JP2009028708A - Magnetic particle-deposited catalyst, method for manufacturing the same, electrode using the same for fuel cell, and fuel cell - Google Patents

Magnetic particle-deposited catalyst, method for manufacturing the same, electrode using the same for fuel cell, and fuel cell Download PDF

Info

Publication number
JP2009028708A
JP2009028708A JP2007332941A JP2007332941A JP2009028708A JP 2009028708 A JP2009028708 A JP 2009028708A JP 2007332941 A JP2007332941 A JP 2007332941A JP 2007332941 A JP2007332941 A JP 2007332941A JP 2009028708 A JP2009028708 A JP 2009028708A
Authority
JP
Japan
Prior art keywords
particles
magnetic
catalyst
particle
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007332941A
Other languages
Japanese (ja)
Inventor
Hiroko Sawaki
裕子 澤木
Mikio Kishimoto
幹雄 岸本
Harumichi Nakanishi
治通 中西
Masahiro Imanishi
雅弘 今西
Hiroyuki Kawai
博之 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Maxell Ltd
Original Assignee
Toyota Motor Corp
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Hitachi Maxell Ltd filed Critical Toyota Motor Corp
Priority to JP2007332941A priority Critical patent/JP2009028708A/en
Publication of JP2009028708A publication Critical patent/JP2009028708A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic particle-deposited catalyst capable of achieving a high-output fuel cell having high catalyst efficiency. <P>SOLUTION: The first magnetic powder-deposited catalyst contains an electrically conductive particle and a catalyst particle deposited on the electrically conductive particle and haing magnetism, and has 4.0-79.8 kA/m coercivity and 1-20 Am<SP>2</SP>/kg saturation magnetized quantity. The second magnetic powder-deposited catalyst contains the electrically conductive particle, the catalyst particle deposited on the electrically conductive particle and a magnetic particle deposited on the electrically conductive particle, has 4.0-79.8 kA/m coercivity and preferably has 1-20 Am<SP>2</SP>/kg saturation magnetized quantity. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高い触媒効率を有する磁性粒子担持触媒、その製造方法、それを用いた燃料電池用電極及び燃料電池に関する。   The present invention relates to a magnetic particle-supported catalyst having high catalytic efficiency, a method for producing the same, a fuel cell electrode using the same, and a fuel cell.

固体高分子電解質型燃料電池は、低温で高い電流密度が得られることから、携帯機器用、自動車用等の電源として開発が進められている。固体高分子電解質型燃料電池は、燃料極(負極)と空気極(正極)との間に固体高分子電解質であるイオン交換膜を配した構造からなる。燃料極及び空気極の両電極は、カーボンブラック等の導電性担体上に触媒能を有する貴金属が担持された触媒と、高分子電解質との混合体から構成されている。この構成において、燃料極では水素ガスやメタノール等の燃料が、触媒表面での反応により電子を放出して水素イオンを生成する。水素イオンは電極中の電解質及び電解質膜を通って空気極に達する。放出された電子は、電極中の触媒担体を通って外部回路に流れ、外部回路から空気極に達する。一方、空気極では、酸素が電極中の細孔を通って触媒に達し、燃料極で生成した水素イオン及び電子と反応する。   Solid polymer electrolyte fuel cells have been developed as power sources for portable devices and automobiles because high current density can be obtained at low temperatures. A solid polymer electrolyte fuel cell has a structure in which an ion exchange membrane, which is a solid polymer electrolyte, is disposed between a fuel electrode (negative electrode) and an air electrode (positive electrode). Both the fuel electrode and the air electrode are composed of a mixture of a catalyst in which a noble metal having catalytic ability is supported on a conductive carrier such as carbon black and a polymer electrolyte. In this configuration, at the fuel electrode, a fuel such as hydrogen gas or methanol emits electrons by a reaction on the catalyst surface to generate hydrogen ions. Hydrogen ions reach the air electrode through the electrolyte and electrolyte membrane in the electrode. The emitted electrons flow through the catalyst carrier in the electrode to the external circuit, and reach the air electrode from the external circuit. On the other hand, at the air electrode, oxygen reaches the catalyst through the pores in the electrode and reacts with hydrogen ions and electrons generated at the fuel electrode.

固体高分子電解質型燃料電池では、電極反応を促進させて電池特性を向上させるために、第一に電極を構成する触媒の活性が高いことが要求される。このため、触媒には高活性な貴金属、特に白金又は白金合金をカーボンブラック等の導電性担体上に担持した触媒が用いられている。   In the solid polymer electrolyte fuel cell, in order to promote the electrode reaction and improve the cell characteristics, it is first required that the activity of the catalyst constituting the electrode is high. For this reason, a catalyst in which a highly active noble metal, particularly platinum or a platinum alloy is supported on a conductive carrier such as carbon black is used as the catalyst.

これらの白金担持触媒を高活性にするためには、通常カーボンブラック等の担体上に析出担持させる白金粒子の粒子サイズをできる限り小さくすることが有効である。これは微粒子にすることにより白金粒子の表面積が増大し、その結果反応面積が増大するためである。しかしながら、このように白金の粒子サイズを小さくすると、初期においては高い反応性を発揮するが、長期間使用すると白金粒子同士の融合により、粗大化し、触媒活性が低下する問題がある。   In order to make these platinum-supported catalysts highly active, it is effective to make the particle size of platinum particles deposited and supported on a carrier such as carbon black as small as possible. This is because the surface area of the platinum particles is increased by making the particles fine, and as a result, the reaction area is increased. However, when the platinum particle size is reduced in this way, high reactivity is exhibited in the initial stage. However, when used for a long period of time, there is a problem that the catalyst particles become coarse due to the fusion of the platinum particles and the catalytic activity decreases.

そこで、貴金属触媒粒子そのものの活性を高め、長期間安定して使用するために、白金を主構成元素とした合金系触媒が盛んに検討されている。なかでも白金−ルテニウム合金触媒は最も有望な合金系触媒であり、研究開発が盛んに行われている。この合金系触媒が長期間使用しても優れた触媒能を発揮するメカニズムについては、必ずしも明らかにはされていないが、ルテニウムは触媒反応により生成し触媒毒となる一酸化炭素(CO)を分解する作用があるためと考えられている。   Therefore, in order to increase the activity of the noble metal catalyst particles themselves and use them stably for a long period of time, alloy-based catalysts containing platinum as a main constituent element have been actively studied. Of these, platinum-ruthenium alloy catalysts are the most promising alloy-based catalysts, and research and development are actively conducted. Although the mechanism by which this alloy-based catalyst exhibits excellent catalytic performance even after long-term use has not been clarified, ruthenium decomposes carbon monoxide (CO), which is produced by catalytic reaction and becomes a catalyst poison. This is thought to be due to the effect of

しかしながらルテニウムは、白金と同様に極めて高価な材料であるため、コストの面から言えば先ずルテニウムを他の安価な材料に置き換えることが強く求められている。このような状況の中で、白金の一部をコバルトで置き換えた白金−コバルト合金系触媒が注目されている。白金−コバルト合金系触媒は、高価な白金の一部を白金に比べて安価なコバルトで置き換えられるメリットだけではなく、コバルトを添加することにより触媒能そのものも向上することが知られている。さらに、この白金−コバルト合金にニッケルやクロム、バナジウム、銅、アルミニウム等の元素を添加した三元系合金触媒あるいは四元系合金触媒が検討されている(例えば、特許文献1〜7参照。)。   However, since ruthenium is an extremely expensive material like platinum, it is strongly required to replace ruthenium with another inexpensive material in terms of cost. In such a situation, a platinum-cobalt alloy catalyst in which a part of platinum is replaced with cobalt attracts attention. It is known that the platinum-cobalt alloy-based catalyst not only has a merit that a part of expensive platinum is replaced with cheaper cobalt than platinum, but also improves the catalytic performance itself by adding cobalt. Furthermore, a ternary alloy catalyst or a quaternary alloy catalyst in which elements such as nickel, chromium, vanadium, copper, and aluminum are added to the platinum-cobalt alloy has been studied (for example, see Patent Documents 1 to 7). .

白金触媒及び白金−コバルト合金系触媒は、その優れた触媒能により燃料極と空気極の両電極において使用されている。これらの白金系触媒を燃料極に使用する場合、特に水素を燃料として用いる燃料極に使用する場合には、白金をカーボン粒子上に担持した触媒とすることにより、既に十分な性能の燃料極が得られている。一方、これらの白金系触媒を空気極に使用した場合には、過電圧が大きくなり空気極の性能が十分に発揮されず、触媒効率が低いという問題がある。   Platinum catalysts and platinum-cobalt alloy catalysts are used in both the fuel electrode and the air electrode because of their excellent catalytic ability. When these platinum-based catalysts are used for the fuel electrode, particularly when used for a fuel electrode using hydrogen as a fuel, a fuel electrode having sufficient performance can be obtained by using platinum as a catalyst supported on carbon particles. Has been obtained. On the other hand, when these platinum-based catalysts are used for the air electrode, there is a problem that the overvoltage becomes large and the performance of the air electrode is not sufficiently exhibited, and the catalyst efficiency is low.

また、空気極に用いる酸素源は通常空気であるため、触媒反応に必要な酸素以外にも窒素が多量に含まれている。従って、電極反応が進行するに伴って、酸素が消費され、空気極の触媒近傍では酸素欠損状態になりやすいことも、空気極において触媒効率が低くなる原因と考えられる。このような酸素不足の状態を回避するために、例えば特許文献8及び9では、これらの白金系触媒を含む触媒層を形成するにあたって、サブミリサイズの永久磁石等の磁性材料をさらに触媒層に含ませることにより、磁性材料の磁力により酸素分子を引き付け、触媒効率を上げることが提案されている。   Further, since the oxygen source used for the air electrode is usually air, it contains a large amount of nitrogen in addition to oxygen necessary for the catalytic reaction. Therefore, as the electrode reaction proceeds, oxygen is consumed, and oxygen deficiency is likely to occur near the catalyst of the air electrode. In order to avoid such an oxygen-deficient state, for example, in Patent Documents 8 and 9, when forming a catalyst layer containing these platinum-based catalysts, a magnetic material such as a submillimeter-sized permanent magnet is further included in the catalyst layer. It has been proposed to increase the catalyst efficiency by attracting oxygen molecules by the magnetic force of the magnetic material.

特開平6−320001号公報JP-A-6-30001 特開平5−208135号公報JP-A-5-208135 特開平6−176766号公報JP-A-6-176766 特開平8−57317号公報JP-A-8-57317 特開平4−87260号公報JP-A-4-87260 特開平6−246163号公報JP-A-6-246163 特開平9−17435号公報Japanese Patent Laid-Open No. 9-17435 特開2002−198057号公報JP 2002-198057 A 特開2006−252966号公報JP 2006-252966 A

しかしながら、特許文献8及び9に記載の燃料電池ではいずれも、触媒粒子から見れば燃料電池全体、あるいは触媒層全体に亘って磁界が印加された状態であるため、個々の触媒能を有する粒子に対して効率的に酸素を引き付けることができず、期待するような性能の向上が見られないことが判明した。即ち、特許文献8及び9の燃料電池では、触媒能を有する触媒粒子の近傍にのみ高濃度の酸素が引き付けられる構造にはなっていない。   However, in the fuel cells described in Patent Documents 8 and 9, since the magnetic field is applied to the entire fuel cell or the entire catalyst layer when viewed from the catalyst particles, the particles having individual catalytic ability are used. On the other hand, it was found that oxygen could not be efficiently attracted and the expected performance improvement was not observed. That is, the fuel cells of Patent Documents 8 and 9 do not have a structure in which high concentration oxygen is attracted only in the vicinity of catalyst particles having catalytic ability.

本発明は、上記問題を解決したもので、触媒能を有する個々の粒子に対して効率的に酸素を引き付けて、酸素との反応性を向上させて実質的な触媒能を高めることができる磁性粒子担持触媒を提供するものである。   The present invention solves the above-described problem and effectively attracts oxygen to individual particles having catalytic ability, and improves the reactivity with oxygen to increase the substantial catalytic ability. A particle-supported catalyst is provided.

本発明の第1の磁性粒子担持触媒は、導電性粒子と、前記導電性粒子に担持された磁性を有する触媒粒子とを含む磁性粒子担持触媒であって、前記磁性粒子担持触媒の保磁力が4.0〜79.8kA/mであり、その飽和磁化量が1〜20A・m2/kgであることを特徴とする。 The first magnetic particle-supported catalyst of the present invention is a magnetic particle-supported catalyst comprising conductive particles and magnetized catalyst particles supported on the conductive particles, wherein the coercivity of the magnetic particle-supported catalyst is It is 4.0 to 79.8 kA / m, and the saturation magnetization is 1 to 20 A · m 2 / kg.

本発明の第1の磁性粒子担持触媒の製造方法は、2種類以上の磁性金属成分を導電性粒子に担持させる工程と、前記磁性金属成分を担持した導電性粒子を、非酸化性雰囲気中において250〜600℃で加熱する工程とを含むことを特徴とする。   The first magnetic particle-supported catalyst production method of the present invention comprises a step of supporting two or more kinds of magnetic metal components on conductive particles, and the conductive particles supporting the magnetic metal components in a non-oxidizing atmosphere. And a step of heating at 250 to 600 ° C.

本発明の第2の磁性粒子担持触媒は、導電性粒子と、前記導電性粒子に担持された触媒粒子と、前記導電性粒子に担持された磁性粒子とを含むことを特徴とする。   The second magnetic particle-supported catalyst of the present invention includes conductive particles, catalyst particles supported on the conductive particles, and magnetic particles supported on the conductive particles.

本発明の第2の磁性粒子担持触媒の製造方法は、触媒金属成分を導電性粒子に担持させる工程と、前記触媒金属成分を担持した導電性粒子を、非酸化性雰囲気中において250〜600℃で加熱することにより、前記導電性粒子に触媒粒子を担持させる工程と、前記触媒粒子を担持した導電性粒子に、磁性体前駆体をさらに担持させる工程と、前記触媒粒子と前記磁性体前駆体とを担持した導電性粒子を加熱する工程とを含むことを特徴とする。   The method for producing a second magnetic particle-supported catalyst of the present invention comprises a step of supporting a catalyst metal component on conductive particles, and a conductive particle supporting the catalyst metal component at 250 to 600 ° C. in a non-oxidizing atmosphere. Heating the catalyst particles to carry the catalyst particles on the conductive particles, further supporting the conductive particles carrying the catalyst particles on the magnetic precursor, and the catalyst particles and the magnetic precursor. And a step of heating the conductive particles supporting.

本発明の燃料電池用電極は、上記本発明の第1又は第2の磁性粒子担持触媒を含むことを特徴とする。   The electrode for a fuel cell according to the present invention includes the first or second magnetic particle-supported catalyst according to the present invention.

本発明の燃料電池は、上記本発明の燃料電池用電極を含むことを特徴とする。   The fuel cell of the present invention includes the fuel cell electrode of the present invention.

本発明は、触媒効率が高く、高出力の燃料電池を実現できる磁性粒子担持触媒を提供することができる。   The present invention can provide a magnetic particle-supported catalyst having high catalyst efficiency and capable of realizing a high output fuel cell.

空気極において酸化剤として使用される酸素は、高い磁化率を有する。この磁化率とは、磁性体に磁界を印加して発生させた磁気モーメントと、印加した磁界との比率を示し、この磁化率が大きいほど磁界に対する感応性が高いことを示す。常温での磁化率は酸素が+106.2であるのに対して、例えば窒素は−0.8であり、水素は−1.97であり、酸素が突出して高い磁化率を有する。即ち、酸素は磁界に対する感応性が高く、酸素の近傍に磁界を発生する磁性体が存在すれば、この磁性体に酸素が引き寄せられることを意味する。   Oxygen used as an oxidant in the air electrode has a high magnetic susceptibility. This magnetic susceptibility indicates the ratio between the magnetic moment generated by applying a magnetic field to the magnetic material and the applied magnetic field, and the greater the magnetic susceptibility, the higher the sensitivity to the magnetic field. The magnetic susceptibility at normal temperature is +106.2 for oxygen, for example, nitrogen is -0.8, hydrogen is -1.97, and oxygen protrudes and has a high magnetic susceptibility. That is, oxygen has high sensitivity to a magnetic field, and if a magnetic material that generates a magnetic field exists in the vicinity of oxygen, this means that oxygen is attracted to this magnetic material.

例えば、図1に示すように、空気極13、燃料極14及び固体高分子電解質膜15からなる膜電極接合体10の両側に磁石11、12を配置し、膜電極接合体10の全体を取り囲むように磁界を発生させれば、膜電極接合体10の全体にわたって酸素が引き付けられると考えられる。しかし、この方法では、空気極13の近傍のみに局所的に酸素を引き付ける効果は見込めない。このため、数テスラ以上といった強力な磁界を印加しなければ酸素を引き付ける効果が現れず、しかもその効果も燃料電池として数%程度の出力向上といった程度でしかなく、現実的ではないと考えられる。   For example, as shown in FIG. 1, magnets 11 and 12 are arranged on both sides of a membrane electrode assembly 10 including an air electrode 13, a fuel electrode 14, and a solid polymer electrolyte membrane 15, and surrounds the entire membrane electrode assembly 10. If the magnetic field is generated in this way, it is considered that oxygen is attracted throughout the membrane electrode assembly 10. However, in this method, the effect of locally attracting oxygen only in the vicinity of the air electrode 13 cannot be expected. For this reason, unless a strong magnetic field of several Tesla or more is applied, the effect of attracting oxygen does not appear, and the effect is only a few percent improvement in output as a fuel cell, which is not realistic.

また、図2Aに示すように、触媒層20の中に触媒担持粒子21とともに、数μサイズ以上の大きな磁性粒子22を練り込む方法も考えられる。この方法では、図1の場合とは異なり、触媒層20のみに酸素を引き付ける効果は高くなると考えられるが、図2Aの触媒担持粒子21の拡大図である図2Bに示すように、反応場となる個々の触媒能を持つ触媒粒子23に対して局所的に酸素を引き付けることができず、むしろこれらの粗大な磁性粒子22が、触媒層20内の導電性担体24同士の電気伝導を阻害することとなり、期待されるほどの効果が得られないと考えられる。   Further, as shown in FIG. 2A, a method of kneading large magnetic particles 22 of several μ sizes or more together with the catalyst supporting particles 21 in the catalyst layer 20 is also conceivable. In this method, unlike in the case of FIG. 1, it is considered that the effect of attracting oxygen only to the catalyst layer 20 is enhanced. However, as shown in FIG. 2B, which is an enlarged view of the catalyst-carrying particles 21 in FIG. Oxygen cannot be locally attracted to the catalyst particles 23 having the individual catalytic ability. Rather, these coarse magnetic particles 22 hinder the electrical conduction between the conductive carriers 24 in the catalyst layer 20. Therefore, it is thought that the expected effect cannot be obtained.

そこで本発明者らは、触媒能を有するとともに特定の磁性をも有する触媒粒子を導電性担体上に担持させた磁性粒子担持触媒、あるいは、図3に示すように、導電性担体31上に担持された触媒粒子33の近傍に、磁性粒子32を配置した磁性粒子担持触媒30を発明するに至った。そして、これらの磁性粒子担持触媒を用いて燃料電池用電極を製造することにより、高出力の燃料電池を作製できることを見出した。   Therefore, the present inventors have supported a magnetic particle-supported catalyst in which catalyst particles having catalytic ability and specific magnetism are supported on a conductive support, or supported on a conductive support 31 as shown in FIG. The inventors have invented a magnetic particle-supported catalyst 30 in which magnetic particles 32 are arranged in the vicinity of the formed catalyst particles 33. And it discovered that a high output fuel cell was producible by manufacturing the electrode for fuel cells using these magnetic particle carrying catalysts.

即ち、本発明の磁性粒子担持触媒は、高価な白金の使用量を増やすことなく、特に空気極に使用した場合に、高い磁化率を有する酸素との触媒反応性が向上し、結果として燃料電池の高性能化を実現できるものである。   That is, the magnetic particle-supported catalyst of the present invention improves the catalytic reactivity with oxygen having a high magnetic susceptibility, particularly when used for an air electrode, without increasing the amount of expensive platinum used, resulting in a fuel cell. Can achieve higher performance.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

(実施形態1)
先ず、本発明の第1の磁性粒子担持触媒について説明する。本発明の第1の磁性粒子担持触媒は、導電性粒子と、その導電性粒子に担持された磁性を有する触媒粒子とを含み、上記磁性粒子担持触媒の保磁力が4.0〜79.8kA/mであり、その飽和磁化量が1〜20A・m2/kgであることを特徴とする。
(Embodiment 1)
First, the first magnetic particle-supported catalyst of the present invention will be described. The first magnetic particle-supported catalyst of the present invention includes conductive particles and magnetized catalyst particles supported on the conductive particles, and the coercivity of the magnetic particle-supported catalyst is 4.0 to 79.8 kA. / M, and the saturation magnetization is 1 to 20 A · m 2 / kg.

上記触媒粒子が磁性を有することにより、上記磁性粒子担持触媒を例えば燃料電池の空気極の触媒に使用した場合に、個々の触媒粒子に対して局所的に磁場を発生させることができるため、空気極において効率良く酸素が水素イオン及び電子と反応することができ、触媒効率が向上する。この結果、高価な白金系触媒の使用量を増加させなくても高出力の燃料電池を提供することができる。   Since the catalyst particles have magnetism, when the magnetic particle-supported catalyst is used as a catalyst for an air electrode of a fuel cell, for example, a magnetic field can be locally generated for each catalyst particle. Oxygen can efficiently react with hydrogen ions and electrons at the electrode, and the catalyst efficiency is improved. As a result, a high-power fuel cell can be provided without increasing the amount of expensive platinum catalyst used.

上記磁性粒子担持触媒の磁性の強さについては、酸素の磁化率が+106.2であることを考慮すると、上記磁性粒子担持触媒の保磁力は4.0kA/m(50エルステッド)以上、その飽和磁化量は1A・m2/kg(1emu/g)以上であることが必要である。保磁力が4.0kA/m(50エルステッド)未満、その飽和磁化量が1A・m2/kg(1emu/g)未満では、空気中の酸素の引き寄せが不十分であり、高出力の燃料電池を提供することが困難となる。一方、上記磁性粒子担持触媒の保持力及び飽和磁化量は高いほど好ましいが、現状の材料及び製造方法では、上記磁性粒子担持触媒の保磁力の上限を79.8kA/mとし、その飽和磁化量の上限を20A・m2/kgとすれば十分である。 Regarding the magnetic strength of the magnetic particle-supported catalyst, considering that the magnetic susceptibility is +106.2, the magnetic particle-supported catalyst has a coercive force of 4.0 kA / m (50 oersted) or more, and its saturation. The amount of magnetization needs to be 1 A · m 2 / kg (1 emu / g) or more. When the coercive force is less than 4.0 kA / m (50 oersted) and the saturation magnetization is less than 1 A · m 2 / kg (1 emu / g), oxygen in the air is not sufficiently attracted, and a high output fuel cell It will be difficult to provide. On the other hand, the higher the coercive force and the saturation magnetization amount of the magnetic particle-supported catalyst, the better. However, in the current materials and production methods, the upper limit of the coercive force of the magnetic particle-supported catalyst is 79.8 kA / m, and the saturation magnetization amount thereof. It is sufficient to set the upper limit of 20 A · m 2 / kg.

本発明において、磁性の有無は磁針の振れにより確認し、上記保磁力及び上記飽和磁化量は、振動試料型磁力計により測定するものとする。   In the present invention, the presence or absence of magnetism is confirmed by the shake of a magnetic needle, and the coercive force and the saturation magnetization are measured with a vibrating sample magnetometer.

上記触媒粒子は、最終生成物である磁性粒子担持触媒の保磁力として4.0〜79.8kA/mを付与でき、その飽和磁化量として1〜20A・m2/kgを付与できる磁性を有していれば特に限定されない。 The catalyst particles have magnetism that can impart 4.0 to 79.8 kA / m as the coercive force of the magnetic particle-supported catalyst that is the final product, and can impart 1 to 20 A · m 2 / kg as the saturation magnetization. If it does, it will not specifically limit.

上記触媒粒子としては、磁性合金粒子を用いることができ、その磁性合金粒子としては、白金とコバルトとを合金成分として含むことが好ましい。白金−コバルト合金は強磁性体であり、容易に磁性を付与できるとともに、本発明の磁性粒子担持触媒を、燃料電池用電極の白金−コバルト合金系触媒として使用する場合、優れた触媒能を発揮できるからである。   Magnetic catalyst particles can be used as the catalyst particles, and the magnetic alloy particles preferably contain platinum and cobalt as alloy components. Platinum-cobalt alloy is a ferromagnetic material that can easily impart magnetism, and exhibits excellent catalytic ability when the magnetic particle-supported catalyst of the present invention is used as a platinum-cobalt alloy catalyst for fuel cell electrodes. Because it can.

上記磁性合金粒子の白金とコバルトの含有量は、それぞれ40〜98重量%及び2〜60重量%であることが好ましく、より好ましくは、それぞれ55〜98重量%及び2〜45重量%である。上記範囲内であれば、最終生成物である磁性粒子担持触媒に保磁力4.0〜79.8kA/m(50〜1000エルステッド)及び飽和磁化量1〜20A・m2/kg(1〜20emu/g)を確実に付与できるとともに、白金−コバルト合金系触媒として十分な触媒能を発揮できるからである。より具体的には、白金の含有量が上記範囲より少なく、コバルトの含有量が上記範囲より多いと、白金の含有量が少なくなるため触媒能が低下し、また、白金の含有量が上記範囲より多く、コバルトの含有量が上記範囲より少ないと、コバルトの含有量が少なくなるため、磁性合金触媒としての性能を発揮するための十分な磁気特性が得られなくなる。 The contents of platinum and cobalt in the magnetic alloy particles are preferably 40 to 98% by weight and 2 to 60% by weight, respectively, and more preferably 55 to 98% by weight and 2 to 45% by weight, respectively. Within the above range, the magnetic particle supported catalyst as the final product has a coercive force of 4.0 to 79.8 kA / m (50 to 1000 oersted) and a saturation magnetization of 1 to 20 A · m 2 / kg (1 to 20 emu). / G) can be reliably imparted, and sufficient catalytic ability as a platinum-cobalt alloy catalyst can be exhibited. More specifically, when the platinum content is less than the above range, and the cobalt content is more than the above range, the platinum content is reduced, so the catalytic ability is reduced, and the platinum content is within the above range. When the content of cobalt is more than the above range, the content of cobalt is reduced, and sufficient magnetic properties for exhibiting the performance as a magnetic alloy catalyst cannot be obtained.

上記磁性合金粒子は、ニッケル、鉄、チタン、銅、マンガン、アルミニウム、ルテニウム、タングステン及びモリブデンからなる群から選ばれる少なくとも一種の元素を合金成分としてさらに含むことができる。即ち、強磁性体を維持できる限り、白金とコバルト以外に、他の合金成分を含有させて、三元系合金粒子や四元系合金粒子とすることもできる。多元系合金粒子とすることにより、磁気特性と触媒能を維持して高価な白金の使用量を減らせる利点や、溶解性や熱安定性等の触媒としての耐久性が向上するなどの利点がある。   The magnetic alloy particles may further include at least one element selected from the group consisting of nickel, iron, titanium, copper, manganese, aluminum, ruthenium, tungsten and molybdenum as an alloy component. That is, as long as the ferromagnetic material can be maintained, other alloy components can be contained in addition to platinum and cobalt to form ternary alloy particles or quaternary alloy particles. By using multi-component alloy particles, there are advantages such as reducing the amount of expensive platinum used while maintaining magnetic properties and catalytic ability, and improving the durability as a catalyst such as solubility and thermal stability. is there.

また、上記磁性合金粒子の粒子径は、1〜10nmであることが好ましく、2〜3nmがより好ましい。粒子径が1nmより小さくなると、粒子の表面積が大きくなるため初期性能は優れているが長時間使用すると粒子が溶解して再析出する結果、粒成長が起こり触媒能が低下しやすくなる。一方、粒子径が10nmより大きくなると、表面積が小さくなるため触媒能が低下する。本発明おいて、上記粒子径は、透過型電子顕微鏡(TEM)写真の粒子の大きさを測定して求めるものとする。   The particle diameter of the magnetic alloy particles is preferably 1 to 10 nm, and more preferably 2 to 3 nm. When the particle size is smaller than 1 nm, the initial performance is excellent because the surface area of the particle is increased. However, when used for a long time, the particle dissolves and re-precipitates. As a result, grain growth occurs and the catalytic ability tends to decrease. On the other hand, when the particle size is larger than 10 nm, the surface area is reduced, and the catalytic ability is lowered. In the present invention, the particle diameter is determined by measuring the size of a particle in a transmission electron microscope (TEM) photograph.

また、上記触媒粒子の担持量は、上記磁性粒子担持触媒の全重量に対して、5〜50重量%であることが好ましい。5重量%より少ないと、全体としての有効触媒量が少なくなるためにその機能が発現しにくくなる傾向があり、また、50重量%より多くなれば、導電性粒子の表面に単層で被着せずに、触媒粒子同士が重なり合ったり、又は、凝集しやすくなる。   The supported amount of the catalyst particles is preferably 5 to 50% by weight with respect to the total weight of the magnetic particle-supported catalyst. If the amount is less than 5% by weight, the effective catalyst amount as a whole is reduced, so that the function tends to be difficult to be exhibited. If the amount is more than 50% by weight, the surface of the conductive particles is deposited as a single layer. Therefore, the catalyst particles are easily overlapped or aggregated.

上記触媒粒子の担体となる導電性粒子としては特に限定されるものではないが、例えば、アセチレンブラック、ケッチェンブラック、ファーネスカーボン等のカーボン粒子が好ましい。これらは導電性が高く、電気化学反応に対して安定だからである。   The conductive particles that serve as the carrier for the catalyst particles are not particularly limited. For example, carbon particles such as acetylene black, ketjen black, and furnace carbon are preferable. This is because they are highly conductive and stable against electrochemical reactions.

また、上記導電性粒子の平均粒子径は、20〜70nmであることが好ましく、30〜50nmがより好ましい。平均粒子径が20nmより小さくても本発明の磁性触媒としての機能面においては問題ないが、合成過程において粒子径が小さいために凝集が激しく、均一分散することが困難となるため、導電性粒子の平均粒子径は20nm以上であることが好ましい。また、導電性粒子の平均粒子径が70nmより大きくても、触媒能が消失することはないが、比表面積が小さくなって触媒能が低下するため、導電性粒子の平均粒子径は70nm以下であることが好ましい。   Moreover, it is preferable that the average particle diameter of the said electroconductive particle is 20-70 nm, and 30-50 nm is more preferable. Even if the average particle size is smaller than 20 nm, there is no problem in terms of the function as the magnetic catalyst of the present invention. However, since the particle size is small in the synthesis process, the particles are agglomerated and difficult to uniformly disperse. The average particle size of is preferably 20 nm or more. Further, even if the average particle diameter of the conductive particles is larger than 70 nm, the catalytic ability is not lost, but the specific surface area is reduced and the catalytic ability is lowered, so the average particle diameter of the conductive particles is 70 nm or less. Preferably there is.

本発明おいて、平均粒子径は、透過型電子顕微鏡(TEM)写真から観察される100個の粒子の粒子径の算術平均から求めるものとする。   In the present invention, the average particle diameter is determined from the arithmetic average of the particle diameters of 100 particles observed from a transmission electron microscope (TEM) photograph.

上記触媒粒子としては、鉄、コバルト、ニッケル、亜鉛、マンガン及び銅からなる群から選ばれる少なくとも一種の元素を含む酸化物粒子を用いることもできる。酸化物粒子は、アルカリ型燃料電池の触媒として利用できるからである。上記酸化物粒子は、スピネル構造又はぺロブスカイト構造を有することが好ましい。これらの構造を有する酸化物粒子は、電気化学的に安定だからである。   As the catalyst particles, oxide particles containing at least one element selected from the group consisting of iron, cobalt, nickel, zinc, manganese, and copper can also be used. This is because the oxide particles can be used as a catalyst for an alkaline fuel cell. The oxide particles preferably have a spinel structure or a perovskite structure. This is because the oxide particles having these structures are electrochemically stable.

次に、本発明の第1の磁性粒子担持触媒の製造方法について説明する。本発明の第1の磁性粒子担持触媒の製造方法は、上記触媒粒子として磁性合金粒子を用いる場合の製造方法であり、2種類以上の磁性金属成分を導電性粒子に担持させる工程と、この磁性金属成分を担持した導電性粒子を、非酸化性雰囲気中において250〜600℃で加熱する工程とを備えている。   Next, the manufacturing method of the 1st magnetic particle carrying catalyst of this invention is demonstrated. The first magnetic particle-supported catalyst production method of the present invention is a production method in the case where magnetic alloy particles are used as the catalyst particles. The step of supporting two or more kinds of magnetic metal components on conductive particles, Heating the conductive particles carrying the metal component at 250 to 600 ° C. in a non-oxidizing atmosphere.

上記2種類以上の磁性金属成分を導電性粒子に担持させる工程、即ち導電性粒子に磁性合金前駆体を担持させる方法は特に限定されない。例えば、あらかじめ磁性金属成分として白金やコバルトの金属塩を特定量の水に溶解し、この金属イオン水溶液に導電性粒子を分散し、攪拌しながらアンモニア水等のアルカリ水溶液を滴下して、導電性粒子上に白金やコバルトの水和物粒子を析出させ、その後に水洗、ろ過、乾燥することにより、導電性粒子に白金成分とコバルト成分とを担持させることができる。また、白金やコバルトの錯イオンを含む溶液に導電性粒子を分散させ、これらの金属錯イオンを導電性粒子上に吸着させた後、ろ過、乾燥することにより、導電性粒子に白金成分とコバルト成分とを担持させることができる。   The step of supporting the two or more kinds of magnetic metal components on the conductive particles, that is, the method of supporting the magnetic alloy precursor on the conductive particles is not particularly limited. For example, a metal salt of platinum or cobalt as a magnetic metal component is dissolved in a specific amount of water in advance, and conductive particles are dispersed in this aqueous metal ion solution. By depositing platinum or cobalt hydrate particles on the particles, followed by washing, filtering and drying, the conductive particles can carry the platinum component and the cobalt component. In addition, conductive particles are dispersed in a solution containing platinum or cobalt complex ions, and these metal complex ions are adsorbed on the conductive particles, followed by filtration and drying, whereby platinum components and cobalt are added to the conductive particles. Components can be supported.

上記のようにして2種類以上の磁性金属成分を導電性粒子に担持させただけの状態では、磁性金属成分同士は合金化していないため、次に、上記磁性金属成分を担持した導電性粒子を、非酸化性雰囲気中において250〜600℃で加熱する必要がある。これにより、磁性金属成分が合金化して導電性粒子上に合金粒子が担持されるとともに、合金粒子に磁性が付与される。即ち、上記工程により、保磁力が4.0〜79.8kA/mであり、飽和磁化量が1〜20A・m2/kgである磁性粒子担持触媒が得られる。 In the state where two or more kinds of magnetic metal components are simply supported on the conductive particles as described above, the magnetic metal components are not alloyed with each other. It is necessary to heat at 250 to 600 ° C. in a non-oxidizing atmosphere. As a result, the magnetic metal component is alloyed and the alloy particles are supported on the conductive particles, and magnetism is imparted to the alloy particles. That is, the above process yields a magnetic particle-supported catalyst having a coercive force of 4.0 to 79.8 kA / m and a saturation magnetization of 1 to 20 A · m 2 / kg.

加熱温度が250℃より低いと、磁性金属成分が十分に合金化しないか、あるいは合金化しても酸素に対して感応性を示すために必要な保磁力及び飽和磁化量を示さない。また、加熱温度が600℃より高いと、磁性金属成分が合金化しても導電性粒子上に分散析出している合金粒子同士が融合成長して粒子サイズが大きくなり、触媒能が低下する。   When the heating temperature is lower than 250 ° C., the magnetic metal component is not sufficiently alloyed, or even when alloyed, the coercive force and the saturation magnetization necessary for exhibiting sensitivity to oxygen are not exhibited. On the other hand, when the heating temperature is higher than 600 ° C., even if the magnetic metal component is alloyed, the alloy particles dispersed and precipitated on the conductive particles are fused and grown to increase the particle size, thereby reducing the catalytic ability.

非酸化性雰囲気中で加熱するのは、合金粒子が酸化されると磁性を付与することが困難となるからである。また、非酸化性雰囲気としては、例えば、水素等の還元性ガス雰囲気、アルゴンや窒素等の不活性ガス雰囲気等が挙げられる。さらに、不活性ガス中で熱処理を施した後、還元性ガス雰囲気でさらに加熱して還元処理を行う二段階処理を施すことが好ましい。   The reason for heating in a non-oxidizing atmosphere is that it becomes difficult to impart magnetism when the alloy particles are oxidized. In addition, examples of the non-oxidizing atmosphere include a reducing gas atmosphere such as hydrogen and an inert gas atmosphere such as argon and nitrogen. Furthermore, it is preferable to perform a two-stage process in which a heat treatment is performed in an inert gas and then a reduction process is performed by further heating in a reducing gas atmosphere.

磁性金属成分を上記温度範囲で加熱して合金粒子を形成することにより、その合金粒子に磁性が付与される。即ち、例えば、白金は触媒能を有するが、白金単体では磁性を有さない。一方、白金はコバルトと合金を形成すると磁性体になる。従って、例えば、白金−コバルトの合金粒子にすることにより、初めて磁性と触媒能を同時に有する磁性合金触媒となり得る。   By heating the magnetic metal component in the above temperature range to form alloy particles, magnetism is imparted to the alloy particles. That is, for example, platinum has catalytic ability, but platinum alone has no magnetism. On the other hand, platinum becomes a magnetic material when it forms an alloy with cobalt. Therefore, for example, by using platinum-cobalt alloy particles, a magnetic alloy catalyst having both magnetism and catalytic ability can be obtained for the first time.

いずれにしても、担体上への白金やコバルト等の析出方法や析出状態に応じて、加熱処理温度を変更することにより、保磁力が4.0〜79.8kA/m(50〜1000エルステッド)、飽和磁化量が1〜20A・m2/kg(1〜20emu/g)の範囲の磁気特性を有する磁性粒子担持触媒を得ることができ、その磁性粒子担持触媒を空気極に使用することにより、酸素との反応性が良好になり、燃料電池の性能を向上できる。 In any case, the coercive force is 4.0 to 79.8 kA / m (50 to 1000 oersted) by changing the heat treatment temperature according to the deposition method and the deposition state of platinum, cobalt, etc. on the support. , A magnetic particle-supported catalyst having a magnetic property in the range of 1-20 A · m 2 / kg (1-20 emu / g) of saturation magnetization can be obtained, and by using the magnetic particle-supported catalyst for the air electrode The reactivity with oxygen becomes good and the performance of the fuel cell can be improved.

(実施形態2)
次に、本発明の第2の磁性粒子担持触媒について説明する。本発明の第2の磁性粒子担持触媒は、導電性粒子と、その導電性粒子に担持された触媒粒子と、その導電性粒子に担持された磁性粒子とを含むことを特徴とする。
(Embodiment 2)
Next, the second magnetic particle-supported catalyst of the present invention will be described. The second magnetic particle-supported catalyst of the present invention is characterized by comprising conductive particles, catalyst particles supported on the conductive particles, and magnetic particles supported on the conductive particles.

また、上記磁性粒子担持触媒の保磁力は4.0〜79.8kA/mであり、その飽和磁化量は1〜20A・m2/kgであることが好ましい。 The coercive force of the magnetic particle-supported catalyst is preferably 4.0 to 79.8 kA / m, and the saturation magnetization is preferably 1 to 20 A · m 2 / kg.

上記触媒粒子とともに上記磁性粒子を担持することにより、上記磁性粒子担持触媒を例えば燃料電池の空気極の触媒に使用した場合に、個々の触媒粒子に対して局所的に磁場を発生させることができるため、空気極において効率良く酸素が水素イオン及び電子と反応することができ、触媒効率が向上する。この結果、高価な白金系触媒の使用量を増加させなくても高出力の燃料電池を提供することができる。   By supporting the magnetic particles together with the catalyst particles, when the magnetic particle-supported catalyst is used, for example, as a catalyst for an air electrode of a fuel cell, a magnetic field can be generated locally for each catalyst particle. Therefore, oxygen can efficiently react with hydrogen ions and electrons at the air electrode, and the catalyst efficiency is improved. As a result, a high-power fuel cell can be provided without increasing the amount of expensive platinum catalyst used.

上記磁性粒子担持触媒の磁性の強さについては、酸素の磁化率が+106.2であることを考慮すると、上記磁性粒子担持触媒の保磁力は4.0kA/m(50エルステッド)以上、その飽和磁化量は1A・m2/kg(1emu/g)以上であることが好ましい。保磁力が4.0kA/m(50エルステッド)未満、その飽和磁化量が1A・m2/kg(1emu/g)未満では、空気中の酸素の引き寄せが不十分となる場合があり、高出力の燃料電池を提供することが困難となる。一方、上記磁性粒子担持触媒の保持力及び飽和磁化量は高いほど好ましいが、現状の材料及び製造方法では、上記磁性粒子担持触媒の保磁力の上限を79.8kA/mとし、その飽和磁化量の上限を20A・m2/kgとすれば十分である。 Regarding the magnetic strength of the magnetic particle-supported catalyst, considering that the magnetic susceptibility is +106.2, the magnetic particle-supported catalyst has a coercive force of 4.0 kA / m (50 oersted) or more, and its saturation. The amount of magnetization is preferably 1 A · m 2 / kg (1 emu / g) or more. If the coercive force is less than 4.0 kA / m (50 oersted) and the saturation magnetization is less than 1 A · m 2 / kg (1 emu / g), the oxygen in the air may not be attracted sufficiently, resulting in high output. It becomes difficult to provide the fuel cell. On the other hand, the higher the coercive force and the saturation magnetization amount of the magnetic particle-supported catalyst, the better. However, in the current materials and production methods, the upper limit of the coercive force of the magnetic particle-supported catalyst is 79.8 kA / m, and the saturation magnetization amount thereof. It is sufficient to set the upper limit of 20 A · m 2 / kg.

本発明において、磁性の有無は、磁針の振れにより確認し、上記保磁力及び上記飽和磁化量は、振動試料型磁力計により測定するものとする。   In the present invention, the presence or absence of magnetism is confirmed by shake of a magnetic needle, and the coercive force and the saturation magnetization are measured by a vibrating sample magnetometer.

上記触媒粒子は、白金を含むことが好ましい。本発明の磁性粒子担持触媒を、燃料電池用電極の白金系触媒として使用する場合、優れた触媒能を発揮できるからである。従って、上記触媒粒子は、白金粒子単独で構成してもよく、白金合金粒子で構成してもよい。上記白金合金粒子としては、白金と、ニッケル、鉄、チタン、銅、マンガン、アルミニウム、ルテニウム、タングステン及びモリブデンからなる群から選ばれる少なくとも一種の元素とから構成できる。但し、上記触媒粒子は、白金系触媒粒子に限定されるものではなく、燃料電池用電極の触媒として触媒能があるものであれば、白金系触媒粒子以外であってもよい。   The catalyst particles preferably contain platinum. This is because when the magnetic particle-supported catalyst of the present invention is used as a platinum-based catalyst for a fuel cell electrode, excellent catalytic ability can be exhibited. Therefore, the catalyst particles may be composed of platinum particles alone or platinum alloy particles. The platinum alloy particles can be composed of platinum and at least one element selected from the group consisting of nickel, iron, titanium, copper, manganese, aluminum, ruthenium, tungsten and molybdenum. However, the catalyst particles are not limited to platinum-based catalyst particles, and may be other than platinum-based catalyst particles as long as they have catalytic ability as a catalyst for a fuel cell electrode.

上記磁性粒子は、最終生成物である磁性粒子担持触媒の保磁力として4.0〜79.8kA/mを付与でき、その飽和磁化量として1〜20A・m2/kgを付与できる磁性を有していることが好ましく、例えば、遷移金属元素を含む強磁性体となる酸化物粒子又は合金粒子を使用できる。 The magnetic particles have a magnetism capable of imparting 4.0 to 79.8 kA / m as a coercive force of a magnetic particle-supported catalyst as a final product, and imparting 1 to 20 A · m 2 / kg as a saturation magnetization. For example, oxide particles or alloy particles that become a ferromagnetic material containing a transition metal element can be used.

上記酸化物粒子としては、鉄、コバルト、ニッケル、亜鉛、マンガン及び銅からなる群から選ばれる少なくとも一種の元素を含む酸化物粒子を使用できる。上記酸化物粒子は、スピネル構造又はぺロブスカイト構造を有することが好ましい。これらの構造を有する酸化物粒子は、電気化学的に安定だからである。また、上記合金粒子としては、サマリウム−コバルト合金、鉄−白金合金、コバルト−白金合金等を使用できる。   As the oxide particles, oxide particles containing at least one element selected from the group consisting of iron, cobalt, nickel, zinc, manganese and copper can be used. The oxide particles preferably have a spinel structure or a perovskite structure. This is because the oxide particles having these structures are electrochemically stable. Further, as the alloy particles, samarium-cobalt alloy, iron-platinum alloy, cobalt-platinum alloy and the like can be used.

上記触媒粒子と上記磁性粒子との重量比は、40:60〜90:10であることが好ましい。触媒粒子の重量比がこの範囲より少なく、磁性粒子の重量比がこの範囲より多いと、触媒活性を担う粒子数が減少するために触媒能が低下し、また、触媒粒子の重量比がこの範囲より多く、磁性粒子の重量比がこの範囲より少ないと、個々の触媒粒子の近傍に存在する磁性粒子の数が少なくなるため、個々の触媒粒子に対する局所的な磁場が弱まり、空気極での酸素との反応性を高めることが困難となる。   The weight ratio of the catalyst particles to the magnetic particles is preferably 40:60 to 90:10. If the weight ratio of the catalyst particles is less than this range and the weight ratio of the magnetic particles is more than this range, the number of particles responsible for the catalyst activity decreases, so that the catalytic performance decreases, and the weight ratio of the catalyst particles falls within this range. If more and the weight ratio of the magnetic particles is less than this range, the number of magnetic particles existing in the vicinity of the individual catalyst particles is reduced, so that the local magnetic field for the individual catalyst particles is weakened, and oxygen at the air electrode is reduced. It becomes difficult to increase the reactivity with.

また、上記触媒粒子及び上記磁性粒子の担持量は、上記磁性粒子担持触媒の全重量に対して、10〜70重量%であることが好ましい。10重量%より少ないと、全体としての有効触媒量が少なくなるためにその機能が発現しにくくなる傾向があり、また、70重量%より多くなれば、導電性粒子の表面に単層で被着せずに、粒子同士が重なり合ったり、又は、凝集しやすくなる。   Moreover, it is preferable that the load of the said catalyst particle and the said magnetic particle is 10 to 70 weight% with respect to the total weight of the said magnetic particle support catalyst. If the amount is less than 10% by weight, the effective catalyst amount as a whole is reduced, so that the function tends to be difficult to be exhibited. If the amount is more than 70% by weight, the surface of the conductive particles is deposited in a single layer. Therefore, the particles tend to overlap or aggregate.

上記触媒粒子及び上記磁性粒子の粒子径は、それぞれ1〜10nmであることが好ましく、2〜3nmがより好ましい。本発明おいて、上記粒子径は、透過型電子顕微鏡(TEM)写真の粒子の大きさを測定して求めるものとする。   The particle diameters of the catalyst particles and the magnetic particles are each preferably 1 to 10 nm, and more preferably 2 to 3 nm. In the present invention, the particle diameter is determined by measuring the size of a particle in a transmission electron microscope (TEM) photograph.

上記触媒粒子の粒子径が1nmより小さくなると、触媒粒子の表面積が大きくなるため初期性能は優れているが長時間使用すると触媒粒子が溶解して再析出する結果、粒成長が起こり触媒能が低下しやすくなる。一方、触媒粒子の粒子径が10nmより大きくなると、表面積が小さくなるため触媒能が低下する。   When the particle diameter of the catalyst particles is smaller than 1 nm, the initial performance is excellent because the surface area of the catalyst particles is increased. However, when used for a long time, the catalyst particles dissolve and reprecipitate, resulting in particle growth and reduced catalytic performance. It becomes easy to do. On the other hand, when the particle diameter of the catalyst particles is larger than 10 nm, the surface area is reduced and the catalytic ability is lowered.

また、上記磁性粒子の粒子径が1nmより小さくなると、合金系磁性粒子の場合には表面酸化等による劣化が激しいため磁性を保つことが難しく、酸化物磁性粒子の場合には酸化による劣化等の問題はないため、これより小さくても磁場を発生させることができれば問題はないが、酸化物の格子定数が約0.5nm程度であるために、1nm以下の結晶性粒子を作製することは困難である。また、磁性粒子の粒子径が10nmより大きくなっても磁場による効果が失われることはないが、個々の触媒粒子の近傍に磁性粒子を配置させるためには、磁性粒子と触媒粒子とは同等の粒子径を有することが好ましいため、磁性粒子の粒子径も10nm以下が好ましい。例えば、粒子径が2〜3nmの白金系触媒粒子を用いる場合には、磁性粒子の粒子径は約5nm程度以下であることが好ましい。また、磁性粒子として導電性を有さない粒子を用いる場合には、非導電性磁性粒子の粒子径が大きすぎれば、導電性担体である導電性粒子同士の電気伝導を阻害する要因となり、酸素との反応性を向上させる点では問題なくとも、燃料電池としての性能を低下させる要因にもなり得るため、好ましくない。   In addition, when the particle size of the magnetic particles is smaller than 1 nm, it is difficult to maintain magnetism in the case of alloy-based magnetic particles due to severe deterioration due to surface oxidation or the like, and in the case of oxide magnetic particles, such as deterioration due to oxidation. Since there is no problem, there is no problem if a magnetic field can be generated even if it is smaller than this. However, since the lattice constant of the oxide is about 0.5 nm, it is difficult to produce crystalline particles of 1 nm or less. It is. In addition, even if the particle size of the magnetic particles is larger than 10 nm, the effect of the magnetic field is not lost. However, in order to arrange the magnetic particles in the vicinity of the individual catalyst particles, the magnetic particles are equivalent to the catalyst particles. Since it preferably has a particle size, the particle size of the magnetic particles is preferably 10 nm or less. For example, when using platinum-based catalyst particles having a particle diameter of 2 to 3 nm, the particle diameter of the magnetic particles is preferably about 5 nm or less. In addition, when using non-conductive particles as magnetic particles, if the particle size of the non-conductive magnetic particles is too large, it becomes a factor that hinders electric conduction between the conductive particles that are conductive carriers, and oxygen This is not preferable because it can be a factor that deteriorates the performance as a fuel cell, even if there is no problem in terms of improving the reactivity.

上記触媒粒子の担体となる導電性粒子としては特に限定されるものではないが、例えば、アセチレンブラック、ケッチェンブラック、ファーネスカーボン等のカーボン粒子が好ましい。これらは導電性が高く、電気化学反応に対して安定だからである。   The conductive particles that serve as the carrier for the catalyst particles are not particularly limited. For example, carbon particles such as acetylene black, ketjen black, and furnace carbon are preferable. This is because they are highly conductive and stable against electrochemical reactions.

また、上記導電性粒子の平均粒子径は、20〜70nmであることが好ましく、30〜50nmがより好ましい。平均粒子径が20nmより小さくても本発明の磁性触媒としての機能面においては問題ないが、合成過程において粒子径が小さいために凝集が激しく、均一分散することが困難となるため、導電性粒子の平均粒子径は20nm以上であることが好ましい。また、導電性粒子の平均粒子径が70nmより大きくても、触媒能が消失することはないが、比表面積が小さくなって触媒能が低下するため、導電性粒子の平均粒子径は70nm以下であることが好ましい。   Moreover, it is preferable that the average particle diameter of the said electroconductive particle is 20-70 nm, and 30-50 nm is more preferable. Even if the average particle size is smaller than 20 nm, there is no problem in terms of the function as the magnetic catalyst of the present invention. However, since the particle size is small in the synthesis process, the particles are agglomerated and difficult to uniformly disperse. The average particle size of is preferably 20 nm or more. Further, even if the average particle diameter of the conductive particles is larger than 70 nm, the catalytic ability is not lost, but the specific surface area is reduced and the catalytic ability is lowered, so the average particle diameter of the conductive particles is 70 nm or less. Preferably there is.

本発明おいて、平均粒子径は、透過型電子顕微鏡(TEM)写真から観察される100個の粒子の粒子径の算術平均から求めるものとする。   In the present invention, the average particle diameter is determined from the arithmetic average of the particle diameters of 100 particles observed from a transmission electron microscope (TEM) photograph.

次に、本発明の第2の磁性粒子担持触媒の製造方法について説明する。本発明の第2の磁性粒子担持触媒の製造方法は、触媒金属成分を導電性粒子に担持させる工程と、この触媒金属成分を担持した導電性粒子を、非酸化性雰囲気中において250〜600℃で加熱することにより、上記導電性粒子に触媒粒子を担持させる工程と、上記触媒粒子を担持した導電性粒子に、磁性体前駆体をさらに担持させる工程と、上記触媒粒子と上記磁性体前駆体とを担持した導電性粒子を加熱する工程とを備えている。   Next, the manufacturing method of the 2nd magnetic particle carrying catalyst of this invention is demonstrated. The method for producing a second magnetic particle-supported catalyst of the present invention comprises a step of supporting a catalytic metal component on conductive particles and a conductive particle supporting the catalytic metal component at 250 to 600 ° C. in a non-oxidizing atmosphere. By heating the catalyst particles on the conductive particles, the step of further supporting the magnetic precursor on the conductive particles supporting the catalyst particles, the catalyst particles and the magnetic precursor Heating the conductive particles.

触媒金属成分を導電性粒子に担持させる工程、即ち導電性粒子に触媒粒子前駆体を担持させる方法は特に限定されない。例えば、あらかじめ触媒金属成分として白金塩単独又は白金塩と他の金属塩とを特定量の水に溶解し、この金属イオン水溶液に導電性粒子を分散し、攪拌しながらアンモニア水等のアルカリ水溶液を滴下して、導電性粒子上に触媒金属の水和物粒子を析出させ、その後に水洗、ろ過、乾燥することにより、導電性粒子に触媒金属成分を担持させることができる。また、触媒金属の錯イオンを含む溶液に導電性粒子を分散させ、これらの触媒金属錯イオンを導電性粒子上に吸着させた後、ろ過、乾燥することにより、導電性粒子に触媒金属成分を担持させることができる。   The step of supporting the catalyst metal component on the conductive particles, that is, the method of supporting the catalyst particle precursor on the conductive particles is not particularly limited. For example, platinum salt alone or platinum salt and other metal salt as catalyst metal components are dissolved in a specific amount of water in advance, and conductive particles are dispersed in this aqueous metal ion solution. The catalyst metal component can be supported on the conductive particles by dropping and depositing catalyst metal hydrate particles on the conductive particles, followed by washing with water, filtration and drying. In addition, conductive particles are dispersed in a solution containing complex ions of catalytic metal, and these catalytic metal complex ions are adsorbed on the conductive particles, and then filtered and dried, whereby the catalytic metal component is added to the conductive particles. It can be supported.

上記のようにして触媒金属成分を導電性粒子に担持させただけの状態では、触媒金属成分は金属化していないため、次に、上記触媒金属成分を担持した導電性粒子を、非酸化性雰囲気中において250〜600℃で加熱する必要がある。これにより、触媒金属成分が金属化して導電性粒子上に触媒金属粒子が担持される。また、2種類以上の触媒金属成分を導電性粒子に担持させた場合には、上記加熱により触媒金属成分が合金化して導電性粒子上に触媒合金粒子が担持される。   In the state where the catalyst metal component is simply supported on the conductive particles as described above, since the catalyst metal component is not metallized, the conductive particles supporting the catalyst metal component are then placed in a non-oxidizing atmosphere. It is necessary to heat at 250-600 degreeC in inside. As a result, the catalytic metal component is metallized and the catalytic metal particles are supported on the conductive particles. Further, when two or more kinds of catalyst metal components are supported on the conductive particles, the catalyst metal components are alloyed by the heating, and the catalyst alloy particles are supported on the conductive particles.

加熱温度が250℃より低いと、触媒金属成分が十分に金属化又は合金化しない場合がある。また、加熱温度が600℃より高いと、触媒金属成分が金属化又は合金化しても導電性粒子上に分散析出している触媒粒子同士が融合成長して粒子サイズが大きくなり、触媒能が低下する。   When the heating temperature is lower than 250 ° C., the catalytic metal component may not be sufficiently metallized or alloyed. When the heating temperature is higher than 600 ° C., even if the catalytic metal component is metallized or alloyed, the catalyst particles dispersed and deposited on the conductive particles are fused and grown to increase the particle size, resulting in a decrease in catalytic performance. To do.

非酸化性雰囲気中で加熱するのは、触媒粒子が酸化されると触媒能が低下するからである。また、非酸化性雰囲気としては、例えば、水素等の還元性ガス雰囲気、アルゴンや窒素等の不活性ガス雰囲気等が挙げられる。さらに、不活性ガス中で熱処理を施した後、還元性ガス雰囲気でさらに加熱して還元処理を行う二段階処理を施すことが好ましい。   The reason why heating is performed in a non-oxidizing atmosphere is that the catalytic ability decreases when the catalyst particles are oxidized. In addition, examples of the non-oxidizing atmosphere include a reducing gas atmosphere such as hydrogen and an inert gas atmosphere such as argon and nitrogen. Furthermore, it is preferable to perform a two-stage process in which a heat treatment is performed in an inert gas and then a reduction process is performed by further heating in a reducing gas atmosphere.

続いて、上記触媒粒子を担持した導電性粒子に、磁性体前駆体をさらに担持させるが、
磁性体前駆体としては、磁性酸化物前駆体又は磁性合金前駆体のいずれでもよく、例えば、遷移金属元素等の磁性体となり得る金属成分を含む化合物等が使用できる。
Subsequently, the conductive particles carrying the catalyst particles are further loaded with a magnetic precursor,
The magnetic precursor may be either a magnetic oxide precursor or a magnetic alloy precursor. For example, a compound containing a metal component that can be a magnetic substance such as a transition metal element can be used.

また、上記導電性粒子に上記磁性体前駆体を担持させた後、熱処理を施して磁性粒子を得るが、この際の熱処理条件は、目的とする磁性粒子に合わせて適宜選択する必要がある。例えば、磁性粒子が合金粒子であれば、非酸化性雰囲気下で加熱するのが好ましい。合金粒子が酸化されると磁性を付与することが困難となるからである。また、磁性粒子が酸化物粒子であれば、酸化性雰囲気、あるいは、不活性雰囲気下で加熱することが好ましい。加熱温度については、磁性粒子が結晶化するために必要十分な温度であればよく、例えば、マグネタイト等の鉄酸化物の場合は、200℃以上で加熱すればよい。但し、これら酸化物磁性体の場合には、加熱温度が高すぎると粒子同士の焼結が起こり、粗大化してしまうため、600℃以下で加熱することが好ましい。   In addition, after the magnetic precursor is supported on the conductive particles, heat treatment is performed to obtain magnetic particles. The heat treatment conditions at this time need to be appropriately selected according to the target magnetic particles. For example, if the magnetic particles are alloy particles, it is preferable to heat in a non-oxidizing atmosphere. This is because it becomes difficult to impart magnetism when the alloy particles are oxidized. If the magnetic particles are oxide particles, it is preferable to heat in an oxidizing atmosphere or an inert atmosphere. The heating temperature may be any temperature that is necessary and sufficient for the magnetic particles to crystallize. For example, in the case of an iron oxide such as magnetite, it may be heated at 200 ° C. or higher. However, in the case of these oxide magnetic bodies, if the heating temperature is too high, the particles are sintered and coarsened, so it is preferable to heat at 600 ° C. or lower.

以上のようにして、触媒粒子と磁性粒子を担持した磁性粒子担持触媒を作製するが、作製した磁性粒子担持触媒に対して、さらに磁界を印加して着磁することが好ましい。着磁によって、より確実に保磁力が4.0〜79.8kA/m(50〜1000エルステッド)、飽和磁化量が1〜20A・m2/kg(1〜20emu/g)の範囲の磁気特性を有する磁性粒子担持触媒を得ることができ、その磁性粒子担持触媒を空気極に使用することにより、酸素との反応性が良好になり、燃料電池の性能を向上できる。 As described above, the magnetic particle-supported catalyst supporting the catalyst particles and the magnetic particles is prepared. It is preferable to further magnetize the prepared magnetic particle-supported catalyst by applying a magnetic field. Magnetic properties with a coercive force of 4.0 to 79.8 kA / m (50 to 1000 oersted) and a saturation magnetization of 1 to 20 A · m 2 / kg (1 to 20 emu / g) more reliably by magnetization. By using the magnetic particle-supported catalyst for the air electrode, the reactivity with oxygen is improved and the performance of the fuel cell can be improved.

上記着磁は、導電性粒子に磁性粒子を担持させた後であればどの段階で行ってもよく、触媒層形成後に行ってもよく、あるいは膜電極接合体を作製した後でもよい。また、このように磁性粒子を着磁した後も、膜電極接合体の全体を磁場中に置いて使用すれば、より長期間にわたる触媒効率の向上が見込まれる。膜電極接合体全体を覆う磁場を用いる場合には、図1に示すように膜電極接合体の両側に汎用の磁石を配置する程度の弱磁場で効果が得られる。これは、触媒能を担う粒子へ酸素を引き付けるための磁場は、導電性粒子上に担持された磁性粒子間で生じるものであり、磁性粒子の磁場方向を一方向にそろえるためのみに、膜電極接合体全体を磁場中に置けばよいからである。強磁性体である粒子は、外部磁場の存在下で個々の粒子の磁化が一方向に揃いやすくなる。着磁してあれば、これらの外部磁場が無い状態でも磁化は揃っているが、外部磁場中に置く方がよりその効果が現れやすくなり好ましい。   The magnetization may be performed at any stage after the magnetic particles are supported on the conductive particles, may be performed after the formation of the catalyst layer, or may be performed after the membrane electrode assembly is manufactured. Further, even after the magnetic particles are magnetized in this way, if the entire membrane electrode assembly is placed in a magnetic field, the catalyst efficiency can be improved over a longer period. When a magnetic field covering the entire membrane electrode assembly is used, the effect can be obtained with a weak magnetic field to the extent that a general-purpose magnet is disposed on both sides of the membrane electrode assembly as shown in FIG. This is because the magnetic field for attracting oxygen to the particles responsible for the catalytic activity is generated between the magnetic particles supported on the conductive particles, and the membrane electrode is used only to align the magnetic field direction of the magnetic particles in one direction. This is because the entire bonded body may be placed in a magnetic field. In the case of particles that are ferromagnetic materials, the magnetization of individual particles easily aligns in one direction in the presence of an external magnetic field. If magnetized, the magnetizations are aligned even in the absence of these external magnetic fields, but it is preferable to place them in an external magnetic field because the effect is more likely to appear.

(実施形態3)
次に、本発明の燃料電池用電極の一例を図面に基づき説明する。本実施形態では、実施形態1又は実施形態2の磁性粒子担持触媒を用いて作製される燃料電池用電極の一例である膜電極接合体(MEA)について説明する。本実施形態の燃料電池用電極を用いることにより、実施形態1又は実施形態2の磁性粒子担持触媒の燃料電池用触媒としての評価を行うことができる。
(Embodiment 3)
Next, an example of the fuel cell electrode of the present invention will be described with reference to the drawings. In the present embodiment, a membrane electrode assembly (MEA), which is an example of a fuel cell electrode manufactured using the magnetic particle-supported catalyst of Embodiment 1 or Embodiment 2, will be described. By using the fuel cell electrode of the present embodiment, the magnetic particle-supported catalyst of Embodiment 1 or Embodiment 2 can be evaluated as a fuel cell catalyst.

図4は、膜電極接合体の一例を示す模式断面図である。図4において、膜電極接合体40は、固体高分子電解質膜41の厚み方向の片側に配置された空気極42と、他の片側に配置された燃料極43と、空気極42の外側に配置された空気極用ガス拡散層44と、燃料極43の外側に配置された燃料極用ガス拡散層45とを備えている。   FIG. 4 is a schematic cross-sectional view showing an example of a membrane electrode assembly. In FIG. 4, the membrane electrode assembly 40 is disposed outside the air electrode 42, the air electrode 42 disposed on one side of the solid polymer electrolyte membrane 41 in the thickness direction, the fuel electrode 43 disposed on the other side, and the air electrode 42. The air electrode gas diffusion layer 44 and the fuel electrode gas diffusion layer 45 disposed outside the fuel electrode 43 are provided.

固体高分子電解質膜41としては、例えば、ポリパーフルオロスルホン酸樹脂膜、具体的には、デュポン社製の“ナフィオン”(商品名)、旭硝子社製の“フレミオン”(商品名)、旭化成工業社製の“アシプレックス”(商品名)等の膜を使用できる。また、ガス拡散層44、45としては、多孔質のカーボンクロスあるいはカーボンシート等を使用できる。   Examples of the solid polymer electrolyte membrane 41 include a polyperfluorosulfonic acid resin membrane, specifically “Nafion” (trade name) manufactured by DuPont, “Flemion” (trade name) manufactured by Asahi Glass Co., Ltd., and Asahi Kasei Kogyo. A membrane such as “Aciplex” (trade name) manufactured by the company can be used. Further, as the gas diffusion layers 44 and 45, porous carbon cloth or carbon sheet can be used.

膜電極接合体40の作製方法は特に限定されず、次の一般的な方法が適用できる。即ち、エタノール、プロパノール等の低級アルコールを主成分とする溶媒に、実施形態1又は実施形態2の磁性粒子担持触媒と、高分子材料と、さらに必要に応じてバインダ等とを混合し、マグネチックスターラー、ボールミル、超音波分散機等の一般的な分散器具を用いて分散させて、触媒塗料を作製する。この際、塗料の粘度を塗布方法に応じて最適なものとすべく、溶媒量を調整する。実施形態1又は実施形態2の磁性粒子担持触媒は、空気極用の触媒塗料と燃料極用の触媒塗料の両方又はいずれかに用いてもよいが、少なくとも空気極用の触媒塗料として用いることにより、実施形態1又は実施形態2の磁性粒子担持触媒の本来の効果を評価することができる。実施形態1又は実施形態2の磁性粒子担持触媒を用いない電極には、従来から用いられている例えば白金担持カーボン粒子等の触媒を用いることができる。   The manufacturing method of the membrane electrode assembly 40 is not particularly limited, and the following general method can be applied. That is, the magnetic particle-supported catalyst of the first or second embodiment, the polymer material, and a binder or the like as necessary are mixed in a solvent mainly composed of a lower alcohol such as ethanol or propanol, and magnetically mixed. A catalyst paint is prepared by dispersing using a general dispersing device such as a stirrer, ball mill, ultrasonic disperser or the like. At this time, the amount of the solvent is adjusted so that the viscosity of the paint is optimized in accordance with the application method. The magnetic particle-supported catalyst of Embodiment 1 or Embodiment 2 may be used for either or both of the air electrode catalyst paint and the fuel electrode catalyst paint, but at least by being used as the air electrode catalyst paint. The original effect of the magnetic particle-supported catalyst of Embodiment 1 or Embodiment 2 can be evaluated. Conventionally used catalysts such as platinum-supported carbon particles can be used for the electrodes that do not use the magnetic particle-supported catalyst of Embodiment 1 or Embodiment 2.

次に、得られた触媒塗料を用いて空気極42あるいは燃料極43を形成するが、この後の手順としては、一般的には下記の3種の方法(1)〜(3)が挙げられる。実施形態1又は実施形態2の磁性粒子担持触媒の評価手段としてはいずれを用いてもかまわないが、比較評価を行う際には作製方法をいずれか一つに統一して評価することが好ましい。   Next, the air electrode 42 or the fuel electrode 43 is formed using the obtained catalyst paint, and the following procedures generally include the following three methods (1) to (3). . Any of the evaluation means for the magnetic particle-supported catalyst of Embodiment 1 or Embodiment 2 may be used. However, when performing comparative evaluation, it is preferable to perform evaluation by unifying any one production method.

(1) 得られた触媒塗料を、バーコータ等を用いて、ポリテトラフルオロエチレン(PTFE)フィルム、ポリエチレンテレフタレート(PET)フィルム、ポリイミドフィルム、PTFEコートポリイミドフィルム、PTFEコートシリコンシート、PTFEコートガラスクロス等の離型性基板上に均一に塗布し、乾燥させて、離型性基板上に電極膜を形成する。次に、この電極膜を剥し取り、所定の電極サイズに裁断する。このような電極膜を複数枚作製し、それぞれを空気極及び燃料極として用いる。その後、上記電極膜を固体高分子電解質膜の両面に、ホットプレスあるいはホットロールプレスにより接合させた後、空気極及び燃料極の両側にガス拡散層をそれぞれ配置し、ホットプレスして一体化させ、膜電極接合体を作製する。   (1) Using the obtained catalyst paint, a polytetrafluoroethylene (PTFE) film, a polyethylene terephthalate (PET) film, a polyimide film, a PTFE-coated polyimide film, a PTFE-coated silicon sheet, a PTFE-coated glass cloth, etc. An electrode film is formed on the releasable substrate by uniformly coating on the releasable substrate and drying. Next, the electrode film is peeled off and cut into a predetermined electrode size. A plurality of such electrode films are produced, and each is used as an air electrode and a fuel electrode. After that, the electrode membrane is bonded to both sides of the solid polymer electrolyte membrane by hot pressing or hot roll pressing, and then gas diffusion layers are arranged on both sides of the air electrode and the fuel electrode, and integrated by hot pressing. A membrane electrode assembly is produced.

(2) 得られた触媒塗料を、空気極用ガス拡散層及び燃料極用ガス拡散層にそれぞれ塗布し、乾燥させて、空気極及び燃料極を形成する。この際、塗布方法は、スプレー塗布やスクリーン印刷等の方法がとられる。次に、これらの電極膜が形成されたガス拡散層を用いて固体高分子電解質膜を挟み、ホットプレスして一体化させ、膜電極接合体を作製する。   (2) The obtained catalyst paint is applied to the air electrode gas diffusion layer and the fuel electrode gas diffusion layer, respectively, and dried to form the air electrode and the fuel electrode. At this time, the coating method is a method such as spray coating or screen printing. Next, the solid polymer electrolyte membrane is sandwiched using the gas diffusion layer on which these electrode membranes are formed, and is integrated by hot pressing to produce a membrane electrode assembly.

(3) 得られた触媒塗料を、固体高分子電解質膜の両面に、スプレー塗布等の方法を用いて塗布し、乾燥させて、空気極及び燃料極を形成する。その後、空気極及び燃料極の両側にガス拡散層を配置し、ホットプレスして一体化させ、膜電極接合体を作製する。   (3) The obtained catalyst paint is applied to both surfaces of the solid polymer electrolyte membrane by a method such as spray coating and dried to form an air electrode and a fuel electrode. Thereafter, gas diffusion layers are arranged on both sides of the air electrode and the fuel electrode and integrated by hot pressing to produce a membrane electrode assembly.

以上のようにして得られた膜電極接合体40において、空気極42側及び燃料極43側のそれぞれに集電板(図示せず)を設けて電気的な接続を行い、燃料極43に水素を、空気極42に空気(酸素)をそれぞれ供給することにより、燃料電池として作用させることができる。   In the membrane electrode assembly 40 obtained as described above, a current collector plate (not shown) is provided on each of the air electrode 42 side and the fuel electrode 43 side for electrical connection, and hydrogen is supplied to the fuel electrode 43. Can be operated as a fuel cell by supplying air (oxygen) to the air electrode 42, respectively.

以下、実施例に基づき本発明を説明するが、本発明は以下の実施例に限定されるものではない。下記の実施例1〜3は、前述の実施形態1の磁性粒子担持触媒に関し、下記の実施例4及び5は、前述の実施形態2の磁性粒子担持触媒に関する。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to a following example. The following Examples 1 to 3 relate to the magnetic particle-supported catalyst of Embodiment 1 described above, and the following Examples 4 and 5 relate to the magnetic particle-supported catalyst of Embodiment 2 described above.

(実施例1)
先ず、塩化白金酸六水和物4.5g及び硝酸コバルト六水和物2.5gを、水80mL/エタノール20mLの混合溶液に溶解し、これに2.2gのクエン酸を加え、白金とコバルトのクエン酸錯イオンを含む水溶液を調製した。
Example 1
First, 4.5 g of chloroplatinic acid hexahydrate and 2.5 g of cobalt nitrate hexahydrate are dissolved in a mixed solution of 80 mL of water / 20 mL of ethanol, and 2.2 g of citric acid is added thereto, and platinum and cobalt are added. An aqueous solution containing citrate complex ions was prepared.

次に、導電性粒子であるCABOT社製のカーボンブラック“バルカンXC−72”(登録商標、平均粒子径30nm)2gに対して、上記クエン酸錯イオン水溶液を約2mL含浸させ、乳鉢で混合した。これを90℃で乾燥させた後、再度、上記クエン酸錯イオン水溶液2mLを含浸させ、乳鉢で混合した後、90℃で乾燥させる工程を繰り返し、合計100mLの上記クエン酸錯イオン水溶液を含浸させ、白金とコバルトのクエン酸錯イオンを上記カーボンブラックの表面に吸着させた。その後、相対湿度20%、温度90℃の雰囲気中で約10時間乾燥させ、白金化合物とコバルト化合物とを担持したカーボン粒子を得た。   Next, about 2 mL of the citrate complex ion aqueous solution was impregnated with 2 g of carbon black “Vulcan XC-72” (registered trademark, average particle diameter of 30 nm) manufactured by CABOT, which is conductive particles, and mixed in a mortar. . After drying this at 90 ° C., again impregnating with 2 mL of the above citric acid complex ion aqueous solution, mixing in a mortar, and then drying at 90 ° C., a total of 100 mL of the above aqueous citric acid complex ion solution was impregnated. Platinum and cobalt citrate complex ions were adsorbed on the surface of the carbon black. Then, it was dried for about 10 hours in an atmosphere having a relative humidity of 20% and a temperature of 90 ° C. to obtain carbon particles carrying a platinum compound and a cobalt compound.

続いて、上記カーボン粒子をアルゴンガス中550℃で4時間熱処理した。その後、アルゴンガスを流した状態で280℃まで降温し、ガスをアルゴンから水素に切り替えてさらに2時間還元処理を行い、水素ガスを流した状態で室温まで降温し、水素ガスを空気に置換した後、空気中に取り出すことにより、カーボン粒子上に白金−コバルト合金粒子が強磁性体粒子として析出した白金−コバルト合金粒子担持カーボン粒子を得た。   Subsequently, the carbon particles were heat-treated in argon gas at 550 ° C. for 4 hours. Thereafter, the temperature was lowered to 280 ° C. while flowing argon gas, the gas was switched from argon to hydrogen, reduction treatment was further performed for 2 hours, the temperature was lowered to room temperature while flowing hydrogen gas, and the hydrogen gas was replaced with air. Thereafter, by taking out into the air, platinum-cobalt alloy particle-supporting carbon particles in which platinum-cobalt alloy particles were precipitated as ferromagnetic particles on the carbon particles were obtained.

上記白金−コバルト合金粒子担持カーボン粒子中の白金及びコバルトの含有量を蛍光X線分析により測定したところ、白金−コバルト合金粒子担持カーボン粒子の全重量に対して、それぞれ28.2重量%及び8.4重量%であった。   When the platinum and cobalt contents in the platinum-cobalt alloy particle-supported carbon particles were measured by fluorescent X-ray analysis, they were 28.2% by weight and 8%, respectively, based on the total weight of the platinum-cobalt alloy particle-supported carbon particles. .4% by weight.

また、上記白金−コバルト合金粒子担持カーボン粒子に磁針を近づけたところ、磁針が振れたことから、上記白金−コバルト合金粒子担持カーボン粒子は磁性を有することが確認できた。続いて、上記白金−コバルト合金粒子担持カーボン粒子の保磁力及び飽和磁化量を振動試料型磁力計により測定したところ、それぞれ19.2kA/m(240エルステッド)及び11.3A・m2/kg(11.3emu/g)であった。ここで、振動試料型磁力計による測定条件として、最大印加磁界を1274kA/m(16キロエルステッド)とした。 Further, when a magnetic needle was brought close to the platinum-cobalt alloy particle-carrying carbon particles, the magnetic needle was shaken, so that it was confirmed that the platinum-cobalt alloy particle-carrying carbon particles had magnetism. Subsequently, when the coercive force and saturation magnetization of the platinum-cobalt alloy particle-supporting carbon particles were measured with a vibrating sample magnetometer, they were 19.2 kA / m (240 oersted) and 11.3 A · m 2 / kg ( 11.3 emu / g). Here, as a measurement condition using the vibrating sample magnetometer, the maximum applied magnetic field was set to 1274 kA / m (16 kilo-Oersted).

さらに、高分解能の透過型電子顕微鏡(TEM)を用いて、上記カーボン粒子上に析出担持されている白金−コバルト合金粒子の平均粒子径を測定したところ2.8nmであった。   Furthermore, the average particle diameter of the platinum-cobalt alloy particles deposited and supported on the carbon particles was measured using a high-resolution transmission electron microscope (TEM) and found to be 2.8 nm.

(実施例2)
実施例1において、アルゴンガス中での熱処理条件を、アルゴンガス中510℃で2時間に変更した以外は、実施例1と同様にして白金−コバルト合金粒子担持カーボン粒子を作製した。
(Example 2)
In Example 1, platinum-cobalt alloy particle-supported carbon particles were produced in the same manner as in Example 1 except that the heat treatment conditions in argon gas were changed to 2 hours at 510 ° C. in argon gas.

上記白金−コバルト合金粒子担持カーボン粒子中の白金及びコバルトの含有量を実施例1と同様にして測定したところ、白金−コバルト合金粒子担持カーボン粒子の全重量に対して、それぞれ28.6重量%及び8.7重量%であった。また、実施例1と同様にして磁性を有することを確認した後に測定した上記白金−コバルト合金粒子担持カーボン粒子の保磁力及び飽和磁化量は、それぞれ14.4kA/m(180エルステッド)及び8.8A・m2/kg(8.8emu/g)であった。さらに、実施例1と同様にして測定した上記カーボン粒子上に析出担持されている白金−コバルト合金粒子の平均粒子径は、2.4nmであった。 When the platinum and cobalt contents in the platinum-cobalt alloy particle-supported carbon particles were measured in the same manner as in Example 1, they were 28.6% by weight based on the total weight of the platinum-cobalt alloy particle-supported carbon particles. And 8.7% by weight. The coercive force and saturation magnetization of the platinum-cobalt alloy particle-supported carbon particles measured after confirming that they had magnetism in the same manner as in Example 1 were 14.4 kA / m (180 oersted) and 8. It was 8 A · m 2 / kg (8.8 emu / g). Furthermore, the average particle diameter of the platinum-cobalt alloy particles deposited and supported on the carbon particles measured in the same manner as in Example 1 was 2.4 nm.

(実施例3)
実施例1で作製した白金化合物とコバルト化合物とを担持したカーボン粒子に代えて、田中貴金属工業社製の燃料電池用触媒“TEC36E52”(商品名)を準備した。この燃料電池用触媒は、白金−コバルト担持カーボン粒子からなり、白金及びコバルトの含有量は、それぞれ46.8重量%及び4.7重量%である。
(Example 3)
In place of the carbon particles carrying the platinum compound and the cobalt compound prepared in Example 1, a fuel cell catalyst “TEC36E52” (trade name) manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. was prepared. This fuel cell catalyst comprises platinum-cobalt-supported carbon particles, and the contents of platinum and cobalt are 46.8% by weight and 4.7% by weight, respectively.

次に、上記カーボン粒子をアルゴンガス中550℃で4時間熱処理した。その後、アルゴンガスを流した状態で280℃まで降温し、ガスをアルゴンから水素に切り替えてさらに2時間還元処理を行い、水素ガスを流した状態で室温まで降温し、水素ガスを空気に置換した後、空気中に取り出すことにより、カーボン粒子上に白金−コバルト合金粒子が強磁性体粒子として析出した白金−コバルト合金粒子担持カーボン粒子を得た。   Next, the carbon particles were heat-treated at 550 ° C. for 4 hours in argon gas. Thereafter, the temperature was lowered to 280 ° C. while flowing argon gas, the gas was switched from argon to hydrogen, reduction treatment was further performed for 2 hours, the temperature was lowered to room temperature while flowing hydrogen gas, and the hydrogen gas was replaced with air. Thereafter, by taking out into the air, platinum-cobalt alloy particle-supporting carbon particles in which platinum-cobalt alloy particles were precipitated as ferromagnetic particles on the carbon particles were obtained.

実施例1と同様にして磁性を有することを確認した後に測定した上記白金−コバルト合金粒子担持カーボン粒子の保磁力及び飽和磁化量は、それぞれ12.8kA/m(160エルステッド)及び10.6A・m2/kg(10.6emu/g)であった。さらに、実施例1と同様にして測定した上記カーボン粒子上に析出担持されている白金−コバルト合金粒子の平均粒子径は、2.7nmであった。 The coercive force and saturation magnetization of the platinum-cobalt alloy particle-supported carbon particles measured after confirming that they had magnetism in the same manner as in Example 1 were 12.8 kA / m (160 oersted) and 10.6 A · s, respectively. m 2 / kg (10.6 emu / g). Furthermore, the average particle diameter of the platinum-cobalt alloy particles deposited and supported on the carbon particles measured in the same manner as in Example 1 was 2.7 nm.

(比較例1)
実施例1で作製した白金化合物とコバルト化合物とを担持したカーボン粒子を、その後の熱処理及び還元処理を行わずに白金−コバルト担持カーボン粒子として用いた。
(Comparative Example 1)
The carbon particles carrying the platinum compound and the cobalt compound prepared in Example 1 were used as platinum-cobalt-carrying carbon particles without subsequent heat treatment and reduction treatment.

実施例1と同様にして上記白金−コバルト担持カーボン粒子に磁針を近づけたところ、磁針が全く振れなかったことから、上記白金−コバルト担持カーボン粒子は磁性を有しないことが確認できた。   When a magnetic needle was brought close to the platinum-cobalt-carrying carbon particles in the same manner as in Example 1, it was confirmed that the platinum-cobalt-carrying carbon particles had no magnetism because the magnetic needle did not shake at all.

(比較例2)
実施例3で用いた田中貴金属工業社製の燃料電池用触媒“TEC36E52”(商品名)を、その後の熱処理及び還元処理を行わずに白金−コバルト担持カーボン粒子として用いた。
(Comparative Example 2)
The fuel cell catalyst “TEC36E52” (trade name) manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. used in Example 3 was used as platinum-cobalt-supported carbon particles without subsequent heat treatment and reduction treatment.

実施例1と同様にして上記白金−コバルト担持カーボン粒子に磁針を近づけたところ、磁針が全く振れなかったことから、上記白金−コバルト担持カーボン粒子は磁性を有しないことが確認できた。   When a magnetic needle was brought close to the platinum-cobalt-carrying carbon particles in the same manner as in Example 1, it was confirmed that the platinum-cobalt-carrying carbon particles had no magnetism because the magnetic needle did not shake at all.

次に、実施例1〜3及び比較例1、2で得られた白金−コバルト担持カーボン粒子の触媒特性を評価するため、燃料電池用の膜電極接合体(MEA)を作製し、それを用いて燃料電池としての出力特性を調べた。以下では、空気極には上記白金−コバルト担持カーボン粒子を用いた電極膜を用い、燃料極には以下に示す標準電極膜を用いた。   Next, in order to evaluate the catalytic characteristics of the platinum-cobalt-supported carbon particles obtained in Examples 1 to 3 and Comparative Examples 1 and 2, membrane electrode assemblies (MEA) for fuel cells were prepared and used. The output characteristics of the fuel cell were investigated. In the following, an electrode film using the platinum-cobalt-supported carbon particles was used for the air electrode, and a standard electrode film shown below was used for the fuel electrode.

<空気極に用いる電極膜の作製>
実施例1〜3及び比較例1、2の白金−コバルト担持カーボン粒子1重量部を、それぞれポリパーフルオロスルホン酸樹脂の5重量%溶液であるアルドリッチ(Aldrich)社製の“ナフィオン(Nafion)”(商品名、EW=1000)9.72重量部及びポリパーフルオロスルホン酸樹脂の20重量%溶液であるデュポン(DuPont)社製の“ナフィオン(Nafion)”(商品名)2.52重量部及び水1重量部に添加し、均一に分散するよう混合液を充分に攪拌して各触媒塗料を調製した。次に、PTFEフィルム上に各触媒塗料をそれぞれ、白金担持量が0.5mg/cm2となるように塗布して乾燥した後、剥がし取って白金−コバルト担持カーボン粒子電極膜を得た。
<Preparation of electrode film used for air electrode>
“Nafion” manufactured by Aldrich, which is a 5% by weight solution of polyperfluorosulfonic acid resin, was added 1 part by weight of the platinum-cobalt-supported carbon particles of Examples 1 to 3 and Comparative Examples 1 and 2. (Trade name, EW = 1000) 9.72 parts by weight and “Nafion” (trade name) 2.52 parts by weight manufactured by DuPont, which is a 20% by weight solution of polyperfluorosulfonic acid resin, and Each catalyst paint was prepared by adding the mixture to 1 part by weight of water and sufficiently stirring the mixed solution so as to disperse uniformly. Next, each catalyst paint was applied onto the PTFE film so that the platinum loading was 0.5 mg / cm 2 and dried, and then peeled off to obtain a platinum-cobalt supported carbon particle electrode film.

<燃料極に用いる標準電極膜の作製>
白金を50重量%担持させた田中貴金属工業社製の白金担持カーボン“10E50E”(商品名)を用いて、上記と同様にして触媒塗料を調製した後、PTFEフィルム上に、白金担持量が0.2mg/cm2となるように塗布して乾燥した後、剥がし取って標準電極膜を得た。
<Preparation of standard electrode film for fuel electrode>
A catalyst coating was prepared in the same manner as described above using a platinum-supported carbon “10E50E” (trade name) manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., on which 50% by weight of platinum was supported, and then the amount of platinum supported was 0 on the PTFE film. After coating and drying so as to be 2 mg / cm 2 , it was peeled off to obtain a standard electrode film.

<膜電極接合体の作製>
固体高分子電解質膜としては、デュポン社製のポリパーフルオロスルホン酸樹脂膜“Nafion 112”(商品名)を所定のサイズに切り出して用いた。この固体高分子電解質膜の両面に、先に作製した白金−コバルト担持カーボン粒子電極膜と標準電極膜とを重ね合わせ、温度160℃、圧力4.4MPaの条件でホットプレスを行い、これらを接合した。次に、あらかじめ撥水処理を施した東レ社製のカーボン不織布“TGP−H−120”(商品名)を拡散層として、電極膜を形成した上記固体高分子電解質膜の両面にホットプレスで接合し、膜電極接合体を作製した。
<Preparation of membrane electrode assembly>
As the solid polymer electrolyte membrane, a polyperfluorosulfonic acid resin membrane “Nafion 112” (trade name) manufactured by DuPont was cut into a predetermined size and used. The previously prepared platinum-cobalt-supported carbon particle electrode film and the standard electrode film are superposed on both sides of the solid polymer electrolyte membrane, and hot pressing is performed at a temperature of 160 ° C. and a pressure of 4.4 MPa, and these are joined. did. Next, a carbon nonwoven fabric “TGP-H-120” (trade name) manufactured by Toray Industries, Inc., which has been subjected to water repellency treatment in advance, is bonded to both surfaces of the solid polymer electrolyte membrane on which the electrode membrane is formed by hot pressing. Thus, a membrane electrode assembly was produced.

<出力特性の評価>
以上のようにして得られた膜電極接合体を用いて、I−V特性を測定した。測定の際には、膜電極接合体を含む測定系を60℃に保持し、燃料極側に60℃の加湿・加温した水素ガスを供給し、空気極側に60℃の加湿・加温した空気を供給して測定を行った。そのI−V特性から燃料電池の出力特性として、最大出力密度(mW/cm2)を測定した。その結果を表1に示す。表1では、実施例1の最大出力密度を1.00とした場合の相対値を出力密度比として示した。また、表1では、保磁力、飽和磁化量、白金含有量、コバルト含有量も示した。
<Evaluation of output characteristics>
The IV characteristics were measured using the membrane electrode assembly obtained as described above. In the measurement, the measurement system including the membrane electrode assembly is held at 60 ° C., 60 ° C. humidified / heated hydrogen gas is supplied to the fuel electrode side, and 60 ° C. humidified / heated is supplied to the air electrode side. The measurement was performed with the supplied air supplied. From the IV characteristics, the maximum power density (mW / cm 2 ) was measured as the output characteristics of the fuel cell. The results are shown in Table 1. In Table 1, the relative value when the maximum output density of Example 1 is 1.00 is shown as the output density ratio. Table 1 also shows the coercive force, saturation magnetization, platinum content, and cobalt content.

Figure 2009028708
Figure 2009028708

表1から明らかなように、実施例1〜3の磁性合金粒子担持カーボン粒子を用いた燃料電池の最大出力密度は、磁性を有さない白金−コバルト担持カーボン粒子を用いた比較例1、2に比べて明らかに高いことが分かる。これは実施例1〜3の磁性合金粒子担持カーボン粒子に担持された白金−コバルト合金粒子が強磁性体化して特定の保磁力と飽和磁化量を有するため、上記カーボン粒子より発生する磁界により、高い磁化率を有する酸素が上記カーボン粒子近傍に引き寄せられ、その結果触媒反応がより効率良く進行したためであると考えられる。   As is clear from Table 1, the maximum output density of the fuel cells using the magnetic alloy particle-supporting carbon particles of Examples 1 to 3 is Comparative Examples 1 and 2 using platinum-cobalt-supporting carbon particles having no magnetism. It is clear that it is clearly higher than This is because the platinum-cobalt alloy particles supported on the magnetic alloy particle-supported carbon particles of Examples 1 to 3 are made ferromagnetic and have a specific coercive force and saturation magnetization, and therefore, by the magnetic field generated from the carbon particles, This is considered to be because oxygen having a high magnetic susceptibility was attracted to the vicinity of the carbon particles, and as a result, the catalytic reaction proceeded more efficiently.

次に、触媒粒子として最も一般的な白金粒子(非磁性粒子)を用い、この触媒粒子と磁性粒子とを担持した磁性粒子担持触媒を作製した。   Next, the most common platinum particles (non-magnetic particles) were used as catalyst particles, and a magnetic particle-supported catalyst supporting the catalyst particles and magnetic particles was prepared.

(実施例4)
先ず、塩化白金酸六水和物4.4gを、水80mL/エタノール20mLの混合溶液に溶解し、これに2.2gのクエン酸を加え、白金のクエン酸錯イオンを含む水溶液を調製した。
Example 4
First, 4.4 g of chloroplatinic acid hexahydrate was dissolved in a mixed solution of 80 mL of water / 20 mL of ethanol, and 2.2 g of citric acid was added thereto to prepare an aqueous solution containing platinum citrate complex ions.

次に、導電性粒子であるCABOT社製のカーボンブラック“バルカンXC−72”(登録商標、平均粒子径30nm)2gに対して、上記クエン酸錯イオン水溶液を約2mL含浸させ、乳鉢で混合した。これを90℃で乾燥させた後、再度、上記クエン酸錯イオン水溶液2mLを含浸させ、乳鉢で混合した後、90℃で乾燥させる工程を繰り返し、合計100mLの上記クエン酸錯イオン水溶液を含浸させ、白金のクエン酸錯イオンを上記カーボンブラックの表面に吸着させた。その後、相対湿度20%、温度90℃の雰囲気中で約10時間乾燥させ、白金化合物を担持したカーボン粒子を得た。   Next, about 2 mL of the citrate complex ion aqueous solution was impregnated with 2 g of carbon black “Vulcan XC-72” (registered trademark, average particle diameter of 30 nm) manufactured by CABOT, which is conductive particles, and mixed in a mortar. . After drying this at 90 ° C., again impregnating with 2 mL of the above citric acid complex ion aqueous solution, mixing in a mortar, and then drying at 90 ° C., a total of 100 mL of the above aqueous citric acid complex ion solution was impregnated. Platinum citrate complex ions were adsorbed on the surface of the carbon black. Thereafter, it was dried for about 10 hours in an atmosphere having a relative humidity of 20% and a temperature of 90 ° C. to obtain carbon particles carrying a platinum compound.

続いて、上記カーボン粒子を水素ガス中280℃で2時間熱処理を行い、水素ガスを流した状態で室温まで降温し、水素ガスを窒素ガスに置換した後、空気中に取り出すことにより、白金粒子を46重量%担持した白金粒子担持カーボン粒子を得た。   Subsequently, the carbon particles were heat-treated in hydrogen gas at 280 ° C. for 2 hours, cooled to room temperature in a state where hydrogen gas was flown, and after replacing the hydrogen gas with nitrogen gas, the platinum particles were taken out into the air. The platinum particle carrying | support carbon particle which carry | supported 46 weight% was obtained.

次に、硝酸鉄(III)九水和物2.56gをエタノール20mLに溶解し、鉄イオンを含むエタノール溶液を調製した。このエタノール溶液に、先に得られた白金粒子担持カーボン粒子2gを加え、さらにクエン酸1gを手早く加えて溶解させた後、これを空気中60℃で完全に乾燥させ、前駆体粒子を得た。この前駆体粒子を窒素ガス中500℃で2時間加熱処理して、白金粒子/酸化鉄粒子担持カーボン粒子を得た。   Next, 2.56 g of iron (III) nitrate nonahydrate was dissolved in 20 mL of ethanol to prepare an ethanol solution containing iron ions. To this ethanol solution, 2 g of the previously obtained platinum particle-supporting carbon particles were added, and 1 g of citric acid was quickly added and dissolved, and then completely dried at 60 ° C. in air to obtain precursor particles. . The precursor particles were heat-treated in nitrogen gas at 500 ° C. for 2 hours to obtain platinum particles / iron oxide particle-supported carbon particles.

最後に、上記白金粒子/酸化鉄粒子担持カーボン粒子に1.6エスラの磁界を印加して着磁した。   Finally, the platinum particles / iron oxide particle-supporting carbon particles were magnetized by applying a magnetic field of 1.6 ESL.

上記白金粒子/酸化鉄粒子担持カーボン粒子について、粉末X線回折スペクトルの測定を行った結果、白金(Pt)及びマグネタイト(Fe34)の明確なピークとともに、約25度付近に非常にブロードなカーボンに由来するピークが確認された。
上記白金粒子/マグネタイト粒子担持カーボン粒子中の白金及びマグネタイトの含有量を蛍光X線分析により測定したところ、白金粒子とマグネタイト粒子との重量比は65:35であり、白金粒子とマグネタイト粒子の担持量は、白金粒子/マグネタイト粒子担持カーボン粒子の全重量に対して、57重量%であった。
As a result of measuring the powder X-ray diffraction spectrum of the above platinum particles / iron oxide particle-supported carbon particles, it is very broad at about 25 degrees with clear peaks of platinum (Pt) and magnetite (Fe 3 O 4 ). A peak derived from carbon was confirmed.
When the platinum and magnetite contents in the platinum particle / magnetite particle-supported carbon particles were measured by fluorescent X-ray analysis, the weight ratio of platinum particles to magnetite particles was 65:35, and the platinum particles and magnetite particles were supported. The amount was 57% by weight based on the total weight of platinum particles / magnetite particle-supporting carbon particles.

また、上記白金粒子/マグネタイト粒子担持カーボン粒子に磁針を近づけたところ、磁針が振れたことから、上記白金粒子/マグネタイト粒子担持カーボン粒子は磁性を有することが確認できた。続いて、上記白金粒子/マグネタイト粒子担持カーボン粒子の保磁力及び飽和磁化量を振動試料型磁力計により測定したところ、それぞれ6.8kA/m(85エルステッド)及び9.2A・m2/kg(9.2emu/g)であった。ここで、振動試料型磁力計による測定条件として、最大印加磁界を1274kA/m(16キロエルステッド)とした。 Further, when a magnetic needle was brought close to the platinum particle / magnetite particle-carrying carbon particle, the magnetic needle was shaken, so that it was confirmed that the platinum particle / magnetite particle-carrying carbon particle had magnetism. Subsequently, the coercive force and the saturation magnetization of the platinum particles / magnetite particle-supported carbon particles were measured with a vibrating sample magnetometer, and found to be 6.8 kA / m (85 Oersted) and 9.2 A · m 2 / kg ( 9.2 emu / g). Here, as a measurement condition using the vibrating sample magnetometer, the maximum applied magnetic field was set to 1274 kA / m (16 kilo-Oersted).

さらに、高分解能の透過型電子顕微鏡(TEM)を用いて、上記カーボン粒子上に析出担持されている白金粒子及びマグネタイト粒子の平均粒子径を測定したところ、それそれ2.3nm及び4.2nmであった。本実施例の白金粒子/マグネタイト粒子担持カーボン粒子のTEM写真を図5に示す。   Furthermore, when the average particle diameter of platinum particles and magnetite particles deposited and supported on the carbon particles was measured using a high-resolution transmission electron microscope (TEM), the average particle diameter was 2.3 nm and 4.2 nm, respectively. there were. A TEM photograph of platinum particles / magnetite particle-supporting carbon particles of this example is shown in FIG.

(実施例5)
実施例4と同様にして、白金粒子担持カーボン粒子を得た。次に、この白金粒子担持カーボン粒子を用いて、硝酸鉄九水和物の使用量を1.0gとした以外は、実施例4と同様にして、前駆体粒子を得た。この前駆体粒子を空気中250℃で30分加熱処理して、白金粒子/酸化鉄粒子担持カーボン粒子を得た。最後に、上記白金粒子/酸化鉄粒子担持カーボン粒子に1.6エスラの磁界を印加して着磁した。
(Example 5)
In the same manner as in Example 4, platinum particle-supporting carbon particles were obtained. Next, precursor particles were obtained in the same manner as in Example 4 except that the amount of iron nitrate nonahydrate used was 1.0 g using the platinum particle-supporting carbon particles. The precursor particles were heat-treated in air at 250 ° C. for 30 minutes to obtain platinum particles / iron oxide particle-supported carbon particles. Finally, the platinum particles / iron oxide particle-supporting carbon particles were magnetized by applying a magnetic field of 1.6 ESL.

上記白金粒子/酸化鉄粒子担持カーボン粒子について、粉末X線回折スペクトルの測定を行った結果、白金(Pt)及びγ酸化鉄(γ−Fe23)の明確なピークとともに、約25度付近に非常にブロードなカーボンに由来するピークが確認された。 As a result of measuring the powder X-ray diffraction spectrum of the platinum particles / iron oxide particles-supported carbon particles, about 25 degrees with clear peaks of platinum (Pt) and γ iron oxide (γ-Fe 2 O 3 ). A peak derived from very broad carbon was confirmed.

上記白金粒子/γ酸化鉄粒子担持カーボン粒子中の白金及びγ酸化鉄の含有量を蛍光X線分析により測定したところ、白金粒子とγ酸化鉄粒子との重量比は82:18であり、白金粒子とγ酸化鉄粒子の担持量は、白金粒子/γ酸化鉄粒子担持カーボン粒子の全重量に対して、51重量%であった。   When the content of platinum and γ iron oxide in the platinum particle / γ iron oxide particle-supported carbon particles was measured by fluorescent X-ray analysis, the weight ratio of platinum particles to γ iron oxide particles was 82:18. The supported amount of particles and γ iron oxide particles was 51% by weight with respect to the total weight of platinum particles / γ iron oxide particle-supported carbon particles.

また、実施例4と同様にして磁性を有することを確認した後に測定した上記白金粒子/γ酸化鉄粒子担持カーボン粒子の保磁力及び飽和磁化量は、それぞれ4.6kA/m(58エルステッド)及び5.4A・m2/kg(5.4emu/g)であった。さらに、実施例1と同様にして測定した上記カーボン粒子上に析出担持されている白金粒子及びγ酸化鉄粒子の平均粒子径は、それぞれ2.3nm及び3.1nmであった。 The coercive force and saturation magnetization of the platinum particles / γ iron oxide particle-supported carbon particles measured after confirming that they had magnetism in the same manner as in Example 4 were 4.6 kA / m (58 oersted) and It was 5.4 A · m 2 / kg (5.4 emu / g). Furthermore, the average particle sizes of platinum particles and γ iron oxide particles deposited and supported on the carbon particles measured in the same manner as in Example 1 were 2.3 nm and 3.1 nm, respectively.

(比較例3)
着磁しなかった以外は、実施例4と同様にして白金粒子/マグネタイト粒子担持カーボン粒子を得た。
(Comparative Example 3)
Platinum particles / magnetite particle-carrying carbon particles were obtained in the same manner as in Example 4 except that magnetization was not performed.

実施例4と同様にして上記白金粒子/マグネタイト粒子担持カーボン粒子に磁針を近づけたところ、磁針が全く振れなかったことから、上記白金粒子/マグネタイト粒子担持カーボン粒子は磁性を有しないことが確認できた。   When the magnetic needle was brought close to the platinum particle / magnetite particle-carrying carbon particle in the same manner as in Example 4, it was confirmed that the platinum particle / magnetite particle-carrying carbon particle had no magnetism. It was.

(比較例4)
着磁しなかった以外は、実施例5と同様にして白金粒子/γ酸化鉄粒子担持カーボン粒子を得た。
(Comparative Example 4)
Platinum particles / γ iron oxide particle-carrying carbon particles were obtained in the same manner as in Example 5 except that magnetization was not performed.

実施例4と同様にして上記白金粒子/γ酸化鉄粒子担持カーボン粒子に磁針を近づけたところ、磁針が全く振れなかったことから、上記白金粒子/γ酸化鉄粒子担持カーボン粒子は磁性を有しないことが確認できた。   In the same manner as in Example 4, when the magnetic needle was brought close to the platinum particle / γ iron oxide particle-supporting carbon particle, the magnetic needle did not shake at all, so the platinum particle / γ iron oxide particle-supporting carbon particle did not have magnetism. I was able to confirm.

(比較例5)
実施例4と同様にして前駆体粒子を作製した。その後、この前駆体粒子を用いて、窒素ガス中500℃で2時間加熱処理する代わりに、空気中280℃で1時間加熱処理し、さらに着磁しなかった以外は、実施例4と同様にして白金粒子/酸化鉄粒子担持カーボン粒子を得た。
(Comparative Example 5)
Precursor particles were produced in the same manner as in Example 4. Thereafter, using this precursor particle, instead of heat treatment at 500 ° C. for 2 hours in nitrogen gas, heat treatment was performed at 280 ° C. for 1 hour in air, and the sample was not further magnetized. Thus, carbon particles carrying platinum particles / iron oxide particles were obtained.

上記白金粒子/酸化鉄粒子担持カーボン粒子について、粉末X線回折スペクトルの測定を行った結果、白金(Pt)及び非磁性体であるヘマタイト(α−Fe23)の明確なピークとともに、約25度付近に非常にブロードなカーボンに由来するピークが確認された。 As a result of measuring the powder X-ray diffraction spectrum of the platinum particles / iron oxide particle-supported carbon particles, about platinum (Pt) and a non-magnetic hematite (α-Fe 2 O 3 ) were clearly observed. A peak derived from very broad carbon was observed around 25 degrees.

上記白金粒子/ヘマタイト粒子担持カーボン粒子中の白金及びヘマタイトの含有量を蛍光X線分析により測定したところ、白金粒子とヘマタイト粒子との重量比は65:35であり、白金粒子とヘマタイト粒子の担持量は、白金粒子/ヘマタイト粒子担持カーボン粒子の全重量に対して、57重量%であった。   When the platinum and hematite contents in the platinum particle / hematite particle-supported carbon particles were measured by fluorescent X-ray analysis, the weight ratio of platinum particles to hematite particles was 65:35, and the platinum particles and hematite particles were supported. The amount was 57% by weight based on the total weight of platinum particles / hematite particle-supporting carbon particles.

また、実施例4と同様にして上記白金粒子/ヘマタイト粒子担持カーボン粒子に磁針を近づけたところ、磁針が全く振れなかったことから、上記白金粒子/ヘマタイト粒子担持カーボン粒子は磁性を有しないことが確認できた。さらに、実施例1と同様にして測定した上記カーボン粒子上に析出担持されている白金粒子及びヘマタイト粒子の平均粒子径は、それぞれ2.3nm及び3.4nmであった。   Further, when the magnetic needle was brought close to the platinum particle / hematite particle-supporting carbon particle in the same manner as in Example 4, the magnetic needle did not shake at all. It could be confirmed. Furthermore, the average particle sizes of platinum particles and hematite particles deposited and supported on the carbon particles measured in the same manner as in Example 1 were 2.3 nm and 3.4 nm, respectively.

次に、実施例4、5及び比較例3〜5で得られた白金粒子/酸化物粒子担持カーボン粒子の触媒特性を評価するため、空気極に用いる電極膜の白金担持量を0.5mg/cm2から0.4mg/cm2とした以外は、実施例1〜3及び比較例1、2と同様にして燃料電池用の膜電極接合体(MEA)を作製し、それを用いて前述と同様にしてI−V特性を測定した。そのI−V特性から燃料電池の出力特性として、最大出力密度(mW/cm2)を測定した。また、I−V特性の測定に際しては、実施例4、5の測定時には、測定セルの両側に4cm×2cm×1cmの小型磁石を置き、微弱な磁場中での測定も併せて行った。その結果を表2に示す。表2では、実施例4の測定時に磁場がない場合の最大出力密度を1.00とした場合の相対値を出力密度比として示した。また、表2では、保磁力、飽和磁化量、着磁の有無も示した。 Next, in order to evaluate the catalyst characteristics of the platinum particles / oxide particle-supported carbon particles obtained in Examples 4 and 5 and Comparative Examples 3 to 5, the platinum support amount of the electrode film used for the air electrode was 0.5 mg / A membrane electrode assembly (MEA) for a fuel cell was prepared in the same manner as in Examples 1 to 3 and Comparative Examples 1 and 2 except that cm 2 to 0.4 mg / cm 2. Similarly, the IV characteristics were measured. From the IV characteristics, the maximum power density (mW / cm 2 ) was measured as the output characteristics of the fuel cell. When measuring the IV characteristics, a small magnet of 4 cm × 2 cm × 1 cm was placed on both sides of the measurement cell in the measurement of Examples 4 and 5, and measurement was performed in a weak magnetic field. The results are shown in Table 2. In Table 2, the relative value when the maximum output density when the magnetic field is not present at the time of measurement of Example 4 is 1.00 is shown as the output density ratio. Table 2 also shows the coercivity, the saturation magnetization, and the presence or absence of magnetization.

Figure 2009028708
Figure 2009028708

表2から明らかなように、実施例4、5の白金粒子/酸化物粒子担持カーボン粒子を用いた燃料電池の最大出力密度は、磁性を有さない白金粒子/酸化物粒子担持カーボン粒子を用いた比較例3〜5に比べて明らかに高いことが分かる。これは実施例4、5の白金粒子/酸化物粒子担持カーボン粒子が特定の保磁力と飽和磁化量を有するため、上記カーボン粒子より発生する磁界により、高い磁化率を有する酸素が上記カーボン粒子近傍に引き寄せられ、その結果触媒反応がより効率良く進行したためであると考えられる。   As is clear from Table 2, the maximum output density of the fuel cell using the platinum particles / oxide particle-supported carbon particles of Examples 4 and 5 is platinum particles / oxide particle-supported carbon particles having no magnetism. It can be seen that it is clearly higher than Comparative Examples 3-5. This is because the platinum particles / oxide particle-carrying carbon particles of Examples 4 and 5 have a specific coercive force and saturation magnetization, so that oxygen having a high magnetic susceptibility is generated in the vicinity of the carbon particles by a magnetic field generated from the carbon particles. This is considered to be because the catalytic reaction proceeded more efficiently as a result.

また、実施例4、5の効果は、空気極側に流す空気量が少ないほど顕著となることが分っており、酸素濃度が低い場合でも、その少ない酸素を効率的に引き付け、触媒の効果を発現させることができることを示している。また、測定の際に外部磁場を印加すれば、外部磁場が無い場合と比べてさらなる出力向上の効果が得られることも分かる。   In addition, it has been found that the effects of Examples 4 and 5 become more prominent as the amount of air flowing to the air electrode side is smaller. Even when the oxygen concentration is low, the effect of the catalyst can be effectively attracted by the less oxygen. It can be expressed. It can also be seen that if an external magnetic field is applied during measurement, a further output improvement effect can be obtained as compared with the case where there is no external magnetic field.

一方、マグネタイト粒子やγ酸化鉄粒子は、粒子を作製した後に磁界に一度もさらされていない状態の時には、ミクロ的には磁性を持ってはいるものの磁化されておらず、一方向に強い磁場を作ることができないために全体として見ると磁性を有さないことになり、酸素を効率的に引き付けることができないと考えられる。従って、比較例3、4に示したように、全く同じ磁性粒子を用いた場合であっても、着磁の有無で約30%もの出力差が表れている。また、磁性粒子を担持しなかった比較例5では、さらにその出力値は低くなっている。   On the other hand, magnetite particles and γ iron oxide particles are microscopically magnetized but not magnetized when they are not exposed to a magnetic field after the particles have been produced. Since it cannot be made as a whole, it has no magnetism, and it is considered that oxygen cannot be efficiently attracted. Therefore, as shown in Comparative Examples 3 and 4, even when exactly the same magnetic particles are used, an output difference of about 30% appears depending on the presence or absence of magnetization. Further, in Comparative Example 5 in which no magnetic particles were carried, the output value was further lowered.

以上のことから、ミクロな局所的磁場によって、より効率的に、触媒能を持つ白金粒子近傍に酸素を誘導し、その結果、燃料電池としての特性を向上させ得ることが分かる。   From the above, it can be seen that oxygen can be more efficiently induced in the vicinity of platinum particles having catalytic ability by a micro local magnetic field, and as a result, characteristics as a fuel cell can be improved.

以上のように本発明の磁性粒子担持触媒は、電極用触媒として優れた触媒能を発揮でき、それを用いた高出力の燃料電池用電極を提供することができる。   As described above, the magnetic particle-supported catalyst of the present invention can exhibit excellent catalytic ability as an electrode catalyst, and can provide a high-power fuel cell electrode using the catalyst.

燃料電池の膜電極接合体を磁界中に置いた場合を示す模式図である。It is a schematic diagram which shows the case where the membrane electrode assembly of a fuel cell is placed in a magnetic field. 図2Aは触媒層の中に磁性粒子を含ませた場合を示す模式図であり、図2Bは図2Aの触媒担持粒子の拡大図である。2A is a schematic view showing a case where magnetic particles are included in the catalyst layer, and FIG. 2B is an enlarged view of the catalyst-carrying particles in FIG. 2A. 触媒粒子と磁性粒子とを導電性粒子の上に担持させた本発明の磁性粒子担持触媒を示す模式図である。It is a schematic diagram showing a magnetic particle-supported catalyst of the present invention in which catalyst particles and magnetic particles are supported on conductive particles. 本発明の燃料電池用電極である膜電極接合体の一例を示す模式断面図である。It is a schematic cross section which shows an example of the membrane electrode assembly which is an electrode for fuel cells of this invention. 実施例4で得られた磁性粒子担持触媒のTEM写真を示す図である。6 is a diagram showing a TEM photograph of a magnetic particle-supported catalyst obtained in Example 4. FIG.

符号の説明Explanation of symbols

10 膜電極接合体
11、12 磁石
13 空気極
14 燃料極
15 固体高分子電解質膜
20 触媒層
21 触媒担持粒子
22 磁性粒子
23 触媒粒子
24 導電性担体
30 磁性粒子担持触媒
31 導電性担体
32 磁性粒子
33 触媒粒子
40 膜電極接合体(MEA)
41 固体高分子電解質膜
42 空気極
43 燃料極
44 空気極用ガス拡散層
45 燃料極用ガス拡散層
DESCRIPTION OF SYMBOLS 10 Membrane electrode assembly 11, 12 Magnet 13 Air electrode 14 Fuel electrode 15 Solid polymer electrolyte membrane 20 Catalyst layer 21 Catalyst supported particle 22 Magnetic particle 23 Catalyst particle 24 Conductive carrier 30 Magnetic particle supported catalyst 31 Conductive carrier 32 Magnetic particle 33 catalyst particles 40 membrane electrode assembly (MEA)
41 solid polymer electrolyte membrane 42 air electrode 43 fuel electrode 44 gas diffusion layer for air electrode 45 gas diffusion layer for fuel electrode

Claims (21)

導電性粒子と、前記導電性粒子に担持された磁性を有する触媒粒子とを含む磁性粒子担持触媒であって、
前記磁性粒子担持触媒の保磁力が4.0〜79.8kA/mであり、その飽和磁化量が1〜20A・m2/kgであることを特徴とする磁性粒子担持触媒。
A magnetic particle-supported catalyst comprising conductive particles and catalyst particles having magnetism supported on the conductive particles,
A magnetic particle-supported catalyst having a coercive force of 4.0 to 79.8 kA / m and a saturation magnetization of 1 to 20 A · m 2 / kg.
前記触媒粒子は、磁性合金粒子である請求項1に記載の磁性粒子担持触媒。   The magnetic particle-supported catalyst according to claim 1, wherein the catalyst particles are magnetic alloy particles. 前記磁性合金粒子は、白金とコバルトとを合金成分として含む請求項2に記載の磁性粒子担持触媒。   The magnetic particle-supported catalyst according to claim 2, wherein the magnetic alloy particles include platinum and cobalt as alloy components. 前記磁性合金粒子の白金とコバルトの含有量が、それぞれ40〜98重量%及び2〜60重量%である請求項3に記載の磁性粒子担持触媒。   4. The magnetic particle-supported catalyst according to claim 3, wherein the content of platinum and cobalt in the magnetic alloy particles is 40 to 98 wt% and 2 to 60 wt%, respectively. 前記磁性合金粒子は、ニッケル、鉄、チタン、銅、マンガン、アルミニウム、ルテニウム、タングステン及びモリブデンからなる群から選ばれる少なくとも一種の元素を合金成分としてさらに含む請求項3に記載の磁性粒子担持触媒。   The magnetic particle-supported catalyst according to claim 3, wherein the magnetic alloy particles further include at least one element selected from the group consisting of nickel, iron, titanium, copper, manganese, aluminum, ruthenium, tungsten, and molybdenum as an alloy component. 前記触媒粒子の粒子径が、1〜10nmである請求項1に記載の磁性粒子担持触媒。   The magnetic particle-supported catalyst according to claim 1, wherein the catalyst particles have a particle diameter of 1 to 10 nm. 前記触媒粒子の担持量が、前記磁性粒子担持触媒の全重量に対して、5〜50重量%である請求項1に記載の磁性粒子担持触媒。   2. The magnetic particle-supported catalyst according to claim 1, wherein the supported amount of the catalyst particles is 5 to 50 wt% with respect to the total weight of the magnetic particle-supported catalyst. 前記触媒粒子は、鉄、コバルト、ニッケル、亜鉛、マンガン及び銅からなる群から選ばれる少なくとも一種の元素を含む酸化物粒子である請求項1に記載の磁性粒子担持触媒。   2. The magnetic particle-supported catalyst according to claim 1, wherein the catalyst particles are oxide particles containing at least one element selected from the group consisting of iron, cobalt, nickel, zinc, manganese, and copper. 請求項2〜7のいずれか1項に記載の磁性粒子担持触媒の製造方法であって、
2種類以上の磁性金属成分を導電性粒子に担持させる工程と、
前記磁性金属成分を担持した導電性粒子を、非酸化性雰囲気中において250〜600℃で加熱する工程とを含むことを特徴とする磁性粒子担持触媒の製造方法。
A method for producing a magnetic particle-supported catalyst according to any one of claims 2 to 7,
A step of supporting two or more kinds of magnetic metal components on conductive particles;
And heating the conductive particles carrying the magnetic metal component at 250 to 600 ° C. in a non-oxidizing atmosphere.
導電性粒子と、前記導電性粒子に担持された触媒粒子と、前記導電性粒子に担持された磁性粒子とを含むことを特徴とする磁性粒子担持触媒。   A magnetic particle-supported catalyst comprising conductive particles, catalyst particles supported on the conductive particles, and magnetic particles supported on the conductive particles. 前記磁性粒子担持触媒の保磁力が4.0〜79.8kA/mであり、その飽和磁化量が1〜20A・m2/kgである請求項10に記載の磁性粒子担持触媒。 The magnetic particle-supported catalyst according to claim 10, wherein the magnetic particle-supported catalyst has a coercive force of 4.0 to 79.8 kA / m and a saturation magnetization of 1 to 20 A · m 2 / kg. 前記触媒粒子は、白金を含む請求項10に記載の磁性粒子担持触媒。   The magnetic particle-supported catalyst according to claim 10, wherein the catalyst particles include platinum. 前記磁性粒子は、鉄、コバルト、ニッケル、亜鉛、マンガン及び銅からなる群から選ばれる少なくとも一種の元素を含む酸化物粒子である請求項10に記載の磁性粒子担持触媒。   The magnetic particle-supported catalyst according to claim 10, wherein the magnetic particles are oxide particles containing at least one element selected from the group consisting of iron, cobalt, nickel, zinc, manganese and copper. 前記酸化物粒子は、スピネル構造又はぺロブスカイト構造を有する請求項13に記載の磁性粒子担持触媒。   The magnetic particle-supported catalyst according to claim 13, wherein the oxide particles have a spinel structure or a perovskite structure. 前記触媒粒子と前記磁性粒子との重量比が、40:60〜90:10である請求項10に記載の磁性粒子担持触媒。   11. The magnetic particle-supported catalyst according to claim 10, wherein a weight ratio of the catalyst particles to the magnetic particles is 40:60 to 90:10. 前記触媒粒子及び前記磁性粒子の担持量が、前記磁性粒子担持触媒の全重量に対して、10〜70重量%である請求項10に記載の磁性粒子担持触媒。   11. The magnetic particle-supported catalyst according to claim 10, wherein the supported amount of the catalyst particles and the magnetic particles is 10 to 70 wt% with respect to the total weight of the magnetic particle-supported catalyst. 前記触媒粒子及び前記磁性粒子の粒子径が、それぞれ1〜10nmである請求項10に記載の磁性粒子担持触媒。   11. The magnetic particle-supported catalyst according to claim 10, wherein each of the catalyst particles and the magnetic particles has a particle diameter of 1 to 10 nm. 請求項10〜17のいずれか1項に記載の磁性粒子担持触媒の製造方法であって、
触媒金属成分を導電性粒子に担持させる工程と、
前記触媒金属成分を担持した導電性粒子を、非酸化性雰囲気中において250〜600℃で加熱することにより、前記導電性粒子に触媒粒子を担持させる工程と、
前記触媒粒子を担持した導電性粒子に、磁性体前駆体をさらに担持させる工程と、
前記触媒粒子と前記磁性体前駆体とを担持した導電性粒子を加熱する工程とを含むことを特徴とする磁性粒子担持触媒の製造方法。
A method for producing a magnetic particle-supported catalyst according to any one of claims 10 to 17,
A step of supporting a catalytic metal component on conductive particles;
Heating the conductive particles carrying the catalytic metal component in a non-oxidizing atmosphere at 250 to 600 ° C. to carry the catalyst particles on the conductive particles;
A step of further supporting a magnetic precursor on the conductive particles supporting the catalyst particles;
And a step of heating the conductive particles supporting the catalyst particles and the magnetic precursor.
前記触媒粒子と前記磁性体前駆体とを担持した導電性粒子を加熱した後に、さらに磁界を印加して着磁する工程を含む請求項18に記載の磁性粒子担持触媒の製造方法。   19. The method for producing a magnetic particle-supported catalyst according to claim 18, further comprising a step of magnetizing by applying a magnetic field after heating the conductive particles supporting the catalyst particles and the magnetic precursor. 請求項1〜8、10〜17のいずれか1項に記載の磁性粒子担持触媒を含むことを特徴とする燃料電池用電極。   A fuel cell electrode comprising the magnetic particle-supported catalyst according to any one of claims 1 to 8 and 10 to 17. 請求項20に記載の燃料電池用電極を含むことを特徴とする燃料電池。   A fuel cell comprising the fuel cell electrode according to claim 20.
JP2007332941A 2007-06-25 2007-12-25 Magnetic particle-deposited catalyst, method for manufacturing the same, electrode using the same for fuel cell, and fuel cell Pending JP2009028708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332941A JP2009028708A (en) 2007-06-25 2007-12-25 Magnetic particle-deposited catalyst, method for manufacturing the same, electrode using the same for fuel cell, and fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007166707 2007-06-25
JP2007332941A JP2009028708A (en) 2007-06-25 2007-12-25 Magnetic particle-deposited catalyst, method for manufacturing the same, electrode using the same for fuel cell, and fuel cell

Publications (1)

Publication Number Publication Date
JP2009028708A true JP2009028708A (en) 2009-02-12

Family

ID=40399835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332941A Pending JP2009028708A (en) 2007-06-25 2007-12-25 Magnetic particle-deposited catalyst, method for manufacturing the same, electrode using the same for fuel cell, and fuel cell

Country Status (1)

Country Link
JP (1) JP2009028708A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069667A (en) * 2011-09-05 2013-04-18 Ngk Insulators Ltd Selective oxygen transmission substrate, positive electrode for air cell and air cell
CN110943234A (en) * 2019-12-31 2020-03-31 南京工业大学 High-performance platinum alloy catalyst based on magnetic regulation and control and preparation method thereof
CN112397737A (en) * 2021-01-20 2021-02-23 北京科技大学 Electric pile device of platinum-based magnetic field regulation fuel cell and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198057A (en) * 2000-05-23 2002-07-12 National Institute Of Advanced Industrial & Technology Fuel cell and improved version of oxygen electrode used for same
JP2004079438A (en) * 2002-08-21 2004-03-11 Toshiba Corp Catalyst material for fuel cell, electrode for fuel cell, manufacturing method of catalyst material for fuel cell, and manufacturing method of electrode for fuel cell
JP2004196574A (en) * 2002-12-18 2004-07-15 National Institute Of Advanced Industrial & Technology Spinel-containing ferrite spherical porous silica particle and its manufacturing method
JP2005317220A (en) * 2004-04-27 2005-11-10 Equos Research Co Ltd Magnetic carrier for electrode, magnetism carrying catalyst for electrode and using method of the same, membrane-electrode junction, and fuel cell system
JP2006252966A (en) * 2005-03-10 2006-09-21 Nissan Motor Co Ltd Electrode catalyst layer for fuel cell and the fuel cell using the same
JP2007078595A (en) * 2005-09-16 2007-03-29 Hitachi Maxell Ltd Functional particle and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198057A (en) * 2000-05-23 2002-07-12 National Institute Of Advanced Industrial & Technology Fuel cell and improved version of oxygen electrode used for same
JP2004079438A (en) * 2002-08-21 2004-03-11 Toshiba Corp Catalyst material for fuel cell, electrode for fuel cell, manufacturing method of catalyst material for fuel cell, and manufacturing method of electrode for fuel cell
JP2004196574A (en) * 2002-12-18 2004-07-15 National Institute Of Advanced Industrial & Technology Spinel-containing ferrite spherical porous silica particle and its manufacturing method
JP2005317220A (en) * 2004-04-27 2005-11-10 Equos Research Co Ltd Magnetic carrier for electrode, magnetism carrying catalyst for electrode and using method of the same, membrane-electrode junction, and fuel cell system
JP2006252966A (en) * 2005-03-10 2006-09-21 Nissan Motor Co Ltd Electrode catalyst layer for fuel cell and the fuel cell using the same
JP2007078595A (en) * 2005-09-16 2007-03-29 Hitachi Maxell Ltd Functional particle and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069667A (en) * 2011-09-05 2013-04-18 Ngk Insulators Ltd Selective oxygen transmission substrate, positive electrode for air cell and air cell
CN110943234A (en) * 2019-12-31 2020-03-31 南京工业大学 High-performance platinum alloy catalyst based on magnetic regulation and control and preparation method thereof
CN110943234B (en) * 2019-12-31 2022-09-20 南京工业大学 High-performance platinum alloy catalyst based on magnetic regulation and control and preparation method thereof
CN112397737A (en) * 2021-01-20 2021-02-23 北京科技大学 Electric pile device of platinum-based magnetic field regulation fuel cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Wang et al. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation
JP3651799B2 (en) Catalyst material for fuel cell, method for producing catalyst material for fuel cell, and fuel cell
Fu et al. Robust bifunctional oxygen electrocatalyst with a “rigid and flexible” structure for air-cathodes
Guo et al. Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen
US8007691B2 (en) Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
KR100550998B1 (en) Catalyst for fuel cell and fuel cell system comprising same
JP5214117B2 (en) Perovskite-type oxide fine particles, perovskite-type oxide-supported particles, catalyst materials, fuel cell electrodes
JP5332429B2 (en) Electrocatalyst
JP2007335171A (en) Particulate carrying carbon particle, its manufacturing method, and electrode for fuel cell
JP6583417B2 (en) Catalyst particles, electrode catalyst using the same, electrolyte membrane-electrode assembly, and fuel cell
JP4879658B2 (en) Fine particle-supporting carbon particles, method for producing the same, and fuel cell electrode
Zhang et al. One-pot synthesis of MnFe2O4/C by microwave sintering as an efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
JP2005294109A (en) Substrate for fuel cell, and the fuel cell
Takei et al. Platinum anti-dissolution mechanism of Pt/Nb-SnO2 cathode catalyst layer during load cycling in the presence of oxygen for polymer electrolyte fuel cells
Sabaa et al. Spinel structure of activated carbon supported MFe2O4 composites as an economic and efficient electrocatalyst for oxygen reduction reaction in neutral media
KR20200053431A (en) Au doped Pt alloy catalysts for fuel cell and method thereof
CN105810961B (en) Cage-shaped nano particle elctro-catalyst with high stability and gas transport properties
JP2011149042A (en) Method for producing platinum-cobalt alloy fine particle
JP2009028708A (en) Magnetic particle-deposited catalyst, method for manufacturing the same, electrode using the same for fuel cell, and fuel cell
Volk et al. Catalytic Activity and Stability of Non-Platinum Group Metal Oxides for the Oxygen Evolution Reaction in Anion Exchange Membrane Electrolyzers
JP4992185B2 (en) Catalyst for fuel cell, membrane electrode composite, and solid polymer electrolyte fuel cell
WO2007034946A1 (en) Particulate carbon carrying fine particle thereon, process for production thereof, and electrodes for fuel cells
Huang et al. Hybrids of Fe3O4/CoSe2 as efficient electrocatalysts for oxygen reduction reaction
JP4764022B2 (en) Supported catalyst for fuel cell, cathode catalyst layer, and fuel cell
CN110943234A (en) High-performance platinum alloy catalyst based on magnetic regulation and control and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120202