JP2009028624A - Liquid chemical injection apparatus - Google Patents

Liquid chemical injection apparatus Download PDF

Info

Publication number
JP2009028624A
JP2009028624A JP2007194428A JP2007194428A JP2009028624A JP 2009028624 A JP2009028624 A JP 2009028624A JP 2007194428 A JP2007194428 A JP 2007194428A JP 2007194428 A JP2007194428 A JP 2007194428A JP 2009028624 A JP2009028624 A JP 2009028624A
Authority
JP
Japan
Prior art keywords
liquid
flow
pipe
flow rate
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007194428A
Other languages
Japanese (ja)
Other versions
JP5216266B2 (en
Inventor
Hisashi Kamata
鎌田久
Taiji Shirai
白居泰司
Masaaki Sekimoto
関本正明
Michihiro Hayakawa
早川巳治裕
Yoshihisa Hagiwara
萩原宜久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teral Inc
Original Assignee
Teral Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teral Inc filed Critical Teral Inc
Priority to JP2007194428A priority Critical patent/JP5216266B2/en
Priority to CN2008101268765A priority patent/CN101353194B/en
Publication of JP2009028624A publication Critical patent/JP2009028624A/en
Application granted granted Critical
Publication of JP5216266B2 publication Critical patent/JP5216266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid injection apparatus Y which can be manufactured at a relatively low cost even when the level of the planned maximum flow rate in a liquid feeding pipe 101 is designed high, and can stably inject the liquid chemical of an amount proportional to the flow rate ranging from the small flow to the large flow of liquid flowing inside the liquid feed pipe 101. <P>SOLUTION: The liquid injection apparatus Y, which injects the liquid chemical with an injection pump 9 into the liquid flowing inside the liquid feed pipe 101, is provided with a plurality of liquid flow pipes 13, 14 for branching the liquid flow in the liquid feed pipe 101 in the course of the pipe 101; and a flow rate sensor 16 detecting the flow rate of the liquid in one optional liquid flow pipe 14. The liquid chemical injection operation of the injection pump 9 is controlled on the basis of the signals detected by the flow rate sensor 16. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、送液管内を流れる液体に薬液を注入する薬液注入装置に関する。
例えば、地下水を汲み上げ、これに薬液を注入することにより、水中に含まれる大腸菌などの雑菌を殺菌し、良質な水になして生活空間に供給するための給水設備などに設置されて使用されるものである。
The present invention relates to a chemical liquid injector that injects a chemical liquid into a liquid flowing in a liquid feeding pipe.
For example, by pumping up ground water and injecting chemicals into it, it can be used by installing it in water supply facilities to sterilize bacteria such as Escherichia coli contained in water and supply it to living space as high-quality water Is.

上記薬液注入装置として、例えば特許文献1〜3などが存在している。   For example, Patent Documents 1 to 3 exist as the chemical solution injector.

特許文献1〜3に開示された薬液注入装置は、送液管内の液体の流量を検出して検出信号を発する流量センサと、注入ポンプと、前記流量センサの発した検出信号を伝達され該検出信号に基づいて制御信号を発する制御部と、前記制御信号に基づいて送液管内の液体流量に比例した量の薬液を送液管内の液中に注入するように作動する注入ポンプとを備えている。   The chemical liquid injectors disclosed in Patent Documents 1 to 3 are configured to detect a flow rate sensor that detects a flow rate of a liquid in a liquid feeding pipe and generates a detection signal, an injection pump, and a detection signal emitted from the flow rate sensor to detect the flow rate sensor. A control unit that generates a control signal based on the signal, and an injection pump that operates to inject a chemical liquid in an amount proportional to the liquid flow rate in the liquid supply pipe into the liquid in the liquid supply pipe based on the control signal. Yes.

ここで使用される流量センサは送液管内の液流量を直接に検出するものであるため、送液管の最大流量に対応した検出能力を有している必要があり、したがって送液管内の液流量の計画値が大きくなるに従って、その大きさが大形化するほか、その価格も相対的に非常に高いものとなる。   Since the flow rate sensor used here directly detects the liquid flow rate in the liquid supply pipe, it must have a detection capability corresponding to the maximum flow rate of the liquid supply pipe. As the planned flow rate increases, its size increases and its price is relatively high.

特開2006−68681号公報JP 2006-68681 A 特開平11−19653号公報Japanese Patent Laid-Open No. 11-19653 特開昭62−245113号公報JP-A-62-245113

上記薬液注入装置において、たとえ送液管内の計画最大流量が大きくても、検出能力の比較的小さい小形の流量センサの使用により送液管内の液体流量を検出できるようになれば、流量センサの価格が大幅に低下するため、たとえ送液管内の計画最大流量が大きく設計された薬液注入装置であっても、これを比較的安価に市場に提供することができるようになる。   In the above chemical injection device, even if the planned maximum flow rate in the liquid delivery pipe is large, if the liquid flow rate in the liquid delivery pipe can be detected by using a small flow sensor with a relatively small detection capability, the price of the flow sensor Therefore, even if the chemical solution injection device is designed to have a large planned maximum flow rate in the liquid delivery pipe, it can be provided to the market relatively inexpensively.

本発明は斯かる実情の下、送液管内の計画最大流量の大きさに対して比較的安価に製作できると共に送液管内を流れる液体の小流量から大流量に至るまで、その流量に比例した量の薬液を安定的に注入することができる薬液注入装置を提供することを目的とする。   Under such circumstances, the present invention can be manufactured relatively inexpensively with respect to the size of the planned maximum flow rate in the liquid feeding pipe and is proportional to the flow rate from a small flow rate to a large flow rate of the liquid flowing in the liquid feed tube. It is an object of the present invention to provide a chemical liquid injector capable of stably injecting an amount of chemical liquid.

上記目的を達成するため、本発明に係る薬液注入装置は、請求項1に記載したように、送液管内を流れる液体中に注入ポンプで薬液を注入する薬液注入装置において、前記送液管の長さ途中に前記送液管内の液体流れを分流させるための複数の通液管を設け、且つ、任意な一本の前記通液管内の液体の流量を検出するための流量センサを設け、該流量センサの検出信号に基づいて前記注入ポンプの薬液注入作動が制御されることを特徴とするものである。   In order to achieve the above object, a chemical injection device according to the present invention is a chemical injection device for injecting a chemical with an injection pump into a liquid flowing in a liquid supply tube, as described in claim 1. Provided with a plurality of liquid passing pipes for dividing the liquid flow in the liquid feeding pipe in the middle of the length, and provided with a flow rate sensor for detecting the flow rate of the liquid in the arbitrary one liquid passing pipe, The chemical solution injection operation of the injection pump is controlled based on the detection signal of the flow sensor.

この発明は次のように具体化するのがよいのであって、即ち、請求項2に記載したように、前記送液管の長さ途中に前記送液管内の液体流れを分流させるための2本の通液管を設け、これら通液管のうち一方は他方よりも通液路を小径となされており、且つ、通液路が小径である方の前記通液管内の液体の流量を検出するための流量センサを設け、該流量センサの検出信号に基づいて前記注入ポンプの薬液注入作動が制御される構成とする。   The present invention may be embodied as follows. That is, as described in claim 2, 2 for dividing the liquid flow in the liquid feeding pipe in the middle of the length of the liquid feeding pipe. A liquid passage pipe is provided, and one of the liquid passage pipes has a smaller passage diameter than the other, and detects the flow rate of the liquid in the liquid passage pipe having a smaller diameter passage. A flow rate sensor is provided, and a chemical solution injection operation of the injection pump is controlled based on a detection signal of the flow rate sensor.

これらの発明において、各通液管内には送液管内よりも少ない流量の液体流れが生じるのであり、この液体流れの流量は通液管の通液路断面積を大小に変更することにより任意な大きさとなすことができる。したがって、流量センサは送液管内の流量よりも任意に小さくなされた液体流れの流量を検出し得るものとなり、この検出時点の送液管内の液体流れの流量は流量センサの検出信号に基づいて決定され、注入ポンプは送液管内の流量に対応した量の薬液を送液管内の液体に注入する。   In these inventions, a liquid flow having a smaller flow rate than that in the liquid feed pipe is generated in each liquid flow pipe. The flow rate of the liquid flow can be arbitrarily set by changing the cross-sectional area of the liquid flow path of the liquid flow pipe. Can be made with size. Therefore, the flow rate sensor can detect the flow rate of the liquid flow arbitrarily made smaller than the flow rate in the liquid feeding pipe, and the flow rate of the liquid flow in the liquid feeding pipe at the time of detection is determined based on the detection signal of the flow rate sensor. The injection pump injects an amount of the chemical solution corresponding to the flow rate in the liquid feeding pipe into the liquid in the liquid feeding pipe.

上記した請求項2に記載の発明はさらに次のように具体化することができる。
即ち、請求項3に記載したように、通液路が大径である方の前記通液管が、その長さ途中個所の通路断面積を当該通液管の他個所の通路断面積よりも小さくなすための絞り部を形成されている構成とする。このようにすれば、通液路が大径である方の通液管内の流れ抵抗が増大して該通液管内の液体流れの流量が減少する一方で、流量センサで流量を検出される通液管内の液体流れの流量が増大する。
The invention described in claim 2 can be further embodied as follows.
That is, as described in claim 3, the liquid passage having a larger diameter of the liquid passage has a passage cross-sectional area at a portion in the middle of its length than a passage cross-sectional area at another portion of the liquid passage. It is assumed that a narrowing portion for reducing the size is formed. In this way, the flow resistance in the liquid flow pipe having the larger liquid flow path is increased and the flow rate of the liquid flow in the liquid flow pipe is decreased, while the flow rate detected by the flow sensor is reduced. The flow rate of the liquid flow in the liquid pipe is increased.

また請求項4に記載したように、前記薬液の注入位置が、前記絞り部の形成された前記通液管の通液路内であって前記絞り部の上流側である構成とする。このようにすれば、絞り部の上流側近傍及び下流側近傍で発生する渦流が有効に利用されて通液管内の液体と薬液の混合攪拌が促進される。   According to a fourth aspect of the present invention, the injection position of the chemical liquid is in the fluid passage of the fluid passage where the restrictor is formed and upstream of the restrictor. In this way, the vortex generated in the vicinity of the upstream side and the downstream side of the throttle portion is effectively used to promote the mixing and stirring of the liquid and the chemical in the liquid passage.

さらには、請求項5に記載したように、前記絞り部の肉部の上流側液接触面は該面上の点が通液路半径方向外側へ移動する伴って上流側へ変位するように位置する部分球面となされ且つ、該部分球面の半径が該絞り部を形成された前記通液管の最大通路断面積個所の半径の略、0.5〜1.0倍の範囲内の大きさ程度となされている構成とする。このようにすれば、部分球面が液体流れの一部を円滑に反転させて上流側へ向かわせて渦流を誘発させ乱流を定常的に促進化させる。   Furthermore, as described in claim 5, the upstream liquid contact surface of the narrow portion of the throttle portion is positioned so that a point on the surface is displaced upstream as the point on the surface moves radially outward. And the radius of the partial spherical surface is approximately the radius of the maximum passage cross-sectional area of the liquid passage tube in which the throttle portion is formed, and the size is in the range of 0.5 to 1.0 times. The configuration is as follows. In this way, the partial spherical surface inverts part of the liquid flow smoothly and induces vortex flow toward the upstream side, thereby accelerating turbulent flow constantly.

本発明によれば、次のような効果が得られる。
即ち、請求項1に記載の発明によれば、送液管内を流れる液体の一部がそれぞれの通液管内を流れ、流量センサがこれの装着された任意な1本の通液管内の液体の流量を検出し、こうして検出された流量に基づいて送液管内の液体の流量が把握されるようになるのであり、したがって、送液管内の計画液体流量がたとえ比較的大きいものであっても、流量センサの設けられた通液管の通液路断面積を適当に小さくなすことにより、流量センサを検出能力の比較的小さいものとなすことができて、流量センサの占める製造コストが大幅に低下するため、本発明品を比較的安価に市場に提供することができるようになるのである。
また流量センサが小形化されるに伴って、その流量センサのいわゆる検出可能な最小流量の大きさも相応に小さくなるため、本発明品が送水管内の一部の液体の流量を検出することにより送水管内の流量を把握する方式のものであっても、流量の検出精度が送水管内に直接に流量センサを設ける場合と変わりないものとなすことができる。
According to the present invention, the following effects can be obtained.
That is, according to the first aspect of the present invention, a part of the liquid flowing in the liquid feeding pipe flows in each of the liquid feeding pipes, and the flow rate sensor of the liquid in any one of the liquid feeding pipes to which the flow sensors are attached. The flow rate is detected, and based on the detected flow rate, the flow rate of the liquid in the liquid feeding pipe is grasped. Therefore, even if the planned liquid flow rate in the liquid feeding pipe is relatively large, By appropriately reducing the cross-sectional area of the flow path of the flow pipe provided with the flow sensor, the flow sensor can have a relatively small detection capability, and the manufacturing cost occupied by the flow sensor is greatly reduced. Therefore, the product of the present invention can be provided to the market at a relatively low cost.
Further, as the flow sensor is downsized, the so-called minimum detectable flow rate of the flow sensor is correspondingly reduced, so that the product of the present invention detects the flow rate of a part of the liquid in the water pipe. Even with a method of grasping the flow rate in the pipe, the detection accuracy of the flow rate can be the same as when the flow rate sensor is provided directly in the water supply pipe.

請求項2に記載の発明によれば、請求項1記載の発明の効果が2本の通液管を設けることで得られるため3本以上の通液管を設ける場合に較べて簡易且つ安価な構造となすことができるのであり、また一方の通液管の通液路断面積を送液管のそれと同一となすことができて送液管と本発明品の通液管との結合において異径継ぎ手管などを使用する必要のないものとなる。   According to the invention described in claim 2, since the effect of the invention described in claim 1 can be obtained by providing two liquid pipes, it is simpler and less expensive than the case where three or more liquid pipes are provided. The cross-sectional area of the flow path of one liquid flow pipe can be the same as that of the liquid feed pipe, and the connection between the liquid feed pipe and the liquid flow pipe of the present invention is different. There is no need to use a diameter joint pipe or the like.

請求項3に記載の発明によれば、請求項2記載の発明の効果が得られる上に次のような効果が得られるのであって、即ち、絞り部の存在により、通液路が大径である方の通液管内の流れ抵抗が増大して該通液管内の液体流れの流量が減少する一方で、流量センサで流量を検出される通液管内の液体流れの流量を増大させることができるのであり、しかも絞り部の絞り度合いの程度を変化させることにより、流量センサで流量を検出される通液管内の液体流れの流量を任意に変化させることができる。したがって、送液管内を流れる液体の性状に応じた絞り部となすことにより、該液体の種類が任意に変化しても、同一の流量センサにより送液管内の流量を正確に検出することができるようになるほか、通液管内での液体流れを効率化させて液体のエネルギー損失を低減化させることができる。   According to the invention described in claim 3, the following effect is obtained in addition to the effect of the invention described in claim 2, that is, the liquid passage has a large diameter due to the presence of the throttle portion. While the flow resistance in the liquid flow pipe is increased and the flow rate of the liquid flow in the liquid flow pipe is decreased, the flow rate of the liquid flow in the liquid flow pipe detected by the flow rate sensor can be increased. In addition, by changing the degree of the degree of restriction of the restricting portion, it is possible to arbitrarily change the flow rate of the liquid flow in the liquid flow pipe whose flow rate is detected by the flow rate sensor. Therefore, the flow rate in the liquid feeding pipe can be accurately detected by the same flow rate sensor even if the type of the liquid is arbitrarily changed by providing the throttle portion according to the properties of the liquid flowing in the liquid feeding pipe. In addition, it is possible to reduce the energy loss of the liquid by increasing the efficiency of the liquid flow in the liquid passing pipe.

請求項4に記載の発明によれば、請求項3記載の発明の効果が得られる上に次のような効果が得られるのであって、即ち、絞り部による堰き止め効果で圧力上昇している液体中に薬液が注入されるようになり、注入ポンプは負圧の生じる可能性のある位置(例えば絞り部の下流側近傍位置)の液体中に薬液を注入する場合に較べ正確な量の薬液を注入することができるのであり、また絞り部の上流側近傍及び下流側近傍で渦流発生が顕著となるが、絞り部の上流側近傍に薬液が注入されるために、絞り部の上流側近傍で先ず通液管内の液体と薬液の混合攪拌が渦流により促進され、さらに絞り部を通過した後、絞り部の下流側近傍で発止する渦流により再び通液管内の液体と薬液の混合攪拌が促進されるようになり、注入された薬液と送液管内の液体とを均等且つ迅速に混合させることができる。   According to the invention described in claim 4, in addition to the effect of the invention described in claim 3, the following effect is obtained, that is, the pressure rises due to the blocking effect by the throttle portion. The chemical solution is injected into the liquid, and the infusion pump has a more accurate amount of the chemical solution than the case where the chemical solution is injected into the liquid at a position where negative pressure may occur (for example, the position near the downstream side of the throttle). In addition, eddy currents are prominent in the vicinity of the upstream side and downstream side of the throttle part, but the chemical solution is injected in the vicinity of the upstream part of the throttle part. First, the mixing and stirring of the liquid and the chemical solution in the liquid flow pipe is promoted by the vortex, and further, after passing through the throttle part, the mixing and stirring of the liquid and the chemical liquid in the liquid flow pipe again by the vortex flow that stops near the downstream side of the throttle part Infused chemicals and fluid delivery pipes are promoted It can be mixed in the liquid evenly and quickly.

請求項5に記載の発明によれば、請求項4記載の発明の効果が得られる上に次のような効果が得られるのであって、即ち、絞り部の形成された通液管内の液体の一部の流れ方向を部分球面の案内作用により円滑に反転させて上流側へ向かわせることができるため、絞り部の上流側近傍の液体流れの乱流化が定常的に促進され、注入ポンプにより注入された薬液と通液管内の液体との混合攪拌を定常的に促進させることができるのであり、また絞り部の肉部の上流側液接触面が通液管の中心線に交叉する単一平面となされた場合(部分球面の存在しない場合)と較べた場合に、絞り部の上流側近傍での液体流れの乱流が定常化されて絞り部の堰き止め作用による通液管内上流側の圧力上昇が安定化され、流量センサによる送液管内の流量検出の精度を向上させることができる。   According to the invention described in claim 5, in addition to the effect of the invention described in claim 4, the following effect can be obtained, that is, the liquid in the liquid passage in which the throttle portion is formed. Since part of the flow direction can be smoothly reversed by the guiding action of the partial spherical surface and directed toward the upstream side, turbulence of the liquid flow in the vicinity of the upstream side of the throttle portion is steadily promoted, and the injection pump The mixing and stirring of the injected chemical liquid and the liquid in the flow pipe can be steadily promoted, and the upstream liquid contact surface of the flesh portion of the throttle section crosses the center line of the flow pipe. When compared with a flat surface (when there is no partial spherical surface), the turbulent flow of the liquid flow near the upstream side of the throttle part becomes steady, and the upstream side in the liquid passage due to the blocking action of the throttle part The pressure rise is stabilized, and the flow rate sensor detects the flow rate in the liquid delivery pipe. It is possible to improve the degree.

以下、本発明の実施形態について図面を参照して説明する。
図1は本発明に係る薬液注入装置の斜視図、図2は前記薬液注入装置の正面図、図3は前記薬液注入装置の平面図、図4は前記薬液注入装置の側面図である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view of a chemical injection device according to the present invention, FIG. 2 is a front view of the chemical injection device, FIG. 3 is a plan view of the chemical injection device, and FIG. 4 is a side view of the chemical injection device.

1はステンレス板などの金属材で扁平状の直方体形状に形成された基礎台であり、2は基礎台1の上面1aに載置されボルト3や結合板4で固定された合成樹脂材製の薬液タンクである。   Reference numeral 1 denotes a base made of a metal material such as a stainless steel plate in a flat rectangular parallelepiped shape. Reference numeral 2 denotes a synthetic resin material placed on the upper surface 1a of the base 1 and fixed by a bolt 3 or a coupling plate 4. It is a chemical tank.

基礎台1は上面を単一平面となされており、例えば縦辺及び横辺の長さを何れも略600mm程度となされ、高さを略120mm程度となされる。一方、薬液タンク2は縦長の直方体形状となされており、容量を凡そ50〜100リットル程度となされ平面視大きさを基礎台1のそれに略合致されると共に高さを例えば略700mm程度となされており、また上面2aには蓋部材5aにより開放可能に閉鎖される比較的大きな開口部5が形成され、右側面2bには内方に収容された薬液の液面を確認するための液面計6が設けられ、前面2cには下半分範囲内の比較的広い部分を後面側へ大きく窪ませてなる窪み空間部a1が形成され、前面2c右部の最下位置近傍には開閉弁7の装着された薬液流出口8が形成されている。   The upper surface of the base 1 is a single plane. For example, the lengths of the vertical and horizontal sides are both about 600 mm and the height is about 120 mm. On the other hand, the liquid chemical tank 2 has a vertically long rectangular parallelepiped shape, the capacity is about 50 to 100 liters, the size in plan view is substantially matched with that of the base 1 and the height is about 700 mm, for example. The upper surface 2a is formed with a relatively large opening 5 that is releasably closed by a lid member 5a, and the right side surface 2b is a liquid level gauge for confirming the liquid level of the medicine contained therein. 6 is formed, and the front surface 2c is formed with a hollow space portion a1 in which a relatively wide portion within the lower half range is greatly recessed toward the rear surface side. The attached chemical solution outlet 8 is formed.

上記窪み空間部a1は、下面を薬液タンク2の前方張り出し底面部b1で囲まれると共に、左右側面個所の大部分を、薬液タンク2の左右各側部b2、b2を前側から切除して形成された開放個所となされ、上面個所を薬液タンク2の上部前面壁b3から下方奥側へ向け傾斜状に延長された傾斜状前面壁b4で囲まれ、奥面個所を傾斜状前面b3の下縁から垂直下方へ延長された奥部前面壁b5で囲まれている。   The hollow space a1 is formed by cutting out the left and right side portions b2 and b2 of the chemical liquid tank 2 from the front side while enclosing the lower surface with a front projecting bottom surface b1 of the chemical liquid tank 2 and the left and right side portions. The upper surface portion is surrounded by an inclined front wall b4 extending in an inclined manner from the upper front wall b3 of the chemical tank 2 toward the lower back side, and the rear surface portion is defined from the lower edge of the inclined front surface b3. It is surrounded by a rear front wall b5 that extends vertically downward.

9は窪み空間部a1内に配置され前方張り出し底面部b1の上面にボルトで固定された注入ポンプで、ポンプ部10と駆動部11と制御部12とを一体状に組み立てたものとなされている。このさい、ポンプ部10は定量ポンプとして機能するダイヤフムポンプとなされており、駆動部11はダイヤフラムポンプ10のダイヤフラムに連動連結された出力部材を電動モータで往復作動させるものとなされており、制御部12は駆動部11の電動モータを制御するものとなされている。   Reference numeral 9 denotes an infusion pump which is disposed in the hollow space part a1 and is fixed to the upper surface of the front projecting bottom surface part b1 with a bolt, and is constructed by assembling the pump part 10, the drive part 11 and the control part 12 integrally. . At this time, the pump unit 10 is a diaphragm pump that functions as a metering pump, and the drive unit 11 is configured to reciprocate an output member linked to the diaphragm of the diaphragm pump 10 with an electric motor. The unit 12 controls the electric motor of the drive unit 11.

2Aは窪み空間部b1の前方及び左右側方の大部分を覆った透明状の合成樹脂材製のカバー部材であり、図示しないネジ部材で薬液タンクの前面2cに固定されている。カバー部材2Aの下縁と窪み空間部b1の下面との間個所は窪み空間部を外方に開放させるための開放口となされ高さを10cm〜20cm程度となされている。   2A is a cover member made of a transparent synthetic resin material that covers most of the front and left and right sides of the hollow space b1, and is fixed to the front surface 2c of the chemical tank with a screw member (not shown). A portion between the lower edge of the cover member 2A and the lower surface of the hollow space portion b1 serves as an opening for opening the hollow space portion outward, and has a height of about 10 cm to 20 cm.

図5及び図6は2本の通液管13、14を一体状に組み付けた通液管ユニットUを示した図である。通液管ユニットUは基礎台1に固設されている。これら通液管13、14のうち一方のもの14は他方のもの13よりも通液路を小径となされている。具体的には、例えば一方の通液管13が呼び径50Aの管部材で形成されたときは、他方の通液管14は呼び径32Aの管部材で形成するのであり、或いは、一方の通液管13が呼び径40Aの管部材で形成されたときは、他方の通液管14は呼び径32Aの管部材で形成するようになされる。   5 and 6 are views showing a liquid passage unit U in which two liquid passage pipes 13 and 14 are integrally assembled. The liquid passage unit U is fixed to the base 1. One of the liquid passage pipes 13 and 14 has a smaller diameter in the liquid passage than the other one 13. Specifically, for example, when one of the liquid passing pipes 13 is formed of a pipe member having a nominal diameter of 50A, the other liquid passing pipe 14 is formed of a pipe member having a nominal diameter of 32A, or one of the liquid passing pipes is formed. When the liquid pipe 13 is formed of a pipe member having a nominal diameter of 40A, the other liquid passage pipe 14 is formed of a pipe member having a nominal diameter of 32A.

そして、呼び径の大きい方の通液管13の長さ途中に薬液注入口15が設けられ、また呼び径の小さい方の通液管14の長さ途中には該通液管14内を流れる液体の流量を検出するための流量センサ16が設けられる。この流量センサ16は通液管14内を流れる液体に接し該液体の流量に比例して回転される羽根車16aを具備すると共に、液体流量を表す電気信号として、前記羽根車16aの1回転時間に対応した時間間隔のパルスを発生するものとなされている。このパルスは伝送線17を通じて注入ポンプ9の制御部12に伝達され、制御部12は後述するように、これに伝送されたパルスに基づいて駆動部11の出力部材を往復作動させるものとなされている。   A chemical injection port 15 is provided in the middle of the length of the liquid passage 13 having the larger nominal diameter, and flows in the liquid passage 14 in the middle of the length of the liquid pipe 14 having the smaller nominal diameter. A flow sensor 16 for detecting the flow rate of the liquid is provided. The flow rate sensor 16 includes an impeller 16a that is in contact with the liquid flowing in the liquid passage 14 and is rotated in proportion to the flow rate of the liquid, and as an electric signal representing the liquid flow rate, the rotation time of the impeller 16a is one rotation time. It is supposed to generate a pulse at a time interval corresponding to. This pulse is transmitted to the control unit 12 of the infusion pump 9 through the transmission line 17, and the control unit 12 reciprocates the output member of the drive unit 11 based on the pulse transmitted thereto, as will be described later. Yes.

実際に使用される通液管ユニットUの外観は図6に示すようなものとなされる。一方の通液管13は異径チーズ18a、18b、直状管部材19a、19b、フランジ継ぎ手部20を直列状に結合させたものとなされ、また他方の通液管14は直状管部材21a、21b、90度曲がり管22a、22b、ネジ付直状管部材23、ユニオン継ぎ手部24、流量センサ16の本体フレーム16Aを直列状に結合させたものとなされている。   The appearance of the liquid flow pipe unit U actually used is as shown in FIG. One liquid passing pipe 13 is formed by connecting different diameter cheeses 18a and 18b, straight pipe members 19a and 19b, and flange joint parts 20 in series, and the other liquid passing pipe 14 is a straight pipe member 21a. 21b, 90-degree bent pipes 22a and 22b, a threaded straight pipe member 23, a union joint part 24, and a main body frame 16A of the flow sensor 16 are connected in series.

この通液管ユニットUの通液管13の各フランジ継ぎ手部20、20は基礎台1の左右の側面1aに形成された透孔c1を通じて基礎台1の外側に配置されると共にフランジ継ぎ手部20、20を除いた大部分個所を基礎台1の内方に配置されUボルトなどを介して基礎台1内面に固定されている。   The flange joint portions 20, 20 of the fluid passage pipe 13 of the fluid passage unit U are disposed outside the foundation base 1 through the through holes c 1 formed in the left and right side surfaces 1 a of the foundation base 1 and the flange joint portions 20. , 20 are arranged at the inner side of the base 1 and fixed to the inner surface of the base 1 via U bolts.

図2に示すように、ポンプ部10の液吸引口10aと開閉弁7の液出口とは合成樹脂材からなる吸引ホース25によりホース接続具を介して連通されており、またポンプ部10の液吐出口10bと、薬液注入口15とは基礎台1の前面1cに形成された透孔d2内を通過された合成樹脂材からなる吐出ホース26によりホース接続具を介して連通されている。   As shown in FIG. 2, the liquid suction port 10a of the pump unit 10 and the liquid outlet of the on-off valve 7 are communicated with each other via a hose connector by a suction hose 25 made of a synthetic resin material. The discharge port 10b and the chemical solution injection port 15 are communicated with each other through a hose connector by a discharge hose 26 made of a synthetic resin material that has passed through a through hole d2 formed in the front surface 1c of the base 1.

そして、通液管13の長さ途中で且つ薬液注入口15よりも下流側で且つ、通液路14の入口14aと出口14bとの間となる個所には、図5などに示すように、該個所の通液路断面積を当該通液管13の他個所の通液路断面積よりも小さくなすための絞り部27が形成されている。図7は絞り部27周辺の具体的な構造を示す断面図である。この絞り部27を簡便に形成するには、異径チーズ18bの上流側の受け口にドーナツ状のオリフィス板27Aを挿入して受け口の段差個所e1に当接させ、次に直状管部材19bの下流端を前記受け口内に嵌挿しオリフィス板27Aの上流側の端面に押し当てた状態となす。これら各部材18b、19b、27A間は接着剤で接着される。   Then, in the middle of the length of the liquid passage 13 and downstream of the chemical liquid inlet 15 and between the inlet 14a and outlet 14b of the liquid passage 14, as shown in FIG. A restricting portion 27 is formed to make the cross-sectional area of the flow passage at this location smaller than the cross-sectional area of the flow passage at other locations of the flow-through pipe 13. FIG. 7 is a cross-sectional view showing a specific structure around the diaphragm 27. In order to easily form the narrowed portion 27, a donut-shaped orifice plate 27A is inserted into the upstream receiving port of the different-diameter cheese 18b and brought into contact with the stepped portion e1 of the receiving port. The downstream end is fitted into the receiving port and pressed against the upstream end face of the orifice plate 27A. These members 18b, 19b, and 27A are bonded with an adhesive.

次に上記した薬液注入装置の使用例及び作用について説明する。
例えば、図2に示すように、地下水を揚水ポンプ100で汲み上げ、送水管101を通じて、生活空間102に衛生的な水を供給する水供給設備において、送水管101の送水経路途中に本発明に係る薬液注入装置Yを設置する。
具体的には、薬液注入装置Yより上流側の送水管101の下流端を通液管13の上流側のフランジ継ぎ手部20に連通させ、薬液注入装置Yより下流側の送水管101の上流端を通液管13の下流側のフランジ継ぎ手部20に連通させる。
Next, usage examples and operations of the above-described chemical liquid injector will be described.
For example, as shown in FIG. 2, in a water supply facility that pumps groundwater with a pumping pump 100 and supplies sanitary water to a living space 102 through a water supply pipe 101, the present invention is in the middle of the water supply path of the water supply pipe 101. A chemical injection device Y is installed.
Specifically, the downstream end of the water supply pipe 101 upstream of the chemical liquid injector Y is communicated with the flange joint 20 on the upstream side of the liquid pipe 13, and the upstream end of the water pipe 101 downstream of the chemical liquid injector Y is connected. The passage is communicated with the flange joint 20 on the downstream side of the liquid pipe 13.

薬液注入装置Yの通液系統は最高使用圧力を略0.5MPa程度となされ、また最大流量は送水管101の呼び径が40Aであるときには毎分略200リットル程度となされ、また送水管101の呼び径が50Aであるときには毎分略400リットル程度となされる。   The liquid supply system of the chemical injection device Y has a maximum operating pressure of about 0.5 MPa, and the maximum flow rate is about 200 liters per minute when the nominal diameter of the water pipe 101 is 40 A. When the nominal diameter is 50 A, it is about 400 liters per minute.

そして、薬液タンク2には次亜塩素酸ナトリウム12%液が開口部5から投入されるのであり、この後、各部が作動可能状態となされる。   Then, a 12% sodium hypochlorite solution is introduced into the chemical liquid tank 2 from the opening 5, and thereafter, each part is brought into an operable state.

該状態の下で、揚水ポンプ100はこれの出口側の送水管101内の圧力が予め定められた一定圧力範囲内に保持されるように地下水を自動的に汲み上げるように作動するのであり、このような作動は従来と変わりない。いま、送水管101内の水が生活空間102の蛇口102aから流出され、送水管101内の圧力が低下すると、これに関連して揚水ポンプ100が自動的に作動して、地下水を汲み上げ、送水管101内に送り込む。このさい、消費された水量と同等の水が薬液注入装置Yの2本の通液管13、14を通じて流動する。   Under this condition, the pump 100 operates to automatically pump up groundwater so that the pressure in the water pipe 101 on the outlet side of the pump is maintained within a predetermined pressure range. Such operation is not different from the conventional one. Now, when the water in the water pipe 101 flows out from the faucet 102a of the living space 102 and the pressure in the water pipe 101 decreases, the pump 100 is automatically activated in connection with this, and the ground water is pumped up and sent. Feed into the water pipe 101. At this time, water equivalent to the amount of water consumed flows through the two liquid flow pipes 13 and 14 of the chemical liquid injector Y.

この流動中、各通液管13、14ではそれぞれの単位長さ当たりの圧力降下に関連した流量で水が流れる。この例では送水管101と通液管13との結合の利便性から通液管13の呼び径は送水管101のそれに合致させるようになされるが、このようにすると、何らの対策も講じなければ、通液管14の流量が通液管13のそれに比べて過少となって流量センサ16による流量検出が的確に行われ難くなることが予想される。オリフィス27Aはこれに対処するためのものであり、オリフィス27Aにより付与される流動抵抗は流量センサ16による流量検出が的確に行われる範囲内で最小となるように決定するのがよいのであり、このように決定すると、余分な流動抵抗の付与が回避されて2本の通液管13、14内での水流動が効率的となる。各通液管13、14内の流量は例えばそれぞれの通液路断面積に概ね比例する程度となされる。   During this flow, water flows in each of the flow-through pipes 13 and 14 at a flow rate related to the pressure drop per unit length. In this example, the nominal diameter of the liquid pipe 13 is made to match that of the water pipe 101 for the convenience of the connection between the water pipe 101 and the liquid pipe 13, but in this way, no measures should be taken. In this case, it is expected that the flow rate of the liquid flow pipe 14 becomes smaller than that of the liquid flow pipe 13 and it is difficult to accurately detect the flow rate by the flow rate sensor 16. The orifice 27A is for coping with this, and the flow resistance applied by the orifice 27A is preferably determined so as to be minimized within a range where the flow rate detection by the flow rate sensor 16 is accurately performed. If determined in this way, the application of excessive flow resistance is avoided, and the water flow in the two liquid-passing pipes 13 and 14 becomes efficient. The flow rate in each of the liquid flow pipes 13 and 14 is, for example, approximately proportional to the cross-sectional area of each liquid flow path.

通液管14内の水の流れは、流量センサ16の羽根車16aを回転させるのであり、流量センサ16は、例えば、羽根車16aの回転数と同数のパルスを出力することで通液管14内の水流量を検出する。このパルスは伝送線17を通じて制御部12に伝達され、制御部12はこれに伝送された各パルスを計上して送水管101内の水の流量(具体的には通液管13及び通液管14を通過した水量)を把握する。   The flow of water in the liquid flow pipe 14 rotates the impeller 16a of the flow sensor 16, and the flow sensor 16 outputs, for example, the same number of pulses as the rotation speed of the impeller 16a to output the liquid flow pipe 14. Detects the water flow rate inside. This pulse is transmitted to the control unit 12 through the transmission line 17, and the control unit 12 counts each pulse transmitted to the control unit 12 to measure the flow rate of water in the water supply pipe 101 (specifically, the liquid flow pipe 13 and the liquid flow pipe). 14).

図8は通液管14の圧力差Δhの変化に対する、通液管13内の水の流量Qや、通液管14内の水の流量Qや、2本の通液管13、14内の水の流量Qの変化を示したグラフである。ここに、圧力差Δhは図5中における通液管14の入口14aの近傍位置p1の圧力と通液管14の出口14bの近傍位置p2の圧力との差である。図8中、s1は通液管13内の流量Qの変化を示す線であり、s2は通液管14内の水流量Qの変化を示す線であり、s3は2本の通液管13、14内の流量Q及びQを合算したもので送水管101内の水の流量Qの変化を示す線である。 Figure 8 is with respect to a change in the pressure difference Δh of Tsuekikan 14, the flow rate Q 1 and water liquid passing pipe 13, and the flow rate Q 2 of the water liquid passing pipe 14, the two liquid passage pipe 13 and 14 it is a graph showing the change of the flow rate Q 3 of water inside. Here, the pressure difference Δh is the difference between the pressure at the position p1 near the inlet 14a of the fluid passage 14 and the pressure at the position p2 near the outlet 14b of the fluid passage 14 in FIG. In FIG. 8, s1 is a line indicating a change in the flow rate to Q 1 Tsuekikan in 13, s2 is a line indicating a change in water flow rate Q 2 of Tsuekikan in 14, s3 are two liquid passing The sum of the flow rates Q 1 and Q 2 in the pipes 13 and 14 is a line indicating the change in the flow rate Q 3 of the water in the water pipe 101.

上記圧力差Δhは揚水ポンプ100の作動環境の変化で大小に変化すると共に、生活空間102での水消費量の変化による送水管101内の水の流速の変化などによっても大小に変化する。また上記圧力差Δhと圧力差Δhに基づく各通液管13、14内の水の流速との関係は次の(1)式及び(2)式で表されることは既に知られている。   The pressure difference Δh changes depending on a change in the operating environment of the pumping pump 100 and also changes depending on a change in the flow rate of water in the water pipe 101 due to a change in water consumption in the living space 102. In addition, it is already known that the relationship between the pressure difference Δh and the flow rate of water in the liquid flow pipes 13 and 14 based on the pressure difference Δh is expressed by the following equations (1) and (2).

Δh=λ・v /(2・g) ・・・・(1)式
Δh=λ・v /(2・g) ・・・・(2)式
ここに、λは液通路13の定数、λは液通路14の常数、vは液通路13内の水の流速、vは液通路14内の水の流速である。
Δh = λ 1 · v 1 2 / (2 · g) (1)
Δh = λ 2 · v 2 2 / (2 · g) (2) where λ 1 is a constant of the liquid passage 13, λ 2 is a constant of the liquid passage 14, and v 1 is in the liquid passage 13. The flow rate of water, v 2, is the flow rate of water in the liquid passage 14.

したがって、各通液管13、14内の流速は次の(3)式及び(4)式で表される。
=k・(Δh)1/2 ・・・・(3)式
=k・(Δh)1/2 ・・・・(4)式
ここに、k は液通路13の定数、kは液通路14の常数である。
Therefore, the flow velocity in each of the liquid flow pipes 13 and 14 is expressed by the following equations (3) and (4).
v 1 = k 1 · (Δh) 1/2 ··· (3) equation
v 2 = k 2 · (Δh) 1/2 ··· (4) where k 1 is a constant of the liquid passage 13, and k 2 is a constant of the liquid passage 14.

上記の(3)式及び(4)式に基づいて、各通液管13、14内の水の流量Q、Qは次の(5)式及び(6)式で表される。
=v・s=k・(Δh)1/2 ・・・・(5)式
=v・s=k・(Δh)1/2 ・・・・(6)式
Based on the above formulas (3) and (4), the flow rates Q 1 and Q 2 of the water in each of the liquid flow pipes 13 and 14 are expressed by the following formulas (5) and (6).
Q 1 = v 1 · s 1 = k 3 · (Δh) 1/2 ··· (5)
Q 2 = v 2 · s 2 = k 4 · (Δh) 1/2 ··· (6)

図8において、線s1は(5)式から得られるものであり、線s2は(6)式から得られるものであり、線s3は水流量Qと水流量Qとを合算して得られるものである。
これらの線s1、s2、s3の関係に基づいて、2本の通液管13、14による水の流量(送水管101内の水流量)Qは通液管14の水の流量Qから一意的に特定されるものとなる。なお、水流量Qと水流量Qとの関係は理論上から求めることもできるが、実験によって簡易に確定される。
8, line s1 are obtained from equation (5), line s2 are obtained from equation (6), the line s3 by summing the water flow rate Q 1, the water flow rate Q 2 obtained It is what
Based on the relationship of these lines s1, s2, s3, two water by passing liquid pipe 13 of the flow (water flow in the water pipe 101) Q 3 is a flow Q 2 of water Tsuekikan 14 It will be uniquely identified. The relationship between water flow rate Q 2 and the water flow rate Q 3 are can also be determined from the theoretical, it is determined easily by experiment.

制御部12には上記流量Qと上記流量Qとの関係や、上記流量Qと注入すべき薬液量との関係に係る情報が予め入力されている。そして、制御部12は該情報と、流量センサ16から伝達されたパルスにより把握した流量(流量センサ16を通過した水量)Qとに基づいて2本の通液管13、14内の流量(2本の通液管13、14内を通過した水量)Qを特定し、この流量Qに対応した量の薬液を薬液タンク2内から通液管13内の水に注入するように駆動部11を作動させる。 The control unit 12 relationships and between the flow rate Q 2 and the flow rate Q 3, information relating to the relationship between the chemical quantity to be injected the flow rate Q 3 is inputted in advance. The control unit 12 includes the information and the flow rate (amount of water passing through the flow sensor 16) flow rate grasped by the transmitted pulse from the sensor 16 Q 2 and two of the flow rate of liquid passing pipe 13, 14 on the basis of the ( identify the amount of water) Q 3 which passes through the two liquid passage pipe 13 and 14, driving the amount of chemical solution to address this flow Q 3 to inject the water passing liquid pipe 13 from inside the chemical liquid tank 2 Actuate part 11.

このさいの作動をさらに詳細に説明すると、流量センサ16から羽根車16aの1回転ごとに1つ発生されるパルスが制御部12に伝達されると、制御部12はそのパルスを順次に加算するように計上し、その加算値が予め制御部12の調整部材の操作により設定された数値に合致したとき、ポンプ部10のダイヤフラムポンプが1回往復作動されるように駆動部11の出力部材を作動させる。これによりポンプ部10は薬液タンク2内から吸引ホース25を通じて液吸引口10aまで導かれた薬液の一定量を吸引した後、液吐出口10bからそれを流出させるように作動し、該作動により吐出ホース26及び薬液注入口15を通じて一定量の薬液が通液管13内の水に注入される。   The operation at this time will be described in more detail. When a pulse generated from the flow sensor 16 for each rotation of the impeller 16a is transmitted to the control unit 12, the control unit 12 sequentially adds the pulses. The output member of the drive unit 11 is set so that the diaphragm pump of the pump unit 10 is reciprocated once when the added value matches the numerical value set in advance by operating the adjustment member of the control unit 12. Operate. As a result, the pump unit 10 operates to suck a certain amount of the chemical liquid guided from the chemical liquid tank 2 to the liquid suction port 10a through the suction hose 25, and then discharges it from the liquid discharge port 10b. A certain amount of chemical solution is injected into the water in the liquid passage 13 through the hose 26 and the chemical solution injection port 15.

該一定量の薬液の注入の終了により前記加算値はゼロに復帰されるのであり、この復帰後に再び流量センサ16から伝達されるパルスを制御部12が順次に加算していくのであり、以後は既述と同様な作動が繰り返される。これにより、2本の通液管13、14を経た後の送水管101内の水には一定水量が通過するたびに予め定められた一定量の薬液が注入された状態となって、送水管101内の水は送水管内の流量の変化に拘わらず予定された薬液濃度となされる。   The addition value is reset to zero when the injection of the fixed amount of the chemical solution is completed, and the control unit 12 sequentially adds pulses transmitted from the flow sensor 16 again after the return. The same operation as described above is repeated. As a result, a predetermined amount of a chemical solution is injected into the water in the water supply pipe 101 after passing through the two liquid supply pipes 13 and 14 every time a predetermined amount of water passes, and the water supply pipe The water in 101 has a planned chemical concentration regardless of changes in the flow rate in the water pipe.

このような使用中において、生活空間102に供給される水の薬液濃度を濃くしたい場合は、制御部12の調整部材を操作して、駆動部11を作動させるためのパルス数の数値を小さくなす。これにより、前よりも少ない水量に対し先と同一量である一定量の薬液がポンプ部10から吐出されるようになり、通液管13を経た後の送水管101内の薬液濃度は増大される。逆に生活空間102に供給される水の薬液濃度を薄くしたいときは前記調整部材を操作して、駆動部12を作動させるためのパルス数の数値を大きくなすのであり、これにより前よりも多い水量に対し先と同一量である一定量の薬液がポンプ部10から吐出されるようになり、通液管13を経た後の送水管101内の薬液濃度は減少される。   During such use, when it is desired to increase the concentration of the chemical supplied to the living space 102, the adjustment member of the control unit 12 is operated to decrease the number of pulses for operating the drive unit 11. . As a result, a certain amount of chemical solution, which is the same amount as before, is discharged from the pump unit 10 with respect to a smaller amount of water than before, and the concentration of the chemical solution in the water supply pipe 101 after passing through the liquid flow pipe 13 is increased. The Conversely, when it is desired to reduce the chemical concentration of the water supplied to the living space 102, the adjustment member is operated to increase the value of the number of pulses for activating the drive unit 12, which is higher than before. A certain amount of chemical solution, which is the same amount as the previous amount, is discharged from the pump unit 10, and the concentration of the chemical solution in the water supply pipe 101 after passing through the liquid passage pipe 13 is reduced.

薬液注入口15から通液管13内に導かれた薬液はオリフィス27Aの上流側近傍の水中に注入されるのであり、これにより薬液はオリフィス27Aの上流側近傍に集中的に発生する渦流により水中に均等に混入されるのであり、またオリフィス27Aを通過した後にもオリフィス27Aの下流側近傍に集中的に発生する渦流によりさらに均一に混合される。   The chemical liquid guided from the chemical liquid injection port 15 into the liquid flow pipe 13 is injected into the water in the vicinity of the upstream side of the orifice 27A, whereby the chemical liquid is submerged by the vortex generated intensively in the vicinity of the upstream side of the orifice 27A. In addition, even after passing through the orifice 27A, the mixture is evenly mixed by the vortex generated intensively in the vicinity of the downstream side of the orifice 27A.

上記薬液注入装置Yの変形例について説明する。
(1)図9は絞り部27の変形例を示す断面図である。絞り部27の上流側近傍に乱流を定常的に促進させるための乱流促進部28を形成する。具体的には、絞り部27の肉部の上流側の液接触面g1を次のように形成するのであって、即ち、この液接触面g1上を仮想点が通液路半径方向外側へ移動したとき該移動に伴って上流側へ変位するようになる形状である部分球面となし且つ、この部分球面の半径を該絞り部27の形成された通液管13の最大通液路断面積個所の半径の略、0.5〜1.0倍の範囲内の大きさ程度となす。このようにすれば、通液路13内を上流側からオリフィス27Aに向けて流れた水流が矢印方向h1へ向け円滑に方向転換され逆行するようになってオリフィス27Aの上流側近傍における乱流が促進される。
A modified example of the chemical liquid injector Y will be described.
(1) FIG. 9 is a cross-sectional view showing a modified example of the diaphragm portion 27. A turbulent flow promoting portion 28 for constantly promoting turbulent flow is formed in the vicinity of the upstream side of the throttle portion 27. Specifically, the liquid contact surface g1 on the upstream side of the flesh portion of the throttle portion 27 is formed as follows, that is, the virtual point moves on the liquid contact surface g1 outward in the liquid passage radial direction. The partial spherical surface has a shape that is displaced to the upstream side with the movement, and the radius of the partial spherical surface is the maximum flow passage cross-sectional area of the liquid passage 13 in which the throttle portion 27 is formed. Is approximately the size within a range of 0.5 to 1.0 times the radius of. In this way, the water flow that has flowed from the upstream side toward the orifice 27A in the liquid passage 13 is smoothly redirected in the direction of the arrow h1 and reverses, so that turbulent flow in the vicinity of the upstream side of the orifice 27A is generated. Promoted.

このさい、部分球面g1の最上流側である終端部の形状は該終端部と半径面(通液路中心線O1と該中心線O1回りの任意な特定の半径線とを含む平面)との交叉線が通液路13の上流側へ変位するほど通液路中心線o1に近づくようなものとする。このようにすれば、図8中の矢印h1のように方向転換された水流がさらに通液路中心線o1側へ矢印h2で示すように円滑に方向転換されるため、部分球面g1による渦流形成が促進されて乱流が一層効果的に促進される。この結果、通液路を通過した後の地下水は迅速に薬液濃度を均等化される。   At this time, the shape of the terminal portion on the most upstream side of the partial spherical surface g1 is the shape of the terminal portion and the radial surface (a plane including the liquid passage center line O1 and an arbitrary specific radial line around the center line O1). It is assumed that the intersection line approaches the liquid passage center line o1 as the cross line is displaced to the upstream side of the liquid passage 13. In this way, the water flow whose direction is changed as indicated by the arrow h1 in FIG. 8 is further smoothly changed as indicated by the arrow h2 toward the liquid passage center line o1, so that the vortex is formed by the partial spherical surface g1. Is promoted, and turbulent flow is more effectively promoted. As a result, the chemical concentration of the groundwater after passing through the liquid passage is quickly equalized.

(2)上記した例では異なる大きさの通液路断面積となされた2本の通液管13、14を設けたが、それぞれの通液管13、14は本発明の効果が得られる範囲内で任意な径となすことができるのであり、また3つ以上の通液管を設け、何れか1つの通液管に流量センサ16を設ける構成などとなすことも差し支えない。また各通液管の流動抵抗の大小関係によってはオリフィス27Aを設けないで済む場合もある。 (2) In the above-described example, the two liquid-passing pipes 13 and 14 having different liquid passage cross-sectional areas are provided, but the respective liquid-passing pipes 13 and 14 are within a range where the effects of the present invention can be obtained. It is possible to have an arbitrary diameter, and it is possible to provide a configuration in which three or more liquid passage pipes are provided and the flow rate sensor 16 is provided in any one liquid passage pipe. In some cases, the orifice 27A may not be provided depending on the magnitude relationship between the flow resistances of the liquid flow pipes.

(3)上記例では地下水に薬液を注入する場合について説明したが、これに限定するものではなく、任意な2種の液体を一定割合で混合させる場合にも使用し得るものである。 (3) In the above example, the case where the chemical solution is injected into the groundwater has been described. However, the present invention is not limited to this, and the present invention can also be used when two arbitrary kinds of liquids are mixed at a constant ratio.

本発明に係る薬液注入装置の斜視図である。It is a perspective view of the chemical injection device concerning the present invention. 前記薬液注入装置の正面図である。It is a front view of the said chemical injection device. 前記薬液注入装置の平面図である。It is a top view of the said chemical injection device. 前記薬液注入装置の側面図である。It is a side view of the said chemical injection device. 2本の通液管を一体状に組み付けた通液管ユニットを模式的に示す断面図である。It is sectional drawing which shows typically the liquid flow pipe unit which assembled | attached two liquid flow pipes integrally. 前記通液管ユニットを具体化した状態の外観を示す斜視図である。It is a perspective view which shows the external appearance of the state which materialized the said liquid flow pipe unit. 絞り部周辺の具体的な構造を示す断面図である。It is sectional drawing which shows the specific structure of an aperture | diaphragm | squeeze part periphery. 通液管内の圧力差の変化に対する、通液管内の水の流量の変化を示すグラフである。It is a graph which shows the change of the flow volume of the water in a liquid flow pipe with respect to the change of the pressure difference in a liquid flow pipe. 前記通液管ユニットの絞り部の変形例を示す断面図である。It is sectional drawing which shows the modification of the aperture | diaphragm | squeeze part of the said liquid flow pipe unit.

符号の説明Explanation of symbols

流量
Y 薬液注入装置
g1 部分球面
9 注入ポンプ
13 通液管
14 通液管
16 流量センサ
27 絞り部
101 送液管
Q 2 Flow rate Y Chemical solution injection device g1 Partial spherical surface 9 Injection pump 13 Fluid passage tube 14 Fluid passage tube 16 Flow rate sensor 27 Throttle portion 101 Fluid delivery tube

Claims (5)

送液管内を流れる液体中に注入ポンプで薬液を注入する薬液注入装置において、前記送液管の長さ途中に前記送液管内の液体流れを分流させるための複数の通液管を設け、且つ、任意な一本の前記通液管内の液体の流量を検出するための流量センサを設け、該流量センサの検出信号に基づいて前記注入ポンプの薬液注入作動が制御されることを特徴とする薬液注入装置。   In a chemical liquid injector for injecting a chemical liquid with an injection pump into the liquid flowing in the liquid supply pipe, a plurality of liquid flow pipes for dividing the liquid flow in the liquid supply pipe are provided in the middle of the length of the liquid supply pipe, and A liquid sensor for detecting a flow rate of the liquid in any one of the liquid flow pipes, and a chemical liquid injection operation of the injection pump is controlled based on a detection signal of the flow sensor. Injection device. 送液管内を流れる液体中に注入ポンプで薬液を注入する薬液注入装置において、前記送液管の長さ途中に前記送液管内の液体流れを分流させるための2本の通液管を設け、これら通液管のうち一方は他方よりも通液路を小径となされており、且つ、通液路が小径である方の前記通液管内の液体の流量を検出するための流量センサを設け、該流量センサの検出信号に基づいて前記注入ポンプの薬液注入作動が制御されることを特徴とする薬液注入装置。   In the chemical liquid injection device that injects the chemical liquid into the liquid flowing in the liquid supply pipe with an injection pump, two liquid supply pipes for dividing the liquid flow in the liquid supply pipe are provided in the middle of the length of the liquid supply pipe, One of these liquid pipes has a smaller diameter passage than the other, and a flow rate sensor is provided for detecting the flow rate of the liquid in the liquid passage having the smaller diameter. A chemical solution injection device, wherein a chemical solution injection operation of the injection pump is controlled based on a detection signal of the flow sensor. 通液路が大径である方の前記通液管が、これの長さ途中個所の通路断面積を当該通液管の他個所の通路断面積よりも小さくなすための絞り部を形成されていることを特徴とする請求項2記載の薬液注入装置。   The flow passage pipe having the larger diameter of the liquid passage is formed with a throttle portion for making the passage cross-sectional area of the portion in the middle of its length smaller than the passage cross-sectional area of the other portion of the liquid passage pipe. The chemical injection device according to claim 2, wherein: 前記薬液の注入位置が、前記絞り部の形成された前記通液管の通液路内であって前記絞り部の上流側であることを特徴とする請求項3記載の薬液注入装置。   4. The chemical solution injection device according to claim 3, wherein the injection position of the chemical solution is in a flow path of the liquid flow pipe in which the throttle portion is formed and upstream of the throttle portion. 前記絞り部の肉部の上流側液接触面が該面上の点が通液路半径方向外側へ移動する伴って上流側へ変位するように位置する部分球面となされ且つ、該部分球面の半径が該絞り部を形成された前記通液管の最大通路断面積個所の半径の略、0.5〜1.0倍の範囲内の大きさ程度となされていることを特徴とする請求項4記載の薬液注入装置。   The upstream liquid contact surface of the flesh portion of the throttling portion is a partial spherical surface positioned so that a point on the surface is displaced upstream as the point on the radial direction of the liquid passage moves, and the radius of the partial spherical surface 5. The diameter of the maximum passage cross-sectional area of the liquid flow pipe in which the throttle portion is formed is approximately 0.5 to 1.0 times larger than the radius. The chemical injection device according to the description.
JP2007194428A 2007-07-26 2007-07-26 Chemical injection device Active JP5216266B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007194428A JP5216266B2 (en) 2007-07-26 2007-07-26 Chemical injection device
CN2008101268765A CN101353194B (en) 2007-07-26 2008-07-10 Liquid medicine injection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007194428A JP5216266B2 (en) 2007-07-26 2007-07-26 Chemical injection device

Publications (2)

Publication Number Publication Date
JP2009028624A true JP2009028624A (en) 2009-02-12
JP5216266B2 JP5216266B2 (en) 2013-06-19

Family

ID=40306253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007194428A Active JP5216266B2 (en) 2007-07-26 2007-07-26 Chemical injection device

Country Status (2)

Country Link
JP (1) JP5216266B2 (en)
CN (1) CN101353194B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035242A (en) * 2010-08-11 2012-02-23 Kawamoto Pump Mfg Co Ltd Bacteria eliminator
JP2012170942A (en) * 2011-02-24 2012-09-10 Kawamoto Pump Mfg Co Ltd Chemical injection device, and water supply unit provided therewith
JP2012217894A (en) * 2011-04-06 2012-11-12 Kawamoto Densan Kk Liquid medicine injection device
JP2014018758A (en) * 2012-07-20 2014-02-03 Nikkiso Eiko Kk Chemical solution injection device
JP2014140803A (en) * 2013-01-23 2014-08-07 Aquas Corp Chemical liquid injection device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304318A (en) * 1988-06-01 1989-12-07 Japan Organo Co Ltd Flow rate measuring mechanism
JPH04219132A (en) * 1990-12-18 1992-08-10 Denki Kagaku Kogyo Kk Mixing pipe for discharging kneaded material
JPH07303822A (en) * 1994-05-12 1995-11-21 Yamaha Living Tec Kk Bubble generation device
JPH1119653A (en) * 1997-06-30 1999-01-26 Mitsubishi Electric Corp Bacteria removing device
JPH11347318A (en) * 1998-06-04 1999-12-21 Mitsubishi Electric Corp Bath water circulation and filtration apparatus comprising chemical agent-adding apparatus
JP2000093940A (en) * 1998-09-24 2000-04-04 Toshiba Corp Chemical feed controller
JP2004057873A (en) * 2002-07-25 2004-02-26 Tokiko Techno Kk Mixing apparatus
JP2006289352A (en) * 2005-03-18 2006-10-26 Hitachi Ltd Chemical solution injecting device, sterilizing device, and deferrizing and sterilizing system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648043A (en) * 1984-05-07 1987-03-03 Betz Laboratories, Inc. Computerized system for feeding chemicals into water treatment system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304318A (en) * 1988-06-01 1989-12-07 Japan Organo Co Ltd Flow rate measuring mechanism
JPH04219132A (en) * 1990-12-18 1992-08-10 Denki Kagaku Kogyo Kk Mixing pipe for discharging kneaded material
JPH07303822A (en) * 1994-05-12 1995-11-21 Yamaha Living Tec Kk Bubble generation device
JPH1119653A (en) * 1997-06-30 1999-01-26 Mitsubishi Electric Corp Bacteria removing device
JPH11347318A (en) * 1998-06-04 1999-12-21 Mitsubishi Electric Corp Bath water circulation and filtration apparatus comprising chemical agent-adding apparatus
JP2000093940A (en) * 1998-09-24 2000-04-04 Toshiba Corp Chemical feed controller
JP2004057873A (en) * 2002-07-25 2004-02-26 Tokiko Techno Kk Mixing apparatus
JP2006289352A (en) * 2005-03-18 2006-10-26 Hitachi Ltd Chemical solution injecting device, sterilizing device, and deferrizing and sterilizing system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035242A (en) * 2010-08-11 2012-02-23 Kawamoto Pump Mfg Co Ltd Bacteria eliminator
JP2012170942A (en) * 2011-02-24 2012-09-10 Kawamoto Pump Mfg Co Ltd Chemical injection device, and water supply unit provided therewith
JP2012217894A (en) * 2011-04-06 2012-11-12 Kawamoto Densan Kk Liquid medicine injection device
JP2014018758A (en) * 2012-07-20 2014-02-03 Nikkiso Eiko Kk Chemical solution injection device
JP2014140803A (en) * 2013-01-23 2014-08-07 Aquas Corp Chemical liquid injection device

Also Published As

Publication number Publication date
CN101353194A (en) 2009-01-28
JP5216266B2 (en) 2013-06-19
CN101353194B (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5216266B2 (en) Chemical injection device
US20110031272A1 (en) Chemical dispensing systems and positive displacement flow meters therefor
KR960021125A (en) Device for combining diluents with chemicals
CN102770200B (en) In-line fluid mixing device
US11965496B2 (en) Dosing pump system
AU2013341306B2 (en) Fluid injection system
US20070215214A1 (en) Valve and Fluid System with the Valve
KR101134312B1 (en) the free mixture unit of a water-purifying system in Bernoulli&#39;s theorem
EP3442383B1 (en) A liquid pumping device comprising a gear pump for beverage dispenser
US11835148B2 (en) Compact controlled valve with integrated orifices for precise mixing
JP5922418B2 (en) Electrolyzed water generator
CN210114674U (en) Nutrition pump, infusion apparatus and control valve
CN101792103B (en) Metering device and method for feeding a fluid into a fluid flow
JP5663416B2 (en) Liquid mixing device
CN112044296B (en) Degerming water apparatus for producing
WO2020159421A1 (en) Water recirculation device with water level estimation, water flow estimation, and/or air bubble prevention
CN114653296B (en) Liquid feeding device
KR101661502B1 (en) Manifold for chemical mixing and real time supply system for mixed chemical composition
JP2007315252A (en) Pump device
CN110092340A (en) Method and apparatus for distributing beverage
NZ727587A (en) Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

R150 Certificate of patent or registration of utility model

Ref document number: 5216266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250