい。酸素濃度が体積百分率比で3%以下であれば、粘結剤が熱分解することを実質的に防止しながら加熱処理することができるものである。水蒸気を吹き込んで加熱処理容器内の空気を排出することによって、酸素濃度を体積百分率比で3%以下に保つことは容易である。   In addition, when the steam is blown into the heat treatment container in which the molded product is set as described above and water is heated, the air containing oxygen in the heat treatment container is pushed out from the exhaust port and eliminated. Is. Since only a few ppm of oxygen is present in the water vapor generated from water, the atmosphere in the heat treatment container becomes almost oxygen-free when the water vapor is blown in and the air is eliminated. Therefore, it is possible to prevent the binder from thermally decomposing under the influence of oxygen when the binder in the molding is heated, dried, cured and carbonized, and the physical properties such as the strength of the molding. Can be prevented, and it is possible to prevent the corners of the refractory from being chipped and the surface of the refractory from being deteriorated. At this time, it is desirable that the oxygen concentration of the atmosphere in the heat treatment container is 3% or less by volume percentage ratio. When the oxygen concentration is 3% or less by volume percentage, the binder can be heat-treated while substantially preventing the binder from thermally decomposing. It is easy to keep the oxygen concentration at 3% or less by volume percentage by blowing water vapor and discharging the air in the heat treatment container.

また上記のように成形物を加熱処理するにあたって、粘結剤等から揮発ガスや分解ガスなどが発生しても、このガス分は温度の下がった水蒸気の凝縮水に吸収され、ガスの臭気が作業雰囲気に放出されることを防ぐことができるものである。従ってこれらのガスによって、作業環境が悪化することを防ぐことができると共に、大気の汚染など環境に悪い影響が及ぼされることを防ぐことができるものであり、さらにはガスによる引火爆発のおそれもなくなるものである。またこれらの揮発ガスや分解ガスは、ガスの毒性を凝縮水に閉じ込めた状態で排水処理することができるものであり、特に、水蒸気は凝縮することによって体積が著しく小さくなるので、加熱処理で発生する揮発ガスや分解ガスがそのまま排出される場合に比べて、凝縮水に吸収して極めて小さな体積にした状態で排出することができ、その処理は容易になるものである。   In addition, when the molded product is heat-treated as described above, even if volatile gas or decomposition gas is generated from the binder or the like, this gas component is absorbed by the condensed water of the steam whose temperature has decreased, and the odor of the gas is generated. It can be prevented from being released into the working atmosphere. Therefore, it is possible to prevent the working environment from being deteriorated by these gases, to prevent adverse effects on the environment such as air pollution, and further, there is no risk of flammable explosion due to gas. Is. These volatile gases and cracked gases can be drained in a state where the toxicity of the gas is confined in the condensed water. In particular, the volume of water vapor is significantly reduced by condensation, so it is generated by heat treatment. Compared to the case where the volatile gas or the decomposition gas is discharged as it is, it can be discharged in a very small volume by being absorbed in the condensed water, and the processing becomes easy.

ここで、水蒸気としては、過熱水蒸気を用いることができる。過熱水蒸気は、飽和水蒸気をさらに加熱して、沸点以上の温度とした完全気体状態の水蒸気であり、100℃以上の乾き蒸気である。過熱水蒸気は900℃程度まで温度を上昇させることが可能であり、このため高温で粘結剤を加熱処理することができ、粘結剤を炭化させることも容易に行なうことができるものである。またこのように加熱処理して得られた耐火物をさらに高温で処理したい場合には、この耐火物を従来法と同様に加熱炉などで加熱処理するようにすればよい。   Here, superheated steam can be used as the steam. Superheated steam is water vapor in a complete gas state that is further heated to saturated boiling water to a temperature equal to or higher than the boiling point, and is dry steam at 100 ° C. or higher. The superheated steam can raise the temperature up to about 900 ° C., so that the binder can be heat-treated at a high temperature and the binder can be easily carbonized. When the refractory obtained by such heat treatment is to be treated at a higher temperature, the refractory may be heat-treated in a heating furnace as in the conventional method.

成形物を水蒸気で加熱処理するのに要する時間は、粘結剤の種類や水蒸気の温度によって異なるが、例えば粘結剤としてフェノール樹脂を用い、同じ温度の水蒸気と加熱空気を用いて加熱処理する場合を比較すると、水蒸気を用いる場合は加熱空気の場合の1/2〜1/10程度にまで時間を短縮することが可能である。この時間短縮の効果は、成形物の体積が大きくなるほど高くなる。   The time required for heat-treating the molded product with water vapor varies depending on the type of binder and the temperature of water vapor. For example, phenol resin is used as the binder, and heat treatment is performed using water vapor and heated air at the same temperature. Comparing the cases, when water vapor is used, the time can be shortened to about 1/2 to 1/10 of the heated air. The effect of shortening the time becomes higher as the volume of the molded product increases.

次に、本発明を実施例によって具体的に説明する。   Next, the present invention will be specifically described with reference to examples.

(実施例1)
反応容器にフェノール940質量部、37質量%ホルマリン649質量部、シュウ酸4.7質量部を仕込み、約60分を要して還流させ、そのまま120分間反応させた。そして定圧で内温160℃まで脱液を行なった後、133hPaで減圧脱液を行なうことによって、軟化点が99℃のノボラック型フェノール樹脂を得た。このノボラック型フェノール樹脂をハンマーミルにかけて106μm以下の粒径に粉砕して粉末にした。
Example 1
A reaction vessel was charged with 940 parts by weight of phenol, 649 parts by weight of formalin 649 parts by weight, and 4.7 parts by weight of oxalic acid, refluxed for about 60 minutes, and allowed to react for 120 minutes. Then, after dewatering at a constant pressure to an internal temperature of 160 ° C., depressurization was performed at 133 hPa to obtain a novolac phenol resin having a softening point of 99 ° C. This novolac type phenol resin was pulverized to a particle size of 106 μm or less by a hammer mill to obtain a powder.

次に、耐火骨材として電融アルミナ70質量部、純度98%の天然黒鉛30質量部を用い、これらをミキサーに投入すると共に、さらに上記のノボラック型フェノール樹脂粉末を7.2質量部、ヘキサメチレンテトラミン0.8質量部を投入し、さらにメタノール2.5質量部を加え、10分間混練して湿潤状態の耐火物組成物を得た。   Next, 70 parts by mass of fused alumina and 30 parts by mass of natural graphite having a purity of 98% were used as the refractory aggregate, and these were put into a mixer, and 7.2 parts by mass of the above-mentioned novolac type phenol resin powder, hexa 0.8 parts by mass of methylenetetramine was added, 2.5 parts by mass of methanol was further added, and kneaded for 10 minutes to obtain a wet refractory composition.

次にこの耐火物組成物を内径45mmの成形型に250g入れ、油圧プレスを用いて98MPaの圧力で成形し、成形物を得た。   Next, 250 g of this refractory composition was put into a mold having an inner diameter of 45 mm and molded at a pressure of 98 MPa using a hydraulic press to obtain a molded product.

また加熱処理容器として、庫内の有効寸法が幅390mm、奥行き370mm、高さ390mmの過熱蒸気小型バッチ試験機(野村技工株式会社製「型式GE−10B」)を用いた。この加熱処理容器には底部に水蒸気を導入する吹き込み口が、天井部に排気口がそれぞれ設けてあり、前面の開口の扉を閉じることによって密閉できるようにしてある。   In addition, as the heat treatment container, a superheated steam small batch tester (“Model GE-10B” manufactured by Nomura Engineering Co., Ltd.) having effective dimensions in the warehouse of width 390 mm, depth 370 mm, and height 390 mm was used. This heat treatment container has a blow-in port for introducing water vapor at the bottom and an exhaust port at the ceiling, which can be sealed by closing the door at the front opening.

そして上記の成形物を、加熱処理容器内にテフロン(登録商標)シートの上に載せてセットした。このとき、成形物として、側面の中央部から成形物の内部中央に至る穴を開けて温度センサーを差し込んだものと、このような穴を開けていない成形物とを用い、それぞれ加熱処理容器内にセットした(以下の各実施例、比較例1においても同じ)。   Then, the above molded product was set on a Teflon (registered trademark) sheet in a heat treatment container. At this time, as the molded product, a hole in which a temperature sensor is inserted by opening a hole from the center of the side surface to the inner center of the molded product and a molded product without such a hole are used. (The same applies to the following Examples and Comparative Example 1).

このように加熱処理容器内に成形物をセットした後、450℃の過熱水蒸気を供給して吹き込み口から吹き込み、容器内の温度が300℃に保持されるように、過熱水蒸気の供給流量を約200L/分に制御しつつ、過熱水蒸気の吹き込みを継続した。   After setting the molded product in the heat treatment container in this manner, the superheated steam at 450 ° C. is supplied and blown from the blowing port, and the supply flow rate of superheated steam is set to about 300 ° C. so that the temperature in the container is maintained at 300 ° C. While controlling at 200 L / min, blowing of superheated steam was continued.

このように過熱水蒸気を吹き込みながら成形物の中央部の温度上昇を温度センサーで計測したところ、過熱水蒸気の吹き込み開始から9分で200℃、16分で250℃、32分で300℃に到達した。またガス濃度検知器((株)テスト社製「testo325−2」)によって容器内の酸素濃度を測定したところ、過熱水蒸気の吹き込み開始直後から測定限界の0.2vol%以下(体積百分率比)であった。   Thus, when the temperature rise of the central part of the molded product was measured with a temperature sensor while blowing superheated steam, it reached 200 ° C in 9 minutes from the start of blowing superheated steam, 250 ° C in 16 minutes, and 300 ° C in 32 minutes. . Moreover, when the oxygen concentration in the container was measured with a gas concentration detector ("testo 325-2" manufactured by Test Co., Ltd.), the measurement limit was 0.2 vol% or less (volume percentage ratio) immediately after the start of superheated steam blowing. there were.

そして成形物の温度が300℃に到達した後、過熱水蒸気の吹き込みを3時間継続して加熱処理を行なうことによって、成形物のフェノール樹脂が硬化した耐火物を得た。   Then, after the temperature of the molded product reached 300 ° C., a refractory material in which the phenolic resin of the molded product was cured was obtained by performing the heat treatment by continuously blowing superheated steam for 3 hours.

このようにして得られた耐火物について、穴を開けなかったものにおいて測定を行なったところ、JIS R2001に準拠して測定したかさ比重は2.511であり、また
揮発分(%)=100−(熱処理後の質量(g)/熱処理前の質量(g))×100
上式から求めた300℃で熱処理した際の揮発分は0.25質量%、JIS R2206に準拠して測定した圧縮強さは24.5MPaであった。また耐火物の表面を観察したところ、極わずかなフクレがみられた。さらに、上記のように加熱処理する際に、排気口から出てくる臭気は極めて弱いものであった。
The refractory material obtained in this way was measured in a case where no hole was drilled. The bulk specific gravity measured in accordance with JIS R2001 was 2.511, and the volatile content (%) = 100−. (Mass after heat treatment (g) / mass before heat treatment (g)) × 100
The volatile content at the time of heat treatment at 300 ° C. determined from the above formula was 0.25% by mass, and the compressive strength measured according to JIS R2206 was 24.5 MPa. Moreover, when the surface of the refractory was observed, a slight amount of blistering was observed. Furthermore, the odor coming out from the exhaust port during the heat treatment as described above was extremely weak.

(実施例2)
実施例1と同じ成形物、加熱処理容器を用いた。
(Example 2)
The same molded product and heat treatment container as in Example 1 were used.

そしてまず第一段階として、300℃の過熱水蒸気を供給して吹き込み、容器内の温度が200℃に保持されるように、過熱水蒸気の供給流量を約150L/分に制御しつつ、過熱水蒸気の吹き込みを継続した。このように過熱水蒸気を吹き込みながら成形物の中央部の温度上昇を計測したところ、過熱水蒸気の吹き込み開始から13分で150℃、28分で200℃に到達した。成形物の温度が200℃に到達した後、この過熱水蒸気の吹き込みを60分間継続して加熱処理を行なった。   First, as a first stage, superheated steam at 300 ° C. is supplied and blown in, and the superheated steam supply flow rate is controlled to about 150 L / min so that the temperature in the container is maintained at 200 ° C. Insufflation continued. Thus, when the temperature rise of the center part of the molding was measured while blowing superheated steam, it reached 150 ° C. in 13 minutes and 200 ° C. in 28 minutes from the start of blowing superheated steam. After the temperature of the molded product reached 200 ° C., this superheated steam was continuously blown for 60 minutes for heat treatment.

引き続いて第二段階として、450℃の過熱水蒸気を供給して吹き込み、容器内の温度が300℃に保持されるように、過熱水蒸気の供給流量を約200L/分に制御しつつ、過熱水蒸気の吹き込みを継続した。このように過熱水蒸気を吹き込みながら成形物の中央部の温度上昇を計測したところ、450℃の過熱水蒸気の吹き込み開始から5分で250℃、15分で300℃に到達した。成形物の温度が300℃に到達した後、この過熱水蒸気の吹き込みを2時間継続して加熱処理を行なった。   Subsequently, as a second stage, 450 ° C. superheated steam is supplied and blown, and the superheated steam supply flow rate is controlled to about 200 L / min so that the temperature in the container is maintained at 300 ° C. Insufflation continued. Thus, when the temperature rise of the center part of the molded product was measured while blowing superheated steam, the temperature reached 250 ° C. in 5 minutes and 300 ° C. in 15 minutes from the start of blowing of 450 ° C. superheated steam. After the temperature of the molded product reached 300 ° C., this superheated steam was continuously blown for 2 hours for heat treatment.

このように加熱処理して得られた耐火物について測定をしたところ、かさ比重は2.520、揮発分は0.23質量%、圧縮強さは25.0MPaであった。また耐火物の表面を観察したところ、フクレはみられずきれいなものであった。   When the refractories obtained by the heat treatment were measured, the bulk specific gravity was 2.520, the volatile content was 0.23% by mass, and the compressive strength was 25.0 MPa. Also, when the surface of the refractory was observed, no blisters were seen and it was clean.

(実施例3)
実施例2において、第二段階での過熱水蒸気の吹き込みを24時間継続して加熱処理を行なうようにした。その他は実施例2と同様にして耐火物を得た。
(Example 3)
In Example 2, the heat treatment was performed by continuously blowing superheated steam in the second stage for 24 hours. Other than that, a refractory was obtained in the same manner as in Example 2.

この耐火物のかさ比重は2.518、揮発分は0.30質量%、圧縮強さは24.3MPaであった。また耐火物の表面を観察したところ、表面にフクレや白化現象はみられずきれいなものであった。   The bulk specific gravity of this refractory was 2.518, the volatile content was 0.30% by mass, and the compressive strength was 24.3 MPa. When the surface of the refractory was observed, the surface was clean with no swelling or whitening.

(実施例4)
実施例2において、第一段階での熱水蒸気の吹き込みを1時間継続して加熱処理を行ない、第二段階での過熱水蒸気の吹き込みを1時間継続して加熱処理を行なった。さらに第三段階として、800℃の過熱水蒸気を供給して吹き込み、容器内の温度が600℃に保持されるように、過熱水蒸気の供給流量を約250L/分に制御しつつ、過熱水蒸気の吹き込みを3時間継続して、加熱処理を行なった。
Example 4
In Example 2, the heat treatment was performed by blowing hot steam at the first stage for 1 hour, and the heat treatment was continued by blowing superheated steam at the second stage for 1 hour. Further, as a third stage, superheated steam at 800 ° C. is supplied and blown in, and superheated steam is blown in while controlling the supply flow rate of superheated steam to about 250 L / min so that the temperature in the container is maintained at 600 ° C. For 3 hours, and heat treatment was performed.

このように第三段階において高温で熱処理することによって、耐火物中のフェノール樹脂が炭化された焼成耐火物を得た。得られた焼成耐火物について測定をしたところ、かさ比重は2.502、揮発分は1.60質量%、圧縮強さは18.1MPaであった。また焼成耐火物の表面を観察したところ、フクレはみられずきれいなものであった。   Thus, the refractory material by which the phenol resin in a refractory material was carbonized was obtained by heat-processing in high temperature in the 3rd step. When the obtained fired refractory was measured, the bulk specific gravity was 2.502, the volatile content was 1.60% by mass, and the compressive strength was 18.1 MPa. Further, when the surface of the fired refractory was observed, no blisters were seen and it was clean.

(比較例1)
実施例1で作製した成形物を、高温乾燥器(株式会社東洋製作所製「型式DRD360DA」:庫内寸法幅300mm、奥行き300mm、高さ300mm)の庫内にテフロン(登録商標)シートの上に載せてセットした。そして庫内温度を300℃に設定して加熱処理を行なった。
(Comparative Example 1)
The molded product produced in Example 1 was placed on a Teflon (registered trademark) sheet in a high-temperature dryer (“Model DRD360DA” manufactured by Toyo Seisakusho Co., Ltd .: Dimension width 300 mm, depth 300 mm, height 300 mm). I set it up. The inside temperature was set to 300 ° C. and heat treatment was performed.

このように300℃で加熱しながら成形物の中央部の温度上昇を計測したところ、加熱開始から18分で200℃、35分で250℃、80分で300℃に到達した。そして成形物の温度が300℃に到達した後、この加熱を3時間継続して加熱処理を行なった。   Thus, when the temperature rise of the center part of the molding was measured while heating at 300 ° C., it reached 200 ° C. in 18 minutes, 250 ° C. in 35 minutes, and 300 ° C. in 80 minutes. And after the temperature of the molded article reached 300 ° C., this heating was continued for 3 hours to carry out a heat treatment.

このように加熱処理して得られた耐火物について測定をしたところ、かさ比重は2.519、揮発分は0.34質量%、圧縮強さは23.9MPaであった。また耐火物の表面を観察したところ、フクレはみられずきれいなものであった。また、上記のように加熱処理する際に、高温乾燥器の排気口から出てくる臭気は極めて強いものであった。   When the refractory obtained by the heat treatment was measured, the bulk specific gravity was 2.519, the volatile content was 0.34% by mass, and the compressive strength was 23.9 MPa. Also, when the surface of the refractory was observed, no blisters were seen and it was clean. Further, when the heat treatment was performed as described above, the odor coming out from the exhaust port of the high-temperature dryer was extremely strong.

(比較例2)
比較例1において、加熱を24時間継続して加熱処理するようにした他は、比較例1と同様にして耐火物を得た。
(Comparative Example 2)
In Comparative Example 1, a refractory was obtained in the same manner as in Comparative Example 1, except that heating was continued for 24 hours.

このように加熱処理して得られた耐火物について測定をしたところ、かさ比重は2.461、揮発分は2.68質量%、圧縮強さは19.5MPaであった。また耐火物の表面を観察したところ、フクレはみられなかったが、表面に若干の白化現象が認められた。   When the refractory obtained by heat treatment in this manner was measured, the bulk specific gravity was 2.461, the volatile content was 2.68% by mass, and the compressive strength was 19.5 MPa. When the surface of the refractory was observed, no blistering was observed, but a slight whitening phenomenon was observed on the surface.

(比較例3)
実施例1で作製した成形物を耐熱箱に入れたのち、これをコークスで被覆し、電気炉(シリコニット高熱工業(株)製「シリコニット電気炉 形式BSH−1530」)内にセットした。そして10℃/分の昇温速度で600℃まで昇温し、さらにこの温度で3時間保持した後に降温することによって加熱処理を行ない、耐火物中のフェノール樹脂が炭化された焼成耐火物を得た。
(Comparative Example 3)
The molded product produced in Example 1 was placed in a heat-resistant box, which was then coated with coke and set in an electric furnace (“Siliconit Electric Furnace Type BSH-1530” manufactured by Siliconit Takao Kogyo Co., Ltd.). Then, the temperature is increased to 600 ° C. at a temperature increase rate of 10 ° C./min. Further, after holding at this temperature for 3 hours, the temperature is decreased to perform heat treatment to obtain a fired refractory in which the phenol resin in the refractory is carbonized. It was.

得られた焼成耐火物について測定をしたところ、かさ比重は2.490、揮発分は1.82質量%、圧縮強さは16.7MPaであった。また焼成耐火物の表面を観察したところ、フクレはみられずきれいなものであった。   When the obtained fired refractory was measured, the bulk specific gravity was 2.490, the volatile content was 1.82% by mass, and the compressive strength was 16.7 MPa. Further, when the surface of the fired refractory was observed, no blisters were seen and it was clean.

Figure 2009029041
Figure 2009029041

実施例1〜3と比較例1,2との比較にみられるように、また実施例4と比較例3との比較にみられるように、各実施例の耐火物は、各比較例の耐火物よりも圧縮強さが高く、強度に優れた耐火物を製造できることが確認された。   As seen in the comparison between Examples 1 to 3 and Comparative Examples 1 and 2, and as seen in the comparison between Example 4 and Comparative Example 3, the refractory of each Example is the refractory of each Comparative Example. It was confirmed that a refractory having a higher compressive strength and superior strength can be produced.

Claims (6)

耐火骨材と粘結剤を含有して調製される耐火物組成物を成形し、この成形物を熱処理用容器内にセットし、この容器内に水蒸気を吹き込んで、粘結剤を乾燥、硬化、炭化から選ばれる処理をすることを特徴とする耐火物の製造方法。   Molding a refractory composition prepared containing a refractory aggregate and a binder, setting the molding in a heat treatment container, blowing steam into the container, drying and curing the binder A method for producing a refractory, characterized by performing a treatment selected from carbonization. 水蒸気として過熱水蒸気を用いることを特徴とする請求項1に記載の耐火物の製造方法。   The method for producing a refractory according to claim 1, wherein superheated steam is used as the steam. 耐火物組成物の粘結剤として熱硬化性粘結剤を用い、粘結剤が硬化される温度以上の温度の水蒸気を吹き込み、粘結剤を硬化させることを特徴とする請求項1又は2に記載の耐火物の製造方法。   A thermosetting binder is used as the binder of the refractory composition, and water vapor at a temperature equal to or higher than a temperature at which the binder is cured is blown to cure the binder. 2. A method for producing a refractory according to 1. 耐火物組成物の粘結剤が炭化する温度以上の温度の水蒸気を吹き込み、粘結剤を炭化させることを特徴とする請求項1又は2に記載の耐火物の製造方法。   The method for producing a refractory according to claim 1 or 2, wherein the binder is carbonized by blowing steam at a temperature equal to or higher than a temperature at which the binder of the refractory composition is carbonized. 熱処理容器に水蒸気を吹き込んで粘結剤を乾燥、硬化、炭化から選ばれる処理をする際の、熱処理容器内の雰囲気の酸素濃度が、体積百分率比で3%以下であることを特徴とする請求項1乃至4のいずれかに記載の耐火物の製造方法。   The oxygen concentration of the atmosphere in the heat treatment container when the water vapor is blown into the heat treatment container to perform the treatment selected from drying, curing, and carbonization of the binder is 3% or less by volume percentage ratio. Item 5. A method for producing a refractory according to any one of Items 1 to 4. 請求項1乃至5のいずれかに記載の方法で製造されたものであることを特徴とする耐火物。   A refractory produced by the method according to claim 1.
JP2007196267A 2007-07-27 2007-07-27 Refractory manufacturing method Active JP5541761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007196267A JP5541761B2 (en) 2007-07-27 2007-07-27 Refractory manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007196267A JP5541761B2 (en) 2007-07-27 2007-07-27 Refractory manufacturing method

Publications (2)

Publication Number Publication Date
JP2009029041A true JP2009029041A (en) 2009-02-12
JP5541761B2 JP5541761B2 (en) 2014-07-09

Family

ID=40400093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007196267A Active JP5541761B2 (en) 2007-07-27 2007-07-27 Refractory manufacturing method

Country Status (1)

Country Link
JP (1) JP5541761B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093020A1 (en) * 2010-01-26 2011-08-04 リグナイト株式会社 Composition for refractory brick, refractory brick, and method for producing refractory brick
JP2012135953A (en) * 2010-12-27 2012-07-19 Lignyte Co Ltd Refractory, and method of manufacturing the same
JP2019158240A (en) * 2018-03-13 2019-09-19 黒崎播磨株式会社 Press-fit material
CN115124359A (en) * 2022-07-20 2022-09-30 浙江锦诚新材料股份有限公司 High-stability magnesia-hercynite brick special for cement kiln and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230303821A1 (en) * 2022-03-28 2023-09-28 Arclin Usa Llc Phenolic resin compositions as binders in refractory articles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089571A (en) * 2001-09-12 2003-03-28 Lignyte Co Ltd Refractory composition
JP2003277129A (en) * 2002-03-22 2003-10-02 Kurosaki Harima Corp Plate brick for sliding nozzle apparatus and method for manufacturing the same
JP2004154804A (en) * 2002-11-05 2004-06-03 Lignyte Co Ltd Resin-coated sand for mold and method for making mold
WO2006054346A1 (en) * 2004-11-18 2006-05-26 Lignyte Co., Ltd. Mold production apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089571A (en) * 2001-09-12 2003-03-28 Lignyte Co Ltd Refractory composition
JP2003277129A (en) * 2002-03-22 2003-10-02 Kurosaki Harima Corp Plate brick for sliding nozzle apparatus and method for manufacturing the same
JP2004154804A (en) * 2002-11-05 2004-06-03 Lignyte Co Ltd Resin-coated sand for mold and method for making mold
WO2006054346A1 (en) * 2004-11-18 2006-05-26 Lignyte Co., Ltd. Mold production apparatus and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093020A1 (en) * 2010-01-26 2011-08-04 リグナイト株式会社 Composition for refractory brick, refractory brick, and method for producing refractory brick
CN102712538A (en) * 2010-01-26 2012-10-03 力格奈特株式会社 Composition for refractory brick, refractory brick, and method for producing refractory brick
JP2015131762A (en) * 2010-01-26 2015-07-23 リグナイト株式会社 Composition for refractory brick, refractory brick, and method for producing refractory brick
JP5868708B2 (en) * 2010-01-26 2016-02-24 リグナイト株式会社 Refractory brick composition, refractory brick, and method for producing refractory brick
JP2012135953A (en) * 2010-12-27 2012-07-19 Lignyte Co Ltd Refractory, and method of manufacturing the same
JP2019158240A (en) * 2018-03-13 2019-09-19 黒崎播磨株式会社 Press-fit material
JP7076094B2 (en) 2018-03-13 2022-05-27 黒崎播磨株式会社 Press-fit material
CN115124359A (en) * 2022-07-20 2022-09-30 浙江锦诚新材料股份有限公司 High-stability magnesia-hercynite brick special for cement kiln and preparation method thereof

Also Published As

Publication number Publication date
JP5541761B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5868708B2 (en) Refractory brick composition, refractory brick, and method for producing refractory brick
JP5541761B2 (en) Refractory manufacturing method
JP5208676B2 (en) Refractory composition
TWI679185B (en) Batch for the production of a refractory magnesia-carbon product or a refractory alumina-magnesia-carbon product, a process for the production of a product of this type, a product of this type as well as the use of a product of this type
KR19990008274A (en) Molten metal discharge device and method of use in casting device
EP0676382B1 (en) Curatives for phenolic novolacs
JP4648163B2 (en) Refractory composition
CN112062586A (en) Production method of environment-friendly carbon-containing brick
JP5762788B2 (en) Refractory composition and refractory
JP6684418B2 (en) Mold manufacturing method
JP5275124B2 (en) Refractory composition, irregular refractory, regular refractory
JP5689676B2 (en) Refractory and refractory manufacturing method
JP2003089571A (en) Refractory composition
JPS5827227B2 (en) refractory
JP4423928B2 (en) Refractory composition
JP4684464B2 (en) Refractory composition
JP2007270260A (en) Unbaked agglomerated ore for iron manufacture
JP4337431B2 (en) Binder composition for amorphous refractories
JP4703379B2 (en) Refractory composition and refractory
Irie et al. Phenolic resin for refractories
JP4706166B2 (en) Regular refractory composition and regular refractory
US20230303821A1 (en) Phenolic resin compositions as binders in refractory articles
JPH07237976A (en) Monolithic refractory for injection into blast furnace
JP2020132487A (en) Production method of magnesia carbon brick for lining of steel refining furnace
JPH10265274A (en) Carbon bonded refractory preventing malodor and irritant odor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140501

R150 Certificate of patent or registration of utility model

Ref document number: 5541761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250